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Abstract 

Current networks require ad-hoc operating 
procedures by expert administrators to handle 
changes. These configuration management operations 
are costly and error prone. Active networks[2, 3] 
involve particularly fast dynamics of change that 
cannot depend on operators and must be automated. 
This paper describes an architecture called NESTOR 
that seeks to replace labor-intensive configuration 
management with one that is automated and software-
intensive.  Network element configuration state is 
represented in a unified object-relationship model. 
Management is automated via policy rules that control 
change propagation across model objects.  
Configuration constraints assure the consistency of 
model transactions.  Model objects are stored in a 
distributed repository supporting atomicity and 
recovery of configuration change transactions.  
Element adapters are responsible for populating the 
repository with configuration objects, and for pushing 
committed changes to the underlying network 
elements. NESTOR has been implemented in two 
complementary versions and is now being applied to 
automate several configuration management scenarios 
of increasing complexity, with encouraging results. 
 
Index Terms -- configuration management, network 
modeling, change propagation, polic, self-organizing 
systems, active networks, directory services. 
 

1 INTRODUCTION 

Current networks require ad-hoc operating procedures 
by expert administrators to handle changes -- from 
installing or removing network elements, to reconfiguring 
them. These configuration change management operations 
are costly, error prone, can result in unpredictable failures 
and inefficiencies, may involve costly recovery and limit 
the speed of network change dynamics. Active 
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networks[2, 3] involve particularly fast dynamics of 
changing element configurations due to the downloading 
and executing of Active Applications (AAs).  An AA 
needs to configure its own parameters, and change those 
of its Execution Environment (EEs); the EE, in turn, may 
have to change node configuration parameters. These 
changes cannot depend on operators and must be 
automated as part of launching an AA. Furthermore, the 
software that automates configuration change management 
may need to be dynamically updated as new AAs are 
loaded and executed; it is therefore active itself and 
requires specialized configuration management AAs.  In 
general, a self-configuring network is one that automates 
configuration management. This paper describes self-
configuring network technologies developed by the 
NESTOR project[4]. 

Several factors make the design of self-configuring 
networks challenging: 

1. The change propagation problem: A configuration 
management task typically requires changes in multiple 
interdependent elements.  For example, provisioning a 
frame relay virtual circuit to support an IP link between 
two routers requires configuration changes in underlying 
multiplexers, frame relay switches and routers. Self-
configuring software needs to: 

• Recognize these different elements, their 
relationships and configuration states – network 
topology discovery;  

• Represent the knowledge of the sequence of changes 
in these elements – change propagation rules; 

• Effect the changes in each element through 
heterogeneous widely varying proprietary 
instrumentations, configuration tools and operational 
procedures; and coordinate these changes with those 
caused by built-in element procedures – handle 
element heterogeneity and spontaneous changes; and 

• Enable recovery and undoing of changes, in case of 
failures – recoverability.  

 2. The configuration policy problem: Configuration 
changes may lead to inconsistent configuration states 
resulting in operational failures and inefficiencies. For 
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example, consider an active network AA to prevent denial-
of-service (DOS) attack through traffic filtering. This AA 
requires configuration of the respective EE, the node OS 
and the network hardware classifiers. A mismatched 
configuration could lead to inefficient allocation of 
underlying resources, turning the active node into a traffic 
bottleneck, potentially increasing the damage of a DOS 
attack. An inconsistent configuration may cause not only 
traffic loss, but also intermittent crash of the node. 
Therefore, a self-configuring network needs to: 

• Represent policy knowledge about configuration 
consistency relationships – represent policy 
constraints 

• Enforce these policy constraints to assure consistent 
configurations – enforce policies 

• Enable organizations to program policy constraints to 
effect their operational policies – programmable 
policies 

3. The composition problem: A self-configuring 
network needs to adapt the change propagation rules and 
policy constraints to the network configuration. It must 
compose these rules and constraints from component 
change propagation rules and policy constraints associated 
with individual elements. For example, when an IP link is 
provisioned over a frame-relay VC, the change 
propagation rules and policies associated with underlying 
multiplexers, frame relay switches and routers must be 
composed to effect the configuration changes associated 
with these elements. 

Figure 1: Architecture of a Self-Configuring Network 

These problems suggest a four-layered architectural 
organization of self-configuring networks as depicted in 
Figure 1. Applications that access or activate self-
configuration tasks execute at the top layer. The Self-
Configuration Management layer maintains and applies 
change propagation rules and policy constraints to the 
Configuration Model. The Configuration Modeling layer 
consists of software to discover and maintain network 
topology and element configuration data. The 
Configuration Modeling layer uses adapters to monitor 
and control the underlying network elements. At the 
lowest layer reside the Network Elements to be managed.  

In a typical scenario, say provisioning a frame-relay 
VC between IP routers, a provisioning application 

activates the Self-Configuration Management layer 
software. This software computes and affects the 
respective change propagation rules on the Configuration 
Model, and enforces policy constraints. The Self-
Configuration Management software propagates changes 
to the Configuration Model of the underlying multiplexers, 
frame relay switches and routers. The Self-Configuration 
Management layer performs composition as follows. 
When an element is discovered, its model is instantiated 
by the Configuration Modeling Layer, which maintains the 
topology of its relationships with other elements. The 
change propagation rules and policy constraints associated 
with this element are then compiled with change 
propagation and constraints of related elements. These 
change propagation rules and policy constraints are then 
affected whenever a respective change applies to the 
element. Committed changes to the Configuration 
Modeling layer are then pushed to the actual network 
elements through adapters. 

For example, consider an active network using an AA 
for protection against denial-of-service  (DOS) attack. 
When the Configuration Modeling Layer discovers a new 
source of traffic: 

1. The model is updated to indicate the relationship of 
this new source to the active nodes in the network; 

2. The DOS protection application, at the Application 
layer, may dispatch AAs to several of these active 
nodes to filter traffic from the new source; 

3. This results in updates to the Configuration Model to 
reflect these new AAs; 

4. When these AAs are installed at the respective active 
nodes, the change propagation rules of the Self-
configuration Management layer are activated to 
configure the EEs and node resources; 

5. Similarly, policy constraints are enforced to assure 
that the AA, EE and node configurations are 
consistent with operations policies; 

6. Once this configuration change transaction is 
completed, the Configuration Modeling layer affects 
these changes to network elements and activates the 
AAs. 

Notice that the architectural model enables multiple 
approaches to organize such active DOS protection. It is 
possible that the control logic of the protection AAs 
resides entirely with the active DOS protection 
applications, and the Self-Configuration layer is only used 
to propagate configuration changes and enforce operations 
policies; this is depicted in Figure 2. Alternatively, it is 
possible that the logic of the active DOS protection 
entirely resides with the Self-Configuration Management 
layer. Under this model, the deployment of DOS-
protection-AAs is controlled by change propagation rules 

Applications Layer 

Self-Configuration Management Layer 

Configuration Modeling Layer 

Network Elements 
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automatically without complex actions by operations 
administrators. 

• Operations administration becomes scalable, with 
operations administration staff and expertise 
leveraged to manage a network of any size through 
programmed self-configuring configuration 
management rules and policies. 

The rest of the paper is organized as follows.  Sections 
2 and 3 introduce the role of data and semantic modeling 
in network management.  Section 4 presents the NESTOR, 
architecture and illustrates its operations through an 
example.  Section 5 discusses the prototype NESTOR 
implementation, followed by Section 6 on related work, 
Section 7 on future work. The paper concludes with a 
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igure 2: Self-configuring Active Protection 
Against Denial-of-Service Attacks 
forced by policy constraints whenever a suspicious 
urce of traffic is discovered. Other architectures are 
e. 
what follows we proceed with a more detailed 

sion of a self-configuring network architecture and 
tive technologies, developed by the NESTOR 
 to implement the architectural strategy introduced 
   

STOR is concerned with several technical 
ges: 
ow to unify access to heterogeneous configuration 
atabases and repositories so that configuration 
anagement tasks can be programmed and executed 

y software rather than manually, 
ow to code knowledge of configuration consistency 

ules in a composable form, and enforce these rules 
rough configuration changes, 
ow to support rollback and/or recovery of 
perational configuration states, 
ow to detect and handle emergent inconsistencies 
etween configuration states and states controlled by 
nderlying built-in procedures. 
STOR provides comprehensive self-configuring 
k software: 
ll configuration changes can be systematically 

utomated reducing the complexity, time and cost of 
perations administration, 
ystem integrity and configuration consistency 
rough changes can be assured, unlike current 
anual operations, 
ynamic changes can be entirely automated; a 
etwork can change subject to very rapid dynamics, 
hich is not possible with current manual operations, 
 network can be restored to a consistent 

onfiguration and recover from failure modes 

summary section. 

2 CONFIGURATION DATA MODELING 

The goal of configuration modeling is to provide a 
unified view of all data and knowledge needed to support 
automated configuration management.  Currently, 
configuration information is spread across different 
element-specific repositories.  Relationships between 
different configuration elements are implicit and require 
the development of special tools to be discovered.  
Gathering, correlating, and visualizing a system-wide 
picture of configuration is a daunting and sometimes 
impossible task.  Different repositories contain replicated 
and interdependent configuration information, which can 
often be inconsistent.  Unlike network monitoring, which 
has benefited from the wide adoption of the Simple 
Network Management Protocol (SNMP)[5], there has 
been no widely accepted standard for network 
configuration. Each repository employs a different and 
vendor-specific mechanism for accessing and 
manipulating configuration information.  Configuration 
modeling addresses these issues by providing a unified 
semantic layer enabling the creation of portable, vendor-
independent configuration tools.   

Configuration models in the NESTOR system are 
expressed using the Resource Definition Language (RDL).  
RDL is an object-oriented interface language that supports 
the specification of resources as objects and their 
relationships.  Object-orientation provides important 
clustering of configuration and behavior through interface 
inheritance and hierarchy mechanisms.  Interfaces define 
generic behaviors of objects and inheritance supports 
abstraction of common features.  Relationships between 
objects capture interdependencies through hierarchical 
structures, as well as of distribution.  Finally, objects 
encapsulate the methods for accessing the underlying 
element instrumentation.  Object-based approaches have 
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been previously applied in modeling networks in various 
systems including NETMATE[6], SMARTS InCharge[7], 
CMIP/GDMO[8], Dolphin[9] and DEN[10]/MOF[11]. 

The current implementation of RDL is a subset of 
MODEL[12, 13], a language for modeling network 
systems for event correlation.  MODEL extends the 
CORBA Interface Definition Language (IDL)[14] with 
support for instrumented and computed attributes, 
declaration of problems (events), and association 
relationships for modeling event propagation.  
Instrumented attributes are bound to values stored in the 
managed element, whereas computed attributes are bound 
to an expression that is evaluated dynamically.  

 
interface anets::ActiveNode

: nestor::system::NetworkedSystem {
readonly attribute String nodeOSVersion;
relationshipset serves,

ExecutionEnvironment,
servedBy;

}
interface anets::ExecutionEnvironment

: nestor::system::Process {
attribute int anepID "Anet ID";
relationship servedBy, ActiveNode,

serves;
relationshipset serves,

ActiveApplication,
servedBy;

}
interface anets::ActiveApplication { … }

Figure 3: Resource Definition Language Examples 

Figure 3 depicts fragments of the model of an Active 
Network[15] node expressed in RDL.  Interfaces are pure 
abstract classes, which may be scoped in a package. 
Packages are a requirement in an environment where 
models are likely to be imported from external sources, 
such as vendors or standards bodies.  Interface definitions 
may include attribute, and relationship declarations.  In the 
ActiveNode example, the first statement declares a 
read-only string attribute named “nodeOSVersion”, 
which stores the version of the Active Networks 
NodeOS[16] specification supported by this Active Node.  
The second statement declares a to-many association 
between this interface and classes implementing the 
interface ExecutionEnvironment.   Associations are 
declared by naming both ends (role names), the type of the 
association class, and the multiplicity of the association 
(to-one, to-set, or to-sequence).  In the example, the 
association between ActiveNode and Execution
Environment is specified as one-to-many.  The model 
reflects the fact that objects of type ActiveNode may 
host one or more Active Execution Environments (EEs). 
The relationship servedBy goes in the other direction, 
from an ExecutionEnvironment to an Active

Node.  The “nestor::system” scope in the 
declaration of ActiveNode denotes the NETMATE[6] 
schema, which serves as the base classes for the 
construction of NESTOR classes. 

These resource models constructed using RDL 
incorporate essential information for self-management and 
self-organization that is otherwise hidden in obscure 
operational manuals, requires complex discovery 
mechanisms, or is just unavailable. The models enable 
simple, uniform, and secure access and manipulation of 
resource information.  For example, consider the hostname 
attribute of the ActiveNode interface inherited from 
NetworkedSystem (omitted for brevity).  The method 
for accessing and updating the name of a host is platform-
dependent.  Moreover, it may involve multiple operations, 
such as updating a configuration file and then invoking a 
system utility to update the operating system data 
structures.  In some cases, the modeled element may not 
even support a name attribute, and the value may be stored 
in third-party repository.  By viewing configuration 
through the unified model, all this complexity can be 
hidden, enabling managers to focus on the task at hand. 

3 CONFIGURATION SEMANTIC 
MODELING 

While object models capture structure and 
relationships, via inheritance and associations, they do not 
make any statements on the values of the modeled objects.  
For example, the anepID[17] attribute definition in 
Execution Environment does not state any 
restrictions on the value of the attribute in one instance in 
relation to other instances.  Similarly, an Active 
Application may need to configure itself to transmit IP 
datagrams that do not exceed the maximum transfer unit of 
the local link-layer interface. In the NESTOR system, such 
restrictions and relations are respectively expressed as 
constraints and propagation rules on the values of one or 
more objects. 

Constraints on configuration objects and relationships 
enrich the model, and can be used to automate detection 
and reaction to inconsistencies. For example, constraints 
may express that a specific anepID has been reserved to 
a specific EE as identified by the signature on the EE 
executable. An attempt to deploy an EE registering the 
same anepID that has not been signed by the matching 
principal would be rejected and rolled-back. 

The Constraint Definition Language (CDL) is a 
declarative expression language for stating assertions over 
the valid values of objects in RDL.  As an inherent 
language feature, statements in CDL cannot modify any 
attributes or relationships in the model and do not cause 
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side effects. Constraints may be composed from 
restrictions on the configuration of component devices or 
services.  E.g., “all user home directories must be backed 
up”.  This statement applies to two services that are 
usually separate, a network information service for user 
accounts, and the configuration of network backup 
services.  Another example is “the IP interface 
configuration of every node connected to a switch must 
match the VLAN configuration active on its port”.  

The current implementation of CDL is based on the 
Object Constraint Language (OCL)[14]. OCL was 
developed as part of the Unified Modeling Language 
(UML) standard in order to formally define the semantics 
of the UML. Unlike OCL statements, CDL separates the 
object model from the constraint definitions for two 
reasons.  First, the most interesting constraints are the ones 
that make statements about the configuration of multiple 
RDL interfaces.  In such cases, it may not be clear which 
object should “own” the constraint.  For example, the 
aforementioned backup constraint is as much a property of 
the user account as of the backup service.   Second, the 
same manager will not always perform model authoring 
and constraint authoring.  Device and service models will 
usually be obtained from the vendor, or may be bundled in 
some standard model package.  Attaching domain-specific 
constraints to RDL interfaces will limit the sharing of 
these models.  

 
nestor::system::NetworkedSystem::->allInstances
->select(h | h.hostname <> null)
->forAll(h1, h2 | h1 <> h2 implies

h1.hostname <> h2.hostname);

Figure 4: Constraint Definition Language Example 

A simple CDL constraint is shown in Figure 4.  The 
constraint states that for all object instances implementing 
the RDL interface nestor::system::Networked
System, those who have a non-null name should all have 
different names.  In the OCL syntax, the right arrow 
operator (->) operates on collections of objects (sets, 
bags, and sequences).  The allInstances operator 
collects over all classes implementing a particular 
interface.  Select is an operator that filters out elements in 
a collection that do not satisfy the Boolean expression 
condition.  In this case, select will remove all IP hosts that 
have a null name.  Finally, the forAll operator states 
that for every pair of IP host instances, the following 
Boolean expression on the remaining IP host instances 
must be valid: “if two host objects are different (different 
instances), then their names must be different”. 

The Policy Definition Language (PDL) is used to 
assign values to configuration model objects based on the 

configuration of related objects. For example, the 
maximum datagram size of an Active Application may be 
set to the minimum MTU of the Active Node's link-layer 
interfaces. In the NESTOR system, such dependencies are 
expressed as acyclic spreadsheet-style change propagation 
rules. PDL rules use the same OCL syntax used by CPL 
constraints, only the result does not have to be a Boolean 
value and must be assigned to an attribute of the object 
instance selected.  A PDL rule example is shown below in 
Figure 5. This rule states that the maxDatagramBytes 
configuration attribute of a particular Active Application 
must be set to the minimum of the Active Node's non-local 
(excludes loop-back) interfaces. Note the navigation from 
the AA to the enclosing EE using the servedBy relation 
and then the enclosing Active Node to obtain the list of 
link interfaces. More complex policies can be expressed. 
For example, if the AA has a concept of a peer, its 
maxDatagramBytes attribute may be set to the 
minimum MTU on the path to the peer. It is possible to 
discover this minimum MTU value by navigating the 
relations in the unified configuration model. 

 
columbia::MyActiveApplication->allInstances
->assign(a | a.maxDatagramBytes,

min(a.servedBy.servedBy.linkInterfaces
->select(i |

not i.isLoopBack).mtu))

Figure 5: Policy Definition Language (PDL) Example 

4 NESTOR ARCHITECTURE AND 
OPERATIONS 

The overall architecture of the NESTOR system is 
depicted in Figure 6.  In the top layer, self-configuring 
Applications access a unified semantic configuration 
model to discover the configuration of their environment 
and to export their own configuration state, operational 
constraints, and change propagation rules. Examples of 
such applications include Active Networks applications 
and Execution Environments, network and systems 
management utilities, intrusion and denial of service 
detection applications, as well as topology aware 
applications such as peer-to-peer applications. Systems 
administrators may interactively access the configuration 
repository through graphical or text-based user interface 
tools, or they may execute scripts or programs tailored 
specifically for a particular task.  NESTOR Applications 
access the repository using the Directory Access Protocol 
(DAP), a remote interface permitting applications to 
execute either locally or remotely. 
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NESTOR uses protocol proxies to interface with 
legacy dynamic configuration protocols.  Existing 
configuration servers, such as Dynamic Host 
Configuration Protocol (DHCP)[18] servers, are replaced 
by NESTOR protocol proxies.  Clients connecting to the 
proxy server continue to receive the same service with the 
difference that changes are effected through the NESTOR 
repository.  In the DHCP example, it is the NESTOR 
DHCP proxy server which picks up the host discover 
request.  The proxy server then initiates a repository 
transaction, looks up the IpLeasing instance 
responsible for the host’s network and invokes the lease 
method.  Depending on the implementation of the 
IpLeasing object, the request may be handled by 
contacting a real DHCP server, or by implementing the IP 
leasing policy internally.  Before returning the IP leased 
address (if one was found) the IpLeasing object will 
update its map of unique client identifiers (commonly 
Ethernet hardware addresses) to addresses.  Once the lease 
method returns, the DHCP proxy will attempt to commit 
the update transaction.  If no constraints have been 
violated, the transaction will be successfully committed, 
and the DHCP proxy will return the leased address to the 
requesting host.  In most cases, however, the configuration 
changes effected by the IpLeasing service will need to 
be propagated within the repository.  This can be by 
adding a propagation rule from the current address of an 
IP interface and its permanent name into the model of the 
matching DNS address record. 

The Directory Management Protocol (DMP) is used 
between NESTOR Resource Directory Servers to support 
distribution, replication, and caching of resource objects.  
Similarly to directory services, NESTOR offers mission-

critical services that must be available even in the face of 
server or network failures.   Distribution of NESTOR 
services is also important for several reasons.  (1) 
Although similar repositories[7] used in event correlation 
have been shown to scale well (to the order of hundreds of 
thousands of objects), there is ultimately a limit to the 
number of modeled objects that can be stored and 
maintained in a single server.  (2) The wide geographical 
dispersion of some networks requires distribution for 
timely response.  (3) Finally, the breakdown of 
administrative domains often forces the distribution of 
services that may not be technically required otherwise. 

The Self-Configuration Management layer consists of 
a constraint and change propagation manager responsible 
for authorizing changes in the model, maintaining 
consistency through change propagation, and assuring that 
the composition of the change propagation rules does not 
lead to cyclical changes. The constraint and propagation 
manager subscribes for changes in the model and has the 
right to abort configuration transactions, or to effect 
additional changes. Its actions are controlled by CPL 
constraints and PDL rules. Applications may install 
additional constraints and propagation rules; however, 
additional rules may not create cycles in attribute 
dependencies. The manager assures network configuration 
consistency because configuration model changes are not 
applied to the real world configuration repositories unless 
all affected propagation rules have been evaluated and all 
constraints are satisfied. 

The Configuration Modeling layer is responsible for 
maintaining the model and supporting the advanced model 
operations.  The Resource Directory Server (RDS) 
maintains an object repository that stores and controls 
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access to model object instances.  Repository objects 
reflect configuration settings at the real network elements 
plus meta-information that is supplied or inferred from 
multiple sources.  For example, a model object 
representing a network host may contain information 
instrumented from the host, such as network interface 
configuration, meta-information such as host ownership, 
and values such as the host’s name which are replicated in 
various repositories. The DAP interface provides 
operations for creating, committing, and aborting 
transactions, supports object queries, as well as operations 
for creating, updating, and deleting objects.   

The Protocol Adapter Layer provides instrumentation 
for network elements that are not NESTOR-enabled.  
Adapters are responsible for propagating information, 
forward and backward, between the RDS repository and 
the managed element or service.  Use of protocol adapters 
separates the task of mapping the unified model attributes 
to the real element attributes, from the protocols realizing 
that mapping.  For example, the SNMP[5] adapter may be 
used to simplify the implementation of an object 
supporting the NetworkedSystem interface.  Access 
requests to host attributes can be translated into SNMP 
GET/SET operations.  The host’s name attribute, for 
instance, may be mapped to the SNMP 
System.sysName object.  Multiple adapters may be 
used in instrumenting the attributes and methods of a 
particular object.  Unfortunately, in some cases, especially 
at the network layer, protocols do not support remote 
access to all configuration parameters.  For example, the 
original DNS protocol did not provide an update operation 
and relied on an implementation specific configuration 
(usually performed by editing the zone file).  In such 
cases, adapters have to be customized for the particular 
service implementation, taking into account the host 
operating system and particular service version.  NESTOR 
supports adapters of the following standard protocols: 
SNMP, DNS, DHCP, LDAP[19], NIS/NIS+[20], 
NDS[21] and Windows NT Active Directory[22]. 

4.1 EXAMPLE: ANETD MANAGEMENT 

The operations of NESTOR will be illustrated through 
an example of managing the Active Networks Daemon 
(Anetd)[23]. Anetd is currently being used to deploy and 
manage EEs on the DARPA ABONE[24]. 

The first step in managing a resource in NESTOR is to 
identify the relevant model classes. In the case of Anetd, a 
class will be associated with each Anetd process, and will 
be related to processes (EEs) owned by ABONE users, 
and executing on the Internet ABONE host. The standard 
NESTOR model contains class abstractions for Internet 

hosts, users and processes. The Anetd-specific classes will 
be expressed in the Resource Definition Language (RDL) 
as extensions to the base model and the AN-related classes 
shown in Figure 3.  In this example, fragments of two 
interfaces are shown in Figure 7, one for modeling an 
Anetd process (Anetd), and another for the EEs hosted 
(AnetdProcess). 

 
interface anetd::Anetd

: system::Application {
attribute String version;
attribute boolean isPrimary;
relationshipset manages, AnetdProcess,

managedBy;
// Also: port, javaVM, childPort, …
}
interface anetd::AnetdProcess

: anets::ExecutionEnvironment {
relationship managedBy, Anetd, manages;
attribute boolean isPermanent;
// Inherits: anepID, servedBy(Node),
// serves(AA)
// Also: filePreloadURL, workDirectory
// isAutoKill, standardInputFile, …

}

Figure 7: Anetd daemon and process RDL definitions 

Note that the service provided by Anetd is partially, 
but not fully, that of the Node OS. Therefore, instead of 
extending the anets::ActiveNode class we establish 
a new "manage" relation between an AnetdProcess 
and an Anetd instance. An AnetdProcess object 
inherits the generic Execution Environment 
functions, and extends them with Anetd-specific 
parameters, such as the work directory, and whether the 
process is permanent (persistent across restarts). 

 
anets::ActiveNode->allInstances
->collect(an | an.servesApplications)
->select(app: System::Application |

app.oclIsKindOf(anetd::Anetd))
->select(ad : anetd::Anetd | ad.isPrimary)
->size = 1

Figure 8: Exactly one primary Anetd per Active Node 
(CDL constraint) 

Once the RDL data model has been designed, the 
model author may add intrinsic constraints and 
propagation rules expressed in the Constraint Definition 
Language (CDL) and the Propagation Definition 
Language (PDL).  For example, it may be stated that there 
should be exactly one primary Anetd within each 
ActiveNode. Similarly, a propagation rule may state 
that if the Java installation changes in the ActiveNode, 
this should be propagated to the configuration of the local 
Anetd objects. A CDL example for the former constraint 
is shown in Figure 8. It states that for each instance of 
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ActiveNode, identify the Anetd processes it is hosting, 
and assert that exactly one of these processes is primary. 

In case of failure of the primary Anetd, the above 
constraint will be violated (size = 0). NESTOR enables 
automated recovery from such failures via a propagation 
rule that restarts the failed Anetd daemon, or assigns a 
new primary. The propagation rule shown in Figure 9 
performs the latter by selecting the process with the lowest 
port number to act as primary. The rule operates by 
identifying the Anetd objects in each ActiveNode, 
sorting them by port number, and iteratively assigning true 
to the first object's isPrimary attribute, and false to the 
others. 

It is also possible, that the failure of a non-primary 
Anetd process will break the forwarding chain. Recovery 
from such inconsistent states can also be automated via a 
propagation rule. The propagation rule shown in Figure 10 
sorts the list of Anetd objects in reverse and sets the 
childPort attribute of each object to that of the 
previous one (the tail is assigned port 0). Note that both 
rules shown must agree on the election process, that is, 
that the sort is based on the port number. However, the 
order in which the rules are applied is not important since 
there are no cyclical dependencies. The NESTOR 
propagation manager checks for cyclical definitions and 
rejects such rules, similarly to spreadsheets. 

 
anets::ActiveNode->allInstances
->collect(an | an.servesApplications)
->select(app |

app.oclIsKindOf(anetd::Anetd))
->sortBy(ad: anetd::Anetd |

ad.port, int.less-than)
->iterate(ad: anetd:Anetd;

count: int = 0 |
if (count = 0)
assign(ad.isPrimary, true,

count + 1)
else
assign(ad.isPrimary, false,

count + 1)
endif

Figure 9: Primary Election (PDL propagation rules) 

anets::ActiveNode->allInstances
->collect(an | an.servesApplications)
->select(app |

app.oclIsKindOf(anetd::Anetd))
->sortBy(ad | ad.port, int.greater-than)
->iterate(ad : anetd::Anetd;

port : int = 0 |
assign(ad.childPort, port, ad.port))

Figure 10: Forwarding chain (PDL propagation rules) 

Once the data and semantic models have been defined, 
an adapter must be provided that will instrument Anetd 

processes as objects in the repository. In particular, this 
adapter must support bi-directional instrumentation, with 
read as well as write capabilities. 

The adapter functionality may be integrated into the 
Anetd source code, by embedding NESTOR directory 
management API functions, or may be provided externally 
via some polling or publish-subscribe mechanism. By 
embedding the NESTOR model into the service it is 
possible to obtain fast response to changes, with the lowest 
polling overhead. It is also possible to avoid storing any 
persistent configuration data by taking advantage of the 
NESTOR repository persistence capabilities. In many 
cases, such as proprietary hardware and software, it may 
not be possible to modify the service itself. In such cases, 
the adapter must be executed as an external process that 
polls and sets the configuration of the service using some 
external protocol. Examples include adapters using 
protocols such as SNMP and LDAP, those simulating 
terminal input such as CISCO IOS adapters, and those 
parsing and modifying configuration files, such as an 
HTTPd adapter. 

The Anetd adapter developed in this example will be 
external and will utilize the Anetd SC[17] control 
protocol. The protocol supports remote polling and 
configuration of Anetd processes. Ideally, the adapter will 
provide its own native implementation of the SC protocol 
client. An alternative would be to use the existing Anetd 
distribution SC binary client as a system process and then 
read its console text output. In either case, the external 
daemon must be able to send SC queries and parse their 
response so that they can be mapped to the appropriate 
NESTOR model class instances. 

 At startup time, the adapter will have to discover the 
NESTOR repository (RDS) where the objects will be 
instantiated. In the current NESTOR system, the location 
of the repository may be either configured, or discovered 
using Jini[25] discovery. The choice of which repository 
to use is an open issue that is currently being investigated. 

Once the repository has been discovered, the adapter 
will first have to look for existing objects that may fully, 
or partially represent the managed resources. For example, 
the agent will have to lookup the object for the 
ActiveNode that should have been instrumented by the 
NodeOS adapter. Also, the agent will have to check for 
any objects that it has created previously, whose lease has 
not expired. In order to perform these lookups, the adapter 
must identify key attributes that can uniquely identify the 
relevant model objects. For objects previously created, it 
is possible to use the agent's unique ID. Currently, there 
are open issues relating to model composition and they are 
being investigated. The discovery, lookup, poll and apply 
process is illustrated in Figure 11.   
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adapter then enters a polling loop in which any 
in the underlying resources are applied and 
d to the model. It should be noted that because 

d SC remote interface is not transactional, it is not 
to determine if the polled state represents 

real-world threads of change, or that these threads 
pleted execution. Therefore, the adapter is forced 
all detected changes into a single transaction. If 
action is aborted due to a constraint violation, all 
will need to be rolled-back. 
to the lack of locking mechanisms in most 

ation protocols, it is also possible that the 
ation of a real element may change in the process 
rming or committing a transaction.  This may 
 cases where systems administrators bypass the 
 system in changing configuration, or due to 

namic element reconfiguration. Mechanisms for 
g this issue by stating requirements on concurrent 
 resource access are being investigated. It should 
, that changes occurring through the repository 
always transactional and therefore can always be 
and controlled. 
second function of a NESTOR adapter is to 
e changes initiated by NESTOR application-layer 
ons, or change propagation rules. The process is 
d in Figure 12. Once a transaction is committed to 
l, that is, all propagation rules have been applied, 
constraints have been verified, the repository 

f any of the effected objects are instrumented by 
. A special to-one relation with an agent object 
 that changes to the object need to be propagated. 
Anetd example, changes to the instrumented 

such as instances of Anetd and 
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The adapter will use this information to effect the 
y changes by issuing SC requests. In addition to 
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ternate scenario would involve the failure of the 
netd process on the ActiveNode. The adapter 

etect this failure and the corresponding object 
 removed in a repository transaction. Before the 
n was committed, the propagation rule from 

 would be fired, and an alternate Anetd process 
e selected as a primary. Assuming that no 
ts were violated, the transaction would be 
d and the changes propagated to the adapter, and 
e actual Anetd processes. It should be noted that 

on the SC protocol means that an Anetd instance 
e configured if it is unreachable or in a stopped 
such cases, the ActiveNode adapter may be 
ill the Anetd process and start a new one. 
ring of agents is a labor-intensive and potentially 
process. It is envisioned that in the future 

will support standardized configuration languages 
 XML[26]) and some form of transaction and 
ed configuration protocol that will provide better 
or identifying real-world threads of change. The 
 system provides additional library support for 
g common agent tasks, such as a minimal merge 

bject graphs  (polled to repository objects), and 
d agent creation for popular protocols such as 
or example, it is possible to provide a generic 

dapter that can be configured with a mapping 
MIB tables and objects, and OIDs and object 
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PLEMENTATION 

itial prototype of the NESTOR system was built 
e MODEL language and InCharge repository 
 by SMARTS[13].  The prototype employed the 
ndition-Action (ECA) rules (which can be 
 from declarative constraints). The prototype was 
 demonstrate Internet node plug & play 
lity, as reported in [1] . 
ience with this first prototype helped guide the 
ESTOR design.  The complexity of coding both 

ess mechanisms and the schema mapping 
s led to the addition of the protocol adapter layer.  
s quickly proved to be difficult to manage even 
all number of high-level constraints defined.  It 
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was found that more than one rule was required to support 
a single constraint, and that it was not uncommon to write 
simple definitions that would lead to cycles in execution.  
Declarative expressive constraints are used in the current 
design and are safely compiled internally to ECA style 
rules. 

The second NESTOR prototype has been written in 
Java using Sun’s Jini infrastructure[25].  In this prototype 
the RDS exports its services using a Java Remote Method 
Invocation (RMI) interface.  The remote RDS interface 
enables managers to create distributed transactions, and 
perform object operations (lookup, create, destroy).  
Application layer management applications employ the 
Jini lookup and discovery mechanism for obtaining a 
reference to the remote RDS service object.  When an 
application invokes the create transaction method on the 
remote RDS interface, the RDS server returns an object 
implementing the Jini transaction interface.  Internally, the 
Java RDS prototype implements the Jini transaction 
manager interface and semantics for performing 
distributed two-phase commits.   

Management application object lookups occur in the 
context of a transaction and return a proxy object 
implementing the same interfaces as the ones of the 
requested repository objects (maintaining in addition a 
lock on the requested objects).  Unlike the real repository 
objects, proxy objects contain copies of the configuration 
values and do not propagate changes to the managed 
element, even though all method invocations are stored in 
the transaction log.  Proxy object references are initially 
returned as “hollow” objects whose values are retrieved 
from the repository at the time of the first object access.  

Constraints and rules are first class objects.  When the 
management application commits an update transaction, 
RDS invokes the constraint and propagation manager with 
a reference to the transaction log.  The manager analyzes 
the log and determines the PDL rules that need to be 
reevaluated, and proceeds to compute and assign their 
values. As part of that process additional rules may need 
to be re-evaluated. This process is guaranteed to terminate 
since cyclical rule definitions are disallowed. Once all 
rules have been evaluated, the constraints are asserted. If 
all constraints are maintained the manager commits the 
transaction (the constraint manager is a member of every 
repository update transaction) the logged updates will be 
applied to the real repository objects in the order in which 
they were made.  In cases where the same attribute has 
been updated multiple times due to the execution of policy 
scripts, only the last update is written. 

Other components of the prototype system include the 
model compiler and constraint and rule interpreter. The 
model compiler transforms MODEL interface definitions 

into Java interface definitions.  As part of the 
transformation, MODEL attribute declarations are mapped 
to pairs of set/get methods, and relationships are converted 
into references to classes implementing the OCL 
collection semantics.  In the current version, the constraint 
and rule expressions are stored in string form instead of 
being translated into a Java language method.  The 
constraint and propagation manager contains a built-in 
OCL interpreter that evaluates each expression when 
detecting a possible violation.  Future versions will 
explore the performance gains of compiling OCL 
expressions, and optimizing the triggering of constraint 
and rule evaluation. 

Adapters supported in the current NESTOR prototype 
include Linux (interfaces, routing, processes, firewall 
rules), SNMP (MIB-II), CISCO IOS (switch VLAN and 
interfaces, router interfaces, routes and firewall rules), 
Virtual Active Networks[27] (VAN), and Anetd. In 
addition, the prototype includes a graphical browser 
supporting navigation and manipulation of the NESTOR 
repository, as well as visualization of layer-2 topology. 

The current implementation also supports security 
features including user authentication, fine-grained 
capability and access control-based authorization, as well 
as connection encryption. Authentication and connection 
encryption are based on the SSL/TLS[28] protocol. The 
SSL X.509 certificates are associated with a first-class 
user object instances that are belong to one or more 
groups. Groups are assigned repository-wide permissions 
such as connect, search, subscribe, lock, etc. Associating 
permissions with each object, or adding capabilities to the 
user or group objects controls object-level permissions. 
Examples of object-level permissions are get, set, shared-
lock, exclusive-lock, delete and may be associated with all 
or some specific object attributes.  

Because user, group and permission objects are first 
class objects, NESTOR constraints and propagation rules 
may operate on them. As a result, it is possible to affect 
dynamic configuration of security permissions. For 
example, it is possible to award a user with special 
permissions on all hosts that are physically co-located with 
the machine in which he/she is logged on the console. 
Note that such general rules can only be expressed thanks 
to the unified configuration model. 

A screen-shot of the NESTOR prototype browser is 
shown in Figure 13. On the left panel, the browser 
displays a tree whose first level are repositories, the 
second level includes the list of available MODEL 
interfaces, and the third layer contains object instances. 
The browser subscribes for notification of class loading/ 
unloading events on each repository. When a class node is 
first expanded, the browser subscribes for object 
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EE. Management EE functions may be extended through 
the deployment of loadable libraries.  

The ABLE research aims to provide AN-based 
management supporting deployment of distributed IP 
network management applications. Agents are dispatched 
to Active Engines that operate as management EEs and are 
associated with sessions. Agents are executed in a safe 
(isolated) and secure (authenticated) environment.  
Management functions are exported through narrow APIs 
providing access to SNMP MIBS. ABLE extends previous 
research[36] with packet-based agent delivery, and packet 
path-based discovery. 

Both the SENCOMM and ABLE projects focus on 
deployment of management agents that collect local 
performance and configuration information, and may only 
effect global change through agent-specific protocols. In  
Figure 13: NESTOR Browser
ve events on the particular class. If the user 
object instance, it is displayed on the right 
his particular example, an Anetd instance is 
 object is read in a caching transaction, that 
tain any locks. The browser (NESTOR client) 
f any changes to cached objects. Relations can 
d by clicking on the "Go". For example, by 
e of the Anetd "threads" relation members 
can access the EE object configuration. The 
 switch to an update transaction mode to allow 

s. The browser can be executed as a Java 
9] service directly from the repository HTTP 

a NESTOR prototype was first applied to the 
t of security in dynamic networks, as described 
has also been used by researchers at Telcordia 
es as a platform for developing a distributed 
sed on security policies[31].  Currently, the 
prototype is being deployed on the Active 

Backbone (ABONE) network for 
tion of Active Nodes, EEs and AAs. 

ATED WORK 

projects in the area of Active Networks 
t include the SENCOMM[32] project, the 
engine, and the ANCORS[34] project.  
ENCOMM project builds on the Smart 
 research that developed a safe language and 
t supporting network management functions. 
MM, Smart Probes containing immutable 
de, and mutable probe data are transmitted 
 network and executed in SENCOMM 
t EEs. Probes may collect data across their 

r may continue functioning in the management 

contrast, the NESTOR approach is focused on enabling 
and controlling the interaction of agents, rather than 
providing pure isolation. NESTOR supports navigation of 
relations across managed systems in a unified model, 
expression of inter-agent constraints, and propagation 
rules, as well as, semantic-based fine-grained access 
control. NESTOR supports both AN-based management, 
through the deployment of model objects and semantic 
constraints and propagation rules, as well as management 
of ANs by allowing AAs and EEs to export their 
configuration data and semantic models. 

The ANCORS project merges technologies from 
network management and distributed simulation to 
provide support for runtime assessment of network 
protocols and operations. ANCORS addresses the 
integration issues of EEs and AAs by supporting 
simulation of their operations so that their operations can 
be closely monitored, and evaluated prior to actual 
deployment. This is a black-box approach to exposing 
dependencies between services, and preventing potential 
resource conflicts. The advantage of this approach is that 
services need not declare their integrity constraints and 
propagation rules. The main disadvantage is that 
simulation can only provide proof of failure, but its results 
cannot be readily used to support conflict resolution. In 
such cases, the offending service must either be 
terminated, or migrated somewhere in the network. 
NESTOR requires that services expose their configurable 
properties and semantic constraints and propagation rules. 
This permits both conflict detection and prevention 
(without simulation) as well as dynamic conflict 
resolution. It may be desirable to combine the two 
approaches, especially in cases where the service models 
have not been tested out, or are partially incomplete.  

NESTOR builds on earlier efforts in the use of object-
oriented models to support operations management has 
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been pursued by others.  The OSI CMIP proposal was 
based on Object-Oriented (OO) models to organize 
instrumentation of managed resources at agents.  Various 
research projects[6, 37-39] and some commercial products 
(SMARTS InCharge, HP OpenView, Tivoli TME) have 
used OO resource models successfully to simplify the 
development of management applications.  NESTOR 
broadens this effort to build on modeling technologies that 
can create unifying heterogeneous configuration 
information directory structures to support automated 
management.  The semantic model[38] in NESTOR 
captures detailed configuration needed to build self-
management/organization software. 

NESTOR also profits from the large body of recent 
work on directory services.  This work has traditionally 
focused on directories of high-level objects, such as 
documents and files.  More recently, the advantage of 
centralizing management information in a unified schema 
has led to the creation of a standardized information 
model, initially pursued by the ad-hoc group on Directory 
Enabled Networks (DEN)[10] and more recently by the 
DMTF (Distributed Management Task Force)[40].  Future 
NESTOR versions will support Meta Object Facility 
(MOF)[11] import/export functions, to assist in leveraging 
the standards work.  

The most closely related management architecture to 
NESTOR is the ICON system[41, 42] which uses the 
active database style Event-Condition-Action (ECA) rules 
to state restrictions on objects instrumented by SNMP 
MIB values.  Both systems borrow ideas from active-
database management systems (ADBMS)[43].  NESTOR 
extends these approaches to incorporate multi-protocol 
access to heterogeneous resource information, 
configuration transactions, declarative constraints, and 
constraint propagation through policy scripts.   

The Dolphin project[9] developed a declarative 
language for modeling network configuration and 
operation for fault analysis.  Emphasis was placed on 
deducing the cause of failures after the fact, by verifying 
the propagation of operational rules in the model. 
NESTOR strives to prevent such failures by checking 
constraint violations before they adversely affect the 
consistent configuration of the system. 

In the area of configuration management automation, 
the GeNUAdmin[44] system is an off-line tool for 
extracting network configuration information into a 
centralized database, performing updates on that database 
which are checked for consistency, and pushing the 
changes back into their respective configuration files.  
Simple consistency checks are performed to assure that 
added values are valid and that key values are unique.  
The RPI service dependency tool[45] detects service 

dependencies and generates up to date server listings.  The 
goal of the system is to prevent unforeseen service 
interruptions caused by hidden service dependencies.  
NESTOR can support this functionality given an 
appropriate set of constraints on the unified configuration 
model.  Ganymede[46] is an extensible and customizable 
directory management framework applied to the central 
management of user and host data, which is distributed in 
different databases.  Ganymede supports transactions on 
the central repository objects, but does not provide a 
constraint mechanism beyond a few built-in security, and 
deletion propagation checks. 

The Constraint Satisfaction Problem (CSP) has been 
studied extensively in a variety of applications[47, 48].  
Previous work on constraint-based management has been 
pursued[49, 50].  The focus of these projects has been on 
employing constraints for the diagnosis of network faults 
and on algorithms for constraint satisfaction. NESTOR 
could benefit from these technologies to build its policy 
script-based propagation of configuration changes across 
network elements.  The NESTOR architecture does not 
include a specific CSP solver as a core component, but it 
supports programmatic interfaces for policy scripts to 
employ their own solvers (including CSP). 

Simple scripting solutions to network configuration 
automation are dependent on network topology and the 
particulars of element configuration mechanisms that 
differ across vendors and even between versions of the 
same platform.  A single change in network topology or 
equipment upgrade may necessitate changes in multiple 
scripts.  For these reasons, scripts cannot be easily shared 
among different installations without significant 
customization.  Errors in script execution can result in 
inconsistent network configuration states, from which it is 
difficult to recover manually.  It is hard in the context of 
traditional scripts to enforce exclusive access to 
configuration repositories. In addition, automatic 
discovery of relationships not directly instrumented is not 
practical.  The NESTOR architecture supports the safe use 
of scripts through the binding of the DAP to libraries for 
popular interpreted languages, such as Perl[51].  

7 FUTURE WORK 

Future NESTOR research will focus on discovery, 
model composition, rule and constraint distribution, as 
well as maintenance of the mapping between the model 
and the real world. 

It is envisioned that the NESTOR repositories will be 
highly distributed to support scalable operation as well as 
recovery during failures. Future research will determine 
the granularity of distribution (service, node, LAN, 
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department), and the location of repositories for non-
programmable devices, such as hubs, switches, and COTS 
routers. Distribution of the repositories and adapters will 
require merging of partial models. For example, a switch 
adapter may discover an Ethernet node identified by a 
unique MAC address and proceed to generate a simple 
EthernetInterface object. Later, an adapter may be 
provided for the host, and the interface may be recognized 
as an EncryptingEthernetInterface supporting 
hardware based datagram encryption. In some cases it may 
also be possible to infer relations, such as co-location, 
based on information collected from multiple elements. 
The mechanisms for merging models and performing 
model-based discovery are currently under investigation. 

The current NESTOR prototype supports a distributed 
repository with centralized constraint verification and 
change propagation. Mechanisms for distributing these 
functions are currently under investigation. Finally, the 
mapping of the real world to the model is a difficult 
problem of great practical significance. Besides the 
practical problems imposed by the non-transactional 
management APIs currently in use (SNMP, Telnet, 
LDAP), there are fundamental issues that need to be 
addressed. Unlike databases, changes in network elements 
cannot always be locked-out. For example, an Ethernet 
link cannot be guaranteed since it depends on a physical 
service. Different levels of contracts between network 
services and the model are being investigated. 

8 SUMMARY 

The manual process with which computer networks are 
currently managed is quickly reaching its limits as 
networks enlarge, add new mission-critical services, and 
spread to new environments such as private homes.  
Network management automation is increasingly 
becoming a requirement in many different types of 
networks.  Large networks are becoming too complex to 
manage; mission critical networks cannot afford operator 
errors; and small home networks must minimize 
management due to limited resources.  Current practices 
will become unmanageable in future networks supporting 
active reconfiguration and programmability for service 
deployment. The NESTOR system addresses these needs 
by combining several techniques from object modeling, 
constraint systems, active databases, and distributed 
systems in novel management architecture. 

In the NESTOR system, management applications 
operate on a unified object-relationship model of the 
network using a rich set of operations that support rollback 
and/or recovery of operational configuration states.  
Declarative constraints prevent known configuration 

inconsistencies and in conjunction with policy rules may 
automatically propagate changes to maintain consistency.   
Protocol proxies are used to provide much of this 
functionality with little or no changes in the network 
clients.  A protocol for replication and distribution of the 
directory assures availability and operational efficiency.  
NESTOR has been implemented in two complementary 
versions and is now being applied to automate several 
configuration management scenarios of increasing 
complexity, with encouraging results. 
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