
1

Experimental QoS Performances of Multimedia Applications

Phil Yonghui Wang, Yechiam Yemini, Danilo Florissi
{yhwang, yemini, df }@cs.columbia.edu

Computer Science Dept
Columbia University, New York, NY10027
Tel: (212) 939-7000 Fax: (212) 939-7181

Patricia Florissi
patricia@smarts.com

SMARTS
14 Mamaroneck Avenue
White Plains, NY10601

John Zinky
jzinky@bbn.com
BBN Technologies
10 Moulton Street

Cambridge, MA 0213

Abstract – To bring QoS to the Internet, several better-than-
best-effort network services have been recently devised with
significant efforts. The goal of this paper is to measure the
effective performances of existing applications after
incorporating QoS, and to understand what are the effects of
provisioning QoS in the applications.

Our experiments use two kinds of existing multimedia
applications: UDP-based NetVideo and TCP-based DIRM.
QoSockets is the Berkeley socket extension for the specification
of QoS requirements and the management of QoS performances
in a distributed environment. We replace their socket APIs with
QoSockets and test them in real network environments that
include programs written in C/C++ and Java on Solaris/SPARC
and Linux/X86 platforms and two sub-networks connected by
two routers. We also introduce an additional program TG to
create UDP or TCP reference traffic for comparisons.

We use the integrated service (IS) to provide QoS for both
applications, and examine their QoS performances (throughput,
loss, delay and jitter) in a number of cases: (1) single and
multiple, reserved and unreserved flows; (2) normal, heavy and
overloaded traffic; (3) one- and two-way streams; and (4) TCP
and UDP communications.

The experimental data shows that QoS performances of the
two applications through resource reservations are significantly
improved but slightly different for DIRM (which suffers the
complexities of TCP and its own system). We summarize the
experimental results and derive some generic conclusions on
providing QoS for existing distributed applications.

I. INTRODUCTION

Today’s Internet is not yet ready for Quality of
Service (QoS) since the Best Effort (BE) network
service is still widely used. BE employs FIFOQ (first-
in-first-out queuing) which provides a single service
level for all data packets, results in unpredictable
packet delays and losses upon network congestion.

Targeting more service levels, Better-than-Best-
Effort (BBE) network services employs multiple queues
or classes scheduling such as WFQ (weighted fair
queuing) and CBQ (class-based queuing) to enable
traffic control, such as packet admission and
classification. Differentiated Service (DS) [8] and
Integrated Service (IS) [9] are two major BBE services
proposed by the IETF, both offering multiple levels of
service quality. DS is a packet-based priority service,
and provides Premium and Assured services to meet

differentiated requirements of network applications. IS
is a flow-based reservation service, provides
Controlled-Load and Guaranteed services to support
mission-critical services such as real-time service. In
addition, ATM [5] is a VC(virtual circuit)-based BBE
service, and provides rate-based QoS levels. But, ATM
is not built directly with the TCP/IP suite.

This paper takes the viewpoint that current
Internet is a mesh of QoS-enabled (e.g., DS, IS and
ATM) and non-QoS (BE) islands. Applications in this
environment have to predict and adapt to changing
assumptions on the underlying infrastructure. They
need a QoS establishment to be able to (1) specify and
request the needed QoS and (2) monitor and adapt to
the actual QoS behavior offered by the network.
QoSockets (Quality of Service Sockets) [1] is a
runtime environment to meet the above challenges,
extends Berkeley sockets with parameters for QoS
specification which are then used to allocate network
resources when possible, and automatically generates
real-time instrumentation and monitoring for QoS
management via SNMP.

Our work in this paper concentrates on QoS
performances of multimedia application experiments
and investigates various issues in QoS provision. We
select two interactive applications, change their
sockets APIs for QoSockets and then test them
respectively in a real network. The first is NetVideo
[10], a UDP-based real-time video tool; and the
second is DIRM [6], a TCP-based resource
management system for socket- and CORBA-based
applications. These applications show that existing
applications that use sockets can be easily upgraded to
use QoSockets and take advantage of its powerful
infrastructure. We also use a special program TG to
create UDP or TCP reference traffic for comparison.

Their testbeds consist of two sub-networks
between which we places a “bottleneck” link through
two RSVP-capable routers, and include
heterogeneous system environments and platforms.
Integrated Service (IS) is used to provide QoS for
both applications, and three traffic conditions are
designed with different numbers of flows.

2

The experimental results show that both
applications obtain significant improvements of their
QoS performances. NetVideo is relatively steady, but
DIRM is a bit different since it includes complex
programs and platforms, generates two-way traffic
with big and variable packet sizes, and does not
provide reservations for all of its flows. Moreover, we
also notice that a TCP application may not sustain the
same level of QoS as UDP because BBE services
offer one-way guarantees while TCP generates a
reverse acknowledgement (ACK) flow in addition to
a data flow.

This paper is organized as follows. QoSockets is
introduced in section 2 with its structure, QoS
characterization, provisioning and management.
Section 3 describes two multimedia applications:
NetVideo and DIRM, their QoS requirements and
experimental environments (testbeds). The
experimental data (throughput, delay/jitter and loss)
are detailed in section 4 and accompanied with
analysis and discussion. Finally, some conclusions are
presented about QoS-related issues.

II. QoSockets

Berkeley socket is extensively used in network
programming, but does not comply with QoS.
QoSockets [1] extend Berkeley sockets in order to
enable applications to specify and acquire QoS (if the
underlying network transport supports QoS). During
runtime (Fig. 1), they enable distributed applications
with end-to-end QoS requirements and monitor real-
time network performances for QoS management.

A. Runtime environment

Figure 1: QoSockets Structure

Inside QoSockets, the transport layer is abstracted
and unified for QoS-enabled functionality, various

transport protocols are thereafter supported with real-
time access. In addition, QoSockets generates QoS
MIBs, provides access to multiple network protocols
including TCP, UDP, RSVP, ST-II, and ATM. UNIX
native protocol (Local) is also provided for testing an
applications locally (debug use).

QoSockets consists of newly defined socket
interfaces, a routine library, and auxiliary resources.
The main API types provided by QoSockets are as
follows.
• Connection Establishment: initialize and establish a

QoS connection and map a QoS.
• Collection of Communication Management

Information: collect information about network
status and store into QoS MIBs.

• Selection of Protocol & Address: select a specific
protocol, bind a user address (IP and port number)
with a QoS socket.

• Connection Management: check the status of an
input or output port in a connection, or free a
connection.

• MIB Access: offer a set of MIB access interfaces to
obtain a real-time object instance values directly
inside a QoS application.

One major function is that QoSockets offers a
network service to a QoS application, Fig. 2 shows
that how QoSockets works with IS/RSVP [2] for a
resource reservation.

Figure 2: QoSockets and IS/RSVP

Another major function is that QoSockets offers
QoS management with SNMP agent. Fig. 3 shows
that how QoS MIB works with QoSockets.

When an application establishes a network traffic
stream, QoSockets starts collecting its performance. It
collects data from each traffic stream, including QoS
specifications, connection times, transmission rates
and delays, and calculates QoS parameter to
determine if there is any QoS violation. All these data
are stored into SNMP MIBs (Management
Information Base), and can be accessible from a

3

QoSockets application or an SNMP agent with a
remote SNMP manager.

With MIBs, QoSockets is able to control and adapt
the QoS requirements for different applications, and
offers an SNMP agent to access and update these
MIBs, which enables an SNMP network manager
(management system) to monitor network status and
to adapt QoS guarantees at a remote terminal.

Figure 3: QoSockets and MIB

B. QoS Characterization

In most research works, major parameters for QoS
requirements are throughput, delay, reliability, and/or
price. In QoSockets, the first three types are included
and, in addition, coerced flag, is introduced to
coordinate QoS requirements between a sender and a
receiver of an application.

1) Throughput
QoSockets defines four parameters to represent a

network throughput.
• min_rate: Lower bound of transmission rate
• max_rate: Upper bound of transmission rate
• peak_rate: Upper bound of transmission peak rate
• size: Maximum size of communicated messages

Each rate is number of messages conveyed per
second, the throughput is the product of rate
(min_rate, max_rate or peak_rate) times size (bytes).
For the ith traffic stream, its throughput is computed
(in bytes/s).

Minimal: tim = min_ratei × sizei

Maximal: tiM = max_ratei × sizei

Peak: tip = peak_ratei × sizeI

2) Delay
Three parameters related with transmission delay

are defined in QoSockets.
• min_delay: Lower bound of transmission delay
• max_delay: Upper bound of transmission delay
• int_delay: Maximum of inter-message delay or

jitter

The above parameters are metered in milliseconds.

3) Reliability
Network reliability is defined as three parameters.

• loss: Percentage of message loss
• rec_time: Maximum time of recovering disrupted

transmissions
• permt: Boolean flag indicates if messages may be

delivered out of order
Some other parameters such as connection fails

are also used for monitoring network reliability.

4) Coerced flags
QoSockets allows that both sender and receiver of

a traffic stream define their own QoS parameters.
Sometimes QoS parameters at two ends are not the
same and need to be coerced (downgraded to a
commonly accepted level). The coerced flag indicates
if the coercion is allowed for each of the above
throughput, delay and reliability parameters.
QoSockets does this coercion only when the sender
and the receiver have different QoS requirements.

For example, suppose a traffic stream is set to
coerce its peak rates (by setting coerce_peak_rate =
True) and maximal peak rates of the sender and the
receiver are 64 and 60 kbps respectively, QoSockets
will match two peak rates to 60 kbps, and notifies
both sender and receiver this new rate. That QoS is
downgraded, the sender thus bounds its peak rate to
60 kbps.

C. QoS Provisioning

QoSockets tries to allocate user specified QoS
based on BBE (better than best-effort) network
services such as Integrated Service (IS) [3],
Differentiated Service (DS) [7] and ATM. The current
implementation supports ATM and RSVP [2]. ATM,
also known as “hard mode”, is available for ATM-
capable network. The QoS requirements of an
application are mapped by QoSockets to an ATM
service level directly.

RSVP, also known as “soft mode”, is a reservation
protocol of Integrated Service (IS) and available in
QoSockets for TCP and UDP transport protocols
(called as R-TCP and R-UDP respectively).

In the soft mode, QoSockets tells the QoS
requirement of an application to an RSVP daemon,
which propagates the requirements onto resource
systems (hosts and routers) along the flow route, and
requests them to make the resource reservation. If a

4

resource reservation succeeds, the application’s
network communication associated with this
reservation may meet its QoS. When a resource
reservation fails, QoSockets returns a message to the
application. Combining this message with QoSockets
MIB, an application knows the current status of
available network resource, and then changes its QoS
requirement and lets QoSockets to adapt its
reservation. This paper concentrates on IS/RSVP
reservations and leaves the study of ATM
performance for later publications.

Our experience with QoSockets shows, even when
the reservation succeeds, the end-to-end effective
QoS may drift from the original negotiated QoS.
There are several reasons for this. (1) Not all
intermediate equipment involved support
reservations. For example, it is common that a
workstation requesting an RSVP reservation is in fact
connected to a shared best-effort Ethernet hub and the
hub connected to an RSVP router. (2) Not all
applications comply with their reservations. The
reserving application may in fact send more messages
than the reservation it requested and incur a large
delay or loss. (3) Equipment may fail. The
applications will have to see disruption of QoS and
need to chose alternative routes.

III. QoS APPLICATIONS AND TESTBEDS

A QoS application needs at least two QoS-related
services: one is to map its requirements onto the
underlying system to obtain a resource assurance
service; the other is to monitor real-time system
performances to ensure this service. QoSockets is
capable of providing these services.

In this section, we introduce two multimedia
applications which are NetVideo [10], a real-time
video tool, and DIRM [6], a resource management
system. Their functional programs are respectively
NV and IIOPGW (IIOP GateWay, the resource
manager of DIRM), and replaced the socket APIs for
QoSockets.

We present applications that use two different
transport protocols, UDP (NetVideo), and TCP
(DIRM) to investigate the different issues facing these
two protocols in providing QoS. Each application is
experimented with individual testbed. The next
section reports on their experimental results.

A. Commons of Two Testbeds

We have set up two testbeds respectively for
NetVideo (Fig. 4) and DIRM (Fig. 5) in a real
network environment. Each testbed is not isolated but
constructed to be a part of the Columbia Computer
Science Department network. Each consists of two
sub-networks: 128.59.10.0 (subnet 10) and
128.59.11.0 (subnet 11), and between them are two
Cisco 2514 routers which are equipped with Cisco OS
11.2 and provide RSVP support by WFQ. Inside the
two routers is an internal sub-network 192.168.1.0
over a serial cable connection in order to create a
“bottleneck” bandwidth (1.5M) between the two
subnets.

Hosts are connected by two hubs, each
implementing a separate sub-network. Two hosts are
Sun SPARCstation 20 (named qos0) and
SPARCstation 5 (qos1), the CBQ patch enables their
Solaris 2.5.1 kernels with traffic control support, Sun
RSVP package SolarisRSVP 0.5.0 [8] is also
installed. Two PC hosts are used in the DIRM
testbed: qos10, which is an IBM Thinkpad 760
(Pentium 166M), and qos11, which is a DELL
Dimension XPS R400 (Pentium II 400M). Both PCs
are installed with Linux 2.0.36 and Linux port of
RSVP r4.2a3 package [9]. (Although these hosts are
not latest devices, they are fast enough to congest the
routers connected through the low bandwidth serial
line).

In each experiment, two kinds of traffic flows are
generated and tuned. A pair of NV or IIOPGW
programs of which one is the sender and the other is
the receiver, run on one host of each subnet, and
generates the main traffic flow between two subnets.
Another pair of TGs (Traffic Generator) programs run
also in each subnet, and generates the reference traffic
flow. The main traffic (NV or IIOPGW) includes a
reserved or unreserved, UDP or TCP flow, whereas
the reference traffic (TG) includes an unreserved
UDP or TCP flows.

A test case of an experiment is composed or a
combination of the following parameters: (1) reserved
(with QoS) and/or unreserved (without QoS) flows;
(2) under normal, heavy, or overloaded traffic
condition; (3) single or multiple flows; and (4) TCP
or UDP. Table 1 in next section lists all the test
combinations.

NV, IIOPGW, and TG are monitored with the
same parameters and sampling intervals, which are
listed in the “QoS Monitoring” section of each
testbed. TG is also instrumented with a monitoring
module similar to QoSockets MIB management

5

functionality in order to monitor in real-time the
network performance related to its traffic.

Figure 4: NetVideo testbed

B. NetVideo Testbed

NetVideo [10] is a multimedia tool for the
Internet, captures, transfers, and receives real-time
video pictures through UDP communication. With
QoSockets, it requests QoS of its UDP traffic through
R-UDP. It also uses QoSockets management function
to monitor the network performance. We should point
out that the modification is very simple replacement
of traditional sockets with QoSockets.

As shown in Fig. 4, two NV programs run on two
Solaris 2.5.1 workstations: qos0 and qos1. Qos1 acts
as a video sender, is equipped with a video camera
and captures real-time pictures up to 30 frames per
second, whereas qos0 acts as a video receiver and
displays those pictures received from qos1 onto
screen. This is the main traffic flow of NetVideo, with
or without reservation. Because the NetVideo sender
can use more bandwidth than it needs, the
transmitting rate of the sender can be bigger than 30
frames/s. In this test, it sends up to 80 frames/s after
its bandwidth reaches 640 kbps.

Two TGs run on the same hosts as NVs, create a
UDP flow in the same direction as the main traffic
flow. This is the reference traffic flow without
reservation. The TG sender sends a 1024-byte packet
at a close rate (~ 530kbps), but the receiving rate of
the TG receiver is largely dependent on different
traffic condition.

Both main traffic and reference traffic flows have
the same traffic route as marked “UDP Traffic” in
Fig. 4. In addition, the sender and the receiver share
the same QoS parameters since they use the same
program NV.
1) QoS Requirements
User requirements

Rates: 40~80 frames/s Delay: 0~100 ms
Jitter: <50 ms Loss: <5%

Max frame length: 1280 Byte Recovery time: 5000 ms

Mapped QoSockets parameters
Throughput

min_rate= 60 max_rate=80 peak_rate=100 size=1280
Delay

min_delay=0 max_delay=100 int_delay=50
Reliability

rec_time=5000 loss=5 permt=False
Coerced flags
All coerced flags are set to TRUE.

2) Traffic Profiles
NV

Protocol: UDP Service Type: control-load
Rate (kbps): 614.4 Peak (kbps): 1024
Packet size (B): 1280

TG
Protocol: UDP Service Type: none
Rate (kbps): 540 Packet size (B): 1024

3) QoS Monitoring (Sampling interval)
Sender End

Throughput: 0.5 s
Receiver End

Throughput: 0.5 s Loss: 0.5 s
Delay: per packet Jitter: per packet

C. DIRM Testbed

DIRM is part of QuO project [6], and develops a
high-level API that allows stream-based (socket) and
object-based (CORBA[4]) applications to control
QoS for their communications. Upon an application
request, DIRM allocates and manages network
resources dynamically, and IIOPGW is its resource
manager program built using QoSockets (R-TCP).

Fig. 5 is a typical scenario of DIRM, where
Slideshow is a client-server Java application using
CORBA. The server QoS11, which is a CORBA
object service implementation, manages a repository
of image service, and the client QoS10, which is a
CORBA client application, requests the image service
through an ORB and then displays onto screen. Two
IIOPGW programs run as IIOP gateways and
establish a bridge between the ORBs of QoS10 and
QoS11, and provide QoS to the traffic from
Slideshow server to client.

During the experiment, Slideshow client at qos10
passes a object request of the image service to its
local ORB, which forwards it to the local IIOP
gateway IIOPGW at qos0. Qos0 processes and
transfers it to the remote IIOPGW at qos1. Qos1
locates the object implementation repository to the
Slideshow server at qos11. Qos11 processes this
request and then returns its object reference or

6

requested image to qos10 along the reserve path of a
client request.

After a client request is accepted and returned, a
reservations along the path transferring images from
the server (qos11) to the client (qos10) is also made at
the same time by two IIOPGWs, the path is marked
with “TCP Traffic” in Fig 5. The main traffic flow
with or without reservation is the central part of the
“TCP Traffic” path between qos1 and qos0.
Two TGs run on the same hosts as IIOPGWs, and
create a TCP flow in the same traffic route as the main
traffic flow. This is the reference traffic flow without
reservation. TG sends or receives 1024-byte packets at a
varied rate under different traffic condition.

In addition to these two flows, communications
between Slideshow and IIOPGW programs generate
traffic, but do not make reservations since they are in
local networks. This means that, apart from the main
traffic flow, other parts of “TCP Traffic” are
unreserved.

Figure 5: DIRM testbed

One thing to be mentioned here is that the packet
size of IIOPGW is bigger than that of NV (1280
bytes) and TG (1024 bytes) since the JPEG images in
the server repository vary from 18K to 58K bytes, so
the IIOPGW flow has a much bigger burst rate up to
1440K at peak.

1) QoS Requirements
User requirements

Slides: 1~3 images/s Delay: 100~500 ms
Jitter: <250 ms Loss: 0
Max packet size: 60000 bytes Recovery time: 5000 ms

Mapped QoS parameters
Throughput

min_rate= 1 max_rate=1 peak_rate=3 size= 60KB
Delay

min_delay=100 max_delay=500 int_delay=250
Reliability

rec_time=5000 loss=0 permt=False
Coerced flags
All coerced flags are set to TRUE.

2) Traffic Profiles
I IOPGW

Protocol: TCP Service Type: control-load
Rate (kbps): 480 Peak (kbps): 1440
Packet size (B): 60000

TG
Protocol: UDP Service Type: none
Rate (kbps): 540 Packet size (B): 1024

3) QoS Monitor (Sampling interval)
Same as NetVideo.

IV. RESULTS AND ANALYSIS

The major performance parameters investigated
are monitored in real-time by the QoSockets MIB
management component and by the TG monitoring
module. They include throughput, delay & jitter, and
loss sampled according to monitoring rules defined in
each testbed.

Test NetVideo (NV) DIRM(IIOPGW)
A. One flow: Normal

A1 NV w/o QoS: UDP IIOPGW w/o QoS: TCP

A2 NV w/ QoS:R-UDP IIOPGW w/ QoS:R-TCP

A3 TG: UDP TG: TCP

B. Two flows: Heavy

B1 NV w/o QoS and TG IIOPGW w/o QoS and TG

B1a NV w/o QoS: UDP IIOPGW w/o QoS: TCP

B1b TG: UDP TG: TCP

B2 NV w/ QoS and TG IIOPGW w/ QoS and TG

B2a NV w/ QoS: R-UDP IIOPGW w/ QoS:R-TCP

B2b TG: UDP TG: TCP

C. Three flows: Overloaded

C1 NV w/o QoS and 2 TGs IIOPGW w/o QoS and 2 TGs

C1a NV w/o QoS: UDP IIOPGW w/o QoS: TCP

C1b TG 1: UDP TG 1: TCP

C1c TG 2: UDP TG 2: TCP

C2 NV w/ QoS and 2 TGs IIOPGW w/ QoS and 2 TGs

C2a NV w/ QoS: R-UDP IIOPGW w/ QoS:R-TCP

C2b TG 1: UDP TG 1: TCP

C2c TG 2: UDP TG 2: TCP

Table 1 Test cases of NetVideo and IIOPGW experiments

Each testbed is experimented with three traffic
conditions: (A) normal, involving a single flow of
NV, IIOPGW or TG with traffic less than 50% of the
bottleneck bandwidth (1.5Mbps) between two
subnets; (B) heavy, involving two flows: one NV or
IIOPGW and one TG, with traffic close to the whole
bottleneck bandwidth; and (C) overloaded, involving

7

three flows: one NV or IIOPGW and two TGs, with
traffic exceeding the bottleneck bandwidth.

Each condition performs 2~3 tests, all the tests are
listed in Table 1. For example, under heavy traffic
condition, two tests B1 and B2 are made, and B1
generates two flows B1a and B1b. For NetVideo, B1a
is an unreserved UDP flow generated by NV without
QoS, B2a is a reserved UDP flow generated by NV
with QoS, both B1b and B2b are UDP flows by TG
without a QoS reservation.

This section presents statistic data, results and
analyses for two experiments respectively, and
follows a discussion of their results to conclude QoS
with TCP and UDP later.

A. NetVideo

The figures in this section are derived from the
experimental data sampled by NV and TG. For both
NV and TG, 100 samples for throughput and loss
every 0.5s, since the testing time of two programs
varies under different traffic condition, 2000~4000
packets are transmitted and sampled for delay and
jitter.

In these figures, a light gray column is a statistic
value of sampling data from a sender, a dark gray
column is from a receiver. Two gray columns drawn
together, one light and one dark, express a flow
performance in one test.

Figure 6: Throughput rates of NetVideo flows

1) Throughput
Fig. 6 shows the average throughput rates for all

tested flows at the senders and receivers. Looking at
these rate columns, we can conclude the following
characteristics about throughput.
• For reserved NV flows (A2, B2a and C2a), their

sending and receiving rates match because traffic
control is applied at both sender and receiver hosts.
For other unreserved NV (A1, B1a and C1a) and

TG flows, their rates do not match and show
considerable disparity between senders and
receivers.

• For NV flows, the receiving rates of reserved flows
(A2 and B2a) under normal and heavy traffic
conditions are a bit less than that of unreserved
flows (A1 and B1a). It is reasonable due to a tiny
overhead caused by Solaris traffic-control kernel
scheduling reserved flows. As expected, under
overloaded traffic condition, the reserved receiving
rate (C2a, 520kbps) is twice higher than the
unreserved-enabled (C1a, 250kbps).

• As the traffic condition varies from normal (A),
heavy (B) and overloaded (C), reserved NV flows
(A2, B2a and C2a) have steady throughput rates
close to 530kbps, whereas unreserved NV (A1, B1a
and C1a) and TG flows reduce their throughputs
approximately from 570 (A1) to 250 kbps (C1a).

• Under the overloaded traffic condition, the reserved
NV flow (C2a) has close sending and receiving
rates (520kbps), but the unreserved NV (C1a) and
TG flows (C1b and C1c, C2b and C2c) have big
disparities between their sending and receiving
rates. TG flows (C2b and C2c) tested with the
reserved NV flow (C2a) have rate differences
(200kbps) bigger than those (C1b and C1c,
120kbps) tested with the unreserved NV (C1a).

Figure 7: Packet delays of NetVideo

2) Delay
Fig. 7 shows the average delay values of all flows,

which are sampled per packet arrived at the receiving
ends. From this figure, we conclude about delay.
• As the traffic condition varies from normal (A) to

heavy (B) and overloaded (C), reserved NV flows
(A2, B2a and C2a) have steady delays (<30ms),
whereas unreserved NV (A1, B1a and C1a) and TG
flows increase sharply their delays.

• Under the overloaded traffic condition, the reserved
NV (C2a) flow has still a low delay (25ms), but the

NetVideo Throughputs

0

100

200

300

400

500

600

A1 A2 A3 B1a B1b B2a B2b C1a C1b C1c C2a C2b C2c
Tests

R
at

e
(k

bp
s)

Send

Receive

NetVideo Delay

0

100

200

300

400

500

600

700

800

A1 A 2 A3 B 1a B1b B 2a B2b C1a C1b C1c C2a C2b C2c

T ests

Ti
m

e(
m

s)

Send

Rec eive

8

unreserved NV (C1a) and TG (C1b and C1c, C2b
and C2c) flows have big delays (300~720ms). TG
flows (C2b and C2c) tested with the reserved NV
flow (C2a) jump to 700 ms and bigger than those
(C1b and C1c, 600ms) tested with the unreserved
NV (C1a).

3) Jitter
Fig. 8 shows the average jitter values for all tested

flows, which are computed from packet delays at the
receiving ends. Similar to delay, we conclude about
jitter.

Figure 8: Packet jitters of NetVideo

• As the traffic condition varies from normal (A) to
heavy (B) and overloaded (C), reserved NV flows
(A2, B2a and C2a) have steady jitters (<10ms),
whereas unreserved NV and TG flows increase
largely their jitters.

• For unreserved TG flows, their jitters do not
increase from heavy to overloaded traffic
conditions. Instead, their jitters cut down, flows
C1b and C1c are close to 40ms (heavy), C2b and
C2c are 20ms (overloaded). This is dissimilar to the
delay because the reserved NV flow (C2a) has a
much smaller jitter (5ms) than the unreserved (C1a,
115ms) and results in traffic congestion reduction.

4) Loss
Packet loss is very related to throughput, and

becomes bigger as the difference of sending and
receiving rates of a flow increases. Fig. 9 shows the
average loss rates for all tested flows, which are
sampled at the receiving ends.
• Under normal and heavy traffic conditions, both

reserved and unreserved flows (except A1) do not
loses packets.

• Under the overloaded traffic condition, better than
expectation is that the reserved NV flow (C2a) has
no loss, as opposed to that the unreserved NV (C1a)

gets a big loss rate (47%) and TG flows have loss
rates: 25% (C1b and C1c) and 40% (C2b and C2c).

Figure 9: Packet loss rates of NetVideo

B. DIRM

DIRM testbed and testing are similar to NetVideo.
200 samples of their throughputs and losses are done
to both IIOPGW and TG, 1000~10000 packets of a
flow are sampled for delay and jitter for the testing
time of these programs varies sharply under different
traffic condition.

There are two major differences between DIRM
and NetVideo testbeds. The first is traffic. In
NetVideo, both NV and TG create one-way UDP
traffic of similar size packets from subnet 11 to 10.
However in DIRM, two IIOPGWs create two-way
TCP traffic of varied-size packets from and to the two
subnets while TG creates a one-way TCP traffic of
same-size packets. The second is loss, since it’s TCP-
based there is no loss.

1) Throughput
The average throughput rates of DIRM tested

flows are shown in Fig. 10, and each flow has two
close columns for its sending and receiving rates due
to TCP.
• For the reserved IIOPGW flows (A2, B2a and C2a),

the sending and receiving rates match. For
unreserved IIOPGW (A1, B1a and C1a) and TG
flows, their rates do not match completely because
of no traffic control.

• Under normal traffic condition, no obvious
difference of throughput rate is between the
reserved (A2) and unreserved (A1) IIOPGW. But,
under heavy and overloaded traffic conditions, the
reserved rates (B2a and C2a) are higher (20%) than
the unreserved (B1a and C1a).

NetVideo Loss

0

5

10

15

20

25

30

35

40

45

50

A1 A2 A3 B1a B1b B2a B2b C1a C1b C1c C2a C2b C2c

Tests

L
o

ss
(%

)

Send

Receive

N etV id e o J itte r

0

2 0

4 0

6 0

8 0

10 0

12 0

14 0

A1 A 2 A 3 B1 a B 1b B2 a B 2b C1 a C 1b C 1c C 2a C2 b C 2c

Te sts

Ti
m

e
(m

s)

Se nd

R ece iv e

9

• As the traffic condition varies from normal (A) to
heavy (B) and overloaded (C), all of reserved
IIOPGW, unreserved IIOPGW and TG flows
reduce their throughput rates more or less.

Figure 10: Throughput rates of DIRM flows

Here we note that the throughput decreases as the
traffic condition varies from normal to heavy and
overloaded. It is natural that, because of no
reservation, TG flows reduce their throughputs as the
network traffic increases. But why do the reserved
IIOPGW flows (B2a and C2a) reduce too? Looking
back at Section IIIC “DIRM Testbed” and Fig. 5, we
know that DIRM testbed has two-way traffic and not
reserved all the “TCP-Traffic” path. IIOPGW flow is
the main traffic flow and a core part of DIRM
communication. Except for this flow, other flows
between Slideshow client, server and their respective
IIOPGWs are not reserved and take longer to transfer
a whole image as traffic increases. Consequently, the
reserved IIOPGW flows have to wait more time and
reduce thus their throughputs too.

Figure 11: Packet delays of DIRM

2) Delay
Fig. 11 shows the average delay values sampled

from all tested flows in the DIRM experiment.

• As the traffic condition varies from normal (A) to
heavy (B) and overloaded (C), reserved IIOPGW,
unreserved IIOPGW and TG flows increase their
delays.

• Under heavy and overloaded traffic conditions, the
reserved IIOPGW (C2a) flow has smaller delay
than the unreserved IIOPGW (C1a). The
corresponding reference traffic flows (TG) have
close delays (B1b vs. B2b, C1b vs. C2b and C1c vs.
C2c).

It is reasonable that both IIOPGW and TG
increase their delays, as the traffic condition becomes
heavy or overloaded. But, why do IIOPGW flows
have big delays (bigger than TG)? The reason is
simple, the packet size of IIOPGW is much bigger
than that of TG. The average size of IIOPGW packet
is 38KB, as compared to the 1KB TG packet size, an
IIOPGW packet certainly is transmitted longer than a
TG packet is, and as a result its delay is bigger. These
delays under normal condition prove this because
both unreserved (A1) and reserved (A2) IIOPGW
flows are much bigger than the TG (A3).

Figure 12: Packet jitters of DIRM

3) Jitter
Fig. 12 shows the average jitter values for all

tested flows.
• As the traffic condition varies from normal (A),

heavy (B) to overloaded (C), reserved IIOPGW,
unreserved IIOPGW, and TG flows increase their
jitters.

• Under heavy and overloaded traffic conditions, the
reserved IIOPGW (C2a) flow has bigger jitter than
the unreserved IIOPGW (C1a). Similar to their
delays, jitters of unreserved TG flows are close but
small.

Similar the delay, both reserved and unreserved
IIOPGW flows have bigger jitters than TG flows. As
opposed to that TG has a fixed packet size (1Kb), an
IIOPGW packet size is not only big (38 KB at

IIOPGW Delay

0

100

200

300

400

500

600

700

800

A1 A2 A3 B1a B1b B2a B2b C1a C1b C1c C2a C2b C2c

Tests

Ti
m

e
(m

s)

Send

Receive

IIOPGW Jitter

0

50

100

150

200

250

300

350

A1 A2 A3 B1a B1b B2a B2b C1a C1b C1c C2a C2b C2c

Tests

T
im

e
(m

s)

Send

Receive

IIOPGW Throughputs

0

100

200

300

400

500

600

A1 A2 A3 B1a B1b B2a B2b C1a C1b C1c C2a C2b C2c

Tests

R
at

e
(k

b
p

s)

Send

Receive

10

average) but also varies from 18 to 58 KB. So, the
time difference of transmitting an IIOPGW packet is
much bigger than TG, especially under the heavy or
overloaded traffic condition. Also, these jitters under
normal condition prove this because both unreserved
(A1) and reserved (A2) IIOPGW flows are much
bigger than the TG (A3).

C. Discussion

In the above experiments, two kinds of traffic
flows are tested, one is the main traffic flow created
by NetVideo/NV (UDP) or DIRM/IIOPGW (TCP),
while the another is the reference traffic flow by TG
(UDP or TCP).

In NetVideo, due to resource reservation, we get a
better-than-expectation result: a reserved NV flow is
able to obtain its QoS requirements of throughput,
delay, jitter, and loss. Even when the traffic condition
shifts from normal to overloaded, this reserved flow
still gets steady throughput, low delay and jitter, and
no packet loss, but the unreserved flow reduces
throughput as much as 50% and loses 47% of the
packets.

The DIRM experiment is more sophistical than the
NetVideo one. (1) DIRM integrates a group of
programs running on different platforms: IIOPGW
and TG (C/C++) programs on Solaris, and Slideshow
(Java) programs on Linux. NetVideo includes NV and
TG (C/C++) on Solaris. (2) DIRM generates two-way
TCP traffic whereas NetVideo does one-way UDP.
(3) DIRM/IIOPGW transmits variable-size packets
(from 18 to 58 kilobytes) with a big burst rate,
whereas NetVideo/NV transmits roughly uniform-size
packets (1280 bytes). (4) The main traffic flow of
DIRM or NetVideo uses a reservation, does not cover
the whole traffic path of DIRM (whereas it does that
of NetVideo. Since it is TCP-based, all flows
(reserved or unreserved IIOPGW and TG) do not
experience any packet loss, but do reduce their
throughput rates as traffic rates increase. It is of great
significance that a reserved DIRM/IIOPGW flow
experiences higher throughput and lower delay/jitter
than an unreserved, as observed previously.

There are important reasons why the mechanisms
of TCP and UDP protocols affect the QoS of their
flows. While UDP creates a one-way traffic, TCP
creates a two-way traffic, one for data and the other
for ACKs. In fact, TCP uses ACK packets for traffic
congestion control. The sender of a TCP flow waits
for ACK packets returned from the receiver before

sending next data packets. However, an RSVP
reservation serves a one-way traffic, which is the
main reason why UDP-based NetVideo gets better
QoS. For TCP, the reservation guarantees only the
data packets, and the ACKs are not guaranteed and
thus may be delayed or even lost. When ACKs do not
arrive in time, the sender blocks, which results also in
reduced total throughput of the DIRM experiment.
We can infer the similar QoS behavior of TCP-based
applications from IS to DS because DS provides
service priority to one-way packets too.

V. CONCLUSIONS

This paper describes two experiments in which
existing multimedia applications have been extended
to support QoS using QoSockets and tested in real
network environments, their performances provide us
an insight of current Internet QoS.
In summary, we conclude for UDP and TCP
applications:
• Both UDP and TCP applications benefit from

resource reservations and experience significant
improvements in their QoS. Because of no traffic-
control overhead, non-QoS flows may get better
performance normally, but suffer much worse
behavior under heavy or overloaded traffic
conditions.

• QoSockets is able to map the generic QoS
requirements of an application onto real transport
systems, and helps it allocate its required QoS. In
addition, QoSockets generates very important
monitors of real-time network performances, which
can be used by the applications for adaptation.

• TCP applications may not experience the same
level of QoS as UDP applications because BBE
services guarantee one-way traffic only (the TCP
ACK stream may experience delay or loss). The
DIRM experiment shows that the QoS of an
application is dependent not only on a given service
but also on its architecture. When an application
creates two-way traffic or involves multiple
programs and platforms, some parts involved in the
whole traffic may not be able to reserve QoS and,
therefore, impact the overall QoS performance.

At present, IS, DS, and ATM are the prevailing
BBE services for the Internet. How to couple diverse
existing applications with them is the “ last mile”
problem of QoS. QoSockets is a solution, and brings a

11

tiny (1%) additional traffic overhead. Of course, free
of overhead is a right thing done for an application
and, free of the “ last mile” coupling is absolutely right
for an existing application. We are currently
investigating techniques in acquiring QoS for an
existing application without its explicit participation.
We are also extending the testbed to experiment with
QoS of distributed applications across wide-area
networks.

ACKNOWLEDGEMENTS

This work is partly sponsored by the US DARPA
under Contract No. F30602-96-C-0315. We would
like to thank Frank Bronzo at BBN Technologies for
his contribution in the IIOPGW implementation.

REFERENCES

[1] Florissi, P., “QuAL: Quality Assurance Language” ,
Ph.D. Thesis, Columbia University, 1996

[2] Zhang, L., Berson, S., Herzog, S. and Jamin, S.,
“Resource ReSerVation Protocol (RSVP) – Version 1
Function Specification”, Internet RFC-2205, 1997

[3] Braden, R., Clark, D. and Shenker, S., “ Integrated
Services in the Internet Architecture: Overview” , Internet
RFC 1633, June 1994

[4] Object Management Group, “The Common Object
Request Broker: Architecture and Specification”, Rev.
2.2, Feb. 1998

[5] ATM Forum, “ATM User-Network Interface
Specification” , Version 3.1, 1994

[6] Zinky, J., Bakken, D. and Schantz R., “Architectural
Support for Quality of Service for CORBA Objects” ,
Theory and Practice of Object Systems, January 1997.

[7] Blake, S., Black D., Carlson, M. Davies, E., Wang, Z.
and Weiss, W., “An Architecture for Differentiated
Services” , Internet Draft, dratf-ietf-diffserfv-arch-00.txt,
August 1998

[8] Sun, Solaris RSVP/CBQ, ftp://playground.sun.com
/pub/rsvp/SolarisRSVP.0.5.0.tar.Z, Mar. 1998

[9] Wang, P.Y., Linux Port Of RSVP R4.2a3,
http://www.cs.columbia.edu/~yhwang/ftp/qos/rsvp, Aug.
1998

[10] Xerox Corporation, NetVideo, Version 3.3, 1994

