
Feiner, COMS W4170, Fall 2018

1

COMS W4170
UI Theory 3

Steven Feiner
Department of Computer Science
Columbia University
New York, NY 10027

September 13, 2018

2

CPM-GOMS
W. Gray, B. John, and M. Atwood, Project Ernestine: Validating a GOMS
Analysis for Predicting and Explaining Real-World Task Performance,
Human-Computer Interaction, 8(3), 1993

 Back-of-envelope calculations predicted
20% increase in performance
 Each second saved per average call =

$3M/year

 But
 CPM-GOMS analysis showed .63 seconds

slower (weighted for call types and frequency)

 Field trial showed .65 seconds slower

 Predicted loss = $2M/year

Feiner, COMS W4170, Fall 2018

3

CPM-GOMS
W. Gray, B. John, and M. Atwood, Project Ernestine: Validating a GOMS
Analysis for Predicting and Explaining Real-World Task Performance,
Human-Computer Interaction, 8(3), 1993

 Reasons for performance decrease
 Eliminated keystrokes not on CP (Critical

Path)—ones that didn’t affect overall
timing, and

 When reducing keystrokes, some were
moved from off CP to on CP, introducing
delay

4

CPM-GOMS
W. Gray, B. John, and M. Atwood, Project Ernestine: Validating a GOMS
Analysis for Predicting and Explaining Real-World Task Performance,
Human-Computer Interaction, 8(3), 1993

 Section of CPM-GOMS analysis near beginning of call
 Proposed workstation (right) removes 2 keystrokes (7 motor &

3 cognitive ops), but none are on CP (in bold).

Feiner, COMS W4170, Fall 2018

5

CPM-GOMS
W. Gray, B. John, and M. Atwood, Project Ernestine: Validating a GOMS
Analysis for Predicting and Explaining Real-World Task Performance,
Human-Computer Interaction, 8(3), 1993

 Section of CPM-GOMS analysis at end of call
 Proposed workstation (right) adds 1 keystroke (3 motor & 1

cognitive op) directly on CP (in bold)

 Net result is that subtracting two keystrokes and
adding one keystroke makes the task take longer!

6

CPM-GOMS
W. Gray, B. John, and M. Atwood, Project Ernestine: Validating a GOMS
Analysis for Predicting and Explaining Real-World Task Performance,
Human-Computer Interaction, 8(3), 1993

 Reasons for performance decrease
 Decreased parallelism in use of hands
 Old: LH pressed a key, moving while RH still

keying, so was ready when RH done

 New: That key was moved closer to other keys, so
RH would press it in sequence, on CP

 Added wait to see crucial info
 Old: Displayed first line faster (info in CP)

 New: Whole screen displayed faster, but first line
was delayed by > .5 seconds

Feiner, COMS W4170, Fall 2018

7

Model Human Processor
S. Card, T. Moran, and A. Newell, The Psychology of Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1983

 Model (inspired by
computers) of how humans
perceive, process, and act
on information

 Processors
 Perceptual processor
 Cognitive processor
 Motor processor

 Memory
 Visual image store
 Auditory image store
 Working memory
 Long-term memory

8

Model Human Processor
S. Card, T. Moran, and A. Newell, The Psychology of Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1983

 Processor
 τ Cycle

time

 Memory
 δ Decay
 μ Capacity
 κ Coding

Cognitive Processor
has Recognize–Act
cycle: Contents of WM
retrieve actions in LTM
(“recognize”), which
are executed to modify
contents of WM (“act”)

Feiner, COMS W4170, Fall 2018

9

Model Human Processor
S. Card, T. Moran, and A. Newell, The Psychology of Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1983

 Values derived from studies of people
 τP Perceptual processor cycle time
 < 100 msecs visual stimulus for n msecs is

perceived same as double intensity stimulus
for n/2 msecs 100 [50~200] msecs

 τC Cognitive processor cycle time
 Time to count mentally 70 [25~170] msecs

 τM Motor processor cycle time
 Tapping 70 [30~100] msecs

10

Motor Processor Cycle Time:
Anecdotal Evidence

 1208 / 60 = 20.13
bps (two hands)
 20.13 / 2 = 10.07

bps (one hand)
 Implies τM ≤ 99.3

msec
 Includes fatigue 

http://worldsfastestdrummer.com
https://en.wikipedia.org/wiki/World%27s_Fastest_Drummer

Feiner, COMS W4170, Fall 2018

11

Model Human Processor
S. Card, T. Moran, and A. Newell, The Psychology of Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1983

 δVIS Visual store decay
 Show letters for 50 msecs

 Blank screen for specified time n

 Show pointer @ random letter location for 50
msecs

 Can user identify letter @ pointer location?

 Can do 50% of the time for n  200 msecs

A X Q R P
L B C M J

O

12

Model Human Processor
S. Card, T. Moran, and A. Newell, The Psychology of Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1983

 δWM 7 [5~226] secs (no rehearsal)
 Present items, keep user from

rehearsing
 μWM Working memory capacity (no rehearsal)
 Present set of letters briefly, then ask users to report

ones they see. Always limited, even though they say
they see all. ~ 3 chunks

Feiner, COMS W4170, Fall 2018

13

Model Human Processor
S. Card, T. Moran, and A. Newell, The Psychology of Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1983

 Taking advantage of μWM
 What3Words (https://what3words.com)

Divide world
into 3m×3m
squares
and assign
each a
three-word
address
 Eases

communication
of locations
(emergencies,
package delivery,
directions,…)

phones.slate.splice

14

Model Human Processor
S. Card, T. Moran, and A. Newell, The Psychology of Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1983

 μWM* 72 chunks (with rehearsal)
 George Miller, 1956

 μVIS Visual store capacity
 Present q rows of n letters each, followed by a pointer

to one row. Then ask what was in the row. If subject
gives m of n letters, μvis = (m/n) × q 17 [7~17] letters

Feiner, COMS W4170, Fall 2018

15

Memory Capacity and Decay

 Human Processor v.
Chimpanzee Processor

http://www.nature.com/news/2007/071203/full/news.2007.317.html

16

Memory Capacity and Decay

 Human Processor v.
Chimpanzee Processor
 Try it yourself!

https://web.archive.org/web/20140209070358/http://g
ames.lumosity.com/chimp.html (Trained chimp hard
version!)

https://www.cambridgebrainsciences.com/science/test
s/monkey-ladder (Untrained human easy version!)

Feiner, COMS W4170, Fall 2018

17

Seven Stages of Action
D. Norman, 1988

"The basic idea is simple. To get something done, you
have to start with some notion of what is wanted—the goal
that is to be achieved. Then, you have to do something to
the world, that is, take action to move yourself or
manipulate someone or something. Finally, you check to
see that your goal was made. So there are four different
things to consider: the goal, what is done to the world, the
world itself, and the check of the world. The action itself
has two major aspects: doing something and
checking. Call these execution and evaluation."

— D. Norman,
The Psychology of Everyday Things, 1988

18

Seven Stages of Action
D. Norman, 1988

1. Form goal

2. Form intention

3. Specify action

4. Execute action

5. Perceive world state

6. Interpret world state

7. Evaluate outcome

Execution

Evaluation

World

Feiner, COMS W4170, Fall 2018

19

Seven Stages of Action
D. Norman, 1988

 Gulf of execution
 Mismatch between

what you want to do
and what you can do

 Gulf of evaluation
 Mismatch between

what world state tells
you and what you
want to know

Goal

World

Execution Evaluation

20

Seven Stages of Action
Norman 1988

 Principles of good design
 Visible state and action alternatives

 Good, consistent conceptual model

 Good mappings between stages

 Continuous feedback

 Points of failure
 Inadequate goal

 Cannot find correct user interface components

 Cannot execute desired action

 Cannot understand feedback

Feiner, COMS W4170, Fall 2018

21

Widget-Level Models

 Apply KLM approach not just to low-
level actions (key presses and
mouse motion), but to interactions
with high-level “widgets”
 Evaluate individual widgets, then

make predictions about UIs
composed of those widgets
 Develop standard design patterns
 Inspired by C. Alexander, S. Ishikawa,

and M. Silverstein. A Pattern Language:
Towns, Buildings, Construction. NY:
Oxford University Press, 1977

22

Transition Networks

 Show UI states
and actions that
cause
transitions
between states
 Can be used to

analyze
consistency /
simplicity

Foley et al. 90

State diagram of a
user interface
with an inconsistent
syntax

Feiner, COMS W4170, Fall 2018

23

Grammars

 Express structure of a UI

 Can be used to analyze
consistency/simplicity

24

Evaluating UIs through Formal Grammars
P. Reisner, 81

 Evaluated “action language” of two drawing system UIs:
ROBART 1 and ROBART 2
 ROBART 2 was designed to be easier (and tests showed it was)

 Described each language as a formal grammar (modified BNF)
 Showed ROBART 2 had simpler grammar. For example,

 ROBART 1 had two different ways to select type of object to create
(text different—just type at keyboard) and differing numbers of actions
for other objects

 ROBART 2 had only one way to select type of object to create
 Used the grammars to predict how users would perform

 Robart 2 would be easier to learn/remember
 A user would take varying amounts of time to learn/remember how to

select objects in Robart 1, but not in Robart 2
 A user would try to treat text the same way as other objects after first

learning how to select other object types to create
 Predictions confirmed by analysis of time to learn with

documentation, observations of use without documentation, error
rate, and questionnaires

Feiner, COMS W4170, Fall 2018

25

Evaluating UIs through Formal Grammars
P. Reisner, 81

 Prior “conventional wisdom”: In order of
decreasing priority:
 Minimize # lowest level action primitives
 Minimize length of action sequences
 Minimize # rules

 Reisner showed this order should be reversed to
ease learning for naïve users doing nonroutine
tasks

26

Task Action Grammars (TAGs)
S. Payne & T. Greene, 86

 Context-Free Grammar maps tasks to user
actions
 TAG consists of
 Dictionary: List of simple tasks
 Rule schemata: Grammar for language syntax

 Can be used to analyze
 Consistency/simplicity
 Completeness

Feiner, COMS W4170, Fall 2018

27

Task Action Grammars (TAGs)
S. Payne & T. Greene, 86

 Dictionary of simple tasks
 Move cursor one char fwd {dir=fwd, unit=char}

 Move cursor one char back {dir=back, unit=char}

 Move cursor one word fwd {dir=fwd, unit=word}

 Move cursor one word back {dir=back, unit=word}

 Features and values
 dir={fwd, back}

 unit={char, word}

 Rule schemata
 task [dir, unit]  modifier [dir] + letter [unit]

 modifier [dir=fwd]  <ctrl>

 modifier [dir=back}  <alt>

 letter [unit=char]  “c”

 letter [unit=word]  “w”

 Commands
 Move cursor one char fwd <ctrl> c Move cursor one char back <alt> c

 Move cursor one word fwd <ctrl> w Move cursor one word back <alt> w

 Is user interface
 Consistent?
 Simple?
 Complete?

