
.

F E A T U R E

33

1089-7801/ 9 8 /$10.00 ©1998 IEEE h t tp ://computer.org/ in te rne t/ JANUARY • FEBRUARY 1998

VIRTUAL
NETWORK
COMPUTING
TRISTAN RICHARDSON, QUENTIN STAFFORD-FRASER,
KENNETH R. WOOD, AND ANDY HOPPER*
The Olivetti & Oracle Research Laboratory

T he so-called network computer (NC) aims to give users access
to centralized resources from simple, inexpensive devices.
These devices act as clients to more powerful server machines

that are connected to the network and provide applications, data, and
storage for a user’s preferences and personal customizations. We have
taken this idea a stage further. In the virtual network computing
(VNC) system, server machines supply not only applications and data
but also an entire desktop environment that can be accessed from any
Internet-connected machine using a simple software NC. Whenever
and wherever a VNC desktop is accessed, its state and configuration
(right down to the position of the cursor) are exactly the same as when
it was last accessed.

In contrast to many recent Internet applications, which have
focused on giving users access to resources located anywhere in the
world from their home computing environments, VNC provides
access to home computing environments from anywhere in the
world. Members of the Olivetti & Oracle Research Laboratory
(ORL) use VNC to access their personal Unix and PC desktops from
any office in our Cambridge building and from around the world on
whatever computing infrastructure happens to be available—includ-
ing, for example, public Web-browsing terminals in airports. VNC
thus provides mobile computing without requiring the user to carry
any device whatsoever. In addition, VNC allows a single desktop to
be accessed from several places simultaneously, thus supporting appli-

VNC is an ultra-thin

client system based on a

simple display protocol

that is platform-

independent. It achieves

mobile computing

without requiring the

user to carry any

hardware.

*Andy Hopper is also affiliated with Cambridge University Engineering Department.

cation sharing in the style of computer-supported cooper-
ative work (CSCW).

The technology underlying VNC is a simple remote-
display protocol. It is the simplicity of this protocol that
makes VNC so powerful. Unlike other remote display pro-
tocols such as the X Window System and Citrix’s ICA, the VNC
protocol is totally independent of operating system, win-
dowing system, and applications (see the sidebar, “Thin
Clients”). The VNC system is freely available for download
from the ORL Web site at http://www.orl.co.uk/vnc/.

We begin this article by summarizing the evolution of
VNC from our work on thin-client architectures. We then
describe the structure of the VNC protocol, and conclude by
discussing the ways we use VNC technology now and how
it may evolve further as new clients and servers are developed.

THE ORIGINS OF VNC
The X Window System allows applications to display a user
interface on a remote machine. ORL extended this func-
tionality in our Teleporting System by allowing the user inter-
face of a running X application to be dynamically redirect-
ed to a different display.1,2 Teleporting has been in daily use
at ORL for several years now. There are, however, several
problems with X that restrict its use in the wide area and, in
turn, restrict systems based on it, such as Teleporting:

■ X requires the display machine to run an X server pro-
gram. This heavyweight piece of software requires sub-
stantial resources, which machines such as NCs and per-
sonal digital assistants (PDAs) cannot be expected to run.

■ The X security model makes it inherently dangerous to
allow a remote machine to use your display. According-
ly, most system administrators stop X traffic from pass-
ing in or out of their sites.

■ Application startup is extremely slow on high-latency links
due to the number of round-trips performed by a typical
application (though there are special proxies that alleviate
this problem, such as Low Bandwidth X [LBX]3).

In addition to these technical problems, there is also the
nontechnical problem that X is not Windows, and the world
is becoming increasingly Microsoft-dominated.

Videotile: An Ultra-Thin Client
In 1994, ORL built the Videotile as an experiment in ultra-
thin-client technology. The Videotile is a display device with
an LCD screen, a pen, and an ATM network connection. It
was designed to display good-quality video, but we also
wanted to use it to interact with applications. As a first
experiment toward this end, we treated a remote computer
screen as a video source and simply shipped the user inter-
face as raw video onto the tile. This worked surprisingly well,
but used a significant amount of bandwidth.

By adding a little more intelligence at the application
side, we were able still to treat the user interface as video, but
to send only those parts of the screen that changed. This idea
developed into the VNC protocol.

Java: Access Through a Browser
When Sun Microsystems released the alpha version of the Java
language and the HotJava browser in 1995, we realized we
could implement the Videotile mechanism in Java to access
applications through a Web browser. The thin-client paradigm
made the adaptation to Java very straightforward. We wrote
the original Java client in a day and the resulting class file was
a mere 6 kilobytes in size. This eventually became the VNC
applet described in more detail elsewhere.4 Any Java-capable
browser could now provide access to a user’s desktop, giving
the mobility of the Teleporting system, but on a global scale.

M O B I L E C O M P U T I N G

34

JANUARY • FEBRUARY 1998 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

THIN CLIENTS
The Virtual Networking Computing (VNC) system is a thin-
client system. Like all such systems, it reduces the amount of
state maintained at the user’s terminal. VNC viewers are
exceedingly thin because they store no unrecoverable state at
the endpoint. This contrasts with systems like X Windows,
and allows arbitrary disconnection and reconnection of the
client with no effect on the session at the server. Since the
client can reconnect at a different location—even on the other
side of the planet—VNC achieves mobile computing with-
out requiring the user to carry computing hardware.

Of course, VNC is not the only thin-client system. Others
include those built around the Citrix ICA protocol (for exam-
ple, Citrix’s Winframe and Insignia Solutions’ Ntrigue),
SCO’s Tarantella, Graphon’s RapidX, and Microsoft’s Win-
dows-based Terminal Server (previously code-named
Hydra). The problem with all of these systems except
Microsoft’s is that, unlike X, they use proprietary protocols,
so reliable information about them is difficult to obtain. Cit-
rix’s ICA protocol is a popular mechanism for remote inter-
action with PCs, but it appears to be closely tied to the
Microsoft Windows GUI, so it may not be an ideal general-
purpose remote display protocol.

Microsoft has developed its own protocol, T.Share, based
on the ITU T.120 protocol.1 This is already used in Microsoft’s
NetMeeting conferencing software product. Preliminary
details suggest that Microsoft’s protocol is more like VNC than
ICA—the Hydra white paper refers to a “super-thin” client.

We hope that VNC, or something like it, can become an
open cross-platform standard for very-thin-client computing.

REFERENCE
1. “Microsoft Windows NT ‘Hydra’ and Windows-Based Terminals,”

white paper available at http://microsoft.com/ntserver/guide/

hydrapapers.asp.

THE VNC PROTOCOL
The technology underlying the VNC system is a simple pro-
tocol for remote access to graphical user interfaces. It works
at the framebuffer level and therefore applies to all operating
systems, windowing systems, and applications—indeed to any
device with some form of communications link. The proto-
col will operate over any reliable transport such as TCP/IP.

The endpoint with which the user interacts (that is, the
display and/or input devices) is called the VNC client or
viewer. The endpoint where changes to the framebuffer orig-
inate (that is, the windowing system and applications) is
known as the VNC server (see Figure 1).

VNC is truly a “thin-client” system. Its design makes very
few requirements of the client, and therefore simplifies the
task of creating clients to run on a wide range of hardware.

A Single Graphics Primitive
The display side of the protocol is based on a single graphics
primitive:

Put a rectangle of pixel data at a given x, y position.

At first glance this might seem an inefficient way to draw
some user interface components. However, allowing various
encoding schemes for the pixel data gives a large degree of
flexibility in trading off parameters such as network band-
width, client drawing speed, and server processing speed.

The lowest common denominator is the so-called raw
encoding, where the pixel data for a rectangle is simply sent in
left-to-right scanline order. All VNC clients and servers must
support this encoding. However, the encodings actually used
on a given connection can be negotiated according to the
capabilities of the server and client and the connection
between them.

For example, copy-rectangle encoding is very simple and effi-
cient, and can be used when the client already has the same
pixel data elsewhere in its framebuffer. The encoding on the
wire is simply an x, y coordinate. This gives a position in the
framebuffer from which the client can copy the rectangle of
pixel data. This encoding is typically used when the user moves
a window across the screen or scrolls a window’s contents.

Most clients will support copy-rectangle encoding, since
it is generally easy to implement, saves bandwidth, and is
likely to be faster than sending raw data again. However, in
a case where a client cannot easily read back from its frame-
buffer, the client could specify that it should not be sent data
encoded this way.

A typical workstation desktop has large areas of solid
color and text. One of our most effective encodings takes
advantage of this phenomenon by describing rectangles con-
sisting of one majority (background) color and “sub-rectan-
gles” of different colors. There are numerous other possible
schemes. We could use a JPEG encoding for efficient trans-

mission of still images or an MPEG encoding for moving
images. A pixel-data caching scheme could efficiently encode
multiple occurrences of the same text character by referring
to the first occurrence.

Adaptive Update
A set of rectangles of pixel data makes a framebuffer update
(or simply, update). An update represents a change from one
valid framebuffer state to another. In this sense, an update
is similar to a frame of video. It differs, however, in that it
usually affects only a small area of the framebuffer. Each rec-
tangle may be encoded using a different scheme. The server
can therefore choose the encoding most appropriate for the
particular screen content being transmitted and the avail-
able network bandwidth.

The update protocol is demand-driven by the client. That
is, an update is only sent by the server in response to an explic-
it request from the client. All screen changes since the client’s
last request are coalesced into a single update. This gives the
protocol an adaptive quality: the slower the client and the net-
work, the lower the rate of updates. On a fast network, for
example, as the user drags a window across the screen it will
move smoothly, being drawn at all the intermediate positions.
On a slower link—for example, over a modem—the client
will request updates less frequently, and the window will
appear at fewer of these positions. This means that the display
will reach its final state as quickly as the network bandwidth
will allow, thus maximizing the speed of interaction.

Input
The input side of the VNC protocol is based on a standard
workstation model of a keyboard and multibutton pointing
device. The client sends input events to the server whenev-
er the user presses a key or pointer button, or moves the
pointing device. Input events can also be synthesized from
other nonstandard I/O devices. On the Videotile, for exam-
ple, a pen-based handwriting recognition engine generates
keyboard events.

Connection Setup and Shutdown
To establish a client-server connection, the server first requests
authentication from the client, using a challenge-response

V I R T U A L N E T W O R K C O M P U T I N G

35

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JANUARY • FEBRUARY 1998

.

VNC server VNC viewer (client)

VNC protocol

Figure 1. VNC architecture.

scheme; the client typically requires the user to enter a pass-
word at this point. The server and client then exchange mes-
sages to negotiate desktop size, pixel format, and encoding
schemes. The client requests an update for the entire screen,
and the session begins. Because of the stateless nature of the
client, either side can close the connection at any time with-
out adverse consequences.

VNC Viewers
In day-to-day use, we prefer the more descriptive term
viewer to the rather overloaded word client. Writing a VNC
viewer is a simple task, as indeed it should be for any thin-
client system. It requires only a reliable transport (usually
TCP/IP), and a way of displaying pixels (either writing
directly to the framebuffer or going through a windowing
system).

We have written viewers for all the networked display
devices available at ORL. These include the Videotile (the
original VNC viewer), an X-based viewer (which runs on
Solaris, Linux, and Digital Unix workstations), a Win32
viewer that runs on Windows NT and 95, and a Java applet
that runs on any Java-capable browser (including Sun’s
JavaStation). Members of our lab use these viewers on a daily
basis to access their personal computing environments.

The images in Figure 2
show a variety of X and Win-
dows desktops being accessed
from both Java and native X
and Windows viewers.

VNC Servers
Writing a VNC server is
slightly harder than writing
a viewer. Because the proto-
col is designed to make the
client as simple as possible,
it is usually up to the server
to perform any necessary
translations (for example,
the server must provide
pixel data in the format the
client wants). We have writ-
ten servers for our two main
platforms, X (that is, Unix)
and Windows NT/95.

The X-based server was
the first one we developed. A
single Unix machine can run
a number of VNC servers
for different users, each rep-
resenting a distinct VNC
desktop. Each desktop is like
a virtual X display, with a

root window on which several X applications can appear.
The Windows VNC server was a little more difficult to

create. Windows has fewer places to insert hooks into the sys-
tem to monitor display updates, and the model of multiuser
operation is less clearly defined. Our current server simply
mirrors the real display to a remote client, which means that
only a single VNC desktop is available from any one PC.

The X-based server, the X viewer, the Win32 server, and
Win32 viewer can all fit on a single floppy disk.

We have also created “thin” servers which produce dis-
plays other than desktops, using a simple toolkit. A “VNC
CD player,” for example, generates a CD player user inter-
face using VNC directly without any reference to a win-
dowing system or framebuffer (see figure 3 on the following
page). Such servers can run on very simple hardware, and
can be accessed from any of the standard VNC viewers.

ANY USER INTERFACE, ANYWHERE
At ORL, we have used VNC to add mobility to workstation
GUIs, where the concept of at least some form of remote inter-
action is not new. But the protocol’s simplicity could allow it to
be used on a much wider range of hardware. Consumer elec-
tronics devices, such as CD players, usually have a highly spe-
cialized user interface and typically employ customized phys-

M O B I L E C O M P U T I N G

36

JANUARY • FEBRUARY 1998 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

.

Figure 2. A variety of desktops being accessed from different viewers: (a) a Unix desktop from
a Windows viewer, (b) a Windows 95 desktop from an X viewer, (c) a Unix desktop from a
Java applet within Internet Explorer, and (d) a Windows desktop using Netscape on Unix.

(a) (b)

(c) (d)

ical display devices. This has traditionally prevented such inter-
faces from being mobile in the VNC sense of the word.

But we think VNC’s usefulness can be extended so that
users could, for example,

■ bring up the controls for their video recorder on a
mobile phone as they drive home from work,

■ use a modem to dial a telephone answering machine and
reprogram it through a graphical interface,

■ display their car stereo or GPS receiver as part of the
dashboard, regardless of the equipment brand installed.

At present, such functions require the displaying device to
have detailed knowledge of the remote system and to emu-
late that system’s user interface or some alternative interface
that it deems appropriate. For example, you would need a
driver for your video recorder, which was designed for your
mobile phone’s operating system. A much simpler approach
would be to use the interface designed for and provided with
the remote device, but to interact with it locally.

For this we need a set of common “phonemes” with which
we can construct a variety of GUIs. This is the role that the
VNC protocol—or something very similar to it—can play. It
is simple enough to implement cheaply in consumer elec-
tronics hardware, yet it can be used to describe the building
blocks of most modern user interfaces. With standards such
as IEEE-1394 Firewire, USB, and IrDA, we have the physical
interface to connect a variety of devices; with VNC, we can
add a standard for plug-and-play user interfaces. Imagine
walking up to any workstation, connecting your PDA to the
USB port, and having the PDA applications instantly avail-
able on the workstation screen, or plugging your PDA into
your car and having the engine management unit display ser-
vicing information on the PDA’s screen. And imagine that
this works for any workstation, any PDA, any car.

The engine management example illustrates an important
point: A standardized GUI protocol allows devices that have
no physical display of their own to provide graphical informa-
tion when such a display becomes available to them. Your PDA
could, perhaps, shrink to the size of a pen if it could access a
display and keyboard through an IrDA link. And yet this
“microPDA” could still display PowerPoint-style presentations
when in the vicinity of an LCD projection panel or a large TV.

This model is very similar to the Web, where services
without an I/O capability of their own wait for a user to pro-
vide one in the form of a Web browser. The success of this
strategy has led to embedding HTTP daemons in printers,
switches, routers, and other devices. But to be a Web serv-
er, a device must at least have a TCP stack and an IP address.
And to be a Web browser requires at least the ability to ren-
der fonts and parse HTML.

In contrast, VNC requires only a reliable transport medi-
um and the simplest of display capabilities. And while a page of

HTML will generally require the transmission of fewer bytes
than its VNC equivalent, the latter is infinitely more flexible.

FUTURE WORK
We are now building VNC software for a variety of desktop
platforms, but it would not be difficult to make remote
access practical for a wider range of devices. We can envis-
age cheap hardware that might, for example, drive a 7-
segment LCD and also emit a VNC equivalent over a USB
or RS232 link. The VNC commands to draw and erase each
segment could be stored as a sequence of bytes in a small
amount of ROM and sent over a communications link when
the segment is lit or switched off. Hardware such as this, if
made in quantity, could be very cheap and could allow for
mobility of much more than just a conventional “desktop.”
If built into television sets, VNC viewers could allow them
to act as displays for a very wide range of devices—includ-
ing, of course, the PC at the office. ■

ACKNOWLEDGMENTS
We would like to thank our colleagues Paul Webster, James Weatherall, and

Andy Harter for their contributions to the project and their assistance in

creating the VNC system.

V I R T U A L N E T W O R K C O M P U T I N G

37

IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JANUARY • FEBRUARY 1998

.

Figure 3. Remote access to a CD player control panel using
the VNC system.

URLs for this article
Ci t r ix ’s ICA • www.c i t r ix .com/techno logy/
ica tech.h tm
Graphon’s RapidX • www.graphon.com/
I EEE-1394 F i rewire • f i rewi re .org/
Ins ign ia So lu t ions ’ Ntr igue •
www. ins ign ia .com/
I rDA • www. i rda.org/
Microsof t ’s Termina l Ser ver (Hydra) •
www.microso f t . com/ntser ver/ in fo/hydra.h tm
ORL’s Te lepor t ing Sys tem • www.or l . co .uk/
te lepor t/
ORL’s V ideot i le • www.or l . co .uk/ t i l e .h tml
ORL’s VNC sys tem • www.or l . co .uk/vnc/
SCO’s Tarante l la • www. taran te l la . sco .com/
USB • www.usb.org/
X Window Sys tem • www.opengroup.org/ tech/
desk top/x/

.

M O B I L E C O M P U T I N G

38

JANUARY • FEBRUARY 1998 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

REFERENCES
1. T. Richardson et al., “Teleporting in an X Window System Environ-

ment,” IEEE Personal Comm., No. 3, 1994, pp. 6-12. Also available as

ORL Technical Report 94.4, ORL, Cambridge CB2 1QA, England.

2. T. Richardson, “Teleporting—Mobile X Sessions,” Proc. 9th Ann. X

Technical Conf., Jan. 1995. Also in The X Resource, Issue 13, O’Reilly

& Associates, Jan. 1995. Also available as ORL Technical Report 95.5,

ORL, Cambridge CB2 1QA, England.

3. Open Group, “X11R6.3 (Broadway) Overview,” http://www.open-

group.org/tech/desktop/x/broadway.htm#lbx (current September 1997).

4. K.R Wood et al., “Global Teleporting with Java: Toward Ubiquitous

Personalized Computing,” Computer, Vol. 30, No. 2., Feb. 1997, pp.

53-59. Also available as ORL Technical Report 96.2, ORL, Cambridge

CB2 1QA, England.

Tristan Richardson is a research scientist at ORL, and his research inter-

ests include mobile and network computing, windowing systems,

and multimedia. He holds an MA in computer science and an

MPhil in computer speech and language processing from the Uni-

versity of Cambridge.

Quentin Stafford-Fraser is a research scientist at ORL, and his chief

research interests are personalized mobile computing, in-car infor-

mation systems, and novel user interfaces. Before joining ORL he

worked at Rank Xerox EuroPARC (now XRCE) on video-aug-

mented environments. He holds an MA and a PhD from the Uni-

versity of Cambridge.

Kenneth R. Wood is a research scientist at ORL. His interests include mobile

computing, multimedia, concurrency theory, and applied formal

methods. Before joining ORL, he worked as a member of the sci-

entific staff at Nortel Technology and taught at Oxford University.

He received the AB degree in applied mathematics from Harvard

University and the MSc and DPhil degrees in computation from

Oxford University.

Andy Hopper is director of the Olivetti & Oracle Research Laboratory

(ORL) in Cambridge, a director of Advanced Telecommunications

Modules Limited, and chair of Telemedia Systems Ltd. He is also

a professor of communications engineering at the University of

Cambridge and a fellow of Corpus Christi College. His research

interests include networking, multimedia, and mobile systems. He

received the BSc degree from the University of Wales in 1974 and

the PhD degree from the University of Cambridge in 1978. He is

a fellow of the IEE and the Royal Academy of Engineering.

Readers may contact the authors at ORL, 24a Trumpington Street, Cam-

bridge CB2 1QA, UK; email: vnc@orl.co.uk.

IEEE Computer Society
10662 Los Vaqueros Circle

Los Alamitos, CA 90720-1314

Toll-Free +1.800.CS.BOOKS

Phone: +1.714.821.8380

Interconnection Networks
An Engineering Approach
by José Duato, Sudhakar Yalamanchili, and Lionel Ni

Addresses the challenges and basic underlying concepts
of interconnection networks. Interconnection Network’s
engineering approach considers the issues that designers
face and presents a broad set of practical solutions. The
authors establish more accurate classifications for a
number of different issues: topologies, switching
techniques, routing algorithms and problems that
prevent message delivery. The authors introduce new
views that make concepts easier to under-stand, like the
unified view of direct and indirect networks, the unified
theory of deadlock avoidance and recovery.

The book is organized to serve as a reference as well as a resource for learning. Supporting
materials including a network simulator will be available on the book’s web site:
http://computer.org/books, considerably simplifying the task of teaching courses on
interconnection networks and organizing lab classes. The web site will also serve as a
forum for discussion and exchange of ideas for interconnection networks.

Contents: Introduction • Message Switching Layer • Deadlock, Livelock, and Starvation
• Routing Algorithms • Collective Communication Support • Fault Tolerant Routing
• Network Architectures • Message Layer Software • Performance Evaluation
• Appendix • Bibliography

536 pages. 8" x 10" Hardcover. September 1997. ISBN 0-8186-7800-3.
Catalog # BP07800 — $50.00 Members / $60.00 List

Go to the
Online

Bookstore
http://computer.org

and order using
the online

shopping cart
and the secure

order form

