
Towards Autonomic Networks

Alexander V. Konstantinou

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2003

c©2003

Alexander V. Konstantinou

All Rights Reserved

Towards Autonomic Networks

ABSTRACT

Alexander V. Konstantinou

Autonomic computing has been proposed as an approach to reducing the cost

and complexity of managing Information Technology (IT) infrastructure. An au-

tonomic system is one that is self-configuring, self-optimizing, self-healing and

self-protecting. Such a system requires minimal administration, mostly involving

policy-level management. This thesis introduces novel results in autonomic man-

agement organization, autonomic element instrumentation, and autonomic policy

maintenance. Management functions are organized in a novel two-layer peer-to-

peer (P2P) architecture. The bottom layer organizes management information in a

unified object-relationship model, that is instantiated in a distributed transactional

object modeler repository. The top layer unifies the traditional roles of managers

and elements into a single autonomic management layer. Autonomic elements use

the modeler as a primary management repository, and effect autonomic behavior

in terms of transactions over the shared model state. A novel language called

JSpoon is introduced as a mechanism for extending element objects at design-time

with management attributes and data modeling layer access primitives. JSpoon

elements may be extended with additional autonomic functions at runtime using

model schema plug-in extensions. This thesis further introduces a novel autonomic

policy model and language in the form of acyclic spreadsheet change propaga-

tion rules, and declarative constraints. An Object Spreadsheet Language (OSL)

is introduced to express autonomic behavior as dynamic computation of element

configuration over the object-relationship graph model. Static OSL analysis algo-

rithms are presented over three incremental OSL language extensions for detecting

change rule termination and performing optimal rule evaluation over any instanti-

ation of the management model. The proposed organization has been implemented

in a large prototype system that has been successfully demonstrated in security,

network configuration, and active network applications.

Contents

Abstract iii

List of Figures vi

List of Tables viii

Acknowledgments x

Chapter 1 Introduction 1

1.1 Technical Results . 2

1.1.1 An Autonomic Management Architecture 3

1.1.2 A Language for Autonomy 6

1.1.3 Effecting Change Propagation 8

1.2 Rationale for Autonomic Systems 10

1.2.1 Practical Challenges . 10

1.2.2 Technical Challenges . 13

1.3 Thesis Organization . 15

Chapter 2 An Architecture for Autonomy 17

2.1 Introduction . 17

2.1.1 Management Architecture Automation Challenges 18

2.2 A Peer-to-Peer Management Architecture 21

i

2.2.1 Modeling Management Information 22

2.2.2 Instantiating the Management Model 24

2.2.3 Integrating Services . 28

2.3 Coordinating Management Operations 30

2.3.1 Concurrent Access . 30

2.3.2 Safe Access . 34

2.3.3 Reliable Access . 35

2.4 Scaling Network Monitoring and Control 36

2.4.1 Efficient Monitoring . 37

2.4.2 Sharing Discovered Information 37

2.4.3 Cross-Domain Management 38

2.5 Enforcing Network Policy . 39

2.5.1 Expressing Semantic Information 40

2.6 Related Work . 40

2.7 Summary . 43

Chapter 3 A Language for Autonomy 44

3.1 Introduction . 44

3.1.1 Summary of Results . 46

3.1.2 Manageability Challenges 48

3.2 Embedding Management Functions 51

3.2.1 Configuration Modeling . 52

3.2.2 Controlling Management Access 58

3.2.3 Management Services . 60

3.3 Reacting to Autonomic Changes . 65

3.3.1 Identifying Autonomic Events 66

3.3.2 Effecting Autonomic Behavior 70

3.3.3 Synchronizing States . 74

ii

3.4 Extending the Management Schema 76

3.4.1 SMARTS Event Correlation Plug-in 78

3.4.2 Change Propagation Plug-in 79

3.4.3 Topology Discovery Plug-in 80

3.5 JSpoon Compilation . 81

3.6 Related Work . 82

3.6.1 Standard Management Platforms 82

3.6.2 Network Modeling . 84

3.6.3 Management Automation 84

3.7 Conclusion . 85

Chapter 4 Effecting Change Propagation 87

4.1 Introduction . 87

4.1.1 Change Propagation Challenges 90

4.1.2 Management Schema Example 91

4.2 Expressing Object-Relationship Change Propagation 93

4.2.1 OSL0 Arithmetic Expression Language 96

4.2.2 OSL0.5 Propositional Expression Language 105

4.2.3 OSL1 First-Order Expression Language 107

4.3 Expressing Policy Constraints . 110

4.3.1 OPL Implies Operator . 112

4.3.2 OPL Invariants . 112

4.3.3 OPL Postconditions . 113

4.4 Static OSL Analysis . 113

4.4.1 Spreadsheet Model . 114

4.4.2 OSL0 Triggering Graph . 116

4.4.3 OSL0 Termination . 120

4.4.4 OSL0 Evaluation . 124

iii

4.4.5 OSL0 Propagation Complexity 129

4.4.6 OSL0.5 Analysis . 131

4.4.7 OSL1 Analysis . 134

4.5 Controlling Autonomic Behavior Across Domains 135

4.5.1 Inter-Domain Rule Propagation Automation 136

4.6 Previous Work . 139

4.6.1 Spreadsheets . 139

4.6.2 Network Data Model . 140

4.6.3 Event Correlation Systems 141

4.6.4 Event-Condition-Action/Active Database Systems 141

4.6.5 Feature Interaction . 142

4.6.6 Work-flow Systems . 143

4.6.7 Constraint Propagation Systems 143

4.6.8 Change Propagation Systems 143

4.7 Conclusion . 144

Chapter 5 Autonomic Applications 145

5.1 Introduction . 145

5.2 NESTOR Prototype Overview . 146

5.3 Managing Security in Dynamic Networks 150

5.3.1 The Experimental Testbed 151

5.3.2 Network Model and Configuration Constraints 158

5.4 Active Networks . 163

5.4.1 Anetd Data Modeling . 163

5.4.2 Anetd Semantic Modeling 165

5.4.3 Anetd Adapter . 166

iv

Chapter 6 Conclusion 171

6.1 Future Work . 172

Bibliography 184

v

List of Figures

1.1 Peer-to-Peer (P2P) Autonomic Architecture Overview 4

1.2 JSpoon Feature Overview . 7

1.3 Object-Relationship Spreadsheet Model 9

1.4 Web-Based Application Configuration Example 12

2.1 Manager-Agent Management Architecture 18

2.2 Manager-Agent Management Platforms 19

2.3 Peer-to-Peer Architecture Example 21

2.4 Distributed Object Modeler . 25

2.5 Resource Adapters . 29

2.6 Three-Phase Commit (3PC) Participant State Diagram 33

3.1 JSpoon Feature Overview . 45

3.2 JSpoon Meta Schema . 77

3.3 InCharge MODEL JSpoon Schema Extension Example 79

3.4 Object Spreadsheet Language (OSL) Propagation Rule 80

4.1 Object-Relationship Spreadsheet Model 88

4.2 Object Spreadsheet Language Extensions 89

4.3 Example Management Schema . 92

4.4 Iterate Operation Flowchart . 108

vi

4.5 OSL0 assignment graph:

context Application : active := enabled 118

4.6 OSL0 relationship graph and parse tree:

context Application :

active := servedBy.active default false 119

4.7 OSL0 collect graph and parse tree : context NetworkHost:

addresses :=

connectedVia->collect(underlying)

->collect(address)->toArray() 119

4.8 OSL0 same-class cycle example:

context Application : active := enabled

context Application : enabled := active 122

4.9 Propagation Example Schema . 126

4.10 Propagation Example Triggering Graph 127

4.11 Propagation Example Instantiation 127

4.12 OSL0.5 Finite Execution Cycle . 132

4.13 Management Domains . 136

4.14 Management Domain Cycle Analysis 138

5.1 NESTOR Modeler Graphical Browser 149

5.2 Company A Network . 153

5.3 Company B Network . 153

5.4 Anetd Read Instrumentation . 168

5.5 Anetd Set Instrumentation . 169

vii

List of Tables

2.1 Resource Definition Language (RDL) Model Examples 23

2.2 Modeler Operations . 26

3.1 JSpoon Autonomic Service Class Example 53

3.2 JSpoon Declaration Modifiers . 54

3.3 Enumeration Type Example . 56

3.4 Relationship Type Example . 57

3.5 Atomic Action Example . 59

3.6 Persistence Example . 63

3.7 Manager Example . 64

3.8 Primitive Event Subscription Examples 67

3.9 Conditional Event Subscription Example 68

3.10 Temporal Event Subscription Examples 69

3.11 Monitoring Event Subscription Examples 69

3.12 Synchronous Event-Based Autonomic Configuration 71

3.13 Synchronous Events as Generalized Exception Mechanism 73

3.14 Asynchronous Performance Event-Triggered Configuration 74

4.1 OSL Evaluation Semantics . 95

4.2 OSL0 Boolean Operations . 97

4.3 OSL0 Arithmetic Operations . 97

viii

4.4 OSL0 Collection Operations . 100

4.5 Relationship Set Union Semantics 103

4.6 OSL0.5 Boolean Operations . 106

4.7 Switch Operation Syntaxt & Semantics 107

4.8 OSL1 Collection Selection Operations 109

4.9 OSL1 Collection Accumulator Operations 109

4.10 Constraint Evaluation Semantics 111

4.11 OSL0 Triggering Graph Construction 121

4.12 Triggering graph cycle implies rule cycle 122

4.13 Change Propagation Algorithm . 125

4.14 Propagation Algorithm Example Trace 128

4.15 OSL0 Propagation Algorithm Worst-Case Example 130

4.16 Microsoft Excel Runtime Cycle Checking 140

4.17 CODASYL Relational Data Model Program 140

5.1 Network Model Example . 158

5.2 A Declarative Constraint: Trusted ports should only forward frames

of trusted nodes . 160

5.3 Switch VLAN ID propagation rule 161

5.4 Anetd daemon and process RDL definitions 164

5.5 Exactly one primary Anetd per Active Node (OPL constraint) . . . 164

5.6 Primary Election (OSL propagation rules) 166

5.7 Forwarding chain (OSL propagation rules) 166

ix

Acknowledgments

The inspiration of this work belongs to my thesis advisor, professor Yechiam Yemini

(a.k.a. YY). The development of the ideas presented also owes much to his insight.

During my long circuitous path down the Ph.D. rabbit hole, Yechiam would spon-

taneously appear at critical junctures to provide guidance, like a Hari Seldon out of

Asimov’s Foundation trilogy. Yechiam’s ability to drill down to the basic technical

issues has been a constant source of amazement. I owe him great thanks for his

trust in sponsoring my work, and his inspiration and guidance along the way.

This work also owes a debt of gratitude to the people of the DCC lab. Danilo

Florissi was a great research collaborator and brought a sense of order to a group

of people that were in need. Susan Tritto, a wearer of many hats, was the glue

that kept our lab together, and left me blissfully unconcerned with paperwork.

My fellow DCC Ph.D. students, Apostolos Dailinas, Sushil Da Silva, and Gong Su

provided a challenging intellectual environment over seminars, but most commonly

lunch and dinner conversations.

This work was generously funded by the Defense Advanced Research Projects

Agency (DARPA) of the U.S. Department of Defense. However, financial support

is only part of DARPA’s assistance. Their funding brings together communities of

researchers which share common interests, and creates unique research collabora-

tion opportunities. Our program managers, Hilarie Orman and Douglan Maughan

provided valuable feedback, and motivation to make our work available to our peers.

x

The results of this thesis were refined over several research prototypes developed

as part our contractual requirements. The dreaded group demonstrations were

ultimately a source of great feedback, and rich collaboration.

My thesis research, as well as, personal development as a researcher also owes

much to my internships at Telcordia Technologies, and Lucent Bell Laboratories.

My first note of gratitude goes to S. Rajagopalan (a.k.a Raj) of Telcordia whose

trust in my research was the source of my best research collaboration. Sandeep

Bhatt and Raj provided critical guidance in applying the results of my management

automation research in security. Tim Griffin and Nancy Griffeth at Bell Labs

afforded me the first opportunity to work in a research lab, and the opportunity to

work in different research directions. Daniel Lieuwen, also at Bell Labs, provided

valuable lessons in software development and documentation.

A Ph.D. thesis is not developed in a vacuum. The Computer Science depart-

ment of Columbia University provided the needed physical as well as intellectual

space to develop these ideas. I would like to thank professors Sal Stolfo, Gail Kaiser,

Ken Ross, Jason Nieh, and Roco Servedio for their research assistance. Professor

Angelos Keromytis, my second advisor, provided valuable research career advice,

and the much needed impetus to graduate. I’d like to thank all the department

staff for their support and friendship during these years. I would also like to thank

my Ph.D. committee members, professors Al Aho, Gail Kaiser, Dan Rubinstein,

and Dr. S. Rajagopalan for their valuable ideas and suggestions.

The path to writing a Ph.D. thesis in Computer Science led through RPI

(Rensselaer) and Macalester College. Much of my programming languages knowl-

edge is owed to my RPI masters thesis advisor, David Musser. Professor Michael

Schneider of Macalester provided valuable career guidance at the start of this road,

and by fortuitous coincidence, at the end of it as well.

The contribution of my friends to this research may not be as direct, but has

xi

been critical nonetheless. Dimitris Bouras was my lifeline to reality. His alternating

roles as fun and work personal trainer kept me on track when I was most in danger

of derailment. Every summer, Dimitris would make sure that my batteries were

filled for the long New York winter and the ups and downs of research. Scott Epter

and his family offered me a home away from home. Scott led the way in showing

the path out of the Ph.D. rabbit hole, yelling loud enough for me to follow. Ted

Diament crossed my path on that Ph.D. student orientation and was an invaluable

source of friendship and advice along the way. Jecky Benmayor, my adopted uncle,

was there to get me started on that BASIC programming manual when I was twelve,

and played a large role in my academic carreer decisions. I’d also like to thank Mark

Hulber, Dimitris Itsanis, Adam Kaplan, Sam Saltiel and Stavroula Sofou for their

support during the development and writing of this thesis.

My parents Vasilis and Ilana, and my sisters Ariadne and Anna have been

the fuel that got me started and kept me going to the finish line. None of this work

would have been possible but for their unconditional love, support, and direction.

My dear grandfather Harilaos who was my progress coach along the years sadly did

not live to see its completion, but never doubted the outcome. This thesis is also

dedicated to my surviving grandmothers Ariadne and Rina with many thanks for

their love and support.

xii

To live is to battle with trolls

in the vaults of the heart and brain.

To write: that is to sit

in judgment over one’s self

- Ibsen

xiii

To my parents.

xiv

1

Chapter 1

Introduction

Autonomic computing has been proposed[1] as an approach to reducing the cost

and complexity of managing Information Technology (IT) infrastructure. An au-

tonomic system is one that is self-configuring, self-optimizing, self-healing and self-

protecting. Such a system requires minimal administration, mostly involving policy-

level management. To effect such autonomic behavior, a system must instrument

its operational behavior and external interactions with other systems. It needs to

represent this information in a model which admits automated interpretation and

control, incorporating knowledge on how to automate management actions. Cur-

rent management architectures do not provide these essential technical features.

As a result, current networks continue to depend on ad-hoc operating procedures

implemented by human administrators. The high costs associated with manual

management have become the most significant barrier to the scaling of technology

investment.

2

1.1 Technical Results

This thesis introduces novel results in network management organization, network

element instrumentation, and autonomic policy maintenance. Management func-

tions are organized in a novel two-layer peer-to-peer (P2P) architecture. The bot-

tom layer organizes management information in a unified object-relationship model,

that is instantiated in a distributed transactional object repository. The top layer

unifies the traditional roles of managers and elements into a single autonomic man-

agement peering layer. Autonomic elements use the repository as a primary man-

agement repository, and effect autonomic behavior in terms of transactions over the

shared model state. A novel language called JSpoon is presented as a mechanism

for extending element objects at design-time with management attributes and data

modeling layer access primitives. JSpoon elements may be extended with additional

autonomic functions at runtime using model schema plug-in extensions. This the-

sis further introduces a novel autonomic policy model and language in the form of

acyclic spreadsheet change propagation rules, and declarative constraints. A novel

Object Spreadsheet Language (OSL) is introduced to express autonomic behavior

as dynamic computation of element configuration over the object-relationship graph

model. Static OSL analysis algorithms are presented over three incremental OSL

language extensions for detecting change rule termination and performing optimal

rule evaluation over any instantiation of the management model. The proposed

organization has been implemented in a large prototype system that has been

successfully demonstrated in security, network configuration, and active network

applications.

3

1.1.1 An Autonomic Management Architecture

The thesis introduces a novel two-layer peer-to-peer (P2P) management architec-

ture for autonomic computing, depicted in figure 1.1. The bottom layer maintains

a unified object-relationship model of network state and configuration. Network

element status and configuration is modeled using objects, while dependencies are

expressed as binary relationships between objects. Model objects may represent

physical devices such as switches, routers and hosts, as well as logical services such

as VLANs, IP networks, file servers, and web services. Relationships between model

objects express physical connectivity, such as containment or wired linking, as well

as logical connectivity, such as network-layer organization, or application-layer ser-

vice dependencies. The model is instantiated in a distributed object Modeler repos-

itory which is accessed over a transactional interface. The top layer consists of net-

work elements operating over the unified management data model. Elements use

the Modeler as the primary repository for status and configuration information.

All element management operations, whether internal or external, are performed

over the transactional Modeler interface. The modeler exports event publish/sub-

scribe mechanisms supporting synchronous notification within the context of the

triggering transaction, as well as asynchronous out of context notification. The data

model schema can be dynamically extended with semantic information. Semantic

checks are performed by knowledge plug-in modules which extend the Modeler with

additional functionality.

For example, consider a host whose IP network interface is configured from

a pool of available addresses using the DHCP[2] protocol. Dynamic address alloca-

tion may result in different IP addresses being assigned to the same host over time.

Remote access to such a host depends on the ability to resolve a persistent DNS[3]

name into the current IP address. In order to maintain such a mapping, the in-

formation stored in the DHCP server, or on the host interface must be propagated

4

Autonomic Elements

Modeler

Management
Layer

Data Modeling
Layer

Model

Figure 1.1: Peer-to-Peer (P2P) Autonomic Architecture Overview

to the DNS server. Presently, the configuration repositories and access protocols

for IP host configuration, as well as DNS and DHCP server configurations are pro-

prietary and non-transactional. Repository formats include flat structures stored

in isolated file systems (Unix /etc files), and local platform specific hierarchical

repositories (Windows Registry). Autonomic functions must be specially designed

as part of these protocols, such as dynamic DNS, or through polling of configura-

tion repositories, configuration parsing and generation over remote access protocols.

In the P2P architecture, the distributed Modeler becomes the primary repository

of configuration. The modeler stores the relevant IP interface, DHCP lease, and

DNS name-address bindings in a unified model that is accessed over a transac-

tional interface. Modeler events are exported over a publish/subscribe interface.

In this particular example, autonomic functions will be triggered by a change in

host’s the IP interface configuration and can be propagated to the corresponding

name-address DNS configuration by navigating the model’s service relationships.

The autonomic functions occur within the context of the triggering transaction,

presenting in consistent configuration views.

The P2P management architecture supports concurrent multi-manager con-

trol of network elements. Ownership of management attributes is removed from

network elements and assigned to a distributed database, thereby enabling the ap-

plication of traditional database concurrency control techniques. The unification

5

of manager-element roles improves safety by eliminating the state synchronization

problem between managers and elements. The elimination of management agents

through direct element instrumentation improves reliability through reductions in

the size and complexity of implementing managed network services. Transactional

management attribute logging and locking furthermore create recoverable configu-

ration semantics.

The P2P management architecture also provides scalable monitoring and

control of network elements. Management functions can be safely distributed across

multiple managers due to the protection of transactional concurrency control. The

unification of the manager and element roles in a peering relation enables the del-

egation of management functions, effectively distributing management load, and

supports self-healing in the face of local network failures. The unified management

model can be extended by managers with additional information, such as link-layer

topology. Transactional model access assures that elements and other managers can

utilize this additional information to effect self-management and self-organization.

Another important contribution of the P2P architecture is an extensible

mechanism for associating semantic information with the management model. The

unified management model admits a restricted set of operations over a transac-

tional context. Any management change can thus be intercepted synchronously

by another manager in order to verify policy, or propagate change. Such semantic

verification and propagation policies can be attached to the unified data model, and

automatically enforced by the repository through a plug-in mechanism. Automated

policy enforcement creates a reliable, efficient, and secure autonomic management

environment.

6

1.1.2 A Language for Autonomy

This thesis introduces a novel approach to element management instrumentation

in the form of design-time language extensions. Autonomic elements are devel-

oped in a new language called JSpoon which extends the Java language with auto-

nomic management features supporting management attribute declarations, access

synchronization primitives, and event subscriptions. The JSpoon runtime further

supports management persistence, and dynamic schema semantic extensions in the

form of knowledge plug-ins.

Figure 1.2 illustrates key JSpoon features in the context of an autonomic

network time service example. Management attributes are identified using spe-

cial JSpoon declarators. The JSpoon object is compiled into a Java class with

the non-management Java attributes and methods, as well as accessor methods

to the JSpoon configuration attributes. An additional management class is intro-

duced which exports the management attributes through accessor methods of other

JSpoon programs. At runtime, programs accessing configuration attributes inter-

act with the JSpoon runtime environment which provides persistence, concurrency

control, remote access, and event notification services. The management schema

of JSpoon services may be extended dynamically with semantic information. For

example, a constraint may be associated with the port number, as shown in the

figure. The JSpoon runtime will invoke the appropriate plug-in to evaluate the

expression after the value has been changed.

JSpoon simplifies service development by automating the export of manage-

ment attributes. Developers are thus encouraged to expose all configuration at-

tributes resulting in an overall improvement in service manageability. Automation

further reduces the need for programmers to deal with multiple copies of a con-

figuration attributes, for internal, persistence and standard MIB support, thereby

improving safety and consistency. Transactional access to configuration properties

7

NtpServer

+port: config port

+sock: ServerSocket

+start()

NtpServer

+getPort() : short
+setPort(short)

+sock: ServerSocket

+start()

NtpServer

+getPort() : short
+setPort(short)

JSpoon
Compiler

JSpoon Object

Java Management
Object

Java Object

JSpoon
Runtime

JSpoon
Runtime

Persistence
RepositoryRemote

Access

Constraint
Knowledge

Plug-in

Synchronous
Event

port<1024

Schema
Extension

Figure 1.2: JSpoon Feature Overview

creates a safe environment for concurrent management of network services. JSpoon

relationship declarations enable the linking of related services creating a mechanism

for service discovery.

JSpoon management events extend Java with a new dynamic service exten-

sion capability. Synchronous events are a mechanism for extending the behavior

of services to provide additional change propagation, and configuration verification

capabilities. This capability generalizes exception generation and handling from a

single thread of execution to a set of distributed processes. Asynchronous man-

agement events provide improved change event correlation based on the logging of

changes propagating across multiple elements.

JSpoon schema plug-ins support runtime data and semantic extensibility.

Access to management information is necessary in a variety of applications, such as

configuration automation, performance and fault monitoring, and inventory control.

Information collected from JSpoon elements can be used to dynamically enhance the

configuration model. Semantic schema extensions can provide protection from inop-

8

erable, or inefficient configurations based on the enhanced configuration model. Ser-

vice behavior may be customized to local operational requirements through change

propagation plug-ins. This approach creates new markets for systems services for

plug-in vendors, and plug-in service providers.

1.1.3 Effecting Change Propagation

This thesis introduces an Object Spreadsheet Language (OSL) to express change

propagation over object-relationship configuration models. OSL change rules are

expressed as spreadsheet-style [4] computations over the configuration model, as

shown in figure 1.3. In the figured example, the status configuration property of a

hosted application is determined by the configuration state of its host. A change

in the host status configuration will thus propagate over the serves relationship to

the application object. Autonomic element behavior results from the application of

composable OSL libraries. The thesis presents algorithms for static, compile-time

analysis of change rules to assure that autonomic elements maintain configuration

safety within the dynamic environments in which they are installed. Propagation

analysis must be performed at design time to assure safety. The results of static

analysis are used by algorithms for efficient computation of change rules. A declar-

ative subset of OSL called the Object Policy Language (OPL) is used to express

and enforce configuration policy constraints. Policy constraints are a tool for pro-

tecting systems from failures due to invalid propagation of changes. The thesis

introduces mechanisms to support scalable, multi-domain autonomic configuration

management and control of the scope of propagated changes. These mechanisms

will be used to coordinate configuration changes among independent domains.

The spreadsheet approach to change propagation provides a simpler mech-

anism for programming autonomic functions than a general purpose programming

languages. The spreadsheet model has already proven successful in allowing non-

9

Application

+enabled: boolean

Host

+enabled: boolean
servedBy

* 1

serves

context Application:
 enabled := servedBy.enabled default false

Figure 1.3: Object-Relationship Spreadsheet Model

programmers to express financial computation as acyclic propagation over grid data.

Spreadsheets define the value of variables as a function over other variables. Users

do not need to reason about previous variable state, since it cannot be introduced

as part of the right-hand-side expression. Spreadsheet rules can thus be viewed as

declarative constraints over a the value of a set of variables. The spreadsheet ap-

proach has been demonstrated in a variety of configuration automation in security,

service self-configuration, and mobility applications.

The OSL language was designed to support expression of management change

propagation over an object-relationship model, while remaining statically verifiable.

Changes in the spreadsheet model must propagate without cycles in rule evaluation.

Cycles may lead to infinite computation, and invalidate the benefits of simplicity

due to the lack of looping constructs. Unlike financial spreadsheets, which typically

detect cycles at runtime, autonomic applications cannot depend on user interven-

tion, therefore static termination verification is essential. All OSL rule sets can be

analyzed statically to determine if there exists a model instantiation which will lead

to cyclical evaluation. The static analysis depends on construction of a triggering

graph which can be analyzed in linear time.

The static analysis of OSL rules may be used to effect efficient incremen-

tal rule evaluation. The spreadsheet model semantics require that any change in

variable value result in recomputation of all functions dependent on the changed

variable. OSL expressions can be analyzed to determine the optimal rule evaluation

10

order, as well as the minimal set of object instances over which the rules need to be

evaluated. The algorithm depends on the results of the static rule analysis phase.

The declarative Object Policy Language (OPL) can prevent policy violations

due to change propagation before they take effect. Change propagation is nec-

essary to support autonomic self-management, self-healing, and self-optimization

functions. However, certain reactions to changes may lead to operational state, or

improved operation by violating policy. For example, a security sensitive service

may react to the failure of its authentication server by enabling unauthenticated ac-

cess. OPL expressions can detect such policy violations, and abort the transactions

before their effects have affected element behavior.

The domain mechanisms introduced establish bounds on change propaga-

tion, as well as scalable and safe change propagation across domain peering points.

Propagation across domains is performed over views of shared elements. Propaga-

tion paths over shared view objects are summarized in order to support scalable

rule analysis and maintenance. The peering view defines the types of permitted

propagation, and can be the subject of policy rules. Policy rules increase safety by

further filtering the semantic content of propagated values.

1.2 Rationale for Autonomic Systems

1.2.1 Practical Challenges

Current networks are operated using ad-hoc procedures implemented by expert

human administrators. Change management in such an environment is human in-

tensive, slow, and can result in unpredictable failures and inefficiencies requiring

costly recovery. The overall cost of current management practices is estimated to

occupy over 70% of corporate Information Technology (IT) budgets[5]. Current

networks cannot be enlarged without a corresponding quadruple increase in man-

11

agement costs. As a result management has become the most significant barrier to

scaling technology investment.

The major components of management overheads are human resources costs,

down-time costs, opportunity costs due to slow service deployment, and user-

training costs. Management automation can significantly impact each of these

components. Automated networks may be expanded without equivalent growth in

payroll costs. Down-time can be reduced through automated policy enforcement,

and systematic recovery. Service deployment and element configuration can be

performed faster outside direct human control. Finally, user training can be signif-

icantly reduced since a large part of it involves systems management, and failure

handling.

Management Example

The practical challenges of current network practices will be illustrated by a change

management example of installing a new web-based application. Web services [6],

are currently structured in multiple tiers, as depicted in figure 1.4. Web clients

transmit application requests over the HTTP protocol. Requests are received by

a proxy service which redirects traffic to the appropriate HTTP server based on

the URL target, and current work load measurements. The web server assembles

the presentation of its response by combining static and dynamically generated

content. Dynamic web-server content is generated by servlet procedures which

perform calculations over data retrieved from a business logic layer. The business

logic layer provides structure and control over the raw enterprise data in manner

that preserves business policy. Finally, the enterprise data layer consists of back-end

relational database and legacy applications.

Consider the task of installing a new web-based application in this multi-

tiered architecture. The application servlet program must be installed on the web-

12

FirewallHTTP
Server

Database HTTP
Redirector

Firewall J2EE
Server

create
table & access

open
port

install
servlet

install
EJB

configure
forwarding

Figure 1.4: Web-Based Application Configuration Example

server host, and the web-server must be configured to map it to a specific URL

location. In installations, consisting of multiple web-server hosts, the application

might only be installed in a subset of the available hosts, requiring reconfiguration of

the web-redirector. The application may further require additional business logic

services, or upgrades of existing services. These dependencies may conflict with

dependencies of previously deployed applications, which may restrict the hosts in

which the updated business logic services can be deployed. New business logic

services may require access to previously inaccessible databases, requiring recon-

figuration of the internal DMZ firewall. Finally, the new application may require

establishment of database authentication credentials, as well as database table cre-

ations.

Today, all these changes must be performed by human administrators who

are responsible for evaluating the required changes in terms of operational pol-

icy, establishing a change work-flow plan, and effecting change by independently

updating the low level configuration repositories of each effected element. These

tasks may require coordination with different managers or management groups that

13

have been assigned ownership of different element domains. For example, installing

the web application will require identifying the target web-servers where it can be

safely installed, as well as the target hosts of the required business logic services.

The web-server XML configuration file will need to be locked, inspected, modified,

verified, and reloaded. Firewalls are typically managed by a separate group, and

opening the port may require negotiations over application requirements and ex-

isting security policies. The order of changes may be restricted based on security

and availability requirements. Removing a fully or partially installed application

is an equally involved process, with the added risk of disturbing undocumented

dependencies, or leaving unnecessary configuration state. Considering that large

sites may deploy thousands of such applications, it is clear that the complexity and

cost of human management present a major barrier to system scalability.

1.2.2 Technical Challenges

Attempts at automating network operations have so far met with limited success

due to the design of existing management architectures. Current architectures

assume a manager-agent (client-server) model in which element performance and

status information is presented to human managers. Managers must collect and in-

terpret this information in relation to network policy. Policy enforcement requires

manual change management over distributed, heterogeneous element configuration

repositories. Managers are further required to manually log and coordinate config-

uration updates across multiple elements due to lack of transactional configuration

access mechanisms. These architectural limitations create significant safety, scala-

bility, and reliability challenges to automation.

Several factors make the design of self-configuring networks under the current

management architecture challenging:

1. The change propagation problem: A configuration management task typically

14

requires changes in multiple interdependent elements. Deploying the web-

based application, in the previous example, required installing business logic

adapters, opening ports in the back-end firewall, and reconfiguring the web

redirector. Self-configuring software needs to:

• Recognize these different elements, their relationships and configuration

states – network topology discovery. Currently, this information is spread

in fragmented repositories and can be very difficult to compile.

• Represent the knowledge of the sequence of changes in these elements

– change propagation rules. Automation logic is currently expressed in

general-purpose scripting languages which cannot be statically analyzed

to determine their effect, before the change is applied.

• Effect the changes in each element through heterogeneous widely varying

proprietary instrumentation, configuration tools and operational proce-

dures; and coordinate these changes with those caused by built-in ele-

ment procedures – handle element heterogeneity and spontaneous changes;

and

• Enable recovery and undoing of changes, in case of failures – recover-

ability. Current management protocols do not support transactional

mechanisms, and therefore an external agent cannot enforce isolation,

or automatic recovery.

2. The configuration policy problem: Configuration changes may lead to incon-

sistent configuration states resulting in operational failures and inefficiencies.

Therefore, a self-configuring network needs to:

• Represent policy knowledge about configuration consistency relation-

ships in the form of policy constraints. Current management systems[7,

15

8] do not define unified models. Management Information Bases form

“data islands” which are not bridged in the model. Policy languages de-

pend on relationships expressed as part of the static schema, and cannot

be used in such an environment.

• Enforce these policy constraints to assure consistent configurations. Pol-

icy enforcement requires synchronous control of change propagation.

Changes detected through monitoring have already been committed,

may not be recoverable, and their transient effect can result in per-

manent security compromises.

• Enable organizations to program policy constraints to effect their oper-

ational policies.

3. The composition problem: A self-configuring network needs to adapt the

change propagation rules and policy constraints to the network configura-

tion. It must compose these rules and constraints from component change

propagation rules and policy constraints associated with individual elements.

For example, the installation of an upgraded business logic component may

require the upgrade of dependent web applications. Script-based change prop-

agation and verification tools are not composable, since it is not possible to

analyze their dependencies or combined effect.

1.3 Thesis Organization

The thesis is organized in four major chapters. The second chapter introduces the

proposed two-layer peer-to-peer (P2P) management architecture and presents its

technical advantages over existing three-layer Manager-Agent (MA) architectures[7,

8]. The third chapter presents the JSpoon language for embedding P2P data mod-

eling layer access into autonomic elements, and presents the technical advantages

16

of the language-based approach to element instrumentation. The fourth chapter

presents the OSL language for spreadsheet-style change propagation and policy dec-

laration over the object-relationship data model. The chapter presents algorithms

for static analysis of OSL rule sets, and efficient rule evaluation, and details the

domain-based mechanisms for scaling rule and police evaluation. The fifth chapter

presents the application of the NESTOR P2P architecture prototype to automation

of security, and active network management. Related work discussion is presented

at the conclusion of each chapter. The thesis ends with a brief conclusion chapter.

17

Chapter 2

An Architecture for Autonomy

2.1 Introduction

This chapter introduces a novel peer-to-peer network management automation ar-

chitecture. In the peer-to-peer architecture, elements and managers operate over

a unified management model. Elements access the configuration model to retrieve

their current configuration and export their state, while managers use the model

to discover element topology in order to effect change. Configuration models are

expressed in terms of classes of objects which are linked by relationships. The man-

agement model is instantiated in a distributed object repository (Modeler) which

is accessed through a transactional interface.

The proposed peer-to-peer organization offers significant advantages over

the traditional manager-agent (client-server) organization. The unified model al-

lows managers to discover, access and manipulate the configuration of all network

elements. Transactional access to management information creates an environ-

ment supporting safe multi-manager access, as well as recoverable configuration

change semantics. The unification of the traditional roles of manager and element

allows management functions to be distributed in different elements, supporting

18

Management Applications

Managed Objects

Element Configuration

Management
Station

Management
Agent

Managed
Element

Event Correlation

MIB
II

MIB
II, Route

MIB
II, Host

RedHat
Linux

Windows
XP

Cisco
7500

Topology Model

MIB

Figure 2.1: Manager-Agent Management Architecture

autonomic behavior. Transactions establish natural policy enforcement points, and

can be used to more accurately correlate the root cause of network failures or in-

efficiencies. Distribution of element configuration creates a scalable management

infrastructure, which can continue to operate under network partition, to maintain

policy, and effect self-healing.

2.1.1 Management Architecture Automation Challenges

Current network management standards [7, 8] are organized in a three layer manager-

agent (client-server) architecture depicted on the left side of figure 2.1. At the top

layer, centralized management applications access the configuration of distributed

network elements through a set of standardized schemata called Management Infor-

mation Bases (MIBs). MIBs encapsulate the local configuration, performance, and

status of individual network elements. Management applications must correlate

the information collected across multiple elements to determine network behavior,

and effect network control. Each network element is associated with a management

agent which collects management information using proprietary interfaces, binds

it to one or more management MIBs, and communicates with the management

application via a standardized network protocol.

The right side of figure 2.1, depicts an example of a manager-agent manage-

19

Management
Applications

Management
Agent

Managed
Element

Applications

Network Model

Instrumentation

Element

Presentation

Access Protocol

Monitor &
Interpret Apply

Topology Discovery Fault Analysis

HP OpenView Tivoli

SNMP Telnet

DHCP

IOSsnmpd

Figure 2.2: Manager-Agent Management Platforms

ment fault root cause analysis automation application. Networks generate many

types of related events in response to changes in configuration, or usage patterns.

The root cause is determined by correlating network events with network topology

and signatures of known problems. In the manager- agent architecture, the first

step involves discovery and collection of MIB information from network elements.

Data collection requires the establishment of authentication credentials with each

element. Discovered elements must be polled for change events, and the network

must be polled for new elements. In the next step, the collected information must

be mapped into a topology model to express dependencies between elements at

multiple layers. Finally, the topology model and detected events can be provided

to the correlation engine for analysis.

Discovery is a common requirement for many other management applica-

tions, such as inventory control, topology visualization, and performance optimiza-

tion. Management platforms have evolved to address this common application

requirement, at the cost of establishing proprietary element configuration models

and repositories. The architecture of current management systems is depicted in

20

figure 2.2. At the top layer, managers monitor presentation software for failure

events. Presentation software is usually tightly bound to a specific application,

such as topology discovery, or fault analysis. Applications contribute information

to a common repository which is management vendor-platform dependent. The

repository is instrumented by adapters which communicate to the element agents

over a network protocol and map the information retrieved into the network model

repository.

Current discovery solutions cannot address all the needs of monitoring man-

agement applications. Element discovery repositories are proprietary and do not

support all element types, resulting in information fragmentation. Threads of

change in element configuration cannot be correlated because of the non-transactional

nature of the protocols used to populate the network model. As a result, manage-

ment applications must apply additional task-specific correlation functions in order

to improve presentation consistency.

Furthermore, these discovery solutions offer a weak foundation for configura-

tion management applications. Due to the lack of atomicity and isolation functions

at the agent-level, it is not possible to obtain a consistent view of configuration in

a fast changing system. Even when consistent views can be obtained, they can-

not be locked since other management platforms, human managers, or dynamic

configuration protocols can effect change at any point. This is an instance of con-

sensus problem [9] which cannot be solved in asynchronous systems [10]. Therefore,

current management cannot guarantee policy enforcement. Policy violations due

to race conditions can result in transient failures effecting performance, or hard

failures requiring manual intervention. Transient failures in security create can be

exploited to effect permanent system compromise.

21

Distributed Object
Modeler

Management
Layer

Data Modeling
Layer

CISCO
Router

Apache
HTTPd

Change
Propagation

IpHost

“gw”

IpInterface

128.59.1.1serves

Object-
Relationship

Model

Element Manager
Knowledge

Plugin

Figure 2.3: Peer-to-Peer Architecture Example

2.2 A Peer-to-Peer Management Architecture

In order to support autonomic behavior, a management architecture must satisfy

certain basic requirements: (1) support the representation of element configura-

tion and performance properties used to control and monitor element behavior,

(2) express relationships between different autonomic elements, (3) control access

to configuration properties so as to assure consistent views, (4) enable autonomic

elements to discover, access and control the configuration of other dependent ele-

ments, (5) provide publish-subscribe interfaces for management event notification,

and (6) enable element configuration persistence and recovery.

The proposed peer-to-peer (P2P) management architecture was designed to

address these requirements. The P2P architecture organizes autonomic systems

into a two-layer architecture as depicted in Figure 2.3. At the bottom layer, a

distributed object Modeler provides a consolidated element data repository, includ-

ing configuration, relationship, state and performance attributes as well as their

behavior events. Modeler objects are instances of classes declared in a unified man-

agement model. The Modeler provides interfaces to access and manipulate the

managed data. This enables the management layer, above, to access a unified data

model, interpret its behavior and activate autonomic control functions.

22

2.2.1 Modeling Management Information

Element configuration and performance has been represented in a variety of models.

Flat structures were the earliest management models and had the form of attribute-

value pairs. Flat models cannot representing structured and tabular information,

such as a route table, which is a common modeling requirement. Hierarchical tree

models were thus adopted by the SNMP[8] standard. Hierarchical models offer

limited extensibility, in the form of tree branching. Extensibility, in the form of

function specialization is a common management modeling requirement. Object-

orientation combines structured data representation with an extension mechanism

called inheritance. Therefore, most subsequent management standards have been

based on object-based management models [11, 12, 13, 14, 15, 16].

Relationships are an object-oriented modeling mechanism to establish asso-

ciations between objects. Relationships define binary associations between classes

of pre-defined cardinality. For example, a Host single object may be associated

with one or more IpInterface objects. While relationships are commonly used

in modeling environments, such as UML[17], they are not included in the type

systems of popular object-oriented languages, such as C++ and Java. Although

it is possible to model them with pairs of pointers, or sets of pointers, this ap-

proach places a burden on programmers and can result in inconsistent relationship

endpoint memberships.

Configuration models in the P2P architecture are expressed in the Resource

Definition Language (RDL). RDL is an object-oriented interface language that

supports the specification of resources as objects and their relationships. Object-

orientation provides important clustering of configuration and behavior through

interface inheritance and hierarchy mechanisms. Interfaces define generic behav-

iors of objects and inheritance supports abstraction of common features. Relation-

ships between objects capture interdependencies through hierarchical structures, as

23

interface NetworkHost {
attribute Str ing hostname ”Name o f host ” ;
relationshipset inter facedThrough , NetworkInter face , partOf ;

}
interface NetworkInter face : netmate : : Node {

key attribute byte [] u n i q u e I d en t i f i e r ”e . g . MAC Address ” ;
relationship partOf , NetworkHost , in ter facedThrough ;

}

Table 2.1: Resource Definition Language (RDL) Model Examples

well as of distribution. Finally, objects encapsulate the methods for accessing the

underlying element instrumentation.

Autonomic management instrumentation variables can be assigned to one

of three basic categories[11][18], with associated access patterns. Configuration

properties control the behavior of the autonomic element and must therefore be

protected in regards to concurrency and semantic content. Performance properties

export element performance measurements and operational state, cannot be locked,

and may only be set by the element owning the object. Relationships express de-

pendencies to other autonomic elements. State information is divided between

configuration properties which express intention, and read-only performance prop-

erties which express operational status. Operational state can only be indirectly

effected through configuration state changes.

Table 2.1 depicts fragments depicts fragments of the model of an IP host

expressed in RDL. Interfaces are pure abstract classes, which may be scoped in a

package. Packages are a requirement in an environment where models are likely

to be imported from external sources, such as vendors or standard bodies. Inter-

face definitions may include attribute, method, and relationship declarations. In

the NetworkHost example, the first statement declares a string attribute named

hostname, which represents the name of the modeled host. The second state-

ment declares an any-to-many association between this interface and classes im-

24

plementing the interface NetworkInterface. Associations are declared by nam-

ing both ends (role names), the type of the association class, and the multiplic-

ity of the association (one, or many). In the example, the association between

IpHost and NetworkInterface is specified as one-to-many. The model reflects

the fact that objects of type IP host may have one or more IP interfaces. The

relationship partOf goes in the other direction, from an NetworkInterface to

a NetworkHost. The netmate:: scope in the declaration of NetworkInterface

denotes the NETMATE[11] schema which is used as a basis for RDL models.

These resource models constructed using RDL incorporate essential informa-

tion for self-management and self-organization that is otherwise hidden in obscure

operational manuals, requires complex discovery mechanisms, or is just unavailable.

The models enable simple, uniform, and secure access and manipulation of resource

information. For example, consider the hostname attribute of the NetworkHost

interface. The method for accessing and updating the name of a host is platform-

dependent. Moreover, it may involve multiple operations, such as updating a con-

figuration file and then invoking a system utility to update the operating system

data structures. In some cases, the modeled element may not even support a name

attribute, and the value may be stored in third-party repository. By viewing con-

figuration through the unified model, all this complexity can be hidden, enabling

managers to focus on the task at hand.

2.2.2 Instantiating the Management Model

In the P2P architecture, autonomic elements instrument their configuration and

performance management information by instantiating the object-relationship model

classes in an object Modeler. The Modeler is an object repository distributed among

the network elements. Elements typically maintain a local object repository to as-

sure access to configuration in the absence or failure of network connectivity. The

25

IpHost

name=
www

DNSResolver

search=
columbia.edu

DomainServer

dynamic= false

Domain

name=
columbia.edu

primary= true

AddressRR

name= www
address=
 128.59.16.20serves

serves servers

DomainServer

dynamic= false

Domain

name=
columbia.edu

primary= false

AddressRR

name= www
address=
 128.59.16.20serves consists

of

primary

consists
of

Figure 2.4: Distributed Object Modeler

distributed repositories are linked by relationships that connect objects residing in

different repositories. Every object is a associated with an authoritative repository.

Objects may be transparently replicated to improve read access performance, or to

provide management views.

Figure 2.4 shows a sample instantiation of a management model (not shown)

that is distributed in three repositories. The repository on the left side stores

the management objects of a simple Internet host. As shown, the host has a

name, and is served by a a DNS[3] resolver which performs domain-name to IP

address translation. The resolver is related with one or more domain name servers

which provide the service. In this example, the resolver is related to two domain

server objects residing in different repositories (relationships connecting objects in

different repositories are emphasized). Each domain server is related to domains

which it serves as primary, or secondary, and each domain contains resource records

with the appropriate mappings. A secondary domain is related to its primary to

model the fact that changes to the primary propagate to the secondary.

26

Operation Operands Description

Load class Adds a new class to the model.
Unload class Removes a class from the model. The repository

must not contain any class instances.
Create object Creates a new instance of a model class.

All repository objects are associated with a lease.
Remove object Removes a class instance. All the instance

relationships must be empty.
Set object, property sets the value of an attribute or relationship.

To-many relationships are set by assigning a
set or sequence of elements.

Retrieve object Retrieves an object based on its unique identifier.
Lookup class retrieves all instances of a class.
Get object, property Retrieves the value of an object attribute

or relationship.

Table 2.2: Modeler Operations

Controlling Access

Modeler repositories are used to store and access management information in the

form of object class instances, and relationships establishing binary associations be-

tween objects. The Modeler admits a limited number of primitive object operations

that are listed in table 2.2. Higher-level operations may be built on the lower-level

ones such as searches based on attribute value or relationship membership.

The Modeler operations can be mapped into relational or object distributed

database operations. Due to this mapping, database concurrency control and re-

coverability techniques can be applied to the Modeler[19]. Concurrency control

can be maintained using the three-phase commit distributed transaction protocol.

Transaction atomicity and isolation can be maintained with two-phase locking.

Transaction log ordering can be performed by maintaining logical clocks in each

transaction participant.

27

Discovering Management Information

An autonomic service must be capable of discovering its environment in order to

perform its self-management and self-healing functions. The P2P architecture sup-

ports discovery through relationship navigation. Autonomic elements may navigate

external relationships to their local model in order to discover related services. For

example, an autonomic DNS resolver would navigate the local host model to iden-

tify the network interface objects. Each local network interface is related to its

peers which can be accessed to query services running on the remote hosts. The

remote host objects would then examined for DNS services, and ranked based on

performance-based characteristics.

Relationship-based discovery depends on the establishment of some initial

relationship that crosses repository boundaries. Such initial relationships may be

hard-coded, in the form of element identifiers. Alternatively, autonomic element

discovery protocols, such as DHCP[2], Jini[20], UPNP[21] can be used to estab-

lish network membership. Network membership can be used to discover available

services.

Monitoring Management Information

Each primitive database update operation identifies a primitive change event: load,

unload, create, remove, set. In addition, the transaction mechanism creates an

additional primitive events: transaction commit. Managers can subscribe with the

repository for primitive events. Repositories also support subscriptions for event

filtering based on key and non-key attribute values and relationship membership.

Modeler event notifications may be received synchronously or asynchronously.

Synchronous notification occurs in the context of the event triggering transaction.

The event triggering thread is suspended until each event subscriber has been no-

tified. Recipients may perform additional Modeler operations in the context of

28

the transaction, or may request a transaction rollback (abort), in their notifica-

tion handler. Asynchronous event notifications are delivered outside the triggering

transaction context. Recipients may examine the event transaction log to determine

the context of the event.

Subscribers receive asynchronous event notifications in an order that pre-

serves the transaction serializability. Events triggered from the same transaction

are delivered in the transaction log order. Events triggered by different transaction

are delivered in serial history order. Results from messaging systems research on

message delivery and filtering can be applied for this task [22, 23].

Persistent Configuration

Configuration typically needs to persist across service activations. Currently, con-

figuration persistence is separately handled by each element. The P2P architecture

supports both element as well as Modeler supported persistence. Elements may

independently persist their information. Element objects can be explicitly removed

from the repository when the service is shutdown, or may timeout when their leases

are not renewed. Alternatively, elements may utilize the Modeler persistence mech-

anisms. Modeler persistence requires that at least one service object be associated

with one or more key attributes that can be uniquely determined at service startup.

For example, a web-service can retrieve its configuration by looking up the service

port number. Modeler persistence supports off-line element configuration. Off-line

configuration assures that the service will start in a state that is consistent with

changes that occurred while it was unavailable.

2.2.3 Integrating Services

The P2P autonomic management architecture requires significant redesign of ex-

isting network elements. The next two chapters will introduce results aimed at

29

Distributed Object Modeler

Management
Layer

Data Modeling
Layer

Legacy
Element

P2P
Element

P2P
Manager

Telnet
Adapter

Legacy
Manager

SNMP
Adapter

Apache
HTTPd

WebService

port= 80
maxCon=20

Directory

location= /www
options= FSL

shares

Apache HTTPd Adapter

Listen=80
maxClients=20
<directory /www>
 options FollowSymlinks
</directory>

WWW
MIB

read,lock,writereloadpoll

Figure 2.5: Resource Adapters

simplifying this task in the form of a language for embedding autonomic element

instrumentation, and languages for expressing policy constraints, and change prop-

agation rules. Existing Manager-Agent (MA) architecture services may partially

benefit from the P2P architecture through the use of element adapters, as illus-

trated in figure 2.5. Adapters can provide bidirectional mappings between the MA

configuration and performance models and the unified model stored in the object

repository. Adapters can be used to instrument elements as well as managers.

An element adapter instruments the Modeler with configuration extracted

from an MA service through standard management protocols, as well as custom

proprietary configuration adapters. For example, an adapter for the Apache HTTP

service, as shown in figure 2.5 will parse the httpd.conf configuration file, map the

information into the management model object-relational schema, and create the

appropriate objects in the Modeler. Performance information is gathered using the

SNMP WWW-MIB[24]. The adapter also establishes a synchronous subscription

on the Modeler objects it has created. Changes to these objects must be propagated

to the native configuration repository, and the service must be asked to reload its

configuration.

The challenges of adapting elements and managers to a unified repository

have already been covered in this chapter’s introduction. Obtaining exclusive ac-

30

cess to the adapted element configuration is not usually possible, since element

configuration protocols do not support locking, and elements may support multiple

configuration mechanisms (file, web, and others). Changes that occur due to ele-

ment self-management functions, such as DHCP configurations, OSPF/RIP route

updates, or UPNP discoveries, cannot be assigned to a specific threads of change.

Reloading configuration can disrupt normal service behavior, resulting in transient

failures. Performance instrumentation is limited to MIB variables, and updates

limited to the rate of polling. Changes may go undetected by polling due to their

transient nature, or rapid rate of change.

2.3 Coordinating Management Operations

The P2P management architecture supports a greater degree of management coor-

dination. Control of management access and storage is transfered from the element

into a distributed object Modeler repository. Elements and managers use the same

transactional interface to export and access the stored management data. This

approach enables concurrent access to management information while maintain-

ing safety, and reliability. This section will present the P2P Modeler concurrency

control mechanisms, and illustrate the ways in which they improve safety and reli-

ability.

2.3.1 Concurrent Access

Traditional management architectures do not provide mechanisms for atomic, con-

sistent, and isolated access to element management information, or manager-to-

manager coordination. For example, in order to provide safe manual configuration

of IP addresses in a subnet, a single manager must monitor and control the IP

interface configuration of all subnet hosts. Therefore, in practice, control and mon-

31

itoring of network elements must be restricted to a single domain-wide centralized

manager.

The P2P management architecture supports concurrent multi-manager con-

trol of network elements. All management information is placed in a distributed

object-relationship database supporting transactional access. This approach ad-

dresses the concurrency control issue at a low level, alleviating the need for explicit

manager-to-manager communication. Managers may safely operate on the same

configuration sources through database mechanisms that maintain atomicity, con-

sistency, and isolation. Element self-management functions which can be a source

of risks in MA architectures, are similarly protected.

Element management differs from traditional database applications in two

significant aspects. Management performance information changes at a rapid rate,

and cannot be rolled-back in the sense that it monitors operations, rather than

affect change. In contrast, configuration changes occur at a slower pace because

they control the process, and so effect future operations. As a result, performance

management attributes are not processed in a transactional manner. The second

difference concerns the modeling of failed services. A failed service cannot be re-

configured until it has been restored. Examples include software systems that have

been rendered inaccessible through erroneous configuration, or physical services

that have been physically reconfigured, damaged, or destroyed.

Partitioned operation and recovery have been studied in the context of dis-

tributed database systems [25, 26, 27, 28]. The emphasis of that work has been

on replicating data while maintaining a serializable history when the partitions are

merged. In contrast, replication of network services is performed at the logical level,

rather than the data representation level. Physical services cannot be replicated

by software, while software services can be replicated through relocation, but their

configuration will not be identical. Therefore, the configuration of an individual

32

network element cannot be replicated for the purpose of write updates.

The P2P management Modeler failure recovery mechanisms will be illus-

trated using the earlier example of an autonomic DNS resolver. The configuration

of such a resolver is computed based on the host IP layer connectivity to local sub-

net DNS servers. To maintain configuration consistency, the resolver subscribes for

changes in network connectivity, and server status. Consider a failure in a physical

link of the host, or the switch to which it is connected. Through polling as well

as ICMP monitoring the resolver repository will detect that one or more remote

repositories are no longer reachable. These repositories were monitored because

their objects were related to local repository objects.

In a distributed database, the state of these unreachable objects would be

either frozen, or optimistically replicated until connectivity could be restored. Nei-

ther locking nor optimistic replication are appropriate solutions in management au-

tomation. Locking precludes corrective action on the exact services that are most

likely to be dependent on the connectivity that is lost. Replication for the purpose

of maintaining relationships can generate inconsistencies between the model and

the real world, resulting in additional failures. Conversely, strict serializability-

maintaining replication for the purpose of removing the relationships is most likely

to require extensive rollback when connectivity is restored.

In the P2P management Modeler, remote objects whose repositories are

no longer accessible are removed from every local object relationship. First, any

active transactions which have obtained locks on the affected relationships must

be aborted or committed based on their current state. The freed local relationship

locks are then assigned to a recovery transaction that removes all unreachable

remote objects from the local relationships. The effects of the recovery transaction

may trigger synchronous event handlers. These handlers may attempt to effect

self-healing by reconfiguring the network, or may attempt to abort the transaction

33

R

V

W

vote

prepared

vote

abort

prepare

ack

commit

A

C

prepare

abort

abort

R

V

W

A

C

Normal Transitions Timeout Transitions

Figure 2.6: Three-Phase Commit (3PC) Participant State Diagram

to maintain policy. If the recovery transaction is aborted by a synchronous handler,

then the Modeler is said to be in an inconsistent state. Inconsistent systems must

rely on an external intervention in the form of human management, or autonomic

failure recovery by the other element repositories.

The three-phase commit protocol participant state transition diagram is

shown on the left side of figure 2.6. Transactions in the active state R can be safely

aborted, with the transaction manager receiving asynchronous abort notification.

Transactions in the voting state V can also be safely aborted with asynchronous

coordinator notification, since the prepared vote has to be acknowledged. In the

absence of failures, the transaction manager will always commit transactions for

which all participants have voted prepared. Therefore, transactions in the waiting

state W cannot be later aborted due to a policy violation. Recovery from state

W involves discovery of the partitioned topology, and application of the change

propagation rules to effect local consistency.

34

2.3.2 Safe Access

Traditional MA architectures assign ownership of configuration information to the

individual elements. Network elements typically embed their management informa-

tion as part of their internal programming code and structures. Because elements

are coded in languages without native transactional support, MA elements are lim-

ited in their ability to synchronize and rollback management changes. Moreover,

the prevalent method of MA element instrumentation creates an additional man-

agement modeling layer which creates data duplication and further synchronization

risks. Therefore, in practice, current network elements cannot safely support con-

current management access.

Another MA architectural assumption with effects to safety is that element

configuration is controlled by centralized management applications. The emergence

of dynamic configuration protocols [29, 2] has invalidated that assumption, since

elements may modify their own configuration in response to changes in network

topology, or lease expiration. This two-way propagation of change creates race con-

ditions in the decision processes of managers and self-configuring agents, which are

exacerbated by polling mechanisms. Moreover, network elements typically support

additional mechanisms for configuration, such as configuration files, which may be

used to circumvent the protections employed by the centralized manager.

The P2P architecture creates a safe management operational environment

by restructuring the manager-agent state synchronization problem as a database

operation. Management information is removed from direct element control and

placed in a transactional Modeler repository. Elements and managers access man-

agement data using the same narrow transactional interface. Database synchro-

nization techniques guarantee atomic commitment of changes, consistent views,

and manager isolation. In this manner, the P2P architecture supports safe multi-

manager access, which further enables safe distribution of management functions

35

into network elements. The later capability is essential in establishing autonomic

element behavior.

2.3.3 Reliable Access

The MA management architecture does not place strict controls on the types of

protocols used for monitoring and configuration. A typical network element will

support multiple mechanisms for accessing its management state. For example,

a CISCO router may be monitored and configured using SNMP, Telnet console

access, as well as a Web-based management interface. Managers may forced to use

multiple protocols, some proprietary, to extract the required information, and effect

configuration change. The burden of supporting additional interfaces increases the

complexity of coding and maintaining agent and element implementations. Element

evolution presents the possibility of mismatched semantics between manager and

agent potentially resulting in the export of erroneous information, and the failure

to effect durable configuration changes. These problems are exacerbated when

management agents are provided by third parties.

For example, consider the management configuration task of persistently

changing the name of a Linux host. The Linux runtime stores the hostname in

multiple locations, such as the kernel, and runtime libraries. In order to effect run-

time change, without restarting the system, a management agent must update all

locations using different APIs. Similarly, the persisted hostname can be stored in

multiple locations such as distribution-specific configuration files, and local host-

address mappings. An SNMP agent must therefore track the configuration inter-

faces and repositories of each different version of popular Linux distributions. For

example, the most current version of the most popular Linux SNMP agent[30] will

effect a partial runtime host name change, without updating persistent storage. As

a result, a Linux system whose name has been changed through SNMP will report

36

inconsistent naming information, and will revert to its previous state when it is

restarted.

The P2P architecture eliminates the need for management agents and thus

improves service reliability by reducing the size and complexity of implementing

managed network services. The P2P Modeler is the only authoritative repository

of management information. Elements and managers use a simple transactional

interface to access the shared repository, eliminating the possibility of inconsis-

tencies between runtime and persistent state. Consistency of information that is

replicated in the management model can be automatically maintained using syn-

chronous event handlers. Reliability is further improved through consistent element

configuration views, and atomic element configuration updates.

2.4 Scaling Network Monitoring and Control

The P2P architecture offers distinct scalability advantages over the MA architec-

ture. Management information is stored in a distributed modeler supporting con-

currency control mechanisms. The database approach to management creates a

safe and reliable environment for executing concurrent management operations.

Management functions can thus be distributed across management servers, or even

placed within the elements to effect autonomic behavior. Change management

is supported through a publish-subscribe mechanism on all types of management

changes. Remote polling is no longer required thereby reducing network and pro-

cessing load. Event filtering can be pushed to the source of the change events, fur-

ther reducing load. The P2P management architecture also supports scalable cross-

domain configuration management. Domain peering-point information is summa-

rized as a view over the domain model. The Modeler transaction mechanisms assure

view consistency, thereby enabling remote domain management.

37

2.4.1 Efficient Monitoring

Management operations in the MA architecture are centralized into management

stations. Centralization is dictated by the need to correlate information for discov-

ery and the absence of manager synchronization capabilities. This centralization

of management operations limits the type and number of management functions to

the performance of the centralized server. The polling mechanisms[31] employed

by MA architecture managers further limit the scalability of management stations

in terms of polling frequency, and network and processing overhead. As a result,

the management of current networks does not scale in the number of elements, or

the types of management operations that can be handled. Network growth is han-

dled today through reductions in polling frequency, and splitting of networks into

separate administrative domains.

The P2P management architecture provides scalable monitoring and control

of network elements. Management events eliminate the need to poll resources,

thereby reducing processing and communications load. Management functions

can be safely and reliably distributed to multiple managers, and autonomic ele-

ments, supporting the Management by Delegation (MbD)[32] paradigm. The MbD

paradigm places data-intensive management functions within the network element,

resulting in lower polling or event message transmission and processing overheads.

2.4.2 Sharing Discovered Information

Traditional management architectures define Management Information Bases (MIBs)

that are restricted to representing the configuration of individual elements. This ap-

proach creates management “data islands” which cannot be easily navigated since

traditional managers do not export views of their centralized global view of network

configuration. Network elements are therefore severely restricted in their ability to

discover the topology of their environment. Discovery is a prerequisite for effecting

38

self-configuration, healing, and optimization.

Relationships in the P2P model can be used to express a unified management

schema. Autonomic elements navigate the unified model by using relationships

that bridge the physical distribution of data. The unified model may be enriched

by managers with discovered information in the form of schema extensions. The

transactional access mechanisms of the P2P Modeler support these capabilities in

a safe and reliable manner. For example, a link-layer topology manager may add

objects representing link-layer broadcast domains and establish relationships to

the participating link interfaces. Other managers can utilize this information to

propagate changes over the broadcast relationships.

2.4.3 Cross-Domain Management

Domains are used to scale network management, and establish boundaries on net-

work dependencies for the purpose protecting access to sensitive configuration in-

formation. A domain is “A list of systems with an organizational boundary or some

other extent to which management functions might want to be restricted”[33]. The

ability to control the scope of propagated change in a network is a requirement

for stable and scalable operation. Unbounded propagation can result in long, dif-

ficult to detect, propagation cycles that can cause network instability. Effecting

consistency in large networks requires synchronization over large sets of elements

which can severely restrict the rate of change, and can result in starvation of change

processes.

Current MA architecture-managed networks cannot support safe cross do-

main change propagation and control. As was previously discussed, the MA archi-

tecture does not support safe multi-manager access. Domain control is therefore

centralized by function into a individual management stations, and exporting con-

trol to other domains is not possible. Cross-domain management is thus restricted

39

to performance monitoring. As a result, network services are designed with the goal

of minimizing cross-domain configuration dependencies. Domains boundaries are

established at the network layer, controlled by specialized dynamic configuration

protocols such as OSPF and BGP in ways that are not always successful[34, 35].

Furthermore, the increasing virtualization and mobility of network services creates

new complex cross-domain configuration and performance dependencies.

The P2P architecture supports scalable and safe propagation of changes

across domains. Domains may export summarized views that are consistently syn-

chronized with the domain element management state, using the Modeler transac-

tion mechanisms. Elements management may be shared by multiple domains due to

the multi-manager P2P architecture capabilities. Transaction logs may be analyzed

to determine cross-domain propagation paths, and to perform synchronous shunting

of propagation. Cross-domain management is presented in detail in chapter 4.

2.5 Enforcing Network Policy

The Management Information Bases (MIBs) of traditional management architec-

tures are limited to the specification of management attribute data types. Semantic

model information is not expressed since it would require adoption of a standard

language for expressing schema semantics, and a mechanism for navigating across

MIBs in order to express the semantics of cross-element dependencies. As a re-

sult, the semantics of current element configuration are embedded in the element

code and are restricted to enforcing local configuration constraints, without any

mechanism for notifying managers of aborted updates.

40

2.5.1 Expressing Semantic Information

The P2P architecture supports an extensible mechanism for associating semantic

information with the management model. Model semantic information may be ex-

pressed in a declarative fashion, supporting analysis of the effects of configuration

changes across multiple elements, prior to committing the transaction. The P2P

architecture enables the extensibility of the object-relationship schema, without

mandating use of a single semantic declaration language. A plug-in mechanism

is used to support multiple mechanisms for expressing semantic constraints and

change propagation rules. P2P policy enforcement is presented in detail in chap-

ter 4.

2.6 Related Work

The P2P model builds on earlier efforts in the use of object-oriented models to

support operations management has been pursued by others. The OSI CMIP pro-

posal was based on Object-Oriented (OO) models to organize instrumentation of

managed resources at agents. Various research projects[11, 32, 36, 37] and some

commercial products (SMARTS InCharge, HP OpenView, Tivoli TME) have used

OO resource models successfully to simplify the development of management ap-

plications. This work broadens this effort to build on modeling technologies that

can create unifying heterogeneous configuration information directory structures to

support automated management. The semantic model captures detailed configura-

tion needed to build self- management/organization software[38].

The proposed architecture is also related to recent work on directory ser-

vices. This work has traditionally focused on directories of high-level objects, such

as documents and files. More recently, the advantage of centralizing management

information in a unified schema has led to the creation of a standardized infor-

41

mation model, initially pursued by the ad-hoc group on Directory Enabled Net-

works (DEN)[15] and more recently by the DMTF (Distributed Management Task

Force)[39]. Future NESTOR versions will support Meta Object Facility (MOF)[16]

import/export functions, to assist in leveraging the standards work.

The most closely related management architecture is the ICON system[40]

which uses the active database style Event-Condition-Action (ECA) rules to state

restrictions on objects instrumented by SNMP MIB values. Both systems borrow

ideas from active-database management systems (ADBMS)[41]. The P2P architec-

ture extends these approaches to define a two-layered approach which unifies the

roles of managers and elements in a single layer. The P2P architecture incorporates

multi-protocol access to heterogeneous resource information, configuration transac-

tions, declarative constraints, and constraint propagation through policy scripts.

The Dolphin project[14] developed a declarative language for modeling net-

work configuration and operation for fault analysis. Emphasis was placed on deduc-

ing the cause of failures after the fact, by verifying the propagation of operational

rules in the model. The P2P architecture provides mechanisms for preventing failed

configurations before they are applied through the use of synchronous event notifi-

cations, and transaction rollback.

In the area of configuration management automation, the GeNUAdmin[42]

system is an off-line tool for extracting network configuration information into a

centralized database, performing updates on that database which are checked for

consistency, and pushing the changes back into their respective configuration files.

Simple consistency checks are performed to assure that added values are valid and

that key values are unique. The RPI service dependency tool[43] detects service

dependencies and generates up to date server listings. The goal of the system

is to prevent unforeseen service interruptions caused by hidden service dependen-

cies. The P2P architecture can support this functionality given an appropriate set

42

of constraints on the unified configuration model. Ganymede[44] is an extensible

and customizable directory management framework applied to the central manage-

ment of user and host data, which is distributed in different databases. Ganymede

supports transactions on the central repository objects, but does not provide a con-

straint mechanism beyond a few built-in security, and deletion propagation checks.

The Constraint Satisfaction Problem (CSP) has been studied extensively in a

variety of applications[45, 46]. Previous work on constraint-based management has

been pursued[47, 48]. The focus of these projects has been on employing constraints

for the diagnosis of network faults and on algorithms for constraint satisfaction.

The P2P architecture supports this approach by providing a rich model and a safe

modeling environment. In the P2P architecture, a CSP engine is represented as a

knowledge module.

Simple scripting solutions to network configuration automation are depen-

dent on network topology and the particulars of element configuration mechanisms

that differ across vendors and even between versions of the same platform. A sin-

gle change in network topology or equipment upgrade may necessitate changes in

multiple scripts. For these reasons, scripts cannot be easily shared among different

installations without significant customization. Errors in script execution can re-

sult in inconsistent network configuration states, from which it is difficult to recover

manually. It is hard in the context of traditional scripts to enforce exclusive access

to configuration repositories. In addition, automatic discovery of relationships not

directly instrumented is not practical. The P@P architecture supports the safe

use of scripts through the binding of the DAP to libraries for popular interpreted

languages, such as Perl[49].

43

2.7 Summary

The manual process with which computer networks are currently managed is quickly

reaching its limits as networks enlarge, add new mission-critical services, and spread

to new environments such as private homes. Network management automation is

increasingly becoming a requirement in many different types of networks. Large

networks are becoming too complex to manage; mission critical networks cannot

afford operator errors; and small home networks must minimize management due to

limited resources. Current practices will become unmanageable in future networks

supporting autonomic reconfiguration and programmability for service deployment.

The P2P architecture addresses these needs by combining several techniques from

object modeling, constraint systems, active databases, and distributed systems in

novel management architecture.

The P2P architecture is based on a two-layer approach to management. Con-

trol of management configuration and performance information is transfered from

the network elements into a distributed object modeler. Management information

is represented using objects and relationships in a unified model. All access to the

distributed management modeler is controlled by a transactional interface. Thus,

the traditional roles of elements and managers are unified over this common in-

terface. Elements access the model to export their state, read their configuration,

and discover their environment. Managers access the model to discover element

topology and effect configuration change. The P2P architecture provides as safe

and reliable environment for autonomic configuration. The architecture supports

scalable network monitoring and service discovery through a rich event mechanism

over the unified model. Management data models can be extended with semantic

information using synchronous event handlers. Asynchronous events allow moni-

tors to correlate network events in terms of their triggering transactions. These

properties will be analyzed in detail in the following chapters.

44

Chapter 3

A Language for Autonomy

3.1 Introduction

This chapter introduces a novel approach to developing services with embedded

autonomic configuration capabilities using a language called JSpoon. In order to

effect autonomic behavior, a service must instrument its operational behavior and

external interactions with other services. It needs to represent this information in

a model which admits automated interpretation and control, incorporating knowl-

edge on how to automate management actions. JSpoon extends the Java language

with appropriate management attribute declarations, management synchronization

primitives, and event declarations. Runtime features support management persis-

tence, and dynamic schema semantic extensions in the form of knowledge plug-ins.

JSpoon service objects are extended at design-time element with specialized

JSpoon management attributes representing configuration and performance infor-

mation. The JSpoon attributes of a class define the management schema of that

class and may be accessed by the service itself, or by other JSpoon programs. This

approach essentially unifies the traditional management roles of element, agent, and

manager under a common data model layer.

45

NtpServer

+port: config port

+sock: ServerSocket

+start()

NtpServer

+getPort() : short
+setPort(short)

+sock: ServerSocket

+start()

NtpServer

+getPort() : short
+setPort(short)

JSpoon
Compiler

JSpoon Object

Java Management
Object

Java Object

JSpoon
Runtime

JSpoon
Runtime

Persistence
RepositoryRemote

Access

Constraint
Knowledge

Plug-in

Synchronous
Event

port<1024

Schema
Extension

Figure 3.1: JSpoon Feature Overview

JSpoon programs access management attributes in a transactional manner.

The management type system restricts the operations permitted on management

attributes. For example, a performance counter attribute may only be incremented.

JSpoon services may subscribe for configuration events in a synchronous or asyn-

chronous manner. Event notification occurs in the context of the originating trans-

action, allowing subscribers to effect additional changes, or request a rollback.

The JSpoon management schema can be extended at runtime with additional

“meta” attributes, new management functions, as well as semantic information.

Semantic knowledge is introduced as an extension to the data model schema in the

form of plug-in modules. The plug-ins perform tasks such as constraint verification,

change propagation, and fault-analysis. In this manner, the knowledge needed for

autonomic behavior can be independently created and incorporated.

Consider a simple network service such as a Network Time Protocol (NTP)

service [50]. A common Java-based implementation would represent the service

as a Java object encapsulating a network server socket object bound to a specific

46

port, and a relationship to a time source. Without significant additional effort

from the object programmer, attributes such as the service port or network socket

performance will not be manageable. JSpoon enables programmers to design con-

figuration and performance attributes as an integral part of service object class

design using minimal effort.

The key features of JSpoon are depicted in figure 3.1. The example shows an

NTP service UML class diagram whose class model is extended with a JSpoon man-

agement section. The class contains regular Java class attributes and methods, such

as a server socket and a start() method, as well as configuration port management

property. The JSpoon object is compiled into a Java class with the non-management

Java attributes and methods, as well as accessor methods to the JSpoon configura-

tion attributes. An additional management class is introduced which exports the

management attributes through accessor methods of other JSpoon programs. At

runtime, programs accessing configuration attributes interact with the JSpoon run-

time environment which provides persistence, concurrency control, remote access,

and event notification services. The management schema of JSpoon services may be

extended dynamically with semantic information. For example, a constraint may

be associated with the port number, as shown in the figure. The JSpoon runtime

will invoke the appropriate plug-in to evaluate the expression after the value has

been changed.

Although JSpoon is introduced as a Java extension, its features are equally

applicable to other modern object-oriented languages, such as C#. Additional

language bindings are left as future work.

3.1.1 Summary of Results

JSpoon simplifies service development by automating the export of management

attributes. Developers are thus encouraged to expose all configuration attributes

47

resulting in an overall improvement in service manageability. Automation further

reduces the need for programmers to deal with multiple copies of a configuration

attributes, for internal, persistence and standard MIB support, thereby improving

safety. Transactional access to configuration properties creates a safe environment

for concurrent management of network services. JSpoon relationship declarations

enable the linking of related services creating a mechanism for service discovery.

The JSpoon management events extend Java with a new dynamic service ex-

tension capability. Synchronous events are a mechanism for extending the behavior

of services to provide additional change propagation, and configuration verification

capabilities. This capability generalizes exception generation and handling from a

single thread of execution to a set of distributed processes. Asynchronous man-

agement events provide improved fault root cause analysis based on the logging of

changes propagating across multiple elements.

JSpoon schema plug-ins support runtime data and semantic extensibility.

Access to management information is necessary in a variety of applications, such as

configuration automation, performance and fault monitoring, and inventory control.

Information collected from JSpoon elements can be used to dynamically enhance the

configuration model. Semantic schema extensions can provide protection from inop-

erable, or inefficient configurations based on the enhanced configuration model. Ser-

vice behavior may be customized to local operational requirements through change

propagation plug-ins. This approach creates new markets for systems services for

plug-in vendors, and plug-in service providers.

While there have been other attempts at providing management library sup-

port to Java-based services[51], JSpoon is unique in supporting management at the

language level. The language-level integration simplifies development by automat-

ing management schema and accessor generation, thereby increasing code reliability.

The syntactic nature of the synchronization and event subscription features creates

48

simpler semantics, and enables additional optimizations.

3.1.2 Manageability Challenges

Network services are typically developed in general purpose programming lan-

guages, such as C, C++, and Java, using standard Integrated Development En-

vironment (IDE) tools. Despite the proliferation of standard and third-party li-

braries providing common data structures, graphics, and communications abstrac-

tions, there has been little or no standardization on management design patterns

and programming interfaces (APIs). As a result, system designers and implemen-

tors are forced to design their own internal configuration abstractions, persistence

mappings, and remote access protocols. This process typically requires designers

to:

1. Identify each program decision point which supports customization. For ex-

ample, a program statement opening a network server socket connection.

2. Represent each configuration value as a program or class variable. In the

server socket example, this would be the port number to be used.

3. Persist configuration settings:

(a) Select a persistent storage repository. This is typically a file, but may also

be a platform specific repository such as Microsoft Windows Repository.

(b) Define the service configuration schema. In the past, flat type-value

pairs were typically used, but hierarchical structures are increasingly

being adopted in the form of XML schemata.

(c) Program a parser for retrieving and validating values from the reposi-

tory. With the advent of XML this step has been significantly simplified,

49

but the mapping the hierarchical schema into the class model is not an

automated process.

(d) Create a mechanism for user configuration access. For configurations

stored as a file, the interface may be a text editor, or a custom graph-

ical user interface. For XML-based persistence, XML editors could be

employed, but current editors have not demonstrated ease of use.

(e) If the service effects changes on its own persistent configuration, pro-

gram a generator for dumping the current service configuration into the

repository. If the repository does not support concurrency control, con-

figuration may be corrupted due to concurrent external changes.

4. Validate the value for each restored configuration attribute prior to use.

5. Monitor the persistent repository for changes, and and safely update the run-

time state. This can be a challenging requirement since monitoring occurs on

a background thread that must synchronize with service threads to effect safe

configuration state updates. In the network port example, a change in port

configuration will require that the service close the previous server socket,

and open a new one. In practice, most services do not support dynamic con-

figuration updates, and therefore must be restarted when their configuration

has changed.

As can be observed, manageability adds significant complexity to program

development. Because management is not commonly perceived as a core function,

services continue to be designed with minimal instrumentation, and simple config-

uration access and persistence mechanisms. Compliance to standard management

schemata is typically added as an additional layer over the native configuration.

The layering creates additional data and semantic mapping challenges.

50

Synchronization is another challenge to configuration system design and

implementation. When program behavior depends on multiple configuration at-

tributes, it is important that the program obtain a consistent view of configura-

tion. File repositories may be seen as supporting a primitive atomic operation,

but depend on users performing file save operation after completing all relevant

configurations. Management protocols, such as SNMP, however, perform individ-

ual configuration updates, which can provide inconsistent views to the service and

other managers. Services supporting dynamic configuration using specialized pro-

tocols, such as dynamic DNS, are particularly vulnerable to race conditions, and

must protect access to their internal configuration.

Semantic information, in the form of service operational constraints, is cur-

rently spread in volumes of published documentation, user support forums, and per-

sonal administrator experience. Deployment of complex services such as database

servers, and multi-tiered application servers depends on highly paid experts for

setup and optimization. If such constraints are ever expressed programmatically, it

is as part of the service program code. Analyzing a general-purpose programming

language to extract such constraint information is practically and theoretically im-

possible. Due to the isolated nature of current configuration repositories, services

cannot programmatically express constraints on the configuration of related ser-

vices.

Current services cannot be dynamically extended with new functionality.

Configuration is typically consulted only at start-up time, and therefore adjusting

behavior based on configuration changes is a disruptive process requiring service

restart. Services supporting dynamic configuration through standard or propri-

etary management protocols do not support flexible event systems. Adding new

functionality requires continuous configuration polling, and introduces configura-

tion consistency issues due to the absence of strong synchronization primitives. As

51

a result, service users requiring new functionality must rely on requests for im-

provement submitted to service vendors. Service feature introduction follows a

long process of evaluation, design, implementation, testing and release. Requested

features may only appear after several long release cycles. Smaller clients may not

find recurse through the service vendor’s support structure.

The chapter continues with a section covering the JSpoon configuration mod-

eling and synchronization constructs, along with the basic JSpoon runtime persis-

tence, remote access, and discovery services. The following section presents the

JSpoon event model and syntax. The knowledge plug-in language mechanism is

described in the next section. The chapter concludes with a section on JSpoon

compilation issues, a section on related work, and conclusions.

3.2 Embedding Management Functions

This section introduces a novel language-based approach to programming auto-

nomic services with embedded management features. Configuration and perfor-

mance attributes are distinguished from regular program attributes at program

design time. Autonomic services are implemented in a language called JSpoon,

which extends Java with declarations of management class and instance variables.

JSpoon management variables encapsulate either configuration or a performance

values. Configuration attributes are accessed in a transactional manner by and

may be read or set by any JSpoon program. Performance attributes represent

service state, and can only be set by the object owner. Type modifiers enforce ad-

ditional management access pattern restrictions. Configuration attributes may be

declared as non-persistent, constant, or key values. Performance attributes can be

declared as strictly increasing, or computed values. Atomic access to management

attributes is supported through a language synchronization primitive.

The JSpoon language runtime is responsible for exporting management ser-

52

vice information to other JSpoon programs, maintaining management access atom-

icity, and persisting configuration values. Navigation is supported through rela-

tionships between objects instantiated in separate JSpoon services. JSpoon service

management information is exported to other JSpoon processes in the form of proxy

objects. Atomicity is maintained by a distributed transaction manager implement-

ing the two phase commit protocol[52, 53]. Persistence requires programmer co-

operation in establishing unique object identifiers in the form of key attributes, or

programmer controlled names.

The next subsections present these JSpoon language and runtime features

in detail.

3.2.1 Configuration Modeling

The set of variables declared in JSpoon forms the management section of the Java

object, which is exported to other JSpoon programs. There are two types of JSpoon

variables: configuration, and performance variables. Configuration variables are

used to control program behavior, whereas performance variables instrument pro-

gram status. Configuration variables may be persisted across Java Virtual Machine

(VM) invocations. Access is controlled by the JSpoon runtime environment to sup-

port transaction semantics. Atomic access is expressed using the JSpoon language

locking constructs. In contrast, performance variables may only be updated by the

owner of the object, are not persistent, and may not be accessed transactionally.

Table 3.1 provides an example of a JSpoon object class. The class imple-

ments a Simple Network Time Service (SNTP)[50]. SNTP is a UDP-based protocol

for querying time servers over an Internet Protocol network. As illustrated in this

code fragment, the SNTP service implementation is written in standard Java ex-

tended with JSpoon declarations. The class encapsulates a regular Java instance

variable called sock which maintains the server’s UDP binding. In addition, three

53

pub l i c c l a s s NtpServer extends Thread {
protec ted DatagramSocket sock ;

config key i n t port = 123;
config boolean ac t i v e = true ;
instrument counter long reqCount = 0 ;

pub l i c NtpServer () throws . . . {
sock = new DatagramSocket (port) ;

}

pub l i c void run () {
whi le (a c t i v e) {

sock . r e c e i v e (packet) ;
reqCount++;
// proce s s r e qu e s t . . .

}
}

}

Table 3.1: JSpoon Autonomic Service Class Example

management instance variables are declared in the extended syntax of JSpoon:

port and active (configuration), as well as reqCount (performance).

The port instance variable stores the NTP service UDP port number. It is

a configuration variable, as identified by the JSpoon modifier config, of primitive

type int initialized to the default SNTP UDP port 123. The key variable states

that the value must be unique in all instances of the class within the Java VM. The

second configuration instance variable, active, controls termination of the server

process. The reqCount performance variable, as identified by the instrument

modifier, counts the number of time queries received.

From the service’s perspective, the declaration and usage of JSpoon man-

agement variables is similar to that of regular Java variables. There are two main

differences: (1) management variables are exported through the JSpoon runtime

environment to external management processes, and (2) the types of operations

54

Modifier To Description

computed i Evaluate on-demand; not stored
counter i Monotonically increasing value
final c Assign-once (Java semantics)
key c Unique object identifier
static c, i Property of class; not instance
transient c Non-persistent variable

Table 3.2: JSpoon Declaration Modifiers

permitted on the management variables may be restricted based on the JSpoon

modifiers. For example, an external manager may change the value of the active

configuration property, thereby effecting termination of the service. Similarly, the

operations allowed on the reqCount counter performance variable are restricted to

monotonically increasing value updates.

JSpoon modifiers may only be applied to class and instance variable decla-

rations. The JSpoon compiler will generate a syntax error if JSpoon modifiers are

used in other contexts, such as in method argument or variable declarations.

Modifiers

JSpoon configuration and performance variable declarations may be specialized

with the modifiers listed in Table 3.2.

Computed variables have their value evaluated on-demand using a Java ex-

pression. For example, the computed free memory performance variable shown

below is associated with a Java expression for obtaining the free memory in the

Java VM.

instrument computed long freeMemory =

Runtime . getRuntime () . freeMemory () ;

Computed variable expressions are bound to the scope of their declaration.

55

Numeric performance JSpoon variables marked with counter are restricted

to a monotonically increasing value. The counter marker may be applied to the

primitive number types, and objects implementing the java.lang.Comparable in-

terface. The only operations permitted on primitive numeric types are ++ (incre-

ment by one), and += (increment by value, where value ≥ 0). Numeric object types

are immutable, therefore the only allowed operation is assignment (=) where the

assigned value compares-to greater, or equal to the previous value.

Configuration variables may be marked as final to specify that they may

only be assigned once and cannot not be modified by the program or an external

entity. It is possible to change persistent final variables in between program invoca-

tions. Typically, variables will be declared final if the program is not able to adjust

its behavior after startup. For example, the user ID under which a Java process

should be executed may be declared as a final variable.

Certain configuration variables may uniquely identify an object instance.

For example, in the SNTP UDP server of table 3.1, the port variable is defined

as a key variable since only a single instance of NtpServer can bind to the same

unicast UDP port. When multiple configuration variables are declared as keys their

combination uniquely identifies the object.

The static JSpoon modifier associates its configuration or performance vari-

able with the enclosing class, not an instance as is the default.

Configuration variables may be marked transient to indicate that the JSpoon

runtime should not maintain their values across Java VM invocations, or when the

object is serialized. Persistence requires additional changes in the way Java pro-

grams manage the life-cycle of their objects, and is covered in the next section. By

default, all configuration variables are persistent. Instrument variables are always

transient, and can only be persisted through explicit assignment to a configuration

variable.

56

enum Status { stopped , running } ;
instrument Status s t a tu s ;

pub l i c void method () {
s t a tu s = Status . stopped ;
// . . .
i f (s t a tu s == Status . running) . . .

}

Table 3.3: Enumeration Type Example

Unlike Java class and instance variables, JSpoon variables are not associated

with an access modifier such as public, protected, or private. All JSpoon vari-

ables are publicly accessible via the JSpoon runtime. A role-based security policy

may be configured at the modeler-layer, or through a security knowledge plug-in,

and will not be presented in this paper.

Types

JSpoon variables are strongly typed in the Java type system. All Java primitive

types are allowed in JSpoon variable declarations. Java object types may be used

if, and only if, they represent immutable objects, and are serializable. Since here is

no Java marker interface identifying objects as immutable, the JSpoon compiler in-

cludes a list of immutable standard Java library object classes. User-defined classes

employed in JSpoon variable declarations must implement the jspoon.Immutable

marker interface and all their non-JSpoon variables must be declared as final.

JSpoon extends the Java type declaration system with support for enumer-

ation types. The example in table 3.3 shows an enumeration declaration of the

type Status with two enumerated values. An enumeration type is conceptually

mapped into a Java inner class of the same name, with immutable instances for

each enumeration value. These instances are available as static final variables of

the enumeration class. As shown in the example, an enumeration variable may be

57

pub l i c c l a s s HttpServer
extends Thread {
relationshipset threads , HttpThread , s e r v e s ;
pub l i c void run () {

whi le (true) {
Socket s = sock . accept () ;
threads . add (new HttpThread (s)) ;

}
}

}
pub l i c c l a s s HttpThread

extends Thread {
relationship serves , HttpServer , threads ;
pub l i c void run () {

// Process HTTP reque s t . . .
s e r v e s = nu l l ;

}
}

Table 3.4: Relationship Type Example

assigned or compared for reference equality with the static enumeration instances.

JSpoon relationship declarations are used to establish an association be-

tween two Java objects. Unlike simple references, relationships can be navigated in

both directions. Each end-point in the binary association is associated with a role

(variable identifier), and multiplicity (to-one, to-many-set, or to-many-sequence).

A sample relationship declaration is shown in table 3.4. Instances of the class

HttpServer are associated with a set of HttpThread objects through the threads

variable role. The same relationship must also be declared in the HttpThread class,

with the role names reversed. In this case, the serves variable role is declared with

a to-one multiplicity. Variables identifying to-one relationship roles may be used

as normal Java object reference variable. To-many relationship variables support

accessor methods for retrieving, adding, removing and setting their membership.

58

3.2.2 Controlling Management Access

An autonomic element coded in JSpoon will contain classes with a mixture of man-

agement and standard Java attributes. The management attributes, as presented

in the last section, are characterized by restrictions on the types of permitted ac-

cess. Because configuration attributes control behavior, it is important to maintain

consistent views of their values. Consistency may be violated by the autonomic

element itself, if its multi-threaded, or other autonomic elements attempting to re-

configure the element. For example, a service may need to access its configuration

to obtain the address of a related service, and the necessary credentials for access-

ing that service. The access to these two configuration variables should be made

atomic in respect to configuration changes.

Another important consideration in management involves the ability to re-

cover from failed configuration changes. Changes may occur through direct user

intervention, or through automatic propagation of changes. For example, a change

in a router’s configuration may also propagate through a dynamic routing protocol,

such as OSPF. In the absence of transactional information, identifying and recover-

ing from such fragmented changes requires application of event-correlation methods

whose inferences may be incorrect.

JSpoon addresses the aforementioned issues by enforcing transactional ac-

cess on all configuration attributes. Transactions may be created explicitly, using

an atomic block which is associated with the executing thread, or implicitly, by

accessing the value of a configuration attribute. Transactional operations may

cross repository boundaries when programs navigate relationships, and the JSpoon

runtime maintains transaction properties across process and machine boundaries.

JSpoon program state synchronization is performed implicitly every time a con-

figuration attribute is accessed, or may be performed explicitly using the event

mechanisms that will be covered in the next section.

59

atomic (lock−timeout) {
z = x + y ;

}

Table 3.5: Atomic Action Example

Atomic Operations

JSpoon expresses concurrency control similarly to the way that Java handles thread

synchronization on object methods and variables. JSpoon programs requiring

atomic access to multiple configuration attributes must perform these accesses

within an atomic block. The atomic block provides JSpoon programs with atom-

icity, consistency, isolation, and durability (for persistent properties) in accessing

management attributes.

An atomic block example is listed in Table 3.5. The JSpoon program encloses

its access to the configuration properties x,y, and z in a atomic block to assure

consistent change. The JSpoon runtime will generate the required read lock requests

for x and y, as well as a write lock request for z.

The obtained locks are owned by the thread of execution. Nested transac-

tions are supported through syntactically nested blocks, or through invocation of

methods containing atomic blocks. The effected changes are committed at the end

of the block, and the acquired locks are released, unless this is a nested transac-

tion. If an exception is thrown from within an atomic block, then the effects of the

transaction are rolled back.

Lock requests may fail due to a communications failure, detection of a dead-

lock, or lock acquisition timeout. These errors are signaled in the form of exceptions.

If an exception is thrown in an atomic block, then the values of all management

configuration attributes will be restored to their previous values. The syntax of the

atomic block supports the optional specification of a lock acquisition timeout.

Atomic blocks may also be used to group the generation of performance

60

variable update events. Performance variable updates performed within an atomic

block do not generate modeler update events until the end of the block. This

mechanism may be used to provide consistent views of performance variables and to

reduce the overhead of synchronization between the service thread and the JSpoon

event monitoring thread.

There are several advantages to expressing atomicity as a language feature,

as opposed to an API feature. The syntactic nature of atomic blocks permits

compile-time checking for transaction termination. Atomic blocks may be analyzed

at compile time to perform lock-request ordering optimizations which can reduce

and some time prevent transaction deadlocks. Implicit transaction composition in

the form of nested transactions does not require explicit programmer management.

3.2.3 Management Services

A configurable service typically needs to persist its configuration between invoca-

tions. This persistent configuration must be made available to administrators for

editing and customization. Service authors must therefore define a management

schema, provide code for dumping the current, and for parsing stored configuration

state, as well as performing sanity checks on restored configuration states. In many

cases, custom graphical user interfaces must also be developed to improve ease of

use, and provide monitoring capabilities.

Another common service requirement is the export of process performance

and status information, such as CPU, memory and network utilization. Service

providers must instrument their programs with performance monitors and map

these values into their management schemata. Such instrumentation code can ob-

scure the main service code, and can also effect performance through calculation of

performance attributes that are not needed.

Services depending on other services and wishing to adapt their configuration

61

accordingly must obtain access to the other service’s configuration. Such access may

involve parsing of configuration files which is onerous on development, and creates

version dependencies between services. If the service must reconfigure its peer

service, this problem is exacerbated, and introduces other issues such as security,

and access control.

JSpoon addresses the above issues by providing a set of management runtime

services. Configuration attributes may be persisted automatically with minimal

effort from the service author. The unified nature of the configuration repository

enables the creation of a single graphical user interface for viewing and editing

configuration, as well as for performance monitoring and visualization. Common

management monitoring and configuration requirements are handled through a

set of managed library objects which encapsulate standard Java objects, such as

network sockets and file streams, with a rich set of properties. The JSpoon runtime

performs lazy evaluation of such measurements based on demand. JSpoon also

provides remote repository access to enable navigation of relationships that cross

process and machine boundaries. The unified model erases the difference between

local and remote configuration access.

Persistence

Modern programming language environments provide multiple mechanisms for per-

sistence, such as, file access, relational database connectivity, and directory accesses.

Most options require programmers to explicitly manage the bindings between the

persistent storage schema and the implementation class schema. Synchronization

between persistent and runtime state also needs to be explicitly managed through

identification of state synchronization points.

The JSpoon runtime environment supports automatic management of object

configuration variable persistence. In order to enable persistence, classes must

62

implement the Persistent marker interface. Persistent objects must be assigned

a unique object identifier (OID) in order to support retrieval when instantiated

within the Java program. Objects which have key variables, all of which are final

and persistent, can be automatically assigned a unique OID. In all other cases, the

programmer is responsible for assigning the unique OID.

The JSpoon compiler modifies the signature of persistent class constructors

to include an additional argument of type jspoon.JSpoonOID and to throw the

PersistenceException exception. The constructors are also modified to include

the necessary hooks for retrieving previously persistent variable values. It should be

noted that the persistent values will override any default variable values specified

in the declaration section. At construction time, the programmer must provide the

additional OID parameter to establish the unique identity of the object.

Table 3.6 shows the NtpServer class after it has been marked to support

persistence, and a simple simple TimeDaemon application which uses a single in-

stance of the NtpServer class. At construction time, the additional OID argument

must be provided to establish the object’s identity. A static identifier can used

is this case because the application is limited to creating a single instance of the

persistent class.

Every JSpoon process must be assigned a unique service identity (SID). Ser-

vice IDs are required in order to prevent multiple instances of a program from

owning the same persistence repository data. Persistence repositories must sup-

port locking to prevent concurrent binding of multiple JSpoon programs using the

same SID. A lease-based mechanism is employed to support releasing of resources

following a service failure.

A fully qualified object ID contains the service ID as well as the location of

its persistent repository. It is possible to set the default service ID and repository

location of a JSpoon process in order to simplify construction of OID objects.

63

pub l i c c l a s s NtpServer extends Thread
implements jspoon . P e r s i s t e n t {
// . . .

}
pub l i c c l a s s TimeDaemon {

pub l i c stat ic void main (. . .) {
JSpoonOID oid = new JSpoonOID(” jspoon : NtpServer#S ing l e ton ”) ;

NtpServer s rv = new NtpServer (o id) ;
}

}

Table 3.6: Persistence Example

Services can have multiple SIDs and connect to multiple persistence repositories.

An object ID may be represented as a URI[54] of the form:

jspoon://userinfo@host:port/serviceID#OID

For persistent objects with final key attributes the OID may be expressed

as:

className?key1=value1,key2=value2 ...

The Java language supports objects serialization as a mechanism for storing

and transmitting object state. The JSpoon compiler modifies the writeObject and

readObject methods of serializable objects to include marshaling and unmarshaling

of variables in the management section, and code for binding the deserialized object

into the local JSpoon runtime environment.

Remote Access & Discovery

JSpoon programs requiring access to management attributes of remote objects must

first obtain a local copy (view). This is performed by using the static methods of the

jspoon.JSpoonNaming class. The list method supports query of objects based

on a query URI. In the example of table 3.7 the manager requests the OIDs of

all instances of the NtpServer class. The example code assumes that at least one

64

pub l i c c l a s s NtpMonitor {
pub l i c stat ic void main (. . .) throws . . . {

JSpoonOID [] o id s =
jspoon . JSpoonNaming . l i s t (” jspoon :// l o c a l h o s t /NtpServer”) ;

NtpServer s e r v e r =
(NtpServer) jspoon . JSpoonNaming . lookup (o id s [0]) ;

wh i l e (true) {
System . out . p r i n t l n (s e r v e r . reqCount) ;
Thread . s l e ep (5000) ;

}
}

}

Table 3.7: Manager Example

OID is returned, and then invokes the lookup method to obtain a local view of the

JSpoon object. Subsequently, the JSpoon object can be accessed in the manner

illustrated in previous examples.

If the listing and lookup methods are enclosed in an atomic block, the JSpoon

runtime will obtain appropriate locks to assure that the results remain stable. In

the listed example, had the listing and lookup methods been enclosed in an atomic

block, the runtime would lock NtpServer object creation and remove effects.

Managed Object Library

The JSpoon environment provides managed versions of standard Java library ob-

jects. JSpoon managed objects follow a naming convention of appending the

jspoon prefix to the full class name of the instrumented class. In this manner,

the jspoon.net.JSpoonDatagramSocket class supports configuration and perfor-

mance instrumentation of UDP datagram sockets. Use of managed objects can

greatly increase the management flexibility of Java programs. For example, use of

the managed socket class in the NtpServer would enable managers to configure

socket options such as the traffic class.

65

The JSpoon managed object library also includes mutable versions of im-

mutable Java objects by encapsulating reconfiguration semantics. The resulting

manageable objects can be used by applications requiring reconfiguration.

3.3 Reacting to Autonomic Changes

Network configuration changes due to new element deployment or failure of existing

element. An changed element may be a logical service, such as a web-server, or

a physical service, such as a link. Network performance changes in response to

request patterns, as well as configuration changes. The operation of autonomic

services may be effected by such changes, and require further configuration changes

in order to maintain availability, performance, or security requirements. Therefore,

a service autonomic environment must provide a change notification mechanism.

Existing management systems, such as SNMP, offer restricted event mech-

anisms. The types of monitored events are predefined as part of the management

schema (MIB), and typically represent changes in performance, as opposed to con-

figuration. Configuration management systems are therefore required to poll ele-

ments for configuration changes. Configuration changes discovered through either

notification or polling have already effected service behavior. As a result, opera-

tional violations cannot be prevented by external managers. Misconfiguration can

result in complete service failure in a manner that is not recoverable without phys-

ical access. Configurations violating security can create periods of vulnerability

which may be exploited.

JSpoon supports automatic generation of low-level management events en-

abling JSpoon managers to perform asynchronous as well as synchronous event

handling. All JSpoon management accesses are treated as events which can be

exported. Complex events may be defined in terms of the basic JSpoon events.

Synchronous event handling occurs in the context of the triggering transaction.

66

The combination of flexible event definition, with synchronous handling creates a

powerful mechanism for dynamically extending service management context.

3.3.1 Identifying Autonomic Events

JSpoon programs may subscribe to events on configuration and performance man-

agement attributes. Primitive JSpoon events are triggered by transactional updates

to configuration properties of management objects, and non-transactional updates

to performance attributes. Conditional events filter notification of primitive events

based on a conditional statement over the changed object. Event notification may

also be temporally conditioned on over event ordering within a transaction. Per-

formance events express a monitoring condition on the value of a JSpoon instru-

mentation management attribute.

Primitive Events

A primitive event E is defined by the tuple <type, transaction, time, target, value,

oldValue, index> where:

• type is one of the seven primitive types: class load, class unload, object

create, object delete, attribute set, relationship add, and relationship

remove.

• transaction is a reference to the transaction in whose context the event oc-

curred,

• time is represented as an offset to the start of the transaction. Time does

not define a total ordering since the transaction may be shared by concur-

rent threads executing on different processors, or hosts. Event ordering was

covered in the previous chapter,

67

// A t t r i b u t e even t s
l e a s e = subscribe NtpServer . port // . . .
// Ins tance a t t r i b u t e even t s
l e a s e = subscribe s rv . port // . . .
// Class load /unload even t s
l e a s e = subscribe NtpServer // . . .
// Any a t t r i b u t e event
l e a s e = subscribe NtpServer .ALL FIELDS // . . .

Table 3.8: Primitive Event Subscription Examples

• target is the field which was set (for attribute set, and relationship add/remove

events), or the class (for class load/unload and object create/delete events),

• value is the field value or object instance created/removed,

• oldValue is the previous value of the field,

• index is used in ordered relationship additions to indicate the index of the

value added.

JSpoon supports event subscriptions as a language construct. The subscribe

keyword takes an event condition expression as its first argument followed by an

action argument. Subscriptions return a JSpoon lease object used to manage their

life-cycle. The action part of event subscriptions will be covered in the next sub-

section.

Table 3.8 lists four primitive event subscription examples. The first subscrip-

tion matches assignments to the port attribute on all NtpServer class instances.

The second subscription example operates similarly, but on a specific class instance.

If the instance is deleted, the associated subscription leases will be canceled. The

third example requests notification of instance create/delete on the NtpServer

class. It is possible to subscribe to all class attribute or relationship events using

the ALL FIELDS marker.

68

subscribe NtpServer . port on port != 123 // . . .

subscribe NtpServer on port != 123 // . . .

Table 3.9: Conditional Event Subscription Example

Conditional Configuration Events

Conditional event subscriptions allow primitive event subscriptions to be filtered

by a boolean expression. For example, the NtpServer port subscription handler

shown in the previous example may only need to execute when a non-standard port

number is assigned. While it is possible to perform the check within the handler,

expressing the restriction as part of the event subscription can allow the JSpoon

environment to optimize event generation. This is particularly important when the

event subscription operates over remote objects or performance attributes.

The first example in table3.9 shows a subscription on port assignments to

a non-standard port. The second example operates identically to the first, but

depends on the JSpoon compiler to determine the triggering attributes or relation-

ships by analyzing the conditional expression.

Temporal Configuration Events

The transaction context creates a natural grouping and ordering of primitive events.

JSpoon supports temporal event subscriptions. Temporal event subscriptions allow

users to subscribe to events based on the existence or, or absence of a previous

event in the transaction history. The follows keyword can be used to declare

a comma separated list of one or more events that must precede the subscribed

event. For example, a JSpoon program may subscribe for port attribute events on

an NtpServer instance only if they are preceded by a in the NtpServer.enabled

attribute of the same object, as shown in the first statement of table 3.10.

Temporal events can be nested in order to specify a sequence of events.

69

subscribe NtpServer . port follows enabled // . . .

subscribe NtpServer . port follows enabled , name follows s e r v e s // . . .

subscribe NtpServer . port follows port // . . .

Table 3.10: Temporal Event Subscription Examples

Lease l e a s e = monitor NtpServer for u t i l i z a t i o n > 0 .9 over 30000 // . . .

Table 3.11: Monitoring Event Subscription Examples

Comma separated events may occur in any order. The second example of table 3.10

will match sequences of the form (port ... enabled ... name ... servers), or (port

... name ... enabled ... servers). The third example of the same table demonstrates

how the temporal construct can be used to detect cyclical changes of properties, by

subscribing to repeated assignment events over the same property.

Performance Events

Updates to JSpoon instrument attributes updates do not occur in a transactional

context. The only effect of an atomic synchronization construct over performance

attributes is to group the notification of updates. The monitor keyword allows

JSpoon processes to request monitoring of performance attributes. Monitoring

requests are expressed on classes, or instances with a boolean expression used to

specify the event condition. The over keyword may be used to specify a duration for

which the expression has been true prior to the firing of the event. The monitoring

event handler is invoked upon event occurrence, and will be evaluated only once

for every change in the monitoring expression value.

Table 3.11 shows a performance event subscription example. The JSpoon

performance monitoring subscription will evaluate the handler when the utiliza-

tion of an NtpServer exceeds 90% over 30 seconds. Note that the event handler

70

will only be invoked once for every period of heavy utilization that exceeds 30

seconds. The performance event handler may update JSpoon object configuration

attributes. This mechanism may be used to propagate performance information

into the configuration state.

3.3.2 Effecting Autonomic Behavior

An autonomic element must recognize and respond to changes in its environment.

Changes may necessitate re-computation of operational parameters to assure ser-

vice availability and performance. JSpoon autonomic elements discover and mon-

itor their environment by navigating the object-relationship management schema

instantiation. Changes in the environment are reflected as changes in the model ob-

ject topology. Notification of model changes is effected using the event subscription

mechanisms described in the first part of this section.

JSpoon supports two types of event handling semantics: synchronous and

asynchronous. Synchronous notification occurs in the context of a transaction,

allowing the event handler to perform additional updates, or request a rollback.

Synchronous handlers are used in enforcing autonomic configuration policies, as

well as extending autonomic element behavior. Asynchronous events are used to

monitor system behavior for applications such as fault root cause analysis and

intrusion detection.

The JSpoon subscription facility defines a generic Event-Condition-Action

(ECA) mechanism, raising the issues of termination and confluence[55, 56]. Using

established ECA rule management techniques, the JSpoon compiler analyzes event

subscription expressions and generates a dependency graph. This graph is used by

the JSpoon environment to identify and monitor possible cycles or order-sensitive

rule evaluations. The next chapter will introduce a limited change propagation lan-

guage over the JSpoon object-relationship model which can be statically analyzed

71

subscribe NtpServer on ((port < 1024) &&
(servedBy . osType == UNIX) &&
(user != ” root ”)) synchronous {

i f (runAsRoot)
user = ” root ” ;

e l s e
abort ;

}

Table 3.12: Synchronous Event-Based Autonomic Configuration

at compile-time far cycle and ambiguity detection.

Extending Autonomic Behavior

Synchronous JSpoon configuration event subscriptions are declared using the synch-

ronous modifier, followed by a JSpoon block. A synchronous subscription results

in the immediate execution of the event handler when the event condition is satis-

fied within the context of the event triggering transaction. Using this feature, the

autonomic capabilities of a JSpoon service can be extended dynamically. Perfor-

mance events do not occur in the context of a transaction and therefore cannot be

accessed synchronously.

For example, consider a Network Time Protocol (NTP) service implemented

in JSpoon. The service class will include configuration properties for representing

the UDP network port number, as well as the user account under which it should

be executed. On Unix systems, only the administrator (root) user is permitted

to bind to network ports below 1024. It is possible that the NTP service vendor

did not test the service in Unix environments, and therefore failed to express this

constraint in the service configuration tool. With JSpoon, this requirement may

be later expressed by a third party in the form of a synchronous event handler

that changes the service user in response to a privileged port assignment on Unix

systems, as listed in table 3.12.

72

The example subscribes for all changes to NtpServer instances whose prop-

erties violate the Unix privileged port access condition. The JSpoon compiler op-

timizes condition evaluation by identifying the specific properties which can satisfy

the event condition. The event handler block is evaluated in the context of the

effected object. In this example, the handler accesses the runAsRoot attribute of

the effected NtpServer instance and if it is set to true configures the service to

run as the root user, otherwise it aborts the transaction. The runAsRoot property

is used to model whether the service is executed as root by the operating system.

The before keyword may be used in synchronous event subscriptions in-

stead of the on keyword, to effect the handler update prior to application of the

triggering change in the transaction log. This feature is useful in situations where

the application of committed transaction updates cannot be fully isolated from the

environment. For example, a software package installation may require that the

software platform installer be upgraded to a specific patch level. Behavior effecting

security may also require that an operation such a firewall rule addition precede

the installation of some application or the opening of some port.

Using the event object reference, it is possible to express conditions on the

state of the transaction. For example, constraints that only have to be verified as

post-conditions may use event.transaction.state == VOTING as a condition.

Generalized Exceptions Synchronous events can be viewed as a generalized

exception mechanism. Traditional programming language exception mechanisms

are based static declaration of try-catch blocks in the program’s source code. Ex-

ceptions are not exported outside the executing thread context, and the handling

procedure is typically bound to a specific code block at compile-time. The excep-

tion hierarchy is similarly fixed, depending on explicit application-level exception

throwing. The JSpoon event mechanism associates an exception handling point

with each configuration or performance attribute modification. Synchronous event

73

atomic {
// Transact ion crea te event
// NtpServer . por t pre−assignment event (b e f o r e handler)
s rv . port = 1123;
// NtpServer . por t assignment event
// NtpServer . user pre−assignment event (b e f o r e handler)
s rv . user = ” root ” ;
// NtpServer . user assignment event
// Transact ion commit event

}

Table 3.13: Synchronous Events as Generalized Exception Mechanism

handlers may be defined by different parts of the same service, as well as remote

JSpoon services. The synchronous configuration events therefore create a novel

mechanism for adjusting program behavior over the management repository across

process and host boundaries.

The JSpoon code fragment of table 3.13 performs two configuration opera-

tions on an NtpServer instance in an atomic transaction. The configuration events

associated with the JSpoon actions, identify generalized exception handling points.

Any JSpoon process may extend the behavior of a JSpoon thread executing this

code fragment by associating synchronous event handlers. For example, the port

assignment may be verified for conflicts with other services.

Monitoring Autonomic Behavior

Asynchronous events can be used to monitor the configuration and performance

of autonomic services. All event subscriptions followed by a JSpoon block that

is not preceded by the synchronous modifier are treated as asynchronous. All

performance monitor notification are asynchronous, since they occur outside the

context of a transaction.

74

Lease l e a s e = monitor NtpServer for u t i l i z a t i o n > 0 .9 over 30000 {
// Deploy another NtpServer
atomic {

NetworkHost host = serverFarm . a l l o ca t eHos t () ;
NtpServer ntpd = new NtpServer () ;
ntpd . servedBy = host ;

Sequence<NtpClient > c l i e n t s = event . ob j ec t . n tpC l i en t s ;
host . n tpCl ient = c l i e n t s . subsequence (0 , c l i e n t s . l ength / 2) ;
event . ob j ec t . c l i e n t s = c l i e n t s . subsequence (c l i e n t . l ength / 2) ;

}
}

Table 3.14: Asynchronous Performance Event-Triggered Configuration

Asynchronous configuration events are delivered to processes in transaction

serial history order. For every transaction t, every event within t is delivered in the

order in which it has occurred with in t, as previously discussed. Events occurring

within an other transaction ti are delivered in according to the order of the two

transactions in the global serial history.

The example of table 3.14 shows a performance monitoring event handler

triggered by high NtpServer utilization over 30 seconds. The handler executes

a new configuration transaction which identifies an available network server host,

and deploys an NTP service by creating an object and adding a relationship to that

host. The clients of the over-utilized service are split between the old and the new

servers. Note that this is a simplified example that does not take into account the

source of the high utilization, or any global service goals.

3.3.3 Synchronizing States

JSpoon class configuration variables may be changed by other JSpoon processes.

A change in the configuration variable will be reflected in program behavior at the

next point at which this variable is read. For example, the active variable in the

75

program of table 3.1 is consulted every time a request is serviced. If the server

is idle, then it will remain blocked on the socket receive() method, and will not

terminate until a datagram has been received and processed. In order to increase

responsiveness, the program may set a socket timeout to establish an upper bound

on its delay to respond to a change in the active configuration.

Service Termination The JSpoon runtime environment monitors application

access to configuration variables, and can detect if the program has failed to read

a changed configuration value after a certain period. Based on its configuration,

the environment can elect to restart the server. Because the Java VM does not

support external thread termination (kill), JSpoon introduces an alternative termi-

nation mechanism. The jspoon-checkpoint keyword may be used to inform the

JSpoon compiler that the thread can be safely terminated. Thread classes may im-

plement the jspoon.JSpoonShutdownHook interface to effect additional thread ter-

mination cleanup. Alternatively, JSpoon threads may manually consult the static

jspoon.JSpoonThread.terminate boolean variable in their operational loops, and

effect thread termination when it is set to true.

Dynamic Configuration There are cases in which configuration is encapsulated

in Java objects which are created once in the program’s lifetime, typically during

program initialization. Examples include network service port numbers, persis-

tent storage directories, and others. Dynamic changes in configuration need to be

propagated into the encapsulating object.

A manageable Java object is one whose state can be modified at runtime

by invoking a set method. Manageable objects may be dynamically reconfigured

in response to configuration updates. Programmers associate an event handler

on the appropriate configuration property which invokes the set method on the

encapsulating object.

76

A non-manageable object encapsulates its configuration state as an im-

mutable attribute. Non-manageable objects must be re-instantiated in order to

effect dynamic configuration. For example, main loop of the example from table 3.1

can be rewritten as:

whi le (a c t i v e) {
sock . r e c e i v e (packet) ;

i f (port != sock . getLoca lPort ()) {
// c l o s e & reopen soc k e t

}
}

It is possible to provide wrappers to non-manageable objects which effect the

semantics of reconfiguration while maintaining object identity. A MutableServerSocket

would encapsulate a ServerSocket adding a setPort() method. The setPort()

method would queue all pending connections on the current socket, close that socket

and then create a new ServerSocket instance. The accept() method would first

return any old queued connections and then return connections from to the new

server socket.

3.4 Extending the Management Schema

Knowledge plug-ins extend the capabilities of the basic JSpoon schema. For exam-

ple, a simple constraint knowledge plug-in may add support for type range restric-

tions. A JSpoon autonomic element may use this plug-in to further restrict the

values of port number configuration attribute to the range [1024..65535].

JSpoon knowledge plug-ins are enabled in the form of schema extensions to

JSpoon classes. The schema of a JSpoon class is represented with a meta-object

that is also a persistent JSpoon class of type JSpoonClass. JSpoonClass defines a

to-sequence relationship to instances of the JSpoon class JSpoonSchemaExtension.

77

JSpoonClass

relationshipsequence
 extensions
relationshipset
 variables

JSpoonSchemaExtension

config URI pluginURI
config Object extension
relationshipset boundTo

**
boundTo extensions

1

JSpoonVariable

config String name
config String Type
config boolean isStatic
relationshipset partOf

*
partof variables

Figure 3.2: JSpoon Meta Schema

Schema extensions consist of a knowledge plugin URI and an opaque object. A

schema extension may be bound to multiple instances of JSpoonClass. A UML

class diagram showing parts of the JSpoon meta-schema classes is shown figure 3.2.

When the JSpoon runtime environment loads a JSpoon class, it attempts

to retrieve the class meta-object from persistent storage. The schema extension

relationship of the meta-object is queried and the runtime environment attempts

to download any knowledge module proxy plug-ins that are not already installed

based on the URI. This capability depends on the Java cross-platform and security

features. Runtime changes to the meta-object schema extension relationship can

also trigger the loading or unloading of knowledge plug-ins.

At load-time, plug-ins use the JSpoon runtime event subscription mecha-

nism to request notification of object management events. Plug-in subscriptions

provide synchronous notification of pending changes, enabling the knowledge mod-

ule to abort invalid changes. Plug-ins receive two additional events triggered by the

creation and closing of a transaction, or nested transaction. These events enable

evaluation of postconditions.

The knowledge schema extension mechanism is very powerful, but may in-

troduce cyclical computations. A cyclical computation may be triggered by the

interaction of two knowledge plug-in modules that propagate changes. Because the

periodicity of the cycle may be very large, it may be impossible to identify in a

78

reasonable time. Therefore, in absence of additional information on propagation

paths, the JSpoon runtime system defines a maximum knowledge module iteration

count.

3.4.1 SMARTS Event Correlation Plug-in

A key role of network and systems management in traditional non-autonomic net-

works is to identify and respond to abnormal conditions. This task is performed

through monitoring of element instrumentation values for abnormal readings. An

abnormal condition, such a network link failure, is typically associated with abnor-

mal readings in multiple dependent elements. The challenge in such a situation is

to identify the root cause of these cascading failures.

SMARTS InCharge[12] in an event-correlation system providing automated

network root cause analysis. InCharge uses the MODEL[57] language to model

network services using objects and relationships, and then express problems in terms

of symptom events. Each problem, such as a “link down” is assigned an event

signature. At run-time, network events are fed into a correlation engine which

matches problem signatures to events using a codebook approach to determine the

most likely root cause[58].

The SMARTS approach to root cause analysis automation depends on the

existence of a network performance and problem propagation model. Currently,

developing such models is a human-intensive process, because current service in-

strumentation does not expose internal or external dependency paths. Moreover,

the correlation engine receives all network events without any mapping into threads

of execution. Therefore, problem signatures must be made very robust to improve

the correlation accuracy in noisy environments.

Alternatively, the SMARTS codebook engine can be expressed as a knowl-

edge plugin over the JSpoon configuration model. This approach significantly re-

79

Application

enabled: boolean

NetworkHost

enabled: boolean

servedByserves

* 1

event failed = ! enabled
propagate failed =

 servedBy.failed

Figure 3.3: InCharge MODEL JSpoon Schema Extension Example

duces the modeling effort required. Performance events travel over JSpoon relation-

ships defined by configuration properties. MODEL event and problem statements

can be attached to JSpoon management models as schema extensions. For example,

a “Failure” event is propagated from a network host, into all hosted services over

the serves relationships. Figure 3.3 shows a simple JSpoon configuration model

extended with MODEL event and propagation information. MODEL statements

can be attached JSpoon schema extensions.

An InCharge JSpoon knowledge plugin would register for asynchronous events

on management attributes appearing in MODEL expressions. The changes would

be used as input to the codebook event correlation algorithm. Event correlation ac-

curacy can be improved by reducing observation errors. JSpoon provides consistent

views on all configuration changes, and can provide relative ordering of performance

events.

3.4.2 Change Propagation Plug-in

The propagation of problems over relationships for the purpose of event correlation

can be extended to configuration automation. The value of a service configura-

tion property may be expressed as function over the value of other configuration

properties. The effect of a change in a property, propagates over to other depen-

dent properties. Using the JSpoon relationship construct, propagation functions

80

context InternetRad io : mtu :=
servedBy . network In te r f ace s
−>select (i | not i . isLoopback)
−>col lect (i | i .mtu)−>min ())

Figure 3.4: Object Spreadsheet Language (OSL) Propagation Rule

may navigate cross-service dependencies. The following chapter is dedicated to a

change propagation model and language called OSL for effecting automated service

configuration.

A sample Object Spreadsheet Language (OSL) propagation rule is shown in

Figure 3.4. The rule states that the Maximum Transfer Unit (MTU) of a UDP-

based Internet radio streaming service should be set to the minimum MTU of the

network interfaces of its execution environment. OSL statements can be attached

as schema expressions to the class of their target attribute, InternetRadio in this ex-

ample. OSL expression static analysis would generate a synchronous JSpoon event

subscription, with the event handler recomputing the value of the mtu property as

part of the event-generating transaction.

The OSL language may also be used to express declarative constraints over

the JSpoon configuration model. A constraint knowledge plugin would subscribe

to model events, and elect to abort transactions which violate constraints attached

to the JSpoon schema as plug-in extensions.

3.4.3 Topology Discovery Plug-in

JSpoon service relationships express known service dependencies. For example, a

web service depends on its network host, as well as the host’s file system. In some

cases, service relationships may be analyzed to extract wider system dependencies.

For example, a JSpoon instrumented Ethernet interface will define a relationship

to each other Ethernet interface in its cache. In switched environments, the con-

81

tents of the cache will be dependent on the host’s communications patterns. For

some applications, it is of interest to determine the link-layer broadcast domain. A

link-layer topology discovery process could apply a simple transitive closure oper-

ation on the Ethernet interface relationships, in order to determine the broadcast

domain. This domain could be represented as a new object EthernetDomain, with

a relationship to each Ethernet interface.

An Ethernet topology discovery service could be implemented as a JSpoon

knowledge plug-in. The plug-in would subscribe to changes in Ethernet interface

object relationships, and incrementally evaluate the transitive closure to determine

the broadcast connectivity. The JSpoon Ethernet interface class schema would

be extended with a new relationship to a EthernetDomain object, and the event

handler would establish such values on the instances. This idea can be extended to

different connectivity domains, such as DNS resolution, Web proxying, and others.

3.5 JSpoon Compilation

JSpoon-enhanced classes are compiled into Java VM bytecode class files. The

language was designed to support JSpoon-to-Java source-to-source compilation as

an intermediate step. The JSpoon compiler generates two identically named Java

classes for every JSpoon class. The element class contains both the management and

non-management sections. The management class contains only the management

variables and is used by remote elements. Both classes depend on the JSpoon

runtime for view maintenance.

Management variable accesses by JSpoon programs are transformed into cor-

responding accessor methods. Left-hand-side (assignment) updates and right-hand-

side reads are replaced by set and get method invocations. The actual management

attributes are declared as private transient Java instance variables with mangled

names. Configuration variable accessors invoke JSpoon runtime methods for lock-

82

ing and logging. Performance variable accessors invoke JSpoon event generation

methods. A static block is also created to notify the runtime of a class loading

event.

Atomic blocks are compiled into JSpoon runtime environment method invo-

cations to create a transaction (potentially nested), commit the transaction at the

end of the block, or abort if an exception has been thrown. The JSpoon compiler

attempts to optimize lock acquisition through static code analysis to batch lock re-

quests, and minimize lock upgrades. Batched lock requests are sorted by object ID

to reduce the likelihood of deadlock. If the compiler can determine that an atomic

block does not include access to configuration attributes, then no transaction is

generated, only the events are batched.

The JSpoon compiler may optionally generate proxy objects for exporting

the management schema to existing Java and XML-based persistence and manage-

ment APIs and protocols. For example, the compiler may generate MBean objects

conforming to the JMX[51] architecture to support interaction with JMX man-

agers. The compiler may also generate an XML schema, and protocol proxy for

XML management standards such as XMLCONF[59].

3.6 Related Work

3.6.1 Standard Management Platforms

Despite the central role of management in IT investment, the design of service

management features is largely an ad-hoc process. Management features are typi-

cally introduced into new hardware and software services after the fact, based on

customer feedback. Management requirements added a-posteriori to system design

and implementation may violate design abstractions and lead to increased main-

tenance complexity. Newly exposed configuration properties create opportunities

83

for violation of unchecked implementation assumptions, posing risks to availability,

performance and security.

The space of consistent service configurations is typically restricted based on

constraints on internal as well as external operation. Today, the information re-

quired for consistent service configuration is buried in design documents, operations

manuals, support forums, and code structures. Service management involves use

of proprietary tools and protocols which have been developed to present low-level

configuration and performance information to human operators. It is the responsi-

bility of these expert operators to acquire the knowledge model needed to interpret

the meaning of this information and effect configuration control.

Standard management protocols, such as SNMP[8] which were designed to

reduce some of the complexity of managing multi-vendor systems have not effective

in configuration management. Management Information Base (MIB)[60] standard-

ization significantly trails new service development, and the schema contents are

primarily focused on performance and status reporting. SNMP is particularly ill-

suited to configuration management due to its lack of atomic operations, table

row additions, and weak authentication and access controls. As a result, the stan-

dardized management infrastructure today is dedicated to performance and status

gathering, while configuration occurs over proprietary management platforms using

different management models, access protocols, and user interfaces.

Service discovery in such a fragmented environment becomes a challenging

problem. Even within a single work-group, it is nearly impossible to automatically

determine all available network elements and services. Probe-based approaches

fail to compile accurate models because many relationships can only be discovered

through analysis of element configuration. Expanding such analysis across domains,

especially in the application layer, is unattainable with current management plat-

forms. Although past services have had few inter-domain dependencies, emerging

84

services based on multi-tier architectures, and network virtualization technologies

are creating new complex inter-domain dependencies. Today, such dependencies

are typically discovered when an element failure propagates into other domains,

possibly leading to cascading failures.

Retrofitting existing systems with autonomic functions is a very challeng-

ing problem due to these limitations in service instrumentation, synchronization,

semantic modeling and discovery.

3.6.2 Network Modeling

The advantages of representing network element and service configuration using an

object-relationship model have been established by several research projects and

management standards [38, 11, 39, 15]. The categorization of management variables

has been previously discussed in network and services management architecture

research [61, 62, 18, 63]. This paper contributes to this research by specifying a

language and mechanism for declaring restricted management variables as part of

the service object class, and compiling them into a management object following

matching accessor design patterns.

3.6.3 Management Automation

Previous work in automated service configuration[64, 65, 66, 32], fault root-cause

analysis[12], and self-healing[67, 68] has depended on existing service instrumenta-

tion. Although these approaches have demonstrated practical automation capabil-

ities, they require complex coordinated design and evolution of management sys-

tems and managed elements. For example, the management system vendor must

be able to access the instrumentation of the managed element, construct a data

model and a knowledge model to interpret its operational meaning and control its

configuration in a manner consistent with operational procedures conceived by the

85

element vendor. This information is often not readily available and may change as

the managed element continues to evolve. Therefore, there is a need to simplify

the process through which element designers export instrumentation and model-

ing information concerning the element’s operations management, while enabling

multiple knowledge models to be seamlessly integrated and applied to the element

to provide autonomic operations. This work provides an opportunity to greatly

improve the efficacy of these results through a rich instrumentation layer, and an

generic architecture for providing automation knowledge modules.

JSpoon complements existing Java-based management architectures such

as JMX[51] and JavaBeans. Autonomic element programmer’s benefit from the

close integration between element and management code, while benefiting from

the compiler-generated management system exports. Related research includes a

system for automated management of EJB component interfaces[69]. The work pre-

sented proposes a more general instrumentation automation approach, at the cost

of requiring programmer cooperation. Automated SNMP-based management in-

strumentation has been previously demonstrated in non-imperative languages such

as the NetScript[70] data-flow language. This paper presents an architecture for

automating instrumentation of Java, a general-purpose imperative language.

3.7 Conclusion

The JSpoon approach to autonomic management offers several substantive advan-

tages over current alternatives. Management information is consolidated with el-

ement design and can be maintained through its life-cycle evolution. Instrumen-

tation, data models, knowledge model and their bindings can be generated and

managed through compiler support and static-time validation. Network events

can be intercepted synchronously to constrain and extend the behavior of objects.

Knowledge modules can be seamlessly incorporated with elements by vendors of

86

autonomic computing products, independently of the element vendors enabling

synergistic evolution of products. instrumentation, data and knowledge models

can be unified across multiple elements greatly simplifying the task of providing

autonomic self-managing capabilities of large composite systems.

87

Chapter 4

Effecting Change Propagation

4.1 Introduction

This chapter introduces a novel approach to expressing autonomic behavior. Auto-

nomic element configuration is computed as a spreadsheet function over a unified

object-relationship model. Autonomic behavior is effected through propagation of

changes across object relationships. The spreadsheet model requires that changes

propagate in one direction, that is, there are no propagation cycles. An Object

Spreadsheet Language (OSL) is introduced to express change propagation over

object-relationship configuration models of JSpoon. OSL change rules are expressed

as spreadsheet-style computations over the configuration model, as shown in fig-

ure 4.1. Autonomic element behavior results from the application of composable

OSL libraries.

OSL rules express class model configuration attribute values as acyclic func-

tions over the configuration attributes of related model classes. A change in a

configuration attribute may trigger the evaluation of one or more rules in which

it is used as a function parameter. Due to the restriction on acyclic propagation

paths, there is no path of change which can propagate back to the triggering at-

88

tribute. Configuration operations that are dependent on performance attributes

must first abstract these as more coarse-grain configuration attributes. For exam-

ple, a configuration function that depends on server load, will be computed over

a coarse-grained configuration attribute (e.g. low, high) whose update is triggered

by a performance monitor.

OSL rules are of the form field := expression, where field is an manage-

ment attribute or relationship, and expression is a side-effect free function over the

object management attributes, and relationships. Rule evaluation is triggered by

synchronous modeler event notifications. Three incremental (OSL) extensions of an

are introduced, as illustrated in figure 4.2. The basic OSL0 language provides as-

signment, arithmetic operations, and simple navigation of relationships. The next

language OSL0.5, which is a superset of OSL0, adds a conditional operator. Finally,

the highest language, OSL1 adds iteration and existential operators which can be

used to expressing first order queries.

The chapter presents algorithms for static analysis of OSL rule-sets to assure

that autonomic elements maintain configuration safety within the dynamic envi-

ronments in which they are installed. Static analysis will be typically performed

at design time to assure safety. All OSL rule sets can be accurately analyzed for

termination. Under certain rare conditions, analysis of OSL0.5 and OSL1 rule sets

may result in false detection of non-termination conditions. The results of static

analysis are used by algorithms for efficient computation of change rules.

Application

+enabled: boolean

Host

+enabled: boolean
servedBy

* 1

serves

context Application:
 enabled := servedBy.enabled default false

Figure 4.1: Object-Relationship Spreadsheet Model

89

OSL0
Arithmetic Expressions

=,+,-,*,/,<,<=,>,>=
not

collections

OSL0.5
Propositional Expressions

if-the-else
and,or,xor

OSL1
First-Order Expressions

iterate, forAll, exists, select
allInstances

Figure 4.2: Object Spreadsheet Language Extensions

A declarative subset of OSL called the Object Policy Language (OPL) is used

to express and enforce configuration policy constraints. The ability to propagate

changes across multiple autonomic elements introduces the risk of system failure

due to programming errors. Any change propagation system must guard against

arbitrary changes by enabling the specification of constraints on the configuration

of individual, as well as related services. Policy constraints are a tool for protecting

systems from failures due to invalid propagation of changes. Their evaluation is

triggered by synchronous modeler event notifications.

Scalability of change propagation poses several challenges. Rule evaluation

must be performed incrementally to reduce processing overhead. Rule analysis must

be performed against the static schema model as its instantiation will typically be

larger by several orders of magnitude. Finally, the scope of propagation must be

analyzed and restricted to prevent failure propagation across domains, and assure

rule scalability. This thesis chapter introduces novel contributions to these chal-

lenges in the form of algorithms for static rule analysis over the object-relationship

90

schema, incremental change propagation evaluation algorithms, and a hierarchical

domain-based architecture.

4.1.1 Change Propagation Challenges

Presently, individual system behavior is automated using general purpose script-

ing and programming languages such as Bash, Perl, Python, C/C++, Java, and

Ada. Although such languages have been successfully applied to individual large

automation projects, such as anti-lock brake systems, missile control systems, and

simulations, they have had limited success as system integration languages. Besides

the concurrency, recoverability, and behavior instrumentation challenges identified

in the previous two chapters, automation system interaction presents a major tech-

nical challenge.

Current configuration automation programs are typically tailored to specific

features, such as propagation of DHCP leases to DNS databases, or the propagation

of a new employee record into the the building security access database. These au-

tomation features may interact, causing inconsistencies and re-configuration cycles

that may span administrative domains and manifest with varying periodicity. In

general, it is impossible to determine apriori the interaction of programs written

in Turing-complete languages. As a result, deployment of automation features is

severely restricted in current environments.

Current approaches to management automation in the form of scripts, or

embedded self-management functions have proven inadequate because the do not

support mechanisms for composition, analysis, and scalability. A management

automation system must support the following capabilities:

• Effective mechanisms for coordinated automated changes of multiple interde-

pendent elements. Current management architectures do not support trans-

actional change configuration semantics.

91

• Composition of configuration scripts from different elements (and respective

scalability). Current automation programs depend on raw configuration input

and output, and cannot be directly composed. Composition through configu-

ration side-effects can lead to non-termination or non-deterministic behavior.

• Static analysis of configuration scripts to ascertain that the changes they in-

troduce in all instances of networks are safe. Currently, automation programs

operate over raw repositories with full access permissions. It is not possible,

in general to determine the exact effects of an automation program. Therere,

programmed changes cannot be rolled back in the case of failure.

• Enforce policy constraints support control of propagation of changes across

domains. Current programs cannot be easily monitored since they operated

using multiple protocols over raw local element repositories. Local repositories

do not contain the dependency information required to verify policy.

4.1.2 Management Schema Example

The change propagation and policy languages presented in this chapter will be

illustrated using a common management schema example. The sample management

schema is illustrated in figure 4.3 using the notation of UML[17]. It was was chosen

to include all the core JSpoon management schema features. It should be noted that

the example was selected with the goal of providing a minimal schema illustrating

available features, and is not intended to represent an actual unified configuration

model.

The sample schema declares an Application class containing two boolean

management attributes. The enabled attribute controls the operation of the appli-

cation, while the active monitors the status of the application. A subclass of the

Application class is used to define an Internet radio service with an attribute con-

92

+enabled : bool
+active : bool

Application

+mtu : short
+loopback : bool

LinkInterface

+name : String
+active : bool

NetworkHost+serves

*

+servedBy

1

+connects

1

+connectedVia

*

+maxDatagram : short

InternetRadio

+address : byte[]
+netmask : byte[]

NetworkInterface

+Underlying*

+layeredOver0..1

+dest : byte[]
+intfc : NetworkInterface

IpRoute

+serves1

+routes*

Figure 4.3: Example Management Schema

trolling the maximum size of the broadcast datagrams. The Application class is

related in a many-to-one relationship to a NetworkHost class, which acts as its host.

In a similar manner, the NetworkHost class is related to a LinkInterface class

that encapsulates a link-layer network interface. Multiple network interfaces can be

layered over a link interface as NetworkInterface instances. Finally, the network

host has an associated routing table which is modeled as a to-many relationship to

IpRoute object instances.

The chapter is structured as follows. The next section introduces three

incremental extensions of a language for expressing changes over a JSpoon object-

relationship model. The following section introduces a formal model of spreadsheet

rule evaluation, and desired properties, and presents efficient algorithms for estab-

lishing these properties. Policy constraints are then introduced in the next section,

as declarative OSL expressions. Hierarchical domain scalability is the subject of

the next section. The chapter concludes with discussion of previous related work.

93

4.2 Expressing Object-Relationship Change Prop-

agation

In the object-relationship model, configuration and performance properties are ex-

pressed as typed class attributes, while dependencies are expressed as binary rela-

tionships between classes. A change propagation language operating over an object-

relationship model must support navigation of the schema features, and define the

semantics of these operations.

For example, an UDP-based Internet radio application depends on the ability

of the network to transmit datagrams to its listeners. If the size of the datagrams

exceeds the network’s Maximum Transfer Unit (MTU), they may be fragmented or

dropped. Therefore, it is useful to define a rule that propagates the network’s MTU

to the configuration of the service’s datagram size. All the required information

is available in the unified object-relationship model. While it is possible to use

a general purpose programming language, such as Java, to access and manipulate

the model, such programs cannot be analyzed for interaction with other automation

programs.

This chapter introduces three incremental extensions of a Spreadsheet Object

Language (OSL) for expressing such propagation of changes. As will be discussed

in in the next section, each increase in expressive power effects the analysis and

evaluation of rules expressed in each language. All languages share the fact that

they are strongly typed, against the JSpoon type model, and define spreadsheet

rules which propagate the result of evaluating an expression into a class attribute

or relationship.

The main tradeoff between the spreadsheet change propagation model and

Turing-complete scripting is between analysis and expressive power. The OSL lan-

guages have a restricted set of operators which admit static analysis for termination,

94

independent of model instantiation. The restriction on acyclic rule evaluation re-

stricts OSL programs from expressing policies requiring transitive closure. As will

be demonstrated in the next chapter on applications, it is still possible to express

a wide range of policies in configuration automation, security, and autonomic net-

works.

The syntax of OSL is derived from the syntax of the Object Constraint

Language (OCL)[71], which itself is derived from the syntax of SmallTalk.

OSL Types

OSL is a strongly typed expression language over the JSpoon type system. OSL0

expressions may access and manipulate JSpoon configuration attributes, and re-

lationships. OSL supports static type-checking of expressions[72]. The following

JSpoon types may be manipulated:

• Primitive types: the standard Java language primitive types (boolean, byte,

char, short, int, long, float, double. In addition, OSL defines a string

primitive type which represents an immutable Unicode string without sup-

port for the Java String objects operations. The three languages provide

increasingly powerful operations on these primitive types.

• Java immutable classes: Java library classes representing immutable objects,

whose state cannot be modified past construction time, may be accessed. Such

objects can only be compared for equality and no methods may be invoked

on them.

• JSpoon objects: JSpoon objects may be used as types of configuration at-

tributes or as endpoints in a relationship. Only the management section

attributes and relationships are visible. No Java methods may be invoked on

such objects.

95

on (external change to field f of object o of class c on transaction t) do
m← true
while(m) do

m← false
for (each rule r) do

for (each instance o′ of of rule’s target class c) do
if o′.t �= e(o′) then

o′.f ← e(o′)
m← true

Table 4.1: OSL Evaluation Semantics

Evaluation Semantics

Every OSL propagation rule is of the form “c.t := e(o)”, where t is an attribute or

relationship of class c, and f is a side-effect free expression over object o which is an

instance of c. The operations supported in the expression component are defined

by the successive OSL languages. It is safe to evaluate the expression e(o) any

number of times, since its evaluation cannot effect the state of the model. The only

side-effect possible in OSL is through the assignment operation “:=”. In this sense,

the spreadsheet model is a hybrid of the declarative and imperative programming

styles[73].

Only one rule for each class attribute or relationship may be declared in

OSL. This restriction assures that there rule evaluation order does not effect the

final propagation state. For example, the MTU of a host’s link interfaces can

be computed by navigating the network membership relationship to retrieve the

gateway MTU.

Unlike traditional Event-Condition-Action (ECA) systems[41], the semantics

of OSL evaluation state that every formula is re-evaluated on every instance after

every model change The propagation algorithm, shown in table 4.1, is invoked

whenever a change occurs on the instantiation of the object-relationship model.

96

There are four types of possible changes that can be performed on an instance of

the model:

• attribute modified: the value must be propagated by computing every formula

in which it is used,

• relationship modified: new propagation paths may be created, and formulas

depending on the state of the relationship will have to be evaluated,

• object created: the value of each attribute and relation that is the target of

a rule needs to be evaluated. A change in one field may result in changes to

the same, or other objects.

• object removed: the object is removed from any relationships in which it par-

ticipates, and the formulas operating over these relationships are evaluated.

If cyclical rule declarations, such as “c.x := y” and “c.y := x” are permitted,

then the loop may never terminate. It will be shown that the OSL spreadsheet

languages can be analyzed statically for termination, and that the evaluation of

an acyclic set of OSL rules will always terminate. An incremental algorithm will

be demonstrated in which a formula is evaluated incrementally when its expression

components change.

4.2.1 OSL0 Arithmetic Expression Language

The simplest form of change propagation language is one allowing the propagation

of values over the object-relationship model without conditional statements and

quantification.

97

Operation Notation Equivalent Result Type
equals a = b boolean
negation not a a = false boolean
not equals a <> b not (a = b) boolean

Table 4.2: OSL0 Boolean Operations

Operation Notation Equivalent Result Type
equals a = b boolean
addition a + b number
subtraction a - b number
multiplication a * b number
division a / b number
less a < b boolean
less or equal a <= b boolean
more a > b not (a <= b) boolean
more or equal a >= b not (a < b) boolean
not equals a <> b not (a = b) boolean
negation - b 0 - b number

Table 4.3: OSL0 Arithmetic Operations

Operations

OSL0 restricts the types of operations that may be performed on values. Primitive

boolean types can be compared for equality. Negation and not-equals follow from

boolean equality as shown in table 4.2. Binary boolean operators, such as “and”,

“or”, and “xor” are not available in OSL0.

Primitive arithmetic types may be compared for equality and inequality,

added, subtracted, divided and multiplied. Table 4.3 shows how negation and not-

equals follow from these operations. Division introduces the possibility of undefined

results. The default operator which will be introduced later in this section may

be used as an exception handling mechanism.

98

Java objects may only be compared for reference equality. No methods may

be invoked on such objects. JSpoon object configuration attributes and relation-

ships can be accessed, but none of their Java methods may be invoked.

Attribute Assignment

A language for automating change propagation in an object-relationship model

must, at a minimum, support the setting of object attributes. The expression below

states that the mtu configuration attribute of all instances of class InternetRadio

is assigned the constant value 508. The context statement defines the class scope.

Rule 1 : context InternetRad io : mtu := 508

Class attributes may also be assigned values from other class attributes of

the same instance. For example, the active performance attribute is assigned the

current value of the enabled configuration attribute.

Rule 2 : context Appl icat ion : a c t i v e := enabled

The semantics of assignment in OSL are different from that of assignment in

imperative languages, such as Java. An OSL assignment expression is a constraint

on the value of an attribute. It states that whenever the class attribute is accessed,

its value will be equal to the result of evaluating the right-hand-side expression.

Note that this specification allows for lazy evaluation of OSL rules.

Only a single assignment statement may be defined for each object class

attribute. The OSL runtime system will not allow multiple assignments to the

same attribute.

99

Navigating Relationships

The source of configuration values may include other objects that are reachable via

relationships. In the example below, the active property is assigned the value of

the active property of the NetworkHost object related to the Application object

through the to-one servedBy relation. The dot “.” operation is used to access the

active property of the object in the servedBy relation.

Rule 3 : context Appl icat ion : a c t i v e := servedBy . a c t i v e

Because servedBy is a to-one relationship, the result of dereferencing it will

be either a single instance of NetworkHost, or null. The previous rule will therefore

be undefined when applied to an Application instance which is not related to a

NetworkHost instance.

OSL requires that assignment expressions must always be defined. An ex-

ception handling mechanism is provided to handle null relationship dereferencing

events. In the example below, the active property is set as before, but if a null

relationship is navigated, then the default value of false is assigned. All rules

navigating to-one relationships must provide such handlers.

Rule 4 : context Appl icat ion :

a c t i v e := servedBy . a c t i v e default f a l s e

Collection Types

Navigation of to-many relationships requires the introduction of collection types.

The management schema language supports the declaration of two types of to-many

relationships: to-set and to-sequence. The result of navigating a to-set or a to-

sequence relationship will be a set, or a list respectively. Collections are immutable

and are parameterized by the type of the relationship endpoint. In the OSL0

100

Operation Result Description
size() int number of elements
isEmpty() boolean true if collection is empty (size = 0)
toArray() Type[] returns elements as array of Type
collect(name) Collection collects an attribute or relation from each element

Table 4.4: OSL0 Collection Operations

assignment language, only three collection operations are supported as listed in

table 4.4.

The next expression shows an example rule for setting the active property

of the NetworkHost class to be true if the host is connected to one or more link

interfaces. The connectedVia relationship is a to-set relationship, and therefore

evaluates to a value of type Set<LinkInterface>. In order to improve readability,

collection operations use the arrow “->” operator, instead of the dot “.” operator.

Rule 5 : context NetworkHost :

a c t i v e := not connectedVia−>isEmpty ()

Collection types support the grouping of attributes or relations. For example,

if the NetworkHost class had a byte[][] addresses property, we could express

a propagation rule that navigated the connectedVia relation to obtain a set of

LinkInterface objects, and then navigate the layeredOver to-one relation to

collect the network interface address of each link interface.

Rule 6 : context NetworkHost : add r e s s e s := connectedVia

−>col lect (under ly ing)−>col lect (addres s)−>toArray ()

In order to improve readability, the dot “.” operator is overloaded to act as

a collect operation on sets (OCL feature). The example below is equivalent to the

previous one:

101

Rule 7 : context NetworkHost : add r e s s e s :=

connectedVia . under ly ing . address−>toArray ()

It should be noted that the above examples navigate the to-one underlying

relationship which may be undefined. Therefore, the expression must catch that

error as shown below:

Rule 8 : context NetworkHost : add r e s s e s := connectedVia

. under ly ing−>col lect (address−>toArray () default null)

Relationship Assignment

The assignment operator can be used to specify the values of relationships as well

as attributes. Only a single assignment may be defined for each object class rela-

tionship. Moreover, only one end-point of the relationship may be associated with

an assignment rule. The OSL runtime system will not allow multiple assignments

to the same relationship, or concurrent assignments to both endpoints.

To-many relationships may be assigned from arrays or collections of objects

of the relationship target type. If an ordered to-many relationship (list) is assigned

from a set, then the order of the elements will be arbitrary. A rule may construct

a set or sequence explicitly using the special collection constructor:

Rule 9 : context NetworkHost :

r ou te s := Set<IpRoute>(IpRoute (” 0 . 0 . 0 . 0 / 0 ” , ” eth0 ”) ,

IpRoute (” 127 . 0 . 0 . 0 / 8 ” , ” l o0 ”))

The set and sequence collection constructors take variable-length arguments,

which are used to build the set or sequence. The order of the arguments is important

in sequence declarations.

102

Object Creation

Tabular information is frequently encountered in network configuration manage-

ment. Examples of common tabular configuration data include route tables, firewall

rules, and name-address tables. In the typical mapping of such information to the

object-relationship model, a class is defined containing the table column attributes.

Instances of that class represent table rows. These may be stored in a Java array,

or using an ordered, or unordered to-many relationship.

OSL rules may create objects to populate arrays or relationships. For exam-

ple, consider a rule computing the route table of a network host. The NetworkHost

object is related via the connectedVia relation to zero or more link interfaces.

Each LinkInteface is used to support zero or more network interfaces. The OSL

rule below sets the network host routes relationship to the set of IpRoute objects

created for each network interface. Instances of IpRoute are created by invoking

the class constructor.

Rule 10 : context NetworkHost : r ou te s :=

connectedVia . under ly ing−>col lect (IpRoute (netmask , this))

Object creation is an additional mechanism for creating side-effects. The

objects created may trigger additional rules, and require life-cycle management.

The semantics of OSL rule object creation are that during every rule evaluation,

all previously created objects are deleted, and new ones are created. Therefore, a

rule-created object cannot exist outside the relationship in which it was defined. In

practice, implementation will optimize by recycling objects, as long as this practice

does not violate the aforementioned semantics.

Additionally, rule-created objects are restricted as follows:

• Objects are created an object constructor of the form: class-name ”(” argu-

ment (”,” argument)* ”)”

103

Expression Description
set += object add object to set
set += set2 merge sets

set := { object } ∪ set2 result

Table 4.5: Relationship Set Union Semantics

• All object attributes and relationships must be specified at construction time,

• Object created by rules are not persisted,

• Object identity may change and should not be depended to remain stable.

Distributing Relationship-Set Assignments

The semantics of relationship assignment state that there may be only one assign-

ment per class relationship, and only one side of the relationship may be assigned

to. It some cases, it may be more natural to express the assignment of an unordered

to-many (set) relationship as a union of sets. For example, entries to the route table

may be defined by the network interface object as shown below. This definition is

equivalent to the example from the object creation discussion.

Rule 11 : context NetworkInter face :

layeredOver . connects . r ou te s += IpRoute (address , netmask)

The plus-equals “+=” operator is defined as a union operation on relationship

sets. It is permissible to define any number of plus-equals rules on the same to-

many set relationship, as long as no assignment rule has been defined. As shown

in table 4.5, the multiple plus-equals rules are converted into a single assignment

rule containing a union of all the right-hand-side expressions.

104

Let Environment

The let statement may be used to define local constants and functions within an

OSL expression (OCL feature). The let statement syntax is:

”let” variable { ”(” parameter-list ”)” } { ”:” type } ”=” expression ”in”

expression

For example, the example below defines the local constant DEFAULT MTU for

use within the computation.

Rule 12 : context NetworkInter face :

mtu := l e t DEFAULT MTU = 508 in DEFAULT MTU ∗ 2

A local function may also be declared in the let environment as shown in the

next example:

Rule 13 : context L ink In t e r f a c e :

loopback := l e t isLoopback (IpAddress addr) : boolean =

addr = IpAddress (” 1 2 7 . 0 . 0 . 1 ”)

in

isLoopback (under ly ing . addres s)

Management Functions

OSL expressions may be parameterized and declared as management functions at-

tached to a context object. This mechanism allows OSL programmers to extend the

methods of a JSpoon object at runtime. Management functions may be overloaded

with multiple dispatch, but may not override or overload Java methods.

Rule 14 : context IpRoute : defun i s Loca l () : boolean =

i n t f c . layeredOver . loopback default f a l s e

105

Embedding Management Functions in JSpoon

OSL expressions can be statically associated with JSpoon class definitions. Assign-

ment rules are added as JavaDoc[74] “@jspoon OSL :=” tag associated with the

JSpoon attribute declaration. In the example below, the active attribute of the

Application class is declared as a JSpoon configuration attribute. The JavaDoc

JSpoon tag specifies that the value of the attribute is computed by the expression

provided. At compile time, the JSpoon compiler will invoke the OSL plugin to

parse the expression, and extend the Application class JSpoon meta-schema.

Rule 15 pub l i c c l a s s App l icat ion {
/∗ ∗ @jspoon OSL := servedBy . a c t i v e d e f a u l t f a l s e ∗/
config boolean ac t i v e ;

}

Similarly, management functions may be declared as JavaDoc comments

placed in the class context as shown below.

Rule 16 pub l i c c l a s s App l icat ion {
/∗ ∗ @jspoon OSL defun isUp () : boo lean = . . . ∗/

}

4.2.2 OSL0.5 Propositional Expression Language

Conditional Operation

OSL0.5 extends OSL0 with an if-then-else operation. Since there are no side

effects in OSL expressions, the semantics are different from those of imperative

languages. The if-then-else operation evaluates the if condition, and if it is

true, it returns the result of evaluating the then expression, otherwise it returns

the result of evaluating the else expression.

106

Operation Notation Equivalent Result Type
and a and b if a then b else false boolean
or a or b if a then true else b boolean
xor a xor b if a then not b else b boolean

Table 4.6: OSL0.5 Boolean Operations

The OSL0.5 example below configures the maximum transfer unit (MTU) of

a link interface based on the type of its interface. If the loopback LinkInterface

attribute is true, then the mtu is set to 16436, otherwise it is set to 1500.

Rule 17 : context L ink In t e r f a c e mtu :=

i f loopback then 16436 else 1500

Binary Boolean Operations The OSL0 language is restricted in the types of

operations on booleans. For example, the lack of binary boolean operators, means

that rules such “an application is active if it is enabled and its host server is ac-

tive” cannot be expressed. The OSL0.5 language with boolean binary operations

which are short-hands for the application of the if-the-else operation as shown

in table 4.6. The aforementioned rule can thus be expressed as shown in the next

example:

Rule 18 : context Appl icat ion : a c t i v e :=

enabled and (servedBy . a c t i v e default f a l s e)

Switch Table Operation When defining management change propagation rules

it is common to encounter expressions which associate values based on a table. For

example, the MTU of a link interface is typically determined by its type. Although

it is possible to express such tabular rules using nested if-then-else expressions,

107

”switch” ”(” int-attribute ”)” { ”:” type }
”case” (int-value1 ”:” expression1 ”,”)*
”default” ”:” expressionn

if (int-attribute = int-value1) then expression1

else if (int-attribute = int-value2) then expression2

else expressionn

Table 4.7: Switch Operation Syntaxt & Semantics

the OSL0.5 switch operation provides improved readability. The syntax of the

operation and its semantics in terms of if-the-else are shown in table 4.7.

Using the OSL0.5 switch operation, the MTU of the link interface could be

set as shown in the next example:

Rule 19 : context L ink In t e r f a c e mtu :=

switch (type) : i n t

case LOOPBACK: 16436 ,

case ETHERNET: 1500 ,

case PPP: 576 ,

default : 1 500

4.2.3 OSL1 First-Order Expression Language

The OSL0.5 language cannot express iteration over collection types, or instances of

a JSpoon class. Rules such as “a network host is connected to the network if it has

a network address configured over a non-loopback interface” cannot be expressed in

OSL0.5 because one cannot iterate over the connectedVia relationship and select

only the link interfaces whose loopback attribute is true.

108

initial value

expression

element1

expression

element2

Figure 4.4: Iterate Operation Flowchart

Iteration

The OSL1 language adds a first-order collection operation iteration operation. The

iterate operation iterates over each element of the collection, evaluating an ex-

pression over the element and an input value. On the first iteration, the input value

is provided by as an expression to the operation, while in the subsequent iterations

it is the result of the previous expression computation, as shown in figure 4.4. The

expression evaluates to the result of the last iteration.

Selection

For example, consider a management function which counts the number of network

interfaces configured on a host. The example below defines a management function

that iterates over all host link interfaces, and counts the number of network inter-

faces layered over them. The counting is achieved by starting initially at zero, and

adding the number of network interfaces as an accumulator.

Rule 20 : context NetworkHost :

defun networkIn te r f ace s () : i n t =

connectedVia−>iterate (l : L i nk In t e r f a c e ; count : i n t = 0

| count + l . under ly ing−>s i z e ())

109

Operation Result Description

select(bool-expr) Collection the elements satisfying the expression.
≡ iterate(s : Set<Type> |

if (expression) then Set<Type>(s, this)

else s)

reject(bool-expr) Collection the elements not satisfying the expression.
≡ select(not bool-expr)

Table 4.8: OSL1 Collection Selection Operations

Operation Op. Result Description

forAll(bool-expr) and boolean true if expression is true for all.
≡ iterate(a = true | a and bool-expr)

exists(bool-expr) or boolean true if expression is true for one or more.
≡ iterate(e = false | e or bool-expr)

sum(num-expr) + number sums the expression over all.
≡ iterate(c = 0 | c + int-expr)

min(num-expr) < number returns the min. value in the collection.
≡ iterate(min = Integer.MAX |

let v =int-expr
in if (v < min) then v else min)

Table 4.9: OSL1 Collection Accumulator Operations

The iterate operation may be used to select objects from collections. Because

selection is a common operation, OSL1 provides explicit selection operations as

listed in table 4.8. In the next example, the select operation filters the elements

of a set by evaluating an expression

Rule 21 : context NetworkHost :

defun i sConnected () : boolean = connectedVia

−>select ((not loopback) and

(not under ly ing−>isEmpty ()))−> s i z e () <> 0

110

4.3 Expressing Policy Constraints

Policy constraints set restrictions on admissible configurations. Policies can be

general or specific to a given domain. Domain-specific policies cannot be embedded

in the JSpoon program code since they must costomized to domain requirements.

Policies gate the applications of change rules. If a policy forbids a derived change,

it will cause rejection of the source transaction.

Policies are used to assure that updated configurations meet operational

policies. For example, a server should not serve more than a number of simultaneous

clients, or an application should not admit more than so many instances allowed by

a licensing policy. Policies may also be used to prevent vulnerabilities to failures.

For example, an attribute may be changed ot most every 5 minutes.

Policy constraints are declarative expressions over the object-relationship

model evaluating to a boolean value. Constraints are used to validate changes

in the model instantiation. The navigational requirements for expressing policy

constraints over an object-relationship model are very similar to those of expressing

propagation rules. However, unlike propagation rules, constraints do not effect the

model, and therefore there is no possibility of mutual interaction. There are two

basic types of constraints:

1. invariants: expressions that must evaluate to true after every change has

been applied and all applicable change propagation rules have been applied.

2. postconditions: expressions that must evaluate to true at the end of a trans-

action.

The semantics of constraint evaluation are expressed in table 4.10. In the

autonomic management architecture, all model access is transactional. External

changes to the model are all associated with a transaction t. Invariant evalua-

tion is triggered by a every external change, and is performed after the all changes

111

on (each external change to field f of object o of class c on transaction t) do
propagate changes (table 4.1)
for (each invariant constraint a) do:

if (not verify(a)) abort(t)

on (transaction vote) do
for (each postcondition constraint p) do:

if (not verify(p)) abort(t)

Table 4.10: Constraint Evaluation Semantics

triggered have been propagated. If an invariant is found violated, then the trans-

action is aborted. Postconditions are evaluated when the transaction initiator has

requested a transaction commit, and the transaction enters its voting state. If any

postcondition has been violated by the transaction model updates, external as well

as propagated changes, then the transaction is aborted.

As was the case with propagation rules, an implementation is allowed to

optimize the verification of constraints based on triggering dependencies, as long

as the above semantics are satisfied.

The change propagation language hierarchy was necessitated by the com-

plexity of analyzing cyclical dependencies between rules. Policy constraints do not

require such analysis, therefore OSL1 can be used as a basis for the Object Policy

Language OPL. The general form of OPLconstraints are shown below. The con-

straint type may be either inv, or post, and the boolean expression may be any

OSL1 expression evaluating to a boolean value.

context class-name : constraint-type : boolean-expression

112

4.3.1 OPL Implies Operator

The “e1 implies e2” operator may be used to assert the truth of y if x is true. It

is equivalent to the OSL0.5 statement “if (e1) then e2 else true”, where e1, e2

evaluate to a boolean value.

4.3.2 OPL Invariants

An OPL invariant constraint is declared as an expression specifying the context of

the expression evaluation, the constraint type inv, and an expression evaluating to

a boolean value. An example invariant is shown below. The invariant states that

the link interfaces of a network host should only be enabled if the host’s internal

firewall has been enabled. The invariant restricts the order in which changes may

be performed or propagated in the same transaction. Invariants typically prevent

race condition in application of the effects of a transaction.

Constraint 1 : context NetworkHost : inv :

connectedVia−>forAll ((enabled = true) implies f i r e w a l l . enabled)

Invariants can conflict with rule-based propagation of changes. It is the

responsibility of the rule programmers to assure that their rules do not violate

invariants irrespective of the order applied. For example, a rule for configuring the

enabled attribute of a LinkInterface would need to be encoded as shown in the

next example, to guard against violation of the constraint:

Rule 22 : context L ink In t e r f a c e : enabled :=

(connects . f i r e w a l l . enabled default f a l s e) and (l i n kS i g n a l)

113

4.3.3 OPL Postconditions

Postconditions are used to express constraints on the result of a transaction con-

sisting of external changes as well as rule-based propagations. Unlike invariants,

postconditions may be violated in the course of a transaction, but must be satisfied

in the final transaction state.

A postcondition constraint example is shown below. The constraint states

that in the context of an Application object instance, if the enabled attribute

is set to true, then the application must be related to a NetworkHost instance

through the servedBy relation.

Constraint 2 : context Appl icat ion :

post : enabled implies not servedBy <> null

4.4 Static OSL Analysis

The semantics of the spreadsheet object-relationship model do not allow for cycles

in rule evaluation. There are two basic approaches to rule cycle (termination) check-

ing. Static rule analysis is used to determine if there is any possible model for which

the rules will evaluate cyclically. The other approach is to perform cycle checking

at runtime by tracking the propagation of changes over the model instantiation.

For the purposes of automation, static analysis is the preferable option since

autonomic systems are expected to operate without direct human control. The

discovery of cycles at runtime would require external intervention in order to analyze

the the nature of the cycle, and break its occurrence by removing or modifying one

or more rules. For example, an autonomic service may configure its execution

priority to be higher than all other services. Introducing another service with the

same policy will lead to a very long “bidding” war between the two service. Runtime

114

detection of such a cycle will require may only be resolved through the removal of

one of the services. Had that cycle been detected at design-time, an appropriate

policy could be established.

Given a Turing-complete change propagation language, such as an Event-

Condition-Action system, it is not possible, in general, to statically analyze a set of

rules for cyclical evaluation. This follows from the fact that it is not even possible to

analyze the rules for termination (halting problem). The OSL languages introduced

in the previous section, however, are not Turing-complete and therefore it is possible

to perform static analysis in order to determine rule dependencies.

This section introduces a formal spreadsheet model and presents a graph-

based approach to rule analysis and incremental evaluation.

4.4.1 Spreadsheet Model

The semantics of spreadsheet languages are a mixture of imperative and functional

semantics. A spreadsheet rule is typically of the form:

x← expr(x1, x2, ..., xn)

where expr is an expression without side-effects over the variables v2, v3, ..., vn.

Changes to the state of variables in the spreadsheet model can only be performed

using the assignment operator (←).

Consider a program language L consisting of rules in the form

y ← f(x1, x2, ..., xn)

where y, x1, x2, ..., xn are variables, and f is a function over the variables x1, x2, ..., xn.

Definition 1 (Trigger) For a rule s in L, let Trigger(s) be the set of variables

appearing as triggers in the right-hand-side expression (x1, x2, ..., xn).

115

Definition 2 (Target) Let Target(s) ∈ V be the right-hand-side variable of

the asignment (←) statement (y).

Note that the above definitions do not preclude the existence of a statement

s ∈ L such that Target(s) ∈ Trigger(s), but require that for all s ∈ L, Trigger(s)

is a set.

Definition 3 (Chain) A chain is a sequence of rules s1, s2, ..., sn in L such that

n > 0 and Target(s1) ∈ Trigger(s2), and Target(s2) ∈ Trigger(s3),, and

Target(sn−1) ∈ Trigger(sn).

The size of a chain is the number of rules in the sequence. A chain of size 1

is called a trivial chain. Two chains s1, s2, ..., sn, and t1, t2, ..., tm are equal, if and

only if, n = m and ∀1 ≤ i ≤ n : si = ti.

Definition 4 (Cycle) A change propagation program is said to contain a cycle

if it contains a chain s1, s2, ..., sn, such that Target(sn) ∈ Trigger(s1).

Note that it is possible to have a looping trivial chain if it contains a rule s

for which Target(s) ∈ Trigger(s).

Definition 5 (Ambiguity) A change propagation program is said to have am-

biguity if it contains two non-equal chains s1, s2, ...sn, and t1, t2, ...tm, such that

Trigger(s1) ∩ Trigger(t1) �= ∅ and Target(sn) = Target(tm).

Execution Model

In order to prove properties of the triggering graph it is necessary to define the rule

execution model[56]. Rule evaluation is triggered by the following changes in the

instance graph:

1. Attribute-set: an attribute of an existing object has been modified,

116

2. Relationship-set: the membership of a relationship between two objects has

been modified (members added and/or removed),

3. Object-create: a new object instance has been created, resulting in the trig-

gering of attribute-set on all attributes, and relationship-set on all object

relationships.

4. Object-remove: an existing object has been removed. The effect is to remove

the object from all relationships triggering relationship-set.

4.4.2 OSL0 Triggering Graph

The spreadsheet model described in the previous section can be directly mapped

into the operations of OSL0. Given a JSpoon schema C and an OSL0 propagation

rule s ∈ S of the form “context c : t := OSL0-expression” then Target(s) =

c.t and Trigger(s) is computed by parsing the right-hand-side expression s, and

performing an in-order traversal of the tree. Based on the type of the node:

1. Attribute a or relationship r: add to Trigger(s),

2. Literal: no action performed (immutable value),

3. Operation (arithmetic, navigation, or collection): no action performed (con-

tinue recursing).

Construction 1 (OSL0 Triggering Graph) The triggering graph expresses

the static dependencies between OSL0 rules in the context of an object-relationship

schema. If S is a set of rules in L labeled s1...sn, the triggering graph of S is a

directed graph (digraph) G(V, E) constructed as follows:

1. For each rule s ∈ S:

117

(a) Create a graph node for Target(s) = c.a labeled “c.a” (if one does not

exist)

(b) for each variable t ∈ Trigger(s):

i. If t is an attribute c.a then create an graph node labeled c.a (if one

does not exist), and add a directed edge c.a→ t from the trigger to

the target (if one does not exist) labeled “s”,

ii. Otherwise t is a relationship between c1 and c2 identified by the end-

points c1.r1 and c2.r2 then create a graph node labeled “c1.r1 : c2.r2”

(if c1 < c2)) or “c2.r2 : c1.r1” (if c1 > c2) where classes are compared

under dictionary ordering. Create a directed edge r → t from the

relation node to the target node (if one does not exist) labeled “s”.

Construction 2 (OSL0 Triggering Graph Propagator) A triggering graph

propagator is a label on a directed triggering graph edge identifying the relation-

ship dependency path from the source to the destination node. Propagators are

computed by performing an inorder traversal of each rule’s right-hand-side expres-

sion and marking the relationship path traversed. Propagators are constructed as

follows:

1. For each rule s ∈ S perform an in-order traversal of the right-hand-side rule

expression:

(a) For each expression tree node, based on the type of the node:

• dot “.” and arrow “->” operations:

– evaluate left node,

– evaluate right node on left node context.

• name: resolve the name in the context, and add to the propagator.

• binary operation:

118

Application.
enabled

Application.
active

R2

this

Figure 4.5: OSL0 assignment graph:
context Application : active := enabled

– mark current propagator,

– evaluate left node,

– reset propagator,

– evaluate right node,

– reset propagator.

Examples

Figure 4.5 shows the result of applying the OSL0 triggering graph construction on

Rule 2. The left-hand-side of R2 assigns the result of the right-hand-side expression

to attribute active of class Application. The right hand-side expression consists

of an attribute enabled of the same class which generates a directed edge, labeled

R2, from Application.enabled → Application.active. The propagator is the

default context “this”, since no relationships are traversed.

It should be noted that the full JSpoon class name, consisting of the package

name followed by a dot ’.’ and the class name, is used to label the nodes. For

simplicity, and without loss of generality, the examples shown do not use the JSpoon

packaging capability.

Relationship navigation establishes dependencies between the target class

and the right-hand-side of the propagation rule. Figure 4.6 shows the graph gen-

erated by Rule 4, on the left, and the parse tree of the right-hand-side expression,

on the right. The right-hand-side expression parses to the dot “.” operator as

119

NetworkHost
.active

Application.
active

R4

Application.
servedBy/

NetworkHost
.serves

R4

Dot

servedBy active true

serves

this

Figure 4.6: OSL0 relationship graph and parse tree:
context Application :

active := servedBy.active default false

NetworkHost
.connected

Via

NetworkHost
.addreses

R6
LinkInterface
.underlying

R6

NetworkInter
face.address

R6

collect

connectedVia collect

underlying address

connects

layeredOver.connects

this

Figure 4.7: OSL0 collect graph and parse tree : context NetworkHost:

addresses :=

connectedVia->collect(underlying)

->collect(address)->toArray()

applied to the servedBy to-one relation to obtain an instance of NetwokHost and

access the active attribute. The default value when the relationship is undefined

is the literal (constant) true which cannot change and is therefore not represented

in the triggering graph. The propagator on the NetworkHost.active property is

the relationship serves.

The graph of a more complex OSL0 statement using the collect() opera-

tor is shown in figure 4.7. Of interest is the propagation of the NetworkInterface

address attribute to the Application active property by navigating two consec-

utive relationships layeredOver and connects.

120

Trigger Graph & Propagator Algorithm

The complete traversal algorithm is listed in table 4.11.

4.4.3 OSL0 Termination

Lemma 1 A set of rules in L contains a cycle, if and only if, its triggering graph

contains a cycle.

Consider a set S of rules in L containing a cycle. By definition 4, there

exists a sequence of rules s1, s2, ..., sk such that Target(s1) ∈ Trigger(s2), ...,

Target(sn−1) ∈ Trigger(sn), Target(sn) ∈ Trigger(s1). By construction of the

triggering graph, the set of arcs Target(s1) → Trigger(s2), ... Target(sk) →
Trigger(s1) must exist due to the triggering dependencies. Let vi be any vari-

able vi ∈ Target(si), and ti = Trigger(si) where i ≤ 1 ≤ k. Then the cycle v1, t1,

v2, ... vk, t1 will exist.

Conversely, consider the triggering graph constructed out of a set of rules S

in the spreadsheet language L. Assume that the triggering graph contains a cycle.

Then there exists a vertex v1 for which with a directed path v1, v2,..., vk, v1, where

k ≥ 2 because the graph does not contain any self-loops (by construction). Let

s1, s2, ... , sk be the labels on the edges v1 → v2, v2 → v3, ... vk → v1. Based on

the construction, each edge indicates a triggering triggering which is caused by a

corresponding rule as shown in table 4.12. The sequence of rules represents a cycle

and therefore a cycle in the triggering graph creates a cycle s1, s2, ... sk.

Example An example of a set of expressions whose triggering graph contains a

cycle is shown in figure 4.8. The cycle is created by using Rule 2 and adding the

following rule:

Rule 23 : context InternetRadio : a c t i v e := enabled

121

Context o s lT r i gg e r (Context ctx , OslTreeNode node ,
TriggerGraph graph) {

switch (node . type) {
case PLUS:

o s lT r i gg e r (ctx , node . l e f t , graph) ;
o s lT r i gg e r (ctx , node . r i gh t , graph) ;
r eturn (new Context (Number . c l a s s , ctx . propagator)) ;

// case − , ∗ , / , = , < >
case DOT:

Context l c = os lT r i gg e r (ctx , node . l e f t , graph) ;
r eturn (o s lT r i gg e r (l c , node . r i gh t , graph)) ;

case ARROW:
Context l c = os lT r i gg e r (ctx , node . l e f t , graph) ;
switch (node . r i gh t . operat ion) {

case SIZE :
return (new Context (I n t eg e r . c l a s s , ctx . propagator)) ;

// . . . isEmpty () , toArray ()
case COLLECT:

Context mc = new Context (l c . type . memberType , l c . ctx) ;
Context rc = os lT r i gg e r (mc , node . r i gh t , graph) ;
i f (r c . type == Set . c l a s s)

return (rc) ;
else {

r eturn (new Context (Set<rc . type >. c l a s s , r c . propagator)) ;
}

}
case NAME:

Fie ld f i e l d = context . type . g e tF i e l d (node . va lue) ;
GraphNode source = graph . addNode(f i e l d) ;
graph . addEdge(source , ctx . propagator) ;
r eturn (new Context (f i e l d . type ,

new Propagator (propagator , f i e l d) ;
case LITERAL:

return (new Context (node . type , ctx . propagator)) ;
}

}

Table 4.11: OSL0 Triggering Graph Construction

122

Arc Construction Rule
v1 → v2 v2 ∈ Trigger(s1) s1 : v2 = f(v1, ...)
v2 → v3 v3 ∈ Trigger(s2) s2 : v3 = f(v2, ...)
...
vk → v1 vk ∈ Trigger(s1) sk : v1 = f(vk, ...)

Table 4.12: Triggering graph cycle implies rule cycle

Application.
active

Application.
enabled

R2

R22

this

this

Figure 4.8: OSL0 same-class cycle example:
context Application : active := enabled

context Application : enabled := active

Note that this particular cyclical triggering will not result in infinite execu-

tion with incremental triggering semantics. However, the behavior of assigning a

value to one of the two attributes will be undefined since it depends on the order

of rule evaluation.

Lemma 2 The propagation of a rule set S over an instantiation of an object-

relationship schema C can cycle, if and only if, there is a cycle in the rule defi-

nitions.

Assume that a propagation cycle over instances of schema C exists. That

cycle will be of the form:

o1
r1→ o2

r2→ ...
rn−1→ on

rn→ o1

where o1...on are object instances, and r1...rn are relations. Let c(o) be the class of

the object. Because every relation (edge) in the instance graph must also exist in

123

the class graph, the cycle:

c(o1)
r1→ c(o2)

r2→ ...
rn−1→ c(on)

rn→ c(o1)

must exist and the schema graph.

Conversely, if there exists a class graph cycle over the rule set S of the form:

c1
r1→ c2

r2→ ...
rn−1→ cn

rn→ c1

where c1..cn are classes, and r1..rn relations, then an an instance graph with a cycli-

cal evaluation can be constructed a follows: for each class ci create an instance oi.

For every relation, ri instantiate that relation over the two endpoint instances oj and

ok. Then the path: o1
r1→ o2

r2→ ...
rn−1→ on

rn→ o1

must exist, which forms a cycle.

Theorem 1 (Termination) The evaluation of a change propagation program

consisting of a finite set of OSL0 change propagation rules will be finite if the

program contains no cycles.

Assume that there is an infinite rule evaluation sequence s1, s2, s3, Let

S be the set of propagation rules in the change propagation program. Because S

in finite, the rule evaluation sequence will have to repeat evaluation of some rule

si. The sequence from the first evaluation of the rule si to the next consists of a

cycle and therefore invalidates the assumption that the rule set contains no cycles.

Confluence

Lemma 3 (Confluence) The order of rule evaluation of an acyclic OSL0 change

propagation program does not effect its final state.

Follows by induction on the number of rules from the fact that every variable

must appear as the target of at most one rule. For n = 1 the single acyclic rule

r cannot trigger itself, and therefore there can only be one sequence (r) length 1.

Assume that the rule holds for a program of n = k acyclic rules. Consider a program

124

of n + k acyclic rules. Assume that there exist two evaluation sequences Seq1 and

Seq2 which terminate in different states State1 �= State2. In that case, there is at

least one variable vi whose value is different. Since the value of variables can only

be changed through rule assignment, that variable must appear as the target of

a single rule r. By the definition of propagation termination, the rule must have

been evaluated in both sequences after the evaluation of its triggers. Therefore the

value may be different only because one or more of the triggering variables are have

different values. Because the rule set is acyclic rule r will not be re-evaluated an

therefore can be removed from the rule set. The new rule-set is of size k which

from the assumption cannot generate different states, therefore the assumption is

invalid and the induction is proved by contradiction.

4.4.4 OSL0 Evaluation

Definition 6 (Rank) The rank of a propagation rule r, Rank(r), in an acyclic

change propagation program is the order of its target variable in the topological

sort of its triggering graph.

Any acyclic graph can be topologically sorted in Θ(V, E) where V is the

number of vertices, and E the number of nodes[75]. The algorithm for efficient

change rule propagation is listed in table 4.13. The input to the algorithm is

an object database odb representing the state of the object-relationship model, a

triggering graph g for the acyclic change propagation program that is topologically

sorted, and the variable t whose value has changed.

Given the changed variable t and the set of changed objects, originally {o},
the propagation algorithm considers all the rules which may be triggered s ∈ S : t ∈
Triggers(s) (line 5). The least ranked rule r is selected (line 8) and its triggering

graph propagator is used to select the instances of the rule’s target which are effected

by the set of changed objects (line 9). The rule is evaluated on each instance (line

125

1 void propagate (RuleSet ru l e s , Object source ,
2 F ie ld f i e l d , Value value) {
3 Set changed = as s i gn (source , f i e l d , va lue) ;
4 i f (changed . isEmpty ()) return ;
5 SortedSet<Rule> pending = new SortedSet<Rule>(rank , ’< ’) ;
6 pending . add (r u l e s . getTr iggeredBy (f i e l d)) ;
7 while (! pending . isEmpty ()) {
8 Rule r u l e = pending . removeFirst () ;
9 for (Object t a r g e t : r u l e . c o l l e c t (changed)) {

10 Object targetValue = os lEva l (target , r u l e . e xp r e s s i on) ;
11 Set propagated = as s i gn (targetValue , r u l e . target , value2) ;
12 i f (! propagated . isEmpty ()) {
13 pending . add (r u l e s . getTr iggered (r u l e . t a r g e t)) ;
14 changed . add (propagated) ;
15 }
16 }
17 }
18 }

Table 4.13: Change Propagation Algorithm

126

+X : int

X

+z : int

Z

+y : int

Y+r1x

1

+r1y

*

+r2y

1

+r2z

*

+r3x1 +r3y *

Figure 4.9: Propagation Example Schema

10), and if the target value has been changed, the triggered rules are added to the

rule-set in rank-order (line 13), and the changed object added to the changed set

(line 14). The loop continues while there are triggered rules to be evaluated.

Example The propagation algorithm is illustrated with an example over the sam-

ple object-relationship schema of figure 4.9. The schema consists of three classes

X, Y, Z each with one integer attribute correspondingly named x, y, z. Three binary

relationships r1, r2, r3 connect class-pairs {X, Y }, {Y, Z}, {X, Z}.
Consider the following two rules two rules over this example schema:

context Z : z := (r2y . y default 0) + (r3x . x default 0)

context Y : y := (r1x . x default 0) + 1

The triggering graph generated for the above two propagation rules is shown

in figure 4.10 (Ry denotes the first rule, while Rz the second). As can be readily

observed, the graph is acyclic, and therefore can be topologically sorted. The

variable graph nodes are shown in topological order from right-to-left. The rank

of propagation rules is the order of its target in the topologically sorted triggering

graph, so in this case Rank(Ry) = 2 and Rank(Rz) = 3.

Consider the instantiation of the class graph shown in figure 4.11. The

diagram is shown after all rules have been propagated for x = 1. For example, the

instance z1 has its property z = r2.y + r3.x = 2 + 1 = 3. Similarly, instance z2 has

its property z = r2.y + 0 = 2 + 0 = 2.

127

yz Rz x

Rz

Ry

123

r3z

r1xr2z

Figure 4.10: Propagation Example Triggering Graph

X : int = 1

x1 : X

X : int = 50

x2 : X

y : int = 2

y1 : Y

z : int = 3

z1 : Zr2r1

r3

r2

y : int = 2

y2 : Y

z : int = 2

z2 : Z
r1

y : int = 0

y3 : Y

z : int = 0

z3 : Z

Figure 4.11: Propagation Example Instantiation

128

Line Pending Rules Modified Rule x1.x y1.y y2.y z1.z z2.z
1 2 2 3 2

1 x1 2 2 2 3 2
6 Ry(2),Rz(1) x1 2 2 2 3 2
8 Rz(3) x1 Ry 2 2 2 3 2
9-14 Rz(3) x1, y1 Ry(y1) 2 3 2 3 2
9-14 Rz(3) x1, y1, y2 Ry(y2) 2 3 3 3 2
8 x1, y1, y2 Rz 2 3 3 3 2
8-14 x1, y1, y2, z1 Rz(z1) 2 3 3 5 2
8-14 x1, y1, y2, z1 Rz(z2) 2 3 3 5 3

Table 4.14: Propagation Algorithm Example Trace

Consider a change in the value of attribute x of instance x1 from 1→ 2 in the

object database will require the potential evaluation of change propagation rules.

Table 4.14 lists a trace of the propagation algorithm. The propagation algorithm is

invoked with the state of the object repository, the topologically sorted triggering

graph, the object effected (x1), the attribute (x) and the value (2) changed.

In line 6 the pending rule evaluation set is initialized to the rules which are

triggered from changes in X.x, which in this example are Ry and Rz. The set is

sorted by the rule rank, and the least-ranked Ry rule is removed in step 8. The

rule Ry is evaluated from the instances Y in x1.r1y , which are y1 and y2. Rule

Ry is then applied to each instance and both values are updated. The changes in

Y.y propagate to Z.z, but the rule for Rz is already in the pending queue. Next

time through the main loop, rule Rz is selected (line 8), and the instances of Z in

x1.r3z , y1.r2z , and y2.r2z which are z1 and z2 are selected for evaluation. Note that

instances x2, y3, and z3 where never chosen for evaluation.

129

4.4.5 OSL0 Propagation Complexity

Lemma 4 (Trigger Rank) Given any two rules s1, s2 in an acyclic propagation

program, if rule s1 triggers another rule s2 then Rank(s1) < Rank(s2)

Let s1 and s2 be two rules in an acyclic propagation program where s1

triggers s2, that is Target(s1) ∈ Trigger(s2). Assume Rank(s1) ≥ Rank(s2) then

by definition of a topological sorted directed acyclic graph, there must be a directed

path from Target(s2) � Target(s1). By construction of the triggering graph, every

edge into Target(s2) is constructed from the Trigger(s2) set. Therefore, the path

must be of the form v → Target(s2) � Target(s1) where v ∈ Trigger(s2). Thus

Target(s2) ∈ Trigger(s1) which in conjunction with the premise that Target(s1) ∈
Trigger(s2) creates a cycle and contradicts our assumption of acyclicity.

Let V be the number of attributes and relationships in the JSpoon schema

where each binary relationship is counted once, and inherited attributes and rela-

tionships are counted again for each subclass. Let I represent the number of objects

in the repository. Let S be a the number of acyclic OSL0 rules, and L the max

number of operations in a single rule.

Lemma 5 (Rule Evaluations) Given a single change in the object-relationship

model, the propagation algorithm evaluates every rule at most once, and therefore

the complexity of the outer loop is O(S).

In every loop execution let s be the rule that is currently being evaluated.

Based on the previous lemma, all rules which s triggers must have greater rank, and

since the rule set is acyclic, a rule can only be processed once per loop. Therefore

the loop is evaluated at most S times.

Theorem 2 (OSL0 Propagation Complexity) The worst-case performance of

the change propagation algorithm is O(S · L · I). If the rule size and rule length

130

v1 := f1(v2, v3, ..., vn)
v2 := f2(v3, ..., vn)
...
vn−1 := fn−1(vn)

Table 4.15: OSL0 Propagation Algorithm Worst-Case Example

are considered constant values, then the complexity is O(I), that is, propagation

grows linearly to the number of instances in the model.

The propagation algorithm loops over the set of triggered rules sorted by

rank. Given a change in variable v the set initially contains the rules s ∈ S : v ∈
Trigger(s) (line 6). While the set is not empty, the algorithm loops over, retrieving

the next rule in the sorted set, evaluating its expression on every effected instance,

and potentially assigning a new value to a variable v2 and adding the statements it

triggers s ∈ S : v2 ∈ Trigger(s) into the set.

Within the loop, the complexity of retrieving the first value of a sorted set is

O(1) (line 8). The OSL0 language does not provide any general looping constructs.

Evaluating an OSL0 expression (line 9) involves traversal of an expression tree

whose complexity is O(L). The collect() operation allows the collation of values

from a to-many relation. In the worst case, a relationship may contain all instances

of a class, thus each operation may require O(I) processing. Element membership

can be established in O(1) through a space trade-off of maintaining a hash-table

in addition to the tree structure. Element addition requires O(log S) but since

each rule can only be added once to the set the overall complexity of addition is

O(S · log S).

Therefore, the complexity of the algorithm is O(S ·L · I +S log S). Since the

number of objects will be larger than the number of rules the second term can be

ignored and the complexity stated as O(S · L · I).

131

An example of the worst-case rule-set is shown in table 4.15. The length

of the dependency and the right-hand-side expressions can be arbitrarily long. In

practice such examples never appear in configuration management since the process

would be impossible to perform manually.

Rule Updates

Given the set of rules S, the complexity of creating the triggering graph is the cost

of parsing the expressions and adding the edges to the graph. The task can be

performed incrementally, so that the cost of adding a new rule s is O(Size(s)).

The topological sort of the triggering graph can be computed in Θ(|M |)[75].

4.4.6 OSL0.5 Analysis

The OSL0.5 language introduces the if-the-else conditional operation. The pre-

vious results on OSL0 termination, confluence, and complexity apply to OSL0.5 as

well. Termination is not effected because the statement does not introduce loop-

ing. Confluence was not dependent on the right-hand-side expression, rather on the

fact that only a single assignment statement is permitted per variable. The same

holds for complexity, since although the statement may be used to short-circuit

computation, in the worst case the conditional expression will not be used, and the

complete rule will need to be evaluated.

The main effect of the conditional operation involves the analysis of cycles in

the triggering graph. It is possible to define non-trivial cycles in OSL0.5 which will

never result in an infinite execution. For example the following two rules form a

cyclical triggering graph, but no values can satisfy the conditions leading to infinite

execution.

context Example : a := i f (b) c else 1

context Example : c := i f (b) 2 else a

132

ca

a

Rc

(b)

(not b)

Ra

Ra Rc

Figure 4.12: OSL0.5 Finite Execution Cycle

The triggering graph for the expressions as is shown in figure 4.12. As can be

readily observed, the graph contains the cycle a→ c→ a. In fact, the condition for

the existence of the cycle is the satisfiability of the statement (b and not b) which

cannot be satisfied for any value of b.

OSL0.5 Conditional Triggering Graph

Definition 7 (Phantom Cycle) An OSL0.5 change propagation program cycle

is called a phantom cycle if there is no instantiation of schema S such that change

can propagation along the cycle.

Construction 3 (OSL0 Triggering Graph Conditional Propagator) A

triggering graph conditional propagator is a propagator whose path is extended with

boolean conditions. Change is propagated along each propagator relationship only

if the boolean expression evaluates to true in the current path context. Conditional

propagators are constructed by extending the propagator construction 2 with an

additional case for the conditional operation, and redefining the handling of name

handling:

• if-then-else operation

133

– push conditional statement into condition stack

– evaluate left node

– pop conditional statement

– push negated conditional statement into condition stack

– evaluate right node

– pop conditional statement

• name: resolve the name in the context, and add to the propagator, along with

the top of the conditional stack (if any).

Definition 8 (Provably Acyclic Rule Set) An OSL0.5 rule set is called prov-

ably acyclic if the conjunction of all conditional propagators an every triggering

graph cycle is unsatisfiable.

OSL0.5 Evaluation

The OSL0 change propagation evaluation algorithm cannot be directly applied to

OSL0.5 due to the possible presence of cycles and the fact that a cyclic digraph

cannot be topologically sorted. Since a rule may not trigger its own evaluation, in

the worst case, an evaluation loop may execute
∑n

i=1 n = O(n2) times. If the graph

is topologically sorted after each cycle is broken by removing an arbitrary edge,

then the average case can be improved.

OSL0.5 Complexity

Given an OSL0.5 triggering graph containing cycles, the analysis of the conditional

propagator conjunction is at least as difficult as boolean satisfiability (SAT) which

is a well know problem in NP[76]. If all conditionals are conjunctive boolean expres-

sions of variables then the problem can be solved in polynomial time. The problem

134

of determining whether even just one single multivariate polynomial equation has

an integer solution is undecidable[77]. If the conjunction contains linear equality

equations over reals then in can be solved in O(n3).

In practice, change propagation conditions are simple expressions, otherwise

they could not have been manually enforced by human systems administrators.

When computing the cycle satisfiability an upper time limit may be placed on

computation when new rules are introduced. If the time out is exceeded, the new

rule will be rejected as unverifiable.

The complexity analysis for OSL0.5 is similar to that of OSL0 with the differ-

ence that in the worst case, the outer loop may evaluate O(S2) times and therefore

the complexity of the OSL0.5 propagation algorithm is O(S2 ·L · I). The algorithm

continues to scale linearly with the number of objects, but the rule evaluation con-

stant will be larger.

4.4.7 OSL1 Analysis

OSL1 introduced iteration over sets. This is a limited form of iteration which is

guaranteed to terminate if the set is finite. A limited type of iteration was already

available in OSL0 in the form of the collect operator. Therefore, the iterate

operator will not effect the worst-case complexity analysis.

However the combination of the new allInstances operator with the iterate

operator allows users to perform first-order relational calculus operations. Selec-

tion, projection, union and intersection were already shown as part of the language.

A join may be performed as as shown in the example below which sets the serves

relationship of a DNS server object to the DNS resolver objects configured to use

the server’s IP address.

context DomainNameServer : s e r v e s :=

DomainNameResolver−>a l l I n s t a n c e s

135

−>select (r | r . s e rve r s−>exists (s | s . addres s = this . addres s))

OSL1 relational operation techniques can leverage the extensive research into

relational database operation optimizations[78].

4.5 Controlling Autonomic Behavior Across Do-

mains

In the last four decades, the scale of computer networks has exploded from the order

of tens of nodes in the original ARPANET, to the order of billion of Internet nodes

today. Scalability was a major challenge along the path of this growth, forcing the

adoption of new protocols and management techniques. Flat-structure protocols

such as the HOSTS name-to-address file were replaced by hierarchical protocols

such as DNS[3]. Routing was also made hierarchical through adoption of inter-

domain routing protocols such as BGP[79]. Human scalability was achieved by

assigning the resulting hierarchical domains to network and systems management

groups operating at different organization levels.

Initially, most network services operated within individual domains. Ex-

amples included file sharing, databases, local name resolution, and client-server

applications. This pattern has changed with the increasing popularity of world-

wide services such as SMTP, FTP, and HTTP. In addition, the proliferation of

Internet Service Providers (ISPs) has meant that many of the clients for local do-

main services are connected through Virtual Private Network (VPN) connections.

Finally, the emerging multi-tiered web-services architectures, such as Sun J2EE

and Microsoft .Net, have created new and complex dependencies between network

services.

Todays reality is that that domains can no longer be isolated at the network

(IP) layer, with the addition of a few isolated global distributed services such as

136

Figure 4.13: Management Domains

DNS. Complex service dependencies cross existing domain structures creating reli-

ability, optimization, and security challenges that stress the current manual man-

agement work-flows. Any approach to network element automation must therefore

provide solutions that address these issues.

4.5.1 Inter-Domain Rule Propagation Automation

The previous section covered the analysis of propagation rules within a single ad-

ministrative domain. In order for change to propagate between two domains, there

must be one or more management objects that are shared by both domains. For

example, a departmental domain will share the IP router interface with the or-

ganizational domain. Changes to the status of the router interface will effect the

departmental domain, and may also propagate to the organizational domain.

An example of such shared objects is shown in figure 4.13. The figure depicts

three organizational domains representing Columbia University (CU) and two of its

academic departments, Computer Science (CS) and Mathematics (MA). Each de-

partment is responsible for its own administration. However, the management of its

peering points with the University is shared with the campus network management

service group.

137

Today, due to limitations in access and concurrency control, such “shared”

resources are only jointly managed in principle. In practice, management is main-

tained by the service provider, and changes propagating from the client are manually

propagated through some type of request ticketing system.

In order to apply the spreadsheet change propagation approach to automat-

ing inter-domain propagation, it must be possible to analyze and restrict the scope

of automated propagation in a scalable manner. The simple approach of analyzing

the union of all propagation domain rules is not practical because it will not scale in

terms of rule evaluation. Moreover, different domains are likely to enfonce different

policies ot their internal resources, and the union operation will result in multiple

rules for the same class target. Finally, it is unlikely that domains will want to

export their change rules to others, since it may expose security vulnerabilities.

Construction 4 (Summary Trigger Graph) Let S be a set of OSL propa-

gation rules over an object-relationship schema C, and Ce ⊂ C represent classes

whose instances may be exported to other domains. If G is the triggering graph

for S over C, then the summary triggering graph Ge for S over Ce is constructed

as follows:

• for each node n ∈ G representing a field in a class c ∈ Ce add n to Ge

• for each node n ∈ Ge and for every node o ∈ Ge (including n) such that there

is a path n
G
� o add a directed edge n

Ge→ o in Ge.

An example summary graph construction is shown figure 4.14. The example

shows two domains from the previous example, CS and CU, and two attributes of

the shared class RouterInterface. Within the CS domain, a propagation path

exists from RouterInterface.type → IpNetwork.mtu → RouterInterface.mtu.

Because the path spans classes that are not shared, it will be included in the sum-

mary graph as an abbreviated edge from RouterInterface.type→ RouterInterface.mtu

138

Figure 4.14: Management Domain Cycle Analysis

(shown as a dotted arrow).

Lemma 6 A triggering graph will contain a cycle containing one or more exported

class attributes if and only if there is a cycle in the summary triggering graph.

Assume there is a cycle in the triggering graph containing one or more ex-

ported class attribute. The cycle can be expressed as:

v1
s1→ v2

s2→ ...
sn−1→ vn

sn→ v1

where s1...sn are class attributes or relationships and s1...sn are propagation rules.

By the assumption there exists an attribute or relationship si whose class c ∈ Ce is

exported. By construction, if there are no other exported attributes or relationships

in the path, then there should be a summary path from si → si. It can be easily

shown by induction that this will hold for any number of exported path nodes.

If the summary triggering graph Ge contains a cycle, then either all path

edges are in the regular triggering graph G, or the cycle contains edges which rep-

resent a path in G. Substituting the summarized edges with their G path produces

a cyclical path in G.

139

Inter-Domain Cycle Analysis

Construction 5 (Shared Domain Trigerring Graph) Given a set of prop-

agation domains {D1, D2, ...Dn}, let {Ce1, Ce2, ...Cen} be the corresponding export

schemata. Construct the summary triggering graph for pair (Di, Cei
). The shared

domain triggering graph is constructed by the union of all triggering graphs.

The shared domain triggering graph is used to perform cycle analysis and to

determine rule ranking that is used for rule evaluation ordering. The shared domain

defines the types of permitted propagation, and can be the subject of policy rules.

For example, a laptop connected to a foreign network may contain policy rules

to abort propagation of DNS resolver configuration via DHCP. Such propagation

has been used in the past to hijack network outgoing connections for monitoring.

Similarly, a domain may allow route propagations, but filter those which advertise

routes to addresses that are within the domain.

4.6 Previous Work

4.6.1 Spreadsheets

The spreadsheet change propagation model was first applied to grid-based finan-

cial applications[80]. Financial spreadsheets operate over cells and do not provide

object abstractions or structured relationships. Popular spreadsheet applications,

such as Microsoft Excel, perform run-time cycle analysis and therefore they are not

well suited to handling unsupervised data feeds. For example, table 4.16 demon-

strates a set of accepted propagation rules which are potentially cyclical base on

the spreadsheet data instantiation. Excel will only signal an error if A4 = FALSE.

140

A1 = if ($A3, $A2, 1)

A2 = if ($A4, 2, $A1)

A3 TRUE

A4 TRUE

Table 4.16: Microsoft Excel Runtime Cycle Checking

EMPLOYEE.DEPTNAME := ’ Research ’
$FIND ANY EMPLOYEE USING DEPTNAME
while DB STATUS = 0 do

begin
$GET EMPLOYEE;
wr i t l n (EMPLOYEE.FNAME, ” , EMPLOYEE.LNAME) ;
$FIND DUPLICATE EMPLOYEE USING DEPTNAME
end ;

Table 4.17: CODASYL Relational Data Model Program

4.6.2 Network Data Model

The network data model[81] preceded the relational data model and was employed

in several commercial database products. The network data model consists of sets

of typed records containing data items. Set elements are connected via one-to-many

relationships. Access to the data model is performed through a data access language

that is embedded in a general purpose programming language such as COBOL or

PASCAL. Table 4.17 shows an example taken from [19]. Statements preceded by the

’$’ symbol represent database operations to differentiate from PASCAL constructs.

The network data model shares many common features with the object-

relationship model. The access language, however, was embedded into an general

purpose imperative language, making static analysis impossible. This chapter in-

troduces a restricted access language over an object-relationship model with spread-

sheet model semantics that can be statically analyzed at rule declaration time.

141

4.6.3 Event Correlation Systems

The object-relationship model has been previously used to model network event

propagation in SMARTS[57]. The object-relationship event model provides means

to analyze and correlate events associated with objects and the the events are

assumed to be generated through sources external to the system. Change propa-

gation rules, in contrast, provide means to effect changes in the very objects and

are assumed to be generated as integral components of the system. InCharge does

not incorporate means to statically validate non-cyclical propagation, of central

importance in change propagation.

4.6.4 Event-Condition-Action/Active Database Systems

Active database systems[82] automate the propagation of changes through the defi-

nition of Event-Condition-Action (ECA) rules. A typical ECA rule is structured as

a statement of the form ¡event, condition, action, precedence¿ where event is some

database update (table row insertion, removal, modification), the condition is an

SQL Boolean expression, the action consists of an SQL statement, and the optional

precedence provides an ordering of rule evaluations. Changes in active databases

propagate over relations established via relational table joins.

Prior active database research has explored algorithms for analyzing ter-

mination, and confluence (rule evaluation order dependency)[56]. Termination in

active rule sets has been verified through cycle-detection in a triggering graph. The

triggering graph is formed by creating a vertice for each rule and a directed edge

from each rule to the rules that it can potentially trigger. Analysis of the trig-

ger dependencies between rules depends on the expressiveness of the condition and

action language.

The work presented in this thesis differs from previous work on ECA/active

database systems in two important aspects:

142

1. The object-relationship (OR) model provides a different data modeling lan-

guage and methodology that is more appropriate for expressing the type of

propagation paths engineered in networked systems. The OR-model with

its support for inheritance, and stored relations as object attributes provides

a more natural method to express dependencies that the database relational

model. Although it is possible to map the OR-model into a relational database

schema, the result would include a significantly expanded number of tables,

and the ECA statements would become very complex.

2. The graph constructed by the invention differs from the triggering graph

approach in that it represents object class attributes as nodes as opposed

to the rules. The expression language used in the invention is restricted so

as to support static determination of cycles and ambiguities, as opposed to

potential cycles and ambiguities.

3. The spreadsheet acyclic propagation semantics allow are easier to reason with

for rule authors, since they express the target values as a result of a function,

rather than as a response to a change.

4.6.5 Feature Interaction

Feature interaction is a well recognized problem in system integration, and has been

studied extensively in the telecommunication industry[83, 84]. Telecommunication

systems typically operate as large finite state machines and the emphasis of that

work has been to analyze the behavior of the state machines, as opposed to the

effects of their configuration. The work in this chapter differs in that it focuses

on the configuration plane, rather than the data/algorithm plane, and represents

interactions as propagations over an object-relationship model.

143

4.6.6 Work-flow Systems

Research on Work-flow Management Systems (WMS)[85] has focused on connect-

ing systems in work-flows as “black-boxes” with little or no control over internal

configuration and state. The approach of this thesis has been to develop an integral

instrumentation model of network elements, and to use that model to compute the

acyclic propagation of changes over relationships.

4.6.7 Constraint Propagation Systems

The Constraint Satisfaction Problem (CSP) has been studied extensively in a va-

riety of applications[45, 46]. Previous work on constraint-based management has

been pursued[47, 48]. The focus of these projects has been on employing con-

straints for the diagnosis of network faults and on algorithms for constraint satis-

faction. The challenge in such systems is to express constraints in a manner that

does not over-constraint (no solution), or under-constraint (too many solutions

leading to non-determinism). The spreadsheet model is a hybrid Event-Condition-

Action/Constraint system in which propagation rule expressions can be thought of

as constraints on object attribute value, while assignment creates side-effect based

propagation. It should be noted that the autonomic architecture supports use of a

CSP solver as a knowledge layer plugin.

4.6.8 Change Propagation Systems

Previous work on change propagation over relationship has been pursued in [86,

87, 88]. The DSM language[86] is used to express fixed, link-by-link, propagations

over relations, and is very restricted in its expressive power. The AMP propagation

language[88] is used to define relational Event-Condition-Rules that propagate over

an object relationship model. The language does not admit simple analysis and one

144

is not presented.

4.7 Conclusion

Autonomic behavior refers to the ability of systems to perform react to changes

in order to maintain operation. Current systems are designed to minimize change

propagation since such operations have to be performed by human administrators.

Automation using existing programming techniques has met with limited success

due to challenges in configuration access, concurrency, recoverability, and automa-

tion feature interaction.

This chapter has introduced the spreadsheet acyclic change propagation

model and the OSL language for expressing spreadsheet rules over an object-

relationship configuration model. The three increasingly powerful languages pre-

sented support the expression of common configuration change propagation rules,

without resorting to use of a Turing-complete language. The OSL languages have

been statically analyzed for cyclical definitions, and for determining optimal rule

evaluation sequences. The rule evaluation algorithm uses the information compiled

from the static class model in order to maintain propagation in the much larger in-

stance model. The final result presented introduces a hierarchical domain approach

to controlling the propagation of changes across domains in a scalable manner.

145

Chapter 5

Autonomic Applications

5.1 Introduction

The peer-to-peer autonomic management technologies presented in the previous

chapters of this thesis has been implemented in a large research prototype called

NESTOR. The prototype includes a distributed transactional object modeler, an

object-relationship modeling definition language compiler, an incremental OSL

change rule and OPL policy constraint interpreter, as well as adapters for dif-

ferent management protocols and elements. The NESTOR modeling language sup-

ports the JSpoon management attribute declarations, but is not embedded in Java.

NESTOR was developed in two successive versions which provided practical expe-

rience with different automation architectural designs.

The NESTOR prototype has been demonstrated in several management au-

tomation applications. NESTOR was first demonstrated in automating the propa-

gation of of DHCP address assignments into the DNS hosts. The application sup-

ported user mobility without requiring new specialized protocols. The NESTOR

prototype was also applied to the management of security in dynamic networks.

The application demonstrated automated adaption of link layer and application

146

layer security configuration to the presence of new network users. In the context

of Active Networks[89] NESTOR has been demonstrated in automating configu-

ration of network virtualization[90], and active multimedia adaption technologies.

Then NESTOR prototype has also been deployed on the Active Networks Backbone

(ABONE) network for instrumentation of Active Nodes, EEs and AAs, NESTOR

has been released to researchers at at Telcordia Technologies as a platform for de-

veloping a distributed firewall based on security policies[91]. Finally, NESTOR has

been demonstrated in a web-service mobility demonstration, involving DNS and

web-server reconfiguration in response to server mobility.

This chapter continues with a section outlining NESTOR prototype features

and technologies. The next two sections present two of the NESTOR automation

demonstrations in greater detail.

5.2 NESTOR Prototype Overview

An initial prototype of the NESTOR system was built using the MODEL lan-

guage and InCharge repository provided by SMARTS[12]. The prototype employed

the Event-Condition-Action (ECA) rules (which can be compiled from declarative

constraints). The prototype was used to demonstrate Internet node plug & play

functionality .

Experience with this first prototype helped guide the current NESTOR de-

sign. The complexity of coding both the access mechanisms and the schema map-

ping operations led to the addition of the protocol adapter layer. ECA rules quickly

proved to be difficult to manage even with a small number of high-level constraints

defined. It was discovered that more than one rule was required to support a

single constraint, and that it was not uncommon to write simple definitions that

would lead to cycles in execution. Declarative expressive constraints are used in

the current design and are safely compiled internally to ECA style rules.

147

The second NESTOR prototype has been written in Java using Sun’s Jini

infrastructure[20]. In this prototype the RDS exports its services using a Java

Remote Method Invocation (RMI) interface. The remote RDS interface enables

managers to create distributed transactions, and perform object operations (lookup,

create, destroy). Application layer management applications employ the Jini lookup

and discovery mechanism for obtaining a reference to the remote RDS service ob-

ject. When an application invokes the create transaction method on the remote

RDS interface, the RDS server returns an object implementing the Jini transac-

tion interface. Internally, the Java RDS prototype implements the Jini transaction

manager interface and semantics for performing distributed two-phase commits.

Management application object lookups occur in the context of a transac-

tion and return a proxy object implementing the same interfaces as the ones of

the requested repository objects (maintaining in addition a lock on the requested

objects). Unlike the real repository objects, proxy objects contain copies of the

configuration values and do not propagate changes to the managed element, even

though all method invocations are stored in the transaction log. Proxy object ref-

erences are initially returned as ”hollow” objects whose values are retrieved from

the repository at the time of the first object access.

Constraints and rules are first class objects. When the management ap-

plication commits an update transaction, the modeler invokes the constraint and

propagation manager with a reference to the transaction log. The manager analyzes

the log and determines the OSL rules that need to be reevaluated, and proceeds

to compute and assign their values. As part of that process additional rules may

need to be re-evaluated. This process is guaranteed to terminate since cyclical rule

definitions are disallowed. Once all rules have been evaluated, the constraints are

asserted. If all constraints are maintained the manager commits the transaction

(the constraint manager is a member of every repository update transaction) the

148

logged updates will be applied to the real repository objects in the order in which

they were made. In cases where the same attribute has been updated multiple

times due to the execution of change rules, only the last update is written.

Other components of the prototype system include the model compiler and

constraint and rule interpreter. The model compiler transforms MODEL interface

definitions into Java interface definitions. As part of the transformation, MODEL

attribute declarations are mapped to pairs of set/get methods, and relationships

are converted into references to classes implementing the OSL collection semantics.

In the current version, the constraint and rule expressions are stored in string

form instead of being translated into a Java language method. The constraint

and propagation manager contains a built-in OSL interpreter that evaluates each

expression when detecting a possible violation. Future versions will explore the

performance gains of compiling OSL expressions, and optimizing the triggering of

constraint and rule evaluation.

Adapters supported in the current NESTOR prototype include Linux (in-

terfaces, routing, processes, firewall rules), SNMP (MIB-II), CISCO IOS (switch

VLAN and interfaces, router interfaces, routes and firewall rules), Virtual Active

Networks[90] (VAN), and Anetd[92]. In addition, the prototype includes a graph-

ical browser supporting navigation and manipulation of the NESTOR repository,

as well as visualization of layer-2 topology.

The current implementation also supports security features including user

authentication, fine-grained capability and access control-based authorization, as

well as connection encryption. Authentication and connection encryption are based

on the SSL/TLS protocol. The SSL X.509 certificates are associated with a first-

class user object instances that are belong to one or more groups. Groups are

assigned repository-wide permissions such as connect, search, subscribe, lock, etc.

Associating permissions with each object, or adding capabilities to the user or group

149

Figure 5.1: NESTOR Modeler Graphical Browser

objects controls object-level permissions. Examples of object-level permissions are

get, set, shared-lock, exclusive-lock, delete and may be associated with all or some

specific object attributes.

Because user, group and permission objects are first class objects, NESTOR

constraints and propagation rules may operate on them. As a result, it is possible

to affect dynamic configuration of security permissions. For example, it is possible

to award a user with special permissions on all hosts that are physically co-located

with the machine in which he/she is logged on the console. Note that such general

rules can only be expressed thanks to the unified configuration model.

A screen-shot of the NESTOR prototype browser is shown in figure 5.1.

On the left panel, the browser displays a tree whose first level are repositories,

the second level includes the list of available RDL interfaces, and the third layer

contains object instances. The browser subscribes for notification of class loading/

unloading events on each repository. When a class node is first expanded, the

browser subscribes for object create/remove events on the particular class. If the

user selects an object instance, it is displayed on the right panel. In this particular

example, an Anetd instance is shown. The object is read in a caching transaction,

that does not obtain any locks. The browser (NESTOR client) is notified of any

150

changes to cached objects. Relations can be navigated by clicking on the ”Go”.

5.3 Managing Security in Dynamic Networks

Consider a scenario in which Jane Consultant, who is employed by Corporation A,

is visiting a client in Corporation B. During her meeting, Jane realizes that she

needs to access files in her home directory which have not been copied onto her

laptop. When plugged into her home network in A, Jane simply clicks an icon

on her desktop to access her files. What are her choices while plugged into B’s

network? She can establish a slow but potentially insecure modem connection to

Corporation A (over a wireless connection for example, or perhaps the phone call is

routed over the Internet). Alternatively, she can plug her laptop into an Ethernet

port within Corporation B; assuming she gets connected at all, it will likely be a

window-less connection to B because Corporation A may not open X services in its

network to hosts outside. Neither method offers access comparable to what Jane

would get within her home network.

What makes the problem more challenging is that the two networks are sep-

arately administered, with independent security policies. For example, Corporation

A might filter certain services when the user is plugged into a remote network. Cor-

poration B might require that guest machines not be able to send or receive traffic

directly from any machine within B’s network, and that guest machines may only

access remote VPN nodes. If there is a way to provide access without violating

either company’s policy, we would like all necessary reconfigurations to be auto-

matic and not require manual intervention. Of course, if there is no way to provide

access without violating one security policy or another, Jane cannot be provided

this service. The difference in our approach is that we have a language designed

to express these concerns explicitly at a high level as policies and mechanisms to

support the semantics of these policies by appropriately reconfiguring the network.

151

A number of configuration changes are necessary to provide Jane access

when the security policies allow it. In our example, some of the changes involve the

Dynamic Host Configuration Protocol (DHCP)[2] server, switches and firewalls in

B, and firewalls, file servers and encryption protocols within A, and decryption in

Jane’s laptop.

5.3.1 The Experimental Testbed

Recall that in our scenario Jane, whose home is corporate network A, is now con-

nected to company B’s network and wants Web/E-mail/Telnet access to files in her

company A. To simplify the exposition, we make a few simple assumptions about

the two networks. These assumptions are not necessary in practice; the approach is

more general that the example we choose to illustrate the capabilities of our man-

agement platform. In particular, let us suppose that Company B uses a switched

network which supports Virtual LANs (VLAN) and that company A’s firewall sup-

ports Virtual Private Networks (VPNs) in order to provide remote access to its

users over the Internet. Our actual implementation uses Linux for firewalls and

hosts and Cisco switches for VLAN support. Further details of the equipment used

are provided later in this section.

Requirements for the Scenario

In order to achieve transparent access to the services that Jane wants from her

laptop the following configuration changes are necessary:

1. An available Ethernet port will need to be located and Jane’s laptop physically

connected (in the premises of company B).

2. The laptop will need to be configured for the local network environment,

including parameters such as IP address, netmask, DNS servers, default gate-

152

ways, SOCKS servers, etc. Ideally, this will be achieved automatically using

DHCP.

3. In order to maintain Company B’s security policy, the laptop will either have

to be connected to a special “guest” network and the switch port must be

configured for a “guest” virtual LAN, or all the internal services must be

guaranteed to require authentication. The last option is exceedingly difficult

to implement in typical networks today and are, in fact, the main motivation

for using firewalls to protect corporate networks.

4. Depending on the configuration setting of Company B’s firewall, the laptop’s

address may have to be explicitly allowed to initiate outgoing connections.

Company B’s security policy may require disabling the laptop’s access to any

external sites other than Company A since it holds an IP address in Company

B’s domain. This can be achieved by limiting external connections to the VPN

protocol.

5. Once the laptop can reach the Internet, it will need to establish a Virtual

Private Network (VPN) connection with Company A’s firewall whose policy

may be to grant remote hosts limited access to internal resources. Such

policies will need to be enforced by all internal services in Company A’s

network.

Network Topology

The two networks are shown in Figures 5.2 and 5.3. For simplicity, Company A’s

network consists of the internal subnet 172.16.1.0/24 (net-1) and the VPN subnet

172.16.6.0/24 (net-6). VPN clients are allocated addresses from the second network

(net-6). The internal Linux NFS server is configured dynamically by the company-

A NESTOR server to restrict mobile user access to their home directory. A Linux

153

Linux Box
- NESTOR Server
- Linux NFS Server

Ethernet Hub

Linux Box
- IP Chains Firewall
- CIPE VPN

VPN Net
172.16.6.0/24

172.16.0.1172.16.1.1172.16.1.2

Ethernet Hub
(Internet)

Figure 5.2: Company A Network

Linux Box
- NESTOR Server

Linux Laptop
Mobile Client
-UCD SNMPd
(Company A)

Internet
(Ethernet Hub)Linux Box (3 NIC)

- Kernel Router
- IP Chains Firewall
- ISI DHCP Server

Sun Sparcstation
- Internal Web Server

vlan9

vlan1vlan1
vlan1

vlan9
10.0.9.1

10.0.1.3 10.0.1.2

10.0.1.1

10.0.9.2

10.0.0.1

Cisco Catalyst 1900
VLAN Switch

10.0.1.254

Figure 5.3: Company B Network

154

workstation is used to provide routing, firewalling, and VPN services for the network

of company A. The route table is statically set with paths to the internal network,

the VPN network, and company B’s network. Firewall rules are added to deny all

incoming traffic access to the internal network of company A (using Linux Kernel

IP Chains). Finally, the CIPE[93] Linux software is configured to enable the remote

establishment of a VPN tunnel.

The network of company B is slightly more involved. Instead of an Ethernet

hub, the internal network is a switched network. Layer-2 switching is provided by

a Cisco Catalyst 1900 with support for Virtual LANs (VLAN). The VLAN switch

provides for the physical separation between trusted and untrusted IP nodes man-

dated by the policy of company B. Vlan port assignments will be handled dynam-

ically by the NESTOR server. Company B also has a trusted subnet 10.0.1.0/24

(net-1) and untrusted subnet 10.0.9.0/24 (net-9). Virtual LANs with IDs 1 and 9

physically separate traffic to net-1 and net-9 respectively. A Linux workstation pro-

vides routing, firewall and DHCP services to the internal network. The router has

three interfaces, one connected to vlan-1/net-1, another connected to vlan-9/net-9

and the last connected to the external network. Static routes are configured to

route traffic from the internal networks (net-1 and net-9) to the external network.

Firewall rules prevent any incoming traffic from the external network to the in-

ternal network with the exception of established TCP connections to net-9 (guest

network). Furthermore, a firewall rule restricts outgoing connections from net-9 ex-

clusively to the VPN port of external network destinations. Obviously, no routing

is configured between net-9 and net-1. The DHCP server on the host is configured

to listen to the two net-1 and net-9 interfaces for DHCP requests. All unknown

hosts are allocated IP addresses from net-9, while a list of trusted hosts (based

on their unique client ID which may be their Ethernet address) are set to be allo-

cated addresses from net-1. It is assumed that the list of trusted client identifiers

155

is supplied to the NESTOR server. These trusted identifiers will be dynamically

configured into the DHCP server by NESTOR.

The networks of the two companies were connected through a common Eth-

ernet hub, with static routes configured between the gateways. In this experiment,

the NESTOR servers in each company operate independently of each other. The

details on how dynamic configuration of the aforementioned networks occurs are

discussed in the next section.

Constraints and Automatic Reconfiguration

We now outline how Jane gets transparent access without violating the security

policy of either network. The policy of company B not to allow guest machines to

gain access to the internal (trusted) network can be translated into the following

topology-dependent constraints on device and service configuration. (The next

section describes how these constraints can be expressed formally in the NESTOR

configuration language).

• Switch ports to which trusted hosts hosts are connected must belong to the

internal (net-1) VLAN. Switch ports to which guest (or unknown) hosts are

connected must be configured for the guest VLAN (net-9). In cases where

internal and guest hosts are connected to the same switch port, the port

should be set to the guest VLAN (an alternative would be to disable the

port). Violation of this predicate is handled by reconfiguring the VLAN

membership of the offending port.

• A firewall rule should prohibit any traffic (including the guest network) from

entering the internal network (except for established TCP connections).

• The DHCP server should allocate internal IP addresses only to trusted hosts.

156

Additionally, company B policy further restricts guest Internet access by

limiting guest connections to remote VPN servers. The goal of this policy is to

prevent guests from attacking or misusing other networks while in ownership of

a company B IP address. This policy is translated into a simple configuration

constraint limiting all outgoing traffic from the guest network to well-known ports

of VPN services.

The security policy of company A states that remote (VPN) users should

receive limited services. In this example, remote users are restricted to accessing

only their home directory. We map this policy (there are other ways) to file server

configuration by initially denying all directory mounts by VPN hosts. When users

sign in with the VPN server to obtain an IP address, permission is added for

the particular host to temporarily mount the user’s directory. The constraint on

file server configuration states that VPN hosts should only be allowed to mount

the directory whose user is logged on to the VPN server with that address. This

constraint spans the configuration of the VPN server as well as the file server.

In the overall scenario, these constraints (predicates and actions) achieve

dynamic reconfiguration in the following manner :

1. User Jane cannot find an available Ethernet port for her laptop, so she “bor-

rows” the network connection of an existing host (thereby obtaining physical

access to the internal network).

2. Jane’s laptop requests configuration information from the DHCP server,

3. The DHCP server returns a lease on a guest network IP address since the

MAC address of Jane’s laptop is not included in the DHCP daemon internal

network list (at this point the laptop’s IP configuration is inconsistent with

the link-layer network to which it is connected).

4. By polling the Ethernet switch, the company B NESTOR server discovers

157

the new laptop host. The constraint manager evaluates the constraints which

might be violated by the connection of a new host to the switch. The se-

curity constraint will be found to be violated, since an unknown (therefore

untrusted) host is connected to the internal network. The action component

of the constraint is executed, resulting in the reconfiguration of the affected

switch port VLAN. Note, that if Jane had connected to an unused switch

port, which by default is assigned to the guest network, this constraint would

not have been violated. Future prototypes will include mechanisms other

than polling.

5. Jane’s laptop is now connected to the guest network and will attempt to

establish a VPN connection with its home server (at company A) (any other

access request, such as web access, is filtered by the firewall of company B).

6. Once the laptop has authenticated with company A’s VPN server it is assigned

a virtual IP address.

7. The NESTOR server of company A detects this new lease (by polling for

the configuration state of the VPN server). The constraint on the file server

configuration will be violated since the file server will not be configured to

allow home directory mounts from that IP address. This violation will be

handled by adding the IP address of the VPN host to the access list of the

user’s home directory on the file server.

8. After completing her work, Jane disconnects from the VPN server. Again,

the company A NESTOR server detects this change, and re-evaluates the

affected constraints, resulting in the removal of the file access permission for

the previously allocated VPN IP address.

9. After Jane disconnects her laptop from the company B network, and gra-

ciously reconnects the host whose connection she had “borrowed”, the com-

158

interface companyB : : EthernetVlanSwitch {
relationshipset con s i s t sO fPor t s , EthernetVlanSwitchPort , partOf ;
attribute I p I n t e r f a c e i p I n t e r f a c e ;

}

interface companyB : : EthernetVlanSwitchPort : CompanyB : : Node {
attribute boolean i sEnab led ;
r eadon ly attribute i n t portNumber ;
attribute i n t v lanId ;
relationshipset forwardsNodes , EthernetNode , forwardedBy ;
relationship partOf , EthernetVlanSwitch , c on s i s t sO fPor t s ;

}

interface companyB : : SecurityManager {
attribute boolean i sTrus ted ;
relationshipset manages , Node , secur ityManager ;

}

Table 5.1: Network Model Example

pany B NESTOR server will detect this event and the ensuing constraint

violation, leading to the reassignment of the affected switch port back to the

internal VLAN.

5.3.2 Network Model and Configuration Constraints

The first step in using NESTOR for our experiment is modeling the network. This

section gives some examples of model definitions for network B. Models are ex-

pressed in the MODEL language[57] which is an extension of the CORBA[94] IDL

with support for relationships, and other features useful for event correlation. Ta-

ble 5.1 shows a subset of the model definitions for company B.

Consider the EthernetVlanSwitchPort interface definition. This interface

models the configuration of a port in an Ethernet switch supporting VLANs. The

MODEL definition states that the interface is part of the companyB package and

inherits from the Node interface. Three attributes are declared to model: the state

159

of the switch port (enabled/disabled), the port number (a read-only value), and

the integer ID of the Virtual Lan to which the port is assigned. The relationship

definitions declare a many-to-one relation mapping the port to its enclosing switch,

and a one-to-many relation associating the port with the Ethernet (layer 2) nodes

which are actively connected to the port.

The EthernetVlanSwitchPort interface represents a device-independent con-

figuration model for an Ethernet switch port supporting Virtual LANs (VLAN). In

order to instantiate such an object in the NESTOR repository, an implementation

of that interface must be provided with support for the configuration protocols of

the actual device being modeled. The next step will therefore be to compile the

MODEL interface definitions into a target implementation language. The current

NESTOR prototype is built in the Java language and the model compiler con-

verts the extended IDL interface definitions to a set of Java interfaces. As part of

the compilation, attribute definitions are converted to a pair of get/set methods

(one for read-only attributes) following a simple design pattern. Relationships are

compiled into references to collections implementing the OSL (Object Spreadsheet

Language) collection semantics.

The Ethernet switch supporting VLANs used in this experiment was a

CISCO Catalyst 1900 with enterprise edition firmware. The Catalyst supports sev-

eral SNMP MIBs and may also be configured using a menu system as well as from

the command-line. The Bridge SNMP MIB dot1dTpPortTable table was used to

instrument the consistsOfPorts attribute of the Catalyst EthernetVlanSwitch

implementation. The implementation class registers with the NESTOR SNMP

adaptor to receive notification of updates to the table. When a new port is detected,

a new instance of the CiscoCatalyst1900Port class is constructed. The port

forwardsNodes relationship is instrumented through the Bridge MIB dot1dTpFdbTable.

See [95] for details of the components of these tables. The VLAN ID attribute is

160

context EthernetVlanSwitchPort : inv :
i sEnab led and i sTru s ted (v lanId)

implies forwardNodes−>forAll (n | n . i sTru s ted)

Table 5.2: A Declarative Constraint: Trusted ports should only forward frames of
trusted nodes

instrumented using the Cisco IOS adaptor parameterized by the command sequence

appropriate for obtaining the VLAN id of this port. The CiscoCatalyst1900Port

class, implementing the companyB.EthernetVlanSwitchPort interface, was defined

with a single constructor parameterized by the IP address of the managed switch,

the switch port number, and an SNMP and IOS authentication object. The au-

thentication objects encapsulate protocol-specific security access information such

as passwords and certificates.

Programming Constraints

Based on this model of the network, constraints are defined to maintain the security

policies of each domain. To take an example, consider the constraint caused by

company B’s policy that untrusted hosts should not have access to the internal

network. This policy is translated into several constraints on the configuration of

network devices. For example, a constraint on the switch states that trusted ports

(i.e., those configured for a trusted VLAN) must only be connected to trusted

hosts. This constraint, expressed in the OCL language, is shown in table 5.2. In

this example all instances of the EthernetVlanSwitchPort which are enabled and

whose VLAN ID is assigned to a trusted LAN, are required to only be connected

to trusted hosts.

Self-management is achieved by programming a change rule which maintains

this constraint. For example, violation of the above constraint, that trusted ports

should only forward frames for trusted nodes, may be handled by programming

161

context EthernetVlanSwitchPort :
v lanId := i f (i sTrus ted) and

(forwardNodes−>exists (n | not n . i sTru s ted)) then
trustedID

else
untrustedID ;

Table 5.3: Switch VLAN ID propagation rule

the computation of switch port VLAN IDs based on port membership, as shown in

figure 5.3

Populating the Repository

The NESTOR repository may be populated manually or using a graphical user

interface that can generate objects given the model and the appropriate parameter

values. The repository is accessed through a Java Remote Method Invocation

API. The API supports methods for adding and removing objects, locating objects

based on the class and attributes, and initiating transactions. To add an object

to the repository a systems administrator initiates a transaction and then adds

the object within the transaction. The object must implement one or more model

interfaces and support the serializable interface (i.e. may be stored as a byte string

for transport over the network). Storage in the repository is provided on a lease

basis which must be renewed by some entity such as a lease renewal manager, or the

object itself. If a lease expires an object may be killed or archived if possible. If there

are constraints that may be affected, an error message is raised on the console. This

obviates the need for vigorous garbage collection. The current NESTOR prototype

utilizes the Jini[20] distributed leasing, event, and transaction APIs.

The repository can also be populated with the help of a utility for topology

discovery. The utility executes on a host, and periodically pings each network

162

address to establish a map of active nodes1. Currently, our topology manager

accepts classless IP network and netmask combinations. Once a node is detected as

being active, the utility attempts to extract information using the SNMP protocol,

and tests for service availability by attempting to connecting to different services

(such as Telnet, HTTP, NFS, FTP, etc). In its current incarnation, the topology

manager is mostly focused on discovering workstations (such as Linux and Windows

NT boxes) and supplying information about their interface configurations, route

tables, and active services.

Returning to our scenario, the administrator constructs a new instance of the

CiscoCatalyst1900Switch object using the IP address assigned to the manage-

ment interface of the VLAN switch and the appropriate authentication information

for administering the switch which are the SNMP community and IOS passwords.

NESTOR repository objects implement an initialization and control interface (anal-

ogous to Java applets) so that their execution can be controlled by the NESTOR

server. An object may query the repository for services such as adapters using an

instance of the RepositoryContext interface. For example, the switch object will

use an SNMP and IOS adaptor instances. New adaptors may also be used provided

they implement the NestorAdaptor interface). After obtaining the necessary adap-

tor references, the object will subscribe for notification of changes in the relevant

SNMP objects, and IOS results.

When the administrator commits the transaction to create the new switch

object, the transaction manager will verify that the addition did not violate any

constraints. The constraint, shown in table 5.2, may be violated when new in-

stances of objects implementing the EthernetVlanSwitchPort interfaces are cre-

ated. Assume the initial switch state does not violate the aforementioned constraint.

When user Jane connects her laptop computer to network B, and in particular to

1The security warnings that these may generate will have to be handled.

163

a switch port, the switch SNMP bridge MIB table dot1dTpFdbTable will add the

laptop’s MAC address. At the time of the next poll by the NESTOR SNMP

adapter, the change will be detected resulting in notification of the subscribing

CiscoCatalyst1900Switch object. The switch object will look up for an instance

of EthernetNode with the same MAC address, creating a new instance if one is not

found. The EthernetNode is then added to the switch’s forwardsNodes relation.

At the point where all propagated changes have been reflected in the model, the

switch object will commit the changes. At this point the constraint manager will

again verify the set of constraints which may have been affected by the transac-

tion. In this example, since Jane connected her laptop to a switch port previously

assigned to the internal network, the constraint on switch port VLAN state will be

violated, and the policy script will be executed as outlined earlier in the paper.

5.4 Active Networks

The Active Networks Daemon (Anetd)[92] is currently being used to deploy and

manage EEs on the DARPA ABONE[96]. This section will present the automation

of Anetd configuration using NESTOR.

5.4.1 Anetd Data Modeling

The first step in managing a resource in NESTOR is to identify the relevant model

classes. In the case of Anetd, a class will be associated with each Anetd process, and

will be related to processes (EEs) owned by ABONE users, and executing on the

Internet ABONE host. The standard NESTOR model contains class abstractions

for Internet hosts, users and processes. The Anetd-specific classes will be expressed

in the Resource Definition Language (RDL) as extensions to the base model and the

AN-related classes shown in table 5.4. In this example, fragments of two interfaces

164

i n t e r f a c e anetd : : Anetd : system : : App l icat ion {
a t t r i b u t e S t r ing v e r s i on ;
a t t r i b u t e boolean isPr imary ;
r e l a t i o n s h i p s e t manages , AnetdProcess , managedBy ;

// Also : port , javaVM , ch i l dPor t , . . .
}

i n t e r f a c e anetd : : AnetdProcess : anets : : ExecutionEnvironment {
r e l a t i o n s h i p managedBy , Anetd , manages ;
a t t r i b u t e boolean isPermanent ;

// I n h e r i t s : anepID , servedBy (Node) , s e r v e s (AA)
//
// Also : f i lePreloadURL , workDirectory
// i sAu toKi l l , s t andardInpu tF i l e , . . .

}

Table 5.4: Anetd daemon and process RDL definitions

context anets : : ActiveNode
s e r v e sApp l i c a t i on
−>select (app : System : : App l icat ion |

app . oclIsKindOf (anetd : : Anetd))
−>select (ad : anetd : : Anetd | ad . isPr imary)
−>s i z e = 1

Table 5.5: Exactly one primary Anetd per Active Node (OPL constraint)

are shown in table 5.4, one for modeling an Anetd process (Anetd), and another

for the EEs hosted (AnetdProcess).

Note that the service provided by Anetd is partially, but not fully, that

of the Node OS. Therefore, instead of extending the anets::ActiveNode class we

establish a new ”manage” relation between an AnetdProcess and an Anetd instance.

An AnetdProcess object inherits the generic Execution Environment functions,

and extends them with Anetd-specific parameters, such as the work directory, and

whether the process is permanent (persistent across restarts).

165

5.4.2 Anetd Semantic Modeling

Once the RDL data model has been designed, the model author may add intrinsic

constraints and propagation rules expressed in the Object Policy Language (OPL)

and the Object Spreadsheet Language (OSL). For example, it may be stated that

there should be exactly one primary Anetd within each 1 ActiveNode. Similarly, a

propagation rule may state that if the Java installation changes in the ActiveNode,

this should be propagated to the configuration of the local Anetd objects. A OPL

example for the former constraint is shown in table 5.5. It states that for each

instance of ActiveNode, identify the Anetd processes it is hosting, and assert that

exactly one of these processes is primary.

In case of failure of the primary Anetd, the above constraint will be violated

(size = 0). NESTOR enables automated recovery from such failures via a propa-

gation rule that restarts the failed Anetd daemon, or assigns a new primary. The

propagation rule shown in table 5.6 performs the latter by selecting the process

with the lowest port number to act as primary. The rule operates by identifying

the Anetd objects in each ActiveNode, sorting them by port number, and assigning

the lowest numbered one be the primary.

It is also possible, that the failure of a non-primary Anetd process will break

the forwarding chain. Recovery from such inconsistent states can also be automated

via a propagation rule. The propagation rule shown in table 5.7 sorts the list of

Anetd objects in and sets the childPort attribute to the port of the previous Anetd

daemon. Note that both rules shown must agree on the election process, that is,

that the sort is based on the port number. However, the order in which the rules are

applied is not important since there are no cyclical dependencies. The NESTOR

propagation manager checks for cyclical definitions and rejects such rules, similarly

to spreadsheets.

166

context anets : : Anetd
isPr imary := partOf . s e r v e s

−>select (a | a in s t an c eo f Anetd)
−>sortBy (a | port , I n t eg e r .LESS THAN)
−> f i r s t () == this

Table 5.6: Primary Election (OSL propagation rules)

context anets : : Anetd
ch i ldPor t :=

l e t daemons = partOf . s e r v e s
−>select (a | a in s t an c eo f Anetd)
−>sortBy (a | port , I n t eg e r .LESS THAN)

in
i f (daemons−> f i r s t () == this)

0
else

daemons−>get (indexOf (this) − 1) . port ;

Table 5.7: Forwarding chain (OSL propagation rules)

5.4.3 Anetd Adapter

Once the data and semantic models have been defined, an adapter must be provided

that will instrument Anetd processes as objects in the repository. In particular, this

adapter must support bi-directional instrumentation, with read as well as write

capabilities.

The adapter functionality may be integrated into the Anetd source code, by

embedding NESTOR directory management API functions, or may be provided

externally via some polling or publish-subscribe mechanism. By embedding the

NESTOR model into the service it is possible to obtain fast response to changes,

with the lowest polling overhead. It is also possible to avoid storing any persistent

configuration data by taking advantage of the NESTOR repository persistence ca-

pabilities. In many cases, such as proprietary hardware and software, it may not be

possible to modify the service itself. In such cases, the adapter must be executed as

167

an external process that polls and sets the configuration of the service using some

external protocol. Examples include adapters using protocols such as SNMP and

LDAP, those simulating terminal input such as CISCO IOS adapters, and those

parsing and modifying configuration files, such as an HTTPd adapter.

The Anetd adapter developed in this example will be external and will uti-

lize the Anetd SC[92] control protocol. The protocol supports remote polling and

configuration of Anetd processes. Ideally, the adapter will provide its own native

implementation of the SC protocol client. An alternative would be to use the ex-

isting Anetd distribution SC binary client as a system process and then read its

console text output. In either case, the external daemon must be able to send SC

queries and parse their response so that they can be mapped to the appropriate

NESTOR model class instances.

At startup time, the adapter will have to discover the NESTOR repository

(RDS) where the objects will be instantiated. In the current NESTOR system,

the location of the repository may be either configured, or discovered using Jini[20]

discovery. The choice of which repository to use is an open issue that is currently

being investigated.

Once the repository has been discovered, the adapter will first have to look

for existing objects that may fully, or partially represent the managed resources.

For example, the agent will have to lookup the object for the ActiveNode that

should have been instrumented by the NodeOS adapter. Also, the agent will have

to check for any objects that it has created previously, whose lease has not expired.

In order to perform these lookups, the adapter must identify key attributes that

can uniquely identify the relevant model objects. For objects previously created, it

is possible to use the agent’s unique ID. Currently, there are open issues relating

to model composition and they are being investigated. The discovery, lookup, poll

and apply process is illustrated in figure 5.4.

168

Anetd

1. Discover/
Lookup2. Poll

3. Apply/
Commit

Anetd Adapter RDS Repos.

Figure 5.4: Anetd Read Instrumentation

The adapter then enters a polling loop in which any changes in the underlying

resources are applied and committed to the model. It should be noted that because

the Anetd SC remote interface is not transactional, it is not possible to determine

if the polled state represents multiple real-world threads of change, or that these

threads have completed execution. Therefore, the adapter is forced to lump all

detected changes into a single transaction. If the transaction is aborted due to a

constraint violation, all changes will need to be rolled-back.

Due to the lack of locking mechanisms in most configuration protocols, it is

also possible that the configuration of a real element may change in the process of

performing or committing a transaction. This may occur in cases where systems

administrators bypass the NESTOR system in changing configuration, or due to

some dynamic element reconfiguration. Mechanisms for addressing this issue by

stating requirements on concurrent managed resource access are being investigated.

It should be noted, that changes occurring through the repository API are always

transactional and therefore can always be isolated and controlled.

The second function of a NESTOR adapter is to propagate changes initiated

by NESTOR application-layer transactions, or change propagation rules. The pro-

cess is illustrated in figure 5.5. Once a transaction is committed to the model, that

is, all propagation rules have been applied, and all constraints have been verified,

the repository checks if any of the effected objects are instrumented by an agent.

A special to-one relation with an agent object indicates that changes to the object

need to be propagated. In the Anetd example, changes to the instrumented objects,

169

Anetd

2. Propagate3.Push

Anetd Adapter RDS Repos.
Mgmt
Appl.

1. Set/
Commit

Figure 5.5: Anetd Set Instrumentation

such as instances of Anetd and AnetdProcess will be collected and transmitted to

the adapter. The adapter will use this information to effect the necessary changes

by issuing SC requests. In addition to attribute value modifications, the log will

contain relation modifications. For example, to deploy a new EE, a user may create

an AnetdProcess object, set its values, and then add that object to the ”manages”

relation of an Anetd object. When this change log is sent to the adapter, it will

interpret this action as a request to deploy a new EE. Similarly, an EE may be

terminated through its removal from the ”manages” relation.

An alternate scenario would involve the failure of the primary Anetd process

on the ActiveNode. The adapter would detect this failure and the corresponding

object would be removed in a repository transaction. Before the transaction was

committed, the propagation rule from table 5.6 would be fired, and an alternate

Anetd process would be selected as a primary. Assuming that no constraints were

violated, the transaction would be committed and the changes propagated to the

adapter, and then to the actual Anetd processes. It should be noted that reliance

on the SC protocol means that an Anetd instance cannot be configured if it is

unreachable or in a stopped state. In such cases, the ActiveNode adapter may be

used to kill the Anetd process and start a new one.

Authoring of agents is a labor-intensive and potentially complex process. It

is envisioned that in the future services will support standardized configuration

languages (such as XML[97]) and some form of transaction and event based config-

uration protocol that will provide better support for identifying real-world threads

170

of change. The NESTOR system provides additional library support for perform-

ing common agent tasks, such as a minimal merge of two object graphs (polled to

repository objects), and automated agent creation for popular protocols such as

SNMP. For example, it is possible to provide a generic SNMP adapter that can be

configured with a mapping between MIB tables and objects, and OIDs and object

attributes.

171

Chapter 6

Conclusion

The high cost of operating current networks is a result of limitations in the design of

existing network management architectures. Attempts to provide automation as a

layer over existing architectures will fail because they cannot satisfy the concurrency

control requirements of automation processes. Current network management oper-

ations will therefore not be capable of sustaining the growing number of networked

devices, and complex dependencies created by new web-based service architectures.

The proposed peer-to-peer organization offers significant advantages over

the traditional manager-agent (client-server) organization. The unified model al-

lows managers to discover, access and manipulate the configuration of all network

elements. Transactional access to management information creates an environ-

ment supporting safe multi-manager access, as well as recoverable configuration

change semantics. The unification of the traditional roles of manager and element

allows management functions to be distributed in different elements, supporting

autonomic behavior. Transactions establish natural policy enforcement points, and

can be used to more accurately correlate the root cause of network failures or in-

efficiencies. Distribution of element configuration creates a scalable management

infrastructure, which can continue to operate under network partition, to maintain

172

policy, and effect self-healing.

The JSpoon approach to autonomic management offers several substantive

advantages over current alternatives. Management information is consolidated with

element design and can be maintained through its life-cycle evolution. Instrumen-

tation, data models, knowledge model and their bindings can be generated and

managed through compiler support and static-time validation. Network events

can be intercepted synchronously to constrain and extend the behavior of objects.

Knowledge modules can be seamlessly incorporated with elements by vendors of

autonomic computing products, independently of the element vendors enabling

synergistic evolution of products. instrumentation, data and knowledge models

can be unified across multiple elements greatly simplifying the task of providing

autonomic self-managing capabilities of large composite systems.

Automation using existing programming techniques has met with limited

success due to challenges in configuration access, concurrency, recoverability, and

automation feature interaction. The spreadsheet acyclic change propagation model

provides a simple computation model. The OSL language for expresses spread-

sheet rules over an object-relationship configuration model, without being Turing-

complete. OSL rule sets can be statically analyzed for cyclical definitions, and for

determining optimal rule evaluation sequences. The rule evaluation algorithm uses

the information compiled from the static class model in order to maintain prop-

agation in the much larger instance model. Policy and change-management can

be scaled using a hierarchical domain approach to controlling the propagation of

changes.

6.1 Future Work

It is envisioned that the P2P repositories will be highly distributed to support

scalable operation as well as recovery during failures. Future research will determine

173

the granularity of distribution (service, node, LAN, department), and the location

of repositories for non-programmable devices, such as hubs, switches, and COTS

routers. Distribution of the repositories and adapters will require merging of partial

models. For example, a switch adapter may discover an Ethernet node identified

by a unique MAC address and proceed to generate a simple EthernetInterface

object. Later, an adapter may be provided for the host, and the interface may be

recognized as an EncryptingEthernetInterface supporting hardware based datagram

encryption.

In some cases it may also be possible to infer relations, such as co-location,

based on information collected from multiple elements. A transitive closure opera-

tion will be investigated as an OSL1 extension.

Financial spreadsheets support a visual rule development environment in

the form of cell highlighting, and cycle visualization. The results of the static

OSL analysis may be used to design equivalent visual management configuration

interfaces. Such tools will need to support hierarchical domain visualization, and

path summarization.

Network provisioning involves a planning in which the network model is

applied to a set of physical resources. Further research is needed to develop self-

provisioning mechanisms and to investigate their dynamic behaviors for network

scenarios.

174

Bibliography

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” IEEE

Computer, vol. 36, no. 1, 2003.

[2] R. Droms, “Dynamic Host Configuration Protocol,” Tech. Rep. RFC 1531,

IETF, 1993.

[3] P. Mockapetris, “Domain names - implementation and specifications,” Tech.

Rep. RFC 1035, IETF, November 1987 1987.

[4] B. Ronen, M. A. Palley, and H. C. Lucas, Jr., “Spreadsheet analysis and

design,” Commun. ACM, vol. 32, no. 1, pp. 84–93, 1989.

[5] M. Nicolett, K. Brittain, and P. Adams, “Enterprise management ROI and

cost reduction in 2003,” tech. rep., Gartner, nov 2002.

[6] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and

D. Orchard, “Web services architecture,” Tech. Rep. WD-ws-arch-20030808,

W3C, 2003.

[7] ISO, “Information processing systems - open systems interconnection - basic

reference model - part 4: Management framework,” Tech. Rep. 7498-4, ISO,

1989.

[8] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A Simple Network Manage-

ment Protocol (SNMP),” Tech. Rep. RFC 1067, IETF, 1988.

175

[9] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-

lem,” ACM Transactions on Programming Languages and Systems (TOPLAS),

vol. 4, no. 3, pp. 382–401, 1982.

[10] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed

consensus with one faulty process,” Journal of the ACM (JACM), vol. 32,

no. 2, pp. 374–382, 1985.

[11] A. Dupuy, S. Sengupta, O. Wolfson, and Y. Yemini, “Netmate : A network

management environment,” IEEE Network Magazine (special issue on network

operations and management), 1991.

[12] SMARTS, InCharge. White Plains, NY, 1997.

[13] ISO, “OSI Common Management Information Protocol (CMIP),” Tech. Rep.

ISO/IEC 9596-1, CCITT Recommendation X.711, ISO, 1988.

[14] A. Pell, K. Eshgi, J. J. Moreau, and S. Towers, “Managing in a distributed

world,” in Fourth IFIP/IEEE International Symposium on Integrated Network

Management, 1995.

[15] S. Judd and J. Strassner, “Directory-Enabled Networks : Information model

and base schema,” Tech. Rep. Version 2.0.2-2, DEN Ad Hoc Working Group,

1998.

[16] OMG, “Meta object facility (mof) specification,” Tech. Rep. Version 1.3, Ob-

ject Management Group (OMG), 1999.

[17] OMG, “Unified Modeling Language (UML),” tech. rep., Object Management

Group (OMG), 1997.

176

[18] A. Schade, P. Trommler, and M. Kaiserswerth, “Object instrumentation for

distributed applications management,” in IFIP/IEEE International Confer-

ence on Distributed Platforms, pp. 173–185, 1996.

[19] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems. Addison-

Wesley, 2 ed., 1994.

[20] Sun Microsystems, “Jini architecture specification,” tech. rep., Sun Microsys-

tems, 1998.

[21] Sun Microsystems, “Universal plug and play (UPNP,” tech. rep., Sun Mi-

crosystems, 1998.

[22] G. Banavar, M. Kaplan, R. E. Strom, and D. C. Sturman, “Information flow

based event distribution middleware,” in ICDCS Workshop on Electronic Com-

merce and Web-Based Applications, 1999.

[23] Sun Microsystems, “Java Message Service (JMS),” tech. rep., Sun Microsys-

tems, 2002.

[24] H. Hazewinkel, C. Kalbfleisch, and J. Schoenwaelder, “Definitions of managed

objects for WWW services,” Tech. Rep. RFC 2594, IETF, May 1999.

[25] S. B. Davidson, H. Garcia-Molina, and D. Skeen, “Consistency in a partitioned

network: a survey,” ACM Computing Surveys (CSUR), vol. 17, no. 3, pp. 341–

370, 1985.

[26] J.-L. Lin and M. H. Dunham, “A survey of distributed database checkpoint-

ing,” Distributed and Parallel Databases, vol. 5, no. 3, pp. 289–319, 1997.

[27] P. A. Bernstein and N. Goodman, “The failure and recovery problem for repli-

cated databases,” in Proceedings of the second annual ACM symposium on

Principles of distributed computing, 1983.

177

[28] J. K. Kim and G. G. Belford, “A protocol for failure and recovery detection

to support partitioned operation in distributed database systems,” in Proceed-

ings of 1986 fall joint computer conference on Fall joint computer conference,

pp. 1189–1196, 1986.

[29] J. Moy, “OSPF version 2,” Tech. Rep. RFC 2328, IETF, 1998.

[30] UCD, NET-SNMP, 2003. http://net-snmp.sourceforge.net/.

[31] H. Takagi, Analysis of Polling Systems. MIT Press, 1986.

[32] G. Goldszmidt and Y. Yemini, “Distributed management by delegation,” in

The 15th International Conference on Distributed Computing Systems, (Van-

couver, British Columbia), IEEE Computer Society, 1995.

[33] IETF Distributed Management (disman) Charter, “Distributed management

framework and services,” in IETF 1996 Proceedings, Dec. 1996.

[34] T. G. Griffin and G. Wilfong, “An analysis of BGP convergence properties,”

in Proceedings of the conference on Applications, technologies, architectures,

and protocols for computer communication, 1999.

[35] E. C. Jr., Z. Ge, V. Misra, and D. Towsley, “Network resilience: Exploring

cascading failures within BGP,” in Proceedings of the 40th annual Allerton

Conference on Communications, Computing and Control, 2002.

[36] S. Sengupta, A. Dupuy, J. Schwartz, and Y. Yemini, “An object-oriented model

for network management,” in Object Oriented Databases with Applications to

CASE, Englewood Cliffs, NJ: Prentice-Hall, 1991.

[37] F. Teraoka, Y. Yakote, and M. Tokoro, “A network architecture providing host

migration transparency,” Computer Communication Review, vol. 23, no. 4,

1991.

178

[38] Y. Yemini, A. Dupuy, S. Kliger, and S. Yemini, “Semantic modeling of man-

aged information,” in Second IEEE Workshop on Network Management and

Control, (Tarrytown, NY), 1993.

[39] Distributed Management Task Force (DMTF), “Common Information Model

(CIM) specification,” Tech. Rep. Version 2.2, DMTF, June 1999.

[40] S. K. Goli, J. Haritsa, and N. Roussopoulos, “ICON: A system for Implement-

ing Constraints in Object-based Networks,” in Integrated Network Manage-

ment, IV, 1995.

[41] J. e. Widom and S. e. Ceri, Active database systems: triggers and rules for

advanced processing. San Francisco, CA: Morgan Kaufmann, 1996.

[42] M. Harlander, “Central system administration in a heterogeneous unix en-

vironment,” in 8th USENIX System Administration Conference (Lisa VIII),

1994.

[43] J. Finke, “Automation of site configuration management,” in 11th USENIX

System Administration Conference (Lisa ’97), 1997.

[44] J. Abbey and M. Mulvaney, “Ganymede: An extensible and customizable

directory management framework,” in LISA XII, (Boston, MA), 1998.

[45] E. C. e. Freuder and A. K. e. Mackworth, Constraint-based reasoning. MIT

Press, 1994.

[46] E. Tsang, Foundations of Constraint Satisfaction. Academic Press - Harcourt

Brace & Company, 1993.

[47] M. Sabin, A. Bakman, E. C. Freuder, and R. D. Russel, “Constraint-based

approach to fault management for groupware services,” in International Sym-

posium on Integrated Network Management (IM’99), (Boston, MA), 1999.

179

[48] M. Sabin, R. D. Russel, and E. C. Freuder, “Generating diagnostic tools for

network fault management,” in The Fifth IFIP/IEEE International Sympo-

sium on Integrated Network Management (IM’97), (San Diego, CA), 1997.

[49] L. Wall, T. Christiansen, R. Schwartz, and S. Potter, Programming Perl.

O’Reilly & Associates, 2 ed., 1996.

[50] D. Mills, “Simple Network Time Protocol (SNTP),” Tech. Rep. RFC 2030,

IETF, 1996.

[51] Sun Microsystems, “Java Management eXtensions instrumentation and agent

specification (v.1.2),” tech. rep., Sun Microsystems, 2002.

[52] B. Lampson and H. Sturgis, “Crash recovery in a distributed data storage

system,” tech. rep., Xerox, Palo Alto Research Center, 1976.

[53] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and

Recovery in Database Systems. Addison-Wesley, 1987.

[54] T. Berners-Lee, R. Fielding, U. Irvine, and L. Masinter, “Uniform Resource

Iidentifiers (URI): Generic syntax,” Tech. Rep. RFC 2396, IETF, 1988.

[55] L. Van Der Voort and A. Siebes, “Termination and confluence of rule execu-

tion,” in 2nd International Conference on Information and Knowledge Man-

agement (CIKM 93), (Washington, DC), 1993.

[56] A. Aiken, J. M. Hellerstein, and J. Widom, “Static analysis techniques for

predicting the behavior of active database rules,” ACM Trans. Database Syst.,

vol. 20, no. 1, 1995.

[57] D. Ohsie, A. Mayer, S. Kliger, and S. Yemini, “Event modeling with the model

language : A tutorial introduction,” tech. rep., SMARTS (System Management

Arts), 14 Mamaroneck Ave., White Plains, New York, 10601, 1996.

180

[58] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie, “High speed and

robust event correlation,” IEEE Communications, May 1996.

[59] R. Enns, “XMLCONF Configuration Protocol,” Tech. Rep. draft-enns-

xmlconf-spec-00, IETF, 2003.

[60] M. Rose and K. McCloghrie, “Structure and identification of management

information for tcp/ip-based internets,” Tech. Rep. RFC 1065, IETF, 1988.

[61] M. Garschhammer, R. Hauck, H.-G. Hegering, B. Kempter, M. Langer,

M. Nerb, I. Radisic, and H. Rlle, “Towards generic service management con-

cepts - a service model based approach,” in 7th IFIP/IEEE Symposium on

Integrated Management (IM 2001), (Seattle, WA, USA), pp. 719–732, 2001.

[62] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbinger, G. Johnson, M. Mod-

vidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf, “An architecture-based

approach to self-adaptive software,” IEEE Intelligent Systems, vol. 14, no. 3,

pp. 54–62, 1999.

[63] M. Mansouri-Samani and M. Sloman, “Monitoring distributed systems,” IEEE

Network, vol. 7, no. 6, pp. 20–30, 1993.

[64] Y. Yemini, A. Konstantinou, and D. Florissi, “NESTOR: An architecture for

NEtwork Self-managemenT and ORganization,” IEEE JSAC, vol. 18, no. 5,

2000.

[65] A. Konstantinou, Y. Yemini, and D. Florissi, “Towards self-configuring net-

works,” in DARPA Active Networks Conference and Exposition (DANCE),

IEEE Press, 2002.

181

[66] L. Ricciulli, P. Porras, P. Lincoln, P. Kakkar, and S. Dawson, “An adaptable

network control and reporting system (ancors),” in DARPA Active Networks

Conference and Exposition (DANCE), (California, USA), 2002.

[67] D. Garlan and B. Schmerl, “Model-based adaptation for self-healing sys-

tems,” in ACM SIGSOFT Workshop on Self-Healing Systems (WOSS’02),

(Charleston, S.C.), pp. 27–32, 2002.

[68] I. Georgiadis, J. Magee, and J. Kramer, “Self-organizing software architec-

tures for distributed systems,” in ACM SIGSOFT Workshop on Self-Healing

Systems (WOSS’02), (Charleston, S.C.), 2002.

[69] N. Almasri and S. Frnot, “Dynamic instrumentation for the management of

EJB-based applications,” in Systmes composants adaptables et extensibles,

(Grenoble, France), 2002.

[70] S. DaSilva, Netscript: A Language System for Active Networks. PhD thesis,

Columbia University, 2002.

[71] OMG, “Object Constraint Language specification (OCL),” Tech. Rep. ad/97-

08-08 (version 1.1), Object Management Group (OMG), September 1, 1997

1997.

[72] Y. Leontiev, M. T. Özsu, and D. Szafron, “On type systems for object-oriented

database programming languages,” ACM Computing Surveys (CSUR), vol. 34,

no. 4, pp. 409–449, 2002.

[73] R. W. Sebesta, Concepts of Programming Languages. Addison-Wesley, 3rd ed.,

1996.

[74] UPNP Forum, “JavaDoc 1.4 Tool Documentation,” Tech. Rep.

http://www.upnp.org/, UPNP Forum,, 2003.

182

[75] D. E. Knuth, The Art of Computer Programming: Fundamental Algorithms,

vol. 1. Addison-Wesley, 1973.

[76] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings

of the third annual ACM symposium on Theory of computing, pp. 151–158,

1971.

[77] Y. V. Matiyasevich, Hilbert’s Tenth Problem. MIT Press, 1993.

[78] G. Graefe, “Query evaluation techniques for large databases,” ACM Computing

Surveys (CSUR), vol. 25, no. 2, pp. 73–169, 1993.

[79] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” Tech. Rep.

RFC 1771, IETF, Mar. 1995.

[80] D. Bricklin, “VisiCalc,” tech. rep., Lotus Corp., 1978.

[81] R. W. Taylor and R. L. Frank, “CODASYL data-base management systems,”

ACM Computing Surveys, vol. 8, Mar. 1976.

[82] S. Ceri and J. Widom, “Deriving production rules for constraint maintenance,”

in Proceedings of the 16th VLDB Conference (D. McLeod, R. Sacks-Davis, and

H. Schek, eds.), (Brisbane, Australia), pp. 566–577, 1990.

[83] L. G. Bourma and H. Velthuijsen, eds., Feature Interactions in Telecommuni-

cations Systems. IOS Press, 1994.

[84] T. Bowen, F. Dworack, C. Chow, N. Griffeth, G. Herman, and Y.-J. Lin, “The

feature interaction problem in telecommunications systems,” in Seventh Inter-

national Conference on Software Engineering for Telecommunication Switching

Systems (SETTS), pp. 59–62, 1989.

183

[85] G. Kaiser, P. Gross, G. Kc, J. Parekh, and G. Valetto, “An approach to

autonomizing legacy systems,” in Workshop on Self-Healing, Adaptive and

Self-MANaged Systems, June 2002.

[86] J. Rumbaugh, “Controlling propagation of operations using attributes on re-

lations,” in Conference proceedings on Object-oriented programming systems,

languages and applications, pp. 285–296, ACM Press, 1988.

[87] A. V. Shah, J. H. Hamel, R. A. Borsari, and J. E. Rumbaugh, “Dsm: an object-

relationship modeling language,” in Conference proceedings on Object-oriented

programming systems, languages and applications, pp. 191–202, 1989.

[88] H. J. C. Ellis, S. A. Demurjian, F. J. Maryanski, G. M. Beshers, and J. Peck-

ham, “Extending the behavioral capabilities of the object-oriented paradigm

with an active model of propagation,” in Proceedings of the 1990 ACM annual

conference on Cooperation, pp. 319–325, 1990.

[89] DARPA ITO, “Active networks (http://www.darpa.mil/ito/research/anets/).”

[90] G. Su and Y. Yemini, “Virtual Active Networks: towards multi-edged network

computing,” Computer Networks, vol. 36, no. 2/3, pp. 153–168, 2001.

[91] J. Burns, P. Gurung, D. Martin, S. Rajagopalan, P. Rao, D. Rosenbluth,

and A. Surendran, “Management of network security policy by self-securing

networks,” in DARPA Information Survivability Conference and Exposition

(DISCEX II), (Anaheim, California), 2001.

[92] L. Ricciulli, “Anetd: Active NETworks Daemon (v1.0),” Tech. Rep.

http://www.csl.sri.com/ancors/anetd/, SRI, 1998.

[93] O. Titz, “CIPE - Crypto IP Encapsulation,” tech. rep., INKA, May 1997.

http://sites.inka.de/bigred/devel/cipe.html.

184

[94] OMG, “CORBA/IIOP 2.2 specification,” Tech. Rep. formal/98-07-01, Object

Management Group (OMG), 1998.

[95] E. Decker, P. Langille, A. Rijsinghani, and K. McCloghrie, “Definitions of

managed objects for bridges,” Tech. Rep. RFC 1493, IETF, July 1993.

[96] ITO, “Active network backbone (ABone),” Tech. Rep. ISI

(http://www.isi.edu/abone).

[97] T. Bray, J. Paoli, C. Sperberg-McQueen, and E. Maler, “The eXtensible

Markup Language (XML) 1.0,” tech. rep., W3C, 2000.

