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Abstract

This paper describes a new approach to programming
autonomic systems. Autonomic functions are integrated
into element objects at design time using a special lan-
guage called JSpoon. JSpoon extends element classes with
management attributes representing configuration, perfor-
mance, status and fault information. The JSpoon com-
piler generates respective code and interfaces to instru-
ment the data in a common Modeler repository, provided
by NESTOR [28]. JSpoon programs access and manipu-
late management data without distinction between “agent”
and “manager” roles. JSpoon further supports integra-
tion of plug-in knowledge modules that can interpret and
control element operations. These knowledge modules are
used to incorporate autonomic operations with elements.
This design-time approach offers several substantive advan-
tages over current alternatives. Management is integrated
with the element development life-cycle. Instrumentation
is compiler-generated and may be flexibly designed by el-
ement developers, while being consolidated into a unified
global management data model. Knowledge modules can
be seamlessly integrated with third party elements augment-
ing these elements with the logic for autonomic behavior.

1. Introduction

Autonomic computing has been proposed[16] as an ap-
proach to reducing the cost and complexity of managing
Information Technology (IT) infrastructure. An autonomic
system is one that is self-configuring, self-optimizing, self-
healing and self-protecting. Such a system requires minimal
administration, mostly involving policy-level management.
To effect such autonomic behavior, a system must instru-
ment its operational behavior and external interactions with
other systems. It needs to represent this information in a
model which admits automated interpretation and control,
incorporating knowledge on how to automate management

actions.
Presently, systems are constructed with ad-hoc instru-

mentation of Managed Information Bases (MIBs)[6] and
configuration files. The information required for autonomic
behavior is typically buried in design documents, opera-
tions manuals, code structures, run-time systems, and run-
time environments. Management of such services involves
use of proprietary management tools and protocols which
have been developed to present low-level configuration and
performance information to human operators. It is the re-
sponsibility of these expert operators to acquire the knowl-
edge model needed to interpret the meaning of this informa-
tion and effect configuration control. These ad-hoc forms
of manageability are typically constructed a-posteriori to
system design, implementation and maintenance, requiring
complex adaption in order to track system evolution.

This paper describes a new approach to programming au-
tonomic systems. Autonomic element objects are extended
at design-time element with specialized management at-
tributes. These management attributes are processed by a
compiler which generates the management data model, and
element object instrumentation. This approach essentially
unifies the traditional management roles of element, agent,
and manager under a common data model layer. Autonomic
elements access the shared configuration space through a set
of language and runtime services. Semantic knowledge is
introduced as an extension to the data model schema in the
form of plug-in modules. The plug-ins perform tasks such
as constraint verification, change propagation, and fault-
analysis. In this manner, the knowledge needed for auto-
nomic behavior can be independently created and incorpo-
rated.

The next section outlines the requirements and struc-
ture of an architecture for building managed autonomic ele-
ments. Section 3 presents JSpoon, a language for program-
ming autonomic element configuration and performance
variable declarations and accesses. Section 4 discusses
the JSpoon runtime environment services for object persis-
tence, remote access, knowledge plug-ins, and compilation.
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Figure 1. Autonomic Mgmt. Architecture

Section 5 introduces a plug-in module example in the form
of the NESTOR propagation rule interpreter. The last two
sections present previous work and conclusions.

2. Autonomic Management Architecture

In order to support autonomic behavior, an autonomic
programming architecture must satisfy certain basic re-
quirements: (1) support the representation of element con-
figuration and performance properties used to control and
monitor element behavior, (2) express relationships be-
tween different autonomic elements, (3) control access to
configuration properties to assure consistent views, (4) en-
able autonomic elements to discover, access and control
the configuration of other dependent elements, (5) provide
publish-subscribe interfaces for management event notifica-
tion, and (6) enable element configuration persistence and
recovery.

Our approach organizes autonomic systems into a two-
layer architecture as depicted in Figure 1. At the bottom
layer, the Modeler provides a consolidated element data
repository, including configuration, relationship, state and
performance attributes as well as their behavior events. The
Modeler also provides interfaces to access and manipulate
the managed data. This enables the management knowl-
edge layer, above, to access a unified data model, inter-
pret its behavior and activate autonomic control functions.
The knowledge layer supports representation of the data
model semantics and encoding of domain-specific knowl-
edge. This two layer architecture does not distinguish
among elements, agents and managers in terms of access.
These roles are implemented by programs that manipulate
the data model stored in the modeler and may also incor-
porate instrumentation and manipulation models their own
using JSpoon.

Autonomic management instrumentation variables can
be assigned to one of three basic categories[9][23], with as-
sociated access patterns. Configuration properties control
the behavior of the autonomic element and must therefore
be protected in regards to concurrency and semantic con-
tent. Performance properties export element performance
measurements and operational state, cannot be locked, and
may only be set by the element owning the object. Relation-
ships express dependencies to other autonomic elements.
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Figure 2. Managed Object Declaration

Based on these patterns, it is possible to design a re-
stricted instrumentation declaration language that can au-
tomate the creation of object management instrumentation,
and support composable configuration semantics. Figure 2
depicts a management annotated object whose class decla-
ration is extended with an additional management section.

In the two-layered architecture the Modeler acts as the
management data and schema repository. Access to the
Modeler must be controlled to maintain consistency and
support recovery in case of failure. The Modeler provides
object life cycle management, distributed transaction coor-
dination, and object persistence services. Autonomic el-
ements use a common language for accessing these mod-
eler functions. This language-based approach simplifies el-
ement implementation, and enables compile-time checks,
and optimizations.

The autonomic management architecture supports ex-
tensibility of the instrumentation schema language through
the use of knowledge modules. Knowledge modules en-
hance the instrumentation data model with semantic in-
formation. For example, a fault-management plug-in can
add a language[3] for expressing propagation of prob-
lems over relationships in order to support codebook event
correlation[24]. Similarly, a configuration automation sys-
tem may support a language for expressing configuration
constraints and change propagation rules that are main-
tained by a rule interpreter[28].

3. The JSpoon Language

JSpoon is a language and runtime environment for in-
tegrating data modeling layer access into Java-based man-
aged services and managers. The JSpoon language extends
Java with declarations of management class and instance
variables, as well as event subscription and atomicity primi-
tives. The JSpoon runtime environment, covered in the next
section, is responsible for supporting persistence, synchro-
nization, remote access, and knowledge plug-in services.

The set of variables declared in JSpoon forms the man-
agement section of the Java object, which is exported to
other JSpoon programs. There are two types of JSpoon
variables: configuration, and performance variables. Con-



public class NtpServer extends Thread {
protected DatagramSocket sock;

config key int port = 123;
config boolean active = true;
instrument counter long reqCount = 0;

public NtpServer() throws ... {
sock = new DatagramSocket(port);

}

public void run() {
while(active) {
sock.receive(packet);
reqCount++;
// process request ...

}
}

}

Figure 3. Variable Declaration Example

figuration variables are used to control program behavior,
whereas performance variables instrument program status.
Configuration variables may be persisted across Java Vir-
tual Machine (VM)invocations. Access is controlled by the
JSpoon runtime environment to support transaction seman-
tics. Atomic access is expressed using the JSpoon language
locking constructs. In contrast, performance variables may
only be updated by the owner of the object, are not persis-
tent, and may not be accessed transactionally.

Figure 3 provides an example of a JSpoon object class.
The class implements a Simple Network Time Service
(SNTP)[20]. SNTP is a UDP-based protocol for querying
time servers over an Internet Protocol network. As illus-
trated in this code fragment, the SNTP service implementa-
tion is written in standard Java extended with JSpoon dec-
larations. The class encapsulates a regular Java instance
variable called sock which maintains the server’s UDP
binding. In addition, three management instance variables
are declared in the extended syntax of JSpoon: port and
active (configuration), as well as reqCount (perfor-
mance).

The port instance variable stores the NTP service UDP
port number. It is a configuration variable, as identified by
the JSpoon modifier config, of primitive type int ini-
tialized to the default SNTP UDP port ����� . The key vari-
able states that the value must be unique in all instances of
the class within the Java VM. The second configuration in-
stance variable, active, controls termination of the server
process. The reqCount performance variable, as identi-
fied by the instrument modifier, counts the number of

Modifier To Description

computed i Evaluate on-demand; not stored
counter i Monotonically increasing value
final c Assign-once (Java semantics)
key c Unique object identifier
static c, i Property of class; not instance
transient c Non-persistent variable

Figure 4. JSpoon Declaration Modifiers

time queries received.
From the service’s perspective, the declaration and usage

of JSpoon management variables is similar to that of regu-
lar Java variables. There are two main differences: (1) man-
agement variables are exported through the JSpoon runtime
environment to external management processes, and (2) the
types of operations permitted on the management variables
may be restricted based on the JSpoon modifiers. For ex-
ample, an external manager may change the value of the
active configuration property, thereby effecting termina-
tion of the service. Similarly, the operations allowed on the
reqCount counter performance variable are restricted to
monotonically increasing value updates.

JSpoon modifiers may only be applied to class and in-
stance variable declarations. The JSpoon compiler will gen-
erate a syntax error if JSpoon modifiers are used in other
contexts, such as in method argument or variable declara-
tions.

3.1. JSpoon Modifiers

JSpoon configuration and performance variable declara-
tions may be specialized with the modifiers listed in Fig-
ure 4.

Computed variables have their value evaluated on-
demand using a Java expression. For example, the com-
puted free memory performance variable shown below is
associated with a Java expression for obtaining the free
memory in the Java VM.

instrument computed long freeMemory =
Runtime.getRuntime().freeMemory();

Computed variable expressions are bound to the scope of
their declaration.

Numeric performance JSpoon variables marked with
counter are restricted to a monotonically increasing
value. The counter marker may be applied to the
primitive number types, and objects implementing the
java.lang.Comparable interface. The only opera-
tions permitted on primitive numeric types are ++ (incre-
ment by one), and += (increment by value, where value���

). Numeric object types are immutable, therefore the



only allowed operation is assignment (=) where the as-
signed value compares-to greater, or equal to the previous
value.

Configuration variables may be marked as final to
specify that they may only be assigned once and cannot not
be modified by the program or an external entity. It is possi-
ble to change persistent final variables in between program
invocations. Typically, variables will be declared final if the
program is not able to adjust its behavior after startup. For
example, the user ID under which a Java process should be
executed may be declared as a final variable.

Certain configuration variables may uniquely identify an
object instance. For example, in the SNTP UDP server of
figure 3, the port variable is defined as a key variable since
only a single instance of NtpServer can bind to the same
unicast UDP port. When multiple configuration variables
are declared as keys their combination uniquely identifies
the object.

The static JSpoon modifier associates its configura-
tion or performance variable with the enclosing class, not
an instance as is the default.

Configuration variables may be marked transient to
indicate that the JSpoon runtime should not maintain their
values across Java VM invocations, or when the object is
serialized. Persistence requires additional changes in the
way Java programs manage the life-cycle of their objects,
and is covered in the next section. By default, all configu-
ration variables are persistent. Instrument variables are al-
ways transient, and can only be persisted through explicit
assignment to a configuration variable.

Unlike Java class and instance variables, JSpoon vari-
ables are not associated with an access modifier such
as public, protected, or private. All JSpoon
variables are publicly accessible via the JSpoon runtime.
A role-based security policy may be configured at the
modeler-layer, or through a security knowledge plug-in, and
will not be presented in this paper.

3.2. JSpoon Types

JSpoon variables are strongly typed in the Java type sys-
tem. All Java primitive types are allowed in JSpoon variable
declarations. Java object types may be used if, and only
if, they represent immutable objects, and are serializable.
Since here is no Java marker interface identifying objects
as immutable, the JSpoon compiler includes a list of im-
mutable standard Java library object classes. User-defined
classes employed in JSpoon variable declarations must im-
plement the jspoon.Immutable marker interface and
all their non-JSpoon variables must be declared as final.

JSpoon extends the Java type declaration system with
support for enumeration types. The example in figure 5
shows an enumeration declaration of the type Statuswith

enum Status { stopped, running };
instrument Status status;

public void method() {
status = Status.stopped;
// ...
if (status == Status.running) ...

}

Figure 5. Enumeration Type Example

two enumerated values. An enumeration type is conceptu-
ally mapped into a Java inner class of the same name, with
immutable instances for each enumeration value. These in-
stances are available as static final variables of the enumer-
ation class. As shown in the example, an enumeration vari-
able may be assigned or compared for reference equality
with the static enumeration instances.

JSpoon relationship declarations are used to establish an
association between two Java objects. Unlike simple ref-
erences, relationships can be navigated in both directions.
Each end-point in the binary association is associated with a
role (variable identifier), and multiplicity (to-one, to-many-
set, or to-many-sequence).

A sample relationship declaration is shown in figure 6.
Instances of the class HttpServer are associated with a
set of HttpThread objects through the threads vari-
able role. The same relationship must also be declared in the
HttpThread class, with the role names reversed. In this
case, the serves variable role is declared with a to-one
multiplicity. Variables identifying to-one relationship roles
may be used as normal Java object reference variable. To-
many relationship variables support accessor methods for
retrieving, adding, removing and setting their membership.

3.3. Events

JSpoon programs may subscribe to receive notification
of modeler events. The modeler generates six basic types
of events: class load, class unload, create object,
delete object, attribute get, and attribute set.

JSpoon supports event subscriptions as a language con-
struct. The subscribe keyword takes an event condi-
tion expression as its first argument, executing an associ-
ated statement when a matching event is found. An op-
tional event declarator may be provided if the contents of
the matching event need to be processed within the state-
ment. Subscriptions return a JSpoon lease object used to
manage their life-cycle.

Figure 7 lists two event subscription examples. The first
subscription matches assignment of NtpServer port in-
stance variables to non-standard SNTP ports. The event



public class HttpServer
extends Thread {
relationshipset threads, HttpThread

serves;
public void run() {

while(true) {
Socket s = sock.accept();
threads.add(new HttpThread(s));

}
}

}
public class HttpThread
extends Thread {
relationship serves, HttpServer,

threads;
public void run() {

// Process HTTP request ...
serves = null;

}
}

Figure 6. Relationship Type Example

handler terminates the SNTP service by setting its ac-
tive attribute to false, by retrieving the object reference
from the event object. The JSpoon compiler employs type-
inference to determine that the enclosed object will be of
type NtpServer, thereby saving the need for an explicit
cast. JSpoon programs may also subscribe for events on
specific object instances, as is shown in the second exam-
ple.

Basic events are associated with a type (load, unload, ����� )
which may be queried using the type attribute. Other event
attributes include object (object), transactionID
(source), and value.

The subscribe construct defines a generic Event-
Condition-Action (ECA) mechanism, raising the issues of
termination and confluence[26, 1]. Using established ECA
rule management techniques, the JSpoon compiler analyzes
event subscription expressions and generates a dependency
graph. This graph is used by the JSpoon environment to
identify and monitor possible cycles or order-sensitive rule
evaluations. Future work will investigate a limited expres-
sion and statement language to enable full compile-time cy-
cle and ambiguity detection.

3.4. Atomic Operations

JSpoon expresses concurrency control similarly to the
way that Java handles thread synchronization on object
methods and variables. JSpoon programs requiring atomic
access to multiple configuration attributes must perform

JSpoonLease lease =
subscribe evt:
(NtpServer.port != 123) {

evt.object.active = false;
}

NtpServer mySrv = ...;
lease = subscribe
( (mySrv.port == 123) &&

(! mySrv.active) ) {
mySrv.active = true

}

Figure 7. Event Subscription Example

atomic(lock-timeout) {
z = x + y;

}

Figure 8. Atomic Action Example

these accesses within an atomic block. The atomic block
provides JSpoon programs with atomicity, consistency, iso-
lation, and durability (for persistent properties) in accessing
management attributes.

An atomic block example is listed in Figure 8. The
JSpoon program encloses its access to the configuration
properties x,y, and z in a atomic block to assure consis-
tent change. The JSpoon runtime will generate the required
read lock requests for x and y, as well as a write lock re-
quest for z.

The obtained locks are owned by the thread of execu-
tion. Nested transactions are supported through syntacti-
cally nested blocks, or through invocation of methods con-
taining atomic blocks. The effected changes are committed
at the end of the block, and the acquired locks are released,
unless this is a nested transaction.

Lock requests may fail due to a communications failure,
detection of a deadlock, or lock acquisition timeout. These
errors are signaled in the form of exceptions. If an exception
is thrown in an atomic block, then the values of all manage-
ment configuration attributes will be restored to their pre-
vious values. The syntax of the atomic block supports the
optional specification of a lock acquisition timeout.

Atomic blocks may also be used to group the generation
of performance variable update events. Performance vari-
able updates performed within an atomic block do not gen-
erate modeler update events until the end of the block. This
mechanism may be used to provide consistent views of per-
formance variables and to reduce the overhead of synchro-
nization between the service thread and the JSpoon event



monitoring thread.

4. The JSpoon Runtime Environment

The JSpoon runtime environment is responsible for pro-
viding object life-cycle services, and exporting manage-
ment information to remote management processes. This
section will outline the managed object persistence, syn-
chronization, remote access and event generation services.

4.1. Persistence

The JSpoon runtime environment supports persistence of
object configuration variables. In order to enable persis-
tence, classes must implement the Persistent marker
interface. Persistent objects must be assigned a unique ob-
ject identifier (OID) in order to support retrieval when in-
stantiated within the Java program. Objects which have key
variables, all of which are final and persistent, can be au-
tomatically assigned a unique OID. In all other cases, the
programmer is responsible for assigning the unique OID.

The JSpoon compiler modifies the signature of persistent
class constructors to include an additional argument of type
jspoon.JSpoonOID and to throw the Persistence-
Exception exception. The constructors are also modified
to include the necessary hooks for retrieving previously per-
sistent variable values. It should be noted that the persistent
values will override any default variable values specified in
the declaration section. At construction time, the program-
mer must provide the additional OID parameter to establish
the unique identity of the object.

Figure 9 shows the NtpServer class after it has
been marked to support persistence, and a simple simple
TimeDaemon application which uses a single instance of
the NtpServer class. At construction time, the additional
OID argument must be provided to establish the object’s
identity. A static identifier can used is this case because
the application is limited to creating a single instance of the
persistent class.

Every JSpoon process must be assigned a unique ser-
vice identity (SID). Service IDs are required in order to pre-
vent multiple instances of a program from owning the same
persistence repository data. Persistence repositories must
support locking to prevent concurrent binding of multiple
JSpoon programs using the same SID. A lease-based mech-
anism is employed to support releasing of resources follow-
ing a service failure.

A fully qualified object ID contains the service ID as
well as the location of its persistent repository. It is pos-
sible to set the default service ID and repository location of
a JSpoon process in order to simplify construction of OID
objects. Services can have multiple SIDs and connect to
multiple persistence repositories.

public class NtpServer extends Thread
implements jspoon.Persistent {
// ...

}
public class TimeDaemon {
public static void main(...) {

JSpoonOID oid = new JSpoonOID
("jspoon:NtpServer#Singleton");

NtpServer srv =
new NtpServer(oid);

}
}

Figure 9. Persistence Example

An object ID may be represented as a URI[4] of the
form:

jspoon://userinfo@host:port/serviceID#OID
For persistent objects with final key attributes the OID

may be expressed as:
className?key1=value1,key2=value2 ...

The Java language supports objects serialization as a
mechanism for storing and transmitting object state. The
JSpoon compiler modifies the writeObject and read-
Object methods of serializable objects to include mar-
shaling and unmarshaling of variables in the management
section, and code for binding the deserialized object into
the local JSpoon runtime environment.

4.2. Synchronizing States

JSpoon class configuration variables may be changed by
remote managers. A change in the configuration variable
will be reflected in program behavior at the next point at
which this variable is read. For example, the active vari-
able in the program of figure 3 is consulted every time a
request is serviced. If the server is idle, then it will remain
blocked on the socket receive() method, and will not
terminate until a datagram has been received and processed.
In order to increase responsiveness, the program may set a
socket timeout to establish an upper bound on its delay to
respond to a change in the active configuration.

The JSpoon runtime environment monitors application
access to configuration variables, and can detect if the pro-
gram has failed to read a changed configuration value af-
ter a certain period. Based on its configuration, the en-
vironment can elect to restart the server. Since the Java
VM does not support external thread termination (kill), it
is recommended that JSpoon program threads consult the
static jspoon.JSpoonThread.terminate boolean
variable, and cleanly terminate execution when it has been



public class NtpMonitor {
public static void main(...)

throws ... {

JSpoonOID[] oids =
jspoon.JSpoonNaming.list
("jspoon://localhost/NtpServer");

NtpServer server = (NtpServer)
jspoon.JSpoonNaming.lookup
(oids[0]);

while(true) {
System.out.println

(server.reqCount);
Thread.sleep(5000);

}
}

}

Figure 10. Manager Example

set to true.
There are cases in which configuration variables are con-

sulted only at program startup. Examples include net-
work service port numbers, persistent storage directories,
and others. To support dynamic reconfiguration, programs
should embed explicit synchronization code. For example,
main loop of the example from figure 3 can be rewritten as:

while(active) {
sock.receive(packet);
if (port != sock.getLocalPort()) {
// close & reopen socket

}
}

4.3. Remote Access

JSpoon programs requiring access to management at-
tributes of remote objects must first obtain a local copy
(view). This is performed by using the static methods of the
jspoon.JSpoonNaming class. The list method sup-
ports query of objects based on a query URI. In the example
of figure 10 the manager requests the OIDs of all instances
of the NtpServer class. The example code assumes that
at least one OID is returned, and then invokes the lookup
method to obtain a local view of the JSpoon object. Sub-
sequently, the JSpoon object can be accessed in the manner
illustrated in previous examples.

If the listing and lookup methods are enclosed in an
atomic block, the JSpoon runtime will obtain appropriate

locks to assure that the results remain stable. In the listed
example, had the listing and lookup methods been enclosed
in an atomic block, the runtime would lock NtpServer
object creation and remove effects.

4.4. Managed Java Library Objects

The JSpoon environment provides managed versions of
standard Java library objects. JSpoon managed objects fol-
low a naming convention of appending the jspoon prefix
to the full class name of the instrumented class. In this
manner, the jspoon.net.JSpoonDatagramSocket
class supports configuration and performance instrumenta-
tion of UDP datagram sockets. Use of managed objects
can greatly increase the management flexibility of Java pro-
grams. For example, use of the managed socket class in the
NtpServer would enable managers to configure socket
options such as the traffic class.

4.5. Introspection & Knowledge Plugins

Knowledge plug-ins extend the capabilities of the basic
JSpoon schema. For example, a simple constraint knowl-
edge plug-in may add support for type range restrictions. A
JSpoon autonomic element may use this plug-in to further
restrict the values of port number configuration attribute to
the range

�
� � ��� ��� ����� ����� .

JSpoon knowledge plug-ins are enabled in the form
of schema extensions to JSpoon classes. The schema of
a JSpoon class is represented with a meta-object that is
also a persistent JSpoon class of type JSpoonClass.
JSpoonClass defines a to-sequence relationship to in-
stances of the JSpoon class JSpoonSchemaExtension.
Schema extensions consist of a knowledge plugin URI and
an opaque object. A schema extension may be bound to
multiple instances of JSpoonClass. A UML class dia-
gram showing parts of the JSpoon meta-schema classes is
shown figure 11.

When the JSpoon runtime environment loads a JSpoon
class, it attempts to retrieve the class meta-object from
persistent storage. The schema extension relationship of
the meta-object is queried and the runtime environment at-
tempts to download any knowledge module proxy plug-ins
that are not already installed based on the URI. This capa-
bility depends on the Java cross-platform and security fea-
tures. Runtime changes to the meta-object schema exten-
sion relationship can also trigger the loading or unloading
of knowledge plug-ins.

At load-time, plug-ins use the JSpoon runtime event sub-
scription API to request notification of object management
events. Plug-in subscriptions provide synchronous notifica-
tion of pending changes, enabling the knowledge module
to abort invalid changes. Plug-ins receive two additional



JSpoonClass

relationshipsequence
    extensions
relationshipset
   variables

JSpoonSchemaExtension

config URI pluginURI
config Object extension
relationshipset boundTo

**
boundTo extensions

1

JSpoonVariable

config String name
config String Type
config boolean isStatic
relationshipset partOf

*
partof variables

Figure 11. JSpoon Meta Schema

events triggered by the creation and closing of a transac-
tion, or nested transaction. These events enable evaluation
of postconditions.

The knowledge schema extension mechanism is very
powerful, but may introduce cyclical computations. A
cyclical computation may be triggered by the interaction
of two knowledge plug-in modules that propagate changes.
Because the periodicity of the cycle may be very large,
it may be impossible to identify in a reasonable time.
Therefore, in absence of additional information on propaga-
tion paths, the JSpoon runtime system defines a maximum
knowledge module iteration count.

4.6. JSpoon Compilation

JSpoon-enhanced classes are compiled into Java VM
bytecode class files. The language was designed to support
JSpoon-to-Java source-to-source compilation as an interme-
diate step. The JSpoon compiler generates two identically
named Java classes for every JSpoon class. The element
class contains both the management and non-management
sections. The management class contains only the manage-
ment variables and is used by remote elements. Both classes
depend on the JSpoon runtime for view maintenance.

Management variable accesses by JSpoon programs are
transformed into corresponding accessor methods. Left-
hand-side (assignment) updates and right-hand-side reads
are replaced by set and get method invocations. The actual
management attributes are declared as private transient Java
instance variables with mangled names. Configuration vari-
able accessors invoke JSpoon runtime methods for locking
and logging. Performance variable accessors invoke JSpoon
event generation methods. A static block is also created to
notify the runtime of a class loading event.

Atomic blocks are compiled into JSpoon runtime envi-
ronment method invocations to create a transaction (poten-
tially nested), commit the transaction at the end of the block,
or abort if an exception has been thrown. The JSpoon com-
piler attempts to optimize lock acquisition through static
code analysis to batch lock requests, and minimize lock up-
grades. Batched lock requests are sorted by object ID to
reduce the likelihood of deadlock. If the compiler can de-
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Figure 12. NESTOR Architecture

termine that an atomic block does not include access to con-
figuration attributes, then no transaction is generated, only
the events are batched.

The JSpoon compiler may optionally generate proxy ob-
jects for exporting the management schema to existing Java
and XML-based persistence and management APIs and pro-
tocols. For example, the compiler may generate MBean ob-
jects conforming to the JMX[25] architecture to support in-
teraction with JMX managers. The compiler may also gen-
erate an XML schema, and protocol proxy for XML man-
agement standards such as XMLCONF[10].

5. NESTOR Autonomic Knowledge Plug-in

NESTOR[28] is an architecture for network man-
agement automation developed at Columbia University.
NESTOR supports automated management of existing net-
work elements and services through a layer of resource
adapters. NESTOR has been demonstrated in the automa-
tion of network configuration[28], network security [18],
multimedia QoS, and Active Network applications[17]. The
NESTOR prototype implementation has been released to in-
dustry research labs and has been applied as a platform for
development of a distributed firewall[5].

The overall NESTOR architecture is depicted in Fig-
ure 12. The element and resource adapter layers correspond
to the autonomic element program. NESTOR adapters are
used to interface with non-JSpoon instrumented network
service. The NESTOR configuration modeling layer is
an implementation of the autonomic modeling layer, and
provides a distributed object repository that supports dis-
tributed transactions, leasing and event notification. The
NESTOR self-configuration management layer corresponds
to the autonomic knowledge layer. The NESTOR config-
uration constraint and change propagation managers can
be encapsulated as a JSpoon autonomic knowledge module
plug-in.

A sample NESTOR propagation rule is shown in Fig-
ure 13. The rule states that the Maximum Transfer Unit of
a UDP-based web-radio streaming service should be set to



com::acme::WebRadio->allInstances
->forAll(a : WebApp | a.mtu =
servedBy.networkInterfaces
->select(i | not i.isLoopback)
->collect(i | i.mtu)->min())

Figure 13. NESTOR OCL Propagation Rule

the minimum MTU of the network interfaces of its execu-
tion environment.

6. Previous Work

The advantages of representing network element and ser-
vice configuration using an object-relationship model have
been established by several research projects and man-
agement standards [27, 9, 8, 15]. The categorization of
management variables has been previously discussed in
network and services management architecture research
[12, 21, 23, 19]. This paper contributes to this research
by specifying a language and mechanism for declaring re-
stricted management variables as part of the service object
class, and compiling them into a management object fol-
lowing matching accessor design patterns.

Previous work in automated service configuration[28,
17, 22, 14], fault root-cause analysis[24], and self-
healing[11, 13] has depended on existing service instru-
mentation. Although these approaches have demonstrated
practical automation capabilities, they require complex co-
ordinated design and evolution of management systems and
managed elements. For example, the management system
vendor must be able to access the instrumentation of the
managed element, construct a data model and a knowledge
model to interpret its operational meaning and control its
configuration in a manner consistent with operational pro-
cedures conceived by the element vendor. This informa-
tion is often not readily available and may change as the
managed element continues to evolve. Therefore, there is
a need to simplify the process through which element de-
signers export instrumentation and modeling information
concerning the element’s operations management, while en-
abling multiple knowledge models to be seamlessly inte-
grated and applied to the element to provide autonomic op-
erations. This work provides an opportunity to greatly im-
prove the efficacy of these results through a rich instrumen-
tation layer, and an generic architecture for providing au-
tomation knowledge modules.

JSpoon complements existing Java-based management
architectures such as JMX[25] and JavaBeans. Autonomic
element programmer’s benefit from the close integration
between element and management code, while benefiting
from the compiler-generated management system exports.

Related research includes a system for automated manage-
ment of EJB component interfaces[2]. The work presented
proposes a more general instrumentation automation ap-
proach, at the cost of requiring programmer cooperation.
Automated SNMP-based management instrumentation has
been previously demonstrated in non-imperative languages
such as the NetScript[7] data-flow language. This paper
presents an architecture for automating instrumentation of
Java, a general-purpose imperative language.

7. Conclusion

The JSpoon approach to autonomic management of-
fers several substantive advantages over current alternatives.
First, all information needed for management is consoli-
dated with element design and can be maintained through
its life-cycle evolution. Second, instrumentation, data mod-
els, knowledge model and their bindings can be generated
and managed through compiler support and static-time vali-
dation. Third, knowledge modules can be seamlessly incor-
porated with elements by vendors of autonomic computing
products, independently of the element vendors enabling
synergistic evolution of products. Fourth, instrumentation,
data and knowledge models can be unified across multi-
ple elements greatly simplifying the task of providing au-
tonomic self-managing capabilities of large composite sys-
tems.
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