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CPM-GOMS
W. Gray, B. John, and M. Atwood, Project Ernestine: Validating a GOMS 
Analysis for Predicting and Explaining Real-World Task Performance,
Human-Computer Interaction, 8(3), 1993

 Back-of-envelope calculations predicted 
20% increase in performance
 Each second saved per average call = 

$3M/year

 But
 CPM-GOMS analysis showed .63 seconds 

slower (weighted for call types and frequency)

 Field trial showed .65 seconds slower

 Predicted loss = $2M/year
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CPM-GOMS
W. Gray, B. John, and M. Atwood, Project Ernestine: Validating a GOMS 
Analysis for Predicting and Explaining Real-World Task Performance,
Human-Computer Interaction, 8(3), 1993

 Reasons for performance decrease
 Eliminated keystrokes not on CP (Critical 

Path)—ones that didn’t affect overall 
timing, and

 When reducing keystrokes, some were 
moved from off CP to on CP, introducing 
delay
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CPM-GOMS
W. Gray, B. John, and M. Atwood, Project Ernestine: Validating a GOMS 
Analysis for Predicting and Explaining Real-World Task Performance,
Human-Computer Interaction, 8(3), 1993

 Section of CPM-GOMS analysis near beginning of call
 Proposed workstation (right) removes 2 keystrokes (7 motor & 

3 cognitive ops), but none are on CP (in bold).
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CPM-GOMS
W. Gray, B. John, and M. Atwood, Project Ernestine: Validating a GOMS 
Analysis for Predicting and Explaining Real-World Task Performance,
Human-Computer Interaction, 8(3), 1993

 Section of CPM-GOMS analysis at end of call
 Proposed workstation (right) adds 1 keystroke (3 motor & 1 

cognitive op) directly on CP (in bold)

 Net result is that subtracting two keystrokes and 
adding one keystroke makes the task take longer!
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CPM-GOMS
W. Gray, B. John, and M. Atwood, Project Ernestine: Validating a GOMS 
Analysis for Predicting and Explaining Real-World Task Performance,
Human-Computer Interaction, 8(3), 1993

 Reasons for performance decrease
 Decreased parallelism in use of hands
 Old: LH pressed a key, moving while RH still 

keying, so was ready when RH done

 New: That key was moved closer to other keys, so 
RH would press it in sequence, on CP

 Added wait to see crucial info
 Old: Displayed first line faster (info in CP)

 New: Whole screen displayed faster, but first line 
was delayed by > .5 seconds
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Model Human Processor
S. Card, T. Moran, and A. Newell, The Psychology of Human-Computer 
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1983

 Model (inspired by 
computers) of how humans 
perceive, process, and act 
on information

 Processors
 Perceptual processor
 Cognitive processor
 Motor processor

 Memory
 Visual image store
 Auditory image store
 Working memory
 Long-term memory
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Model Human Processor
S. Card, T. Moran, and A. Newell, The Psychology of Human-Computer 
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1983

 Processor
 τ Cycle

time

 Memory
 δ Decay
 μ Capacity
 κ Coding

Cognitive Processor 
has Recognize–Act
cycle: Contents of WM 
retrieve actions in LTM 
(“recognize”), which 
are executed to modify 
contents of WM (“act”)
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Model Human Processor
S. Card, T. Moran, and A. Newell, The Psychology of Human-Computer 
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1983

 Values derived from studies of people
 τP Perceptual processor cycle time
 < 100 msecs visual stimulus for n msecs is 

perceived same as double intensity stimulus 
for n/2 msecs                    100 [50~200] msecs

 τC Cognitive processor cycle time
 Time to count mentally       70 [25~170] msecs

 τM Motor processor cycle time
 Tapping                              70 [30~100] msecs
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Motor Processor Cycle Time: 
Anecdotal Evidence

 1208 / 60 = 20.13 
bps (two hands)
 20.13 / 2 = 10.07 

bps (one hand)
 Implies τM ≤ 99.3 

msec
 Includes fatigue 

http://worldsfastestdrummer.com
https://en.wikipedia.org/wiki/World%27s_Fastest_Drummer
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Model Human Processor
S. Card, T. Moran, and A. Newell, The Psychology of Human-Computer 
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1983

 δVIS Visual store decay
 Show letters for 50 msecs

 Blank screen for specified time n

 Show pointer @ random letter location for 50 
msecs

 Can user identify letter @ pointer location?

 Can do 50% of the time for n  200 msecs

A X Q R P
L B C M J

O
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Model Human Processor
S. Card, T. Moran, and A. Newell, The Psychology of Human-Computer 
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1983

 δWM  7 [5~226] secs (no rehearsal)
 Present items, keep user from

rehearsing
 μWM Working memory capacity (no rehearsal)
 Present set of letters briefly, then ask users to report 

ones they see.  Always limited, even though they say 
they see all.       ~ 3 chunks
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Model Human Processor
S. Card, T. Moran, and A. Newell, The Psychology of Human-Computer 
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1983

 Taking advantage of μWM
 What3Words (https://what3words.com)

Divide world
into 3m×3m
squares
and assign
each a
three-word
address
 Eases

communication
of locations
(emergencies,
package delivery,
directions,…)

phones.slate.splice
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Model Human Processor
S. Card, T. Moran, and A. Newell, The Psychology of Human-Computer 
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, 1983

 μWM*  72 chunks (with rehearsal)
 George Miller, 1956

 μVIS Visual store capacity
 Present q rows of n letters each, followed by a pointer 

to one row. Then ask what was in the row. If subject 
gives m of n letters, μvis = (m/n) × q   17 [7~17] letters
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Memory Capacity and Decay

 Human Processor v. 
Chimpanzee Processor

http://www.nature.com/news/2007/071203/full/news.2007.317.html
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Memory Capacity and Decay

 Human Processor v. 
Chimpanzee Processor
 Try it yourself!

https://web.archive.org/web/20140209070358/http://g
ames.lumosity.com/chimp.html  (Trained chimp hard 
version!)

https://www.cambridgebrainsciences.com/science/test
s/monkey-ladder (Untrained human easy version!)
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Seven Stages of Action
D. Norman, 1988

"The basic idea is simple. To get something done, you 
have to start with some notion of what is wanted—the goal 
that is to be achieved. Then, you have to do something to 
the world, that is, take action to move yourself or 
manipulate someone or something. Finally, you check to 
see that your goal was made. So there are four different 
things to consider: the goal, what is done to the world, the 
world itself, and the check of the world. The action itself 
has two major aspects: doing something and 
checking. Call these execution and evaluation."

— D. Norman,
The Psychology of Everyday Things, 1988
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Seven Stages of Action
D. Norman, 1988

1. Form goal

2. Form intention

3. Specify action

4. Execute action

5. Perceive world state

6. Interpret world state

7. Evaluate outcome

Execution

Evaluation

World
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Seven Stages of Action
D. Norman, 1988

 Gulf of execution
 Mismatch between 

what you want to do 
and what you can do

 Gulf of evaluation
 Mismatch between 

what world state tells 
you and what you 
want to know

Goal

World

Execution Evaluation
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Seven Stages of Action
Norman 1988

 Principles of good design
 Visible state and action alternatives

 Good, consistent conceptual model

 Good mappings between stages

 Continuous feedback

 Points of failure
 Inadequate goal

 Cannot find correct user interface components

 Cannot execute desired action

 Cannot understand feedback
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Widget-Level Models

 Apply KLM approach not just to low-
level actions (key presses and 
mouse motion), but to interactions 
with high-level “widgets”
 Evaluate individual widgets, then 

make predictions about UIs 
composed of those widgets
 Develop standard design patterns
 Inspired by C. Alexander, S. Ishikawa, 

and M. Silverstein. A Pattern Language: 
Towns, Buildings, Construction. NY: 
Oxford University Press, 1977
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Transition Networks

 Show UI states 
and actions that 
cause 
transitions 
between states
 Can be used to 

analyze 
consistency / 
simplicity

Foley et al. 90

State diagram of a 
user interface
with an inconsistent 
syntax
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Grammars

 Express structure of a UI

 Can be used to analyze 
consistency/simplicity
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Evaluating UIs through Formal Grammars
P. Reisner, 81

 Evaluated “action language” of two drawing system UIs:
ROBART 1 and ROBART 2
 ROBART 2 was designed to be easier (and tests showed it was)

 Described each language as a formal grammar (modified BNF) 
 Showed ROBART 2 had simpler grammar. For example,

 ROBART 1 had two different ways to select type of object to create
(text different—just type at keyboard) and differing numbers of actions 
for other objects

 ROBART 2 had only one way to select type of object to create
 Used the grammars to predict how users would perform

 Robart 2 would be easier to learn/remember
 A user would take varying amounts of time to learn/remember how to 

select objects in Robart 1, but not in Robart 2
 A user would try to treat text the same way as other objects after first 

learning how to select other object types to create
 Predictions confirmed by analysis of time to learn with 

documentation, observations of use without documentation, error 
rate, and questionnaires
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Evaluating UIs through Formal Grammars
P. Reisner, 81

 Prior “conventional wisdom”: In order of 
decreasing priority:
 Minimize # lowest level action primitives
 Minimize length of action sequences
 Minimize # rules

 Reisner showed this order should be reversed to 
ease learning for naïve users doing nonroutine 
tasks
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Task Action Grammars (TAGs)
S. Payne & T. Greene, 86

 Context-Free Grammar maps tasks to user 
actions
 TAG consists of
 Dictionary: List of simple tasks
 Rule schemata: Grammar for language syntax

 Can be used to analyze
 Consistency/simplicity
 Completeness
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Task Action Grammars (TAGs)
S. Payne & T. Greene, 86

 Dictionary of simple tasks
 Move cursor one char fwd {dir=fwd, unit=char}

 Move cursor one char back  {dir=back, unit=char}

 Move cursor one word fwd {dir=fwd, unit=word}

 Move cursor one word back  {dir=back, unit=word}

 Features and values
 dir={fwd, back}

 unit={char, word}

 Rule schemata
 task [dir, unit]  modifier [dir] + letter [unit]

 modifier [dir=fwd]  <ctrl>

 modifier [dir=back}  <alt>

 letter [unit=char]  “c”

 letter [unit=word]  “w”

 Commands
 Move cursor one char fwd <ctrl> c Move cursor one char back <alt> c

 Move cursor one word fwd <ctrl> w Move cursor one word back <alt> w

 Is user interface
 Consistent?
 Simple?
 Complete?


