
Active Network Support Services
Demonstration

Columbia University, University
of California Berkeley,

University of California Los
Angeles, University of Utah

December 6, 2000

Outline

• Introduction
• Description of the demo
• Nestor (Columbia)
• Panda (UCLA)
• Janos (University of Utah)
• Ninja (UC Berkeley)
• Conclusion

Introduction

• What are active network support services?
– Node operating systems
– Active network management
– Middleware to make active networks more usable
– General clustering services applied to active networks

• Generally, they assist core active network
technologies (like EEs and active applications) in
doing their jobs

Two Important Characteristics of
These Services

1. Intended for use by many applications
– Requiring high degree of generality
– And interfaces usable by wide range of

applications
2. Should interoperate naturally

The Demonstration

• Two goals
1. Show the value of the support services
2. Demonstrate interoperation

• Basic strategy
– Show several support services working

together
– Adding value to an application using active

networks

What Will We Be Showing?

• A videoconferencing application
• Built from basic video and audio streams
• Active services allow it to operate in

difficult conditions
– Poor network links
– Competing traffic and applications
– Failures

• Goal is to show obvious improvement

Some Details

• Two cameras streaming live video/audio
– In WaveVideo wavelet encoding
– Not directly using active networks

• Crossing a wireless link
– Resulting in unacceptable video quality

• Facing competing traffic at one node
• Eventually, one of the service nodes fails

The Demo Situation

Wireless link
with insufficient

bandwidth

Competing
traffic

What if a key
node fails?

Solving the Demo’s Problems

Wireless link
with insufficient

bandwidth

Competing
traffic

Use Actiware
VANS and Panda

active network
adaptations

Reserve
resources
with Janos
node OS

Use a Ninja
cluster to

achieve fault
tolerance

Monitor conditions
with Nestor

What Are Nestor and Actiware
Doing?

• Nestor observes wireless link characteristics
– Reports them to Panda, when requested
– Also displays them in real time on a system

management machine
• Actiware sets up virtual active network

links for Panda over wireless link

What Is Panda Doing?

• Panda intercepts four non-active data
streams and makes them active

• Sets up a (simple) plan for adaptation
– Based on information from Nestor

• Runs adaptors at near end of wireless link
– Adaptor that drops some wavelet levels
– Adaptor that gives more bandwidth to speaker

What Is Janos Doing?

• Makes reservations for Panda flows on
intermediate node

• In the face of competing:
– CPU hogs
– Network hogs
– Memory hogs

What Is Ninja Doing?

• Ninja runs Panda at one location in cluster
mode

• When one cluster node running Panda fails,
Ninja fails over to another node
– In around one second

On With the Demo!

• Two live video/audio feeds are being sent
through the network just described

• Note that the output sucks
• Let’s get started fixing it!

The Demo Setup

Wireless link
with insufficient

bandwidth

Competing
traffic

Actiware and Nestor

Panda

• Middleware to bring benefits of active
networks to legacy programs and other AN-
unaware programs

• Panda applies active network adaptations to
selected non-active streams

Adaptation of Unaware
Applications

• Many existing applications don’t use active
networks

• Many future applications won’t, either
• But many kinds of data streams are

automatically recognizable
– And adaptable using active networks

How Does Panda Help
Unaware Applications?

• Intercept data streams at sending node
• Choose streams that Panda can handle
• Convert packets in stream to ANTS packets
• Deploy adaptors to do something helpful
• At destination, strip off ANTS stuff and

deliver non-active packets

Adaptation
Composition

• In complex networks, one adaptation at one
place is often insufficient

• Combining multiple adaptations must be
done carefully

• Requires planning to ensure adapter
compatibility
– And proper overall behavior

Panda Planning

• Two types of planning currently supported:
– Planning at sending node

• Sending node specifies which adapters and where

– Hop-by-hop planning
• Each node decides on local adapters
• Using knowledge of previously deployed adapters

• Heuristics used in demo very primitive
• More sophisticated planning is partially

implemented

What Panda Does in
the Demo

• Panda captures both video and both audio streams
• Converts them to ANTS active format
• Examines Nestor-supplied information about

wireless link conditions
• Chooses plan to

– filter wavelet encoding
– use Actiware VANs to reserve bandwidth
– give preferential treatment to speaker’s streams

• Deploys and runs necessary adaptor
• Converts back to non-active form at destination

Team 3: Demo 2000
Janos Project

University of Utah
Flux Research Group

janos

Java Active Network OS

• Java-oriented active network
operating system
– From AAs all the way down to the wires

[JSAC 2001]
• Provides standard OS facilities

• Separation
• Resource control
• Termination

• … but in a Java Virtual Machine
janos

Java Active Network OS

• Abstractions from operating systems [HotOS’99]
– User/kernel boundary, process model

• Mechanisms from garbage collection:
– Distributed GC, write barriers

• Key issue: controlled sharing
– Packet buffers

• Based on KaffeOS [Back et al, OSDI 2000]
• Comprehensive resource control

– Physical memory, CPU, outgoing network bandwidth

janos

Janos in the Demo

• Demonstration of Janos support for resource
controls over Java code
– CPU
– Network bandwidth
– Memory

• Demonstration of Java code in low-level
networking

janos

Janos in the Demo

• Janos node connects video source network
and video display network

janos

Janos

Janos in the Demo

• IPFwd application forwards packets
• Hog applications waste resources
• All apps are written to Janos Java NodeOS

API
• Each application runs in its own Java

process
– Separate GC, Heap, namespace, CPU, threads,

etc.

janos

Janos Setup

PIII 600 / 3x 100Mbs / 128MB
Utah OSKit

Moab NodeOS
JanosVM

Janos Java NodeOS JavaJava

CC

IP
Fwd

Net
Hog

Mem
Hog

CPU
Hog

janos

Janos Setup
IP

Fwd

Net
Hog

Mem
Hog

CPU
Hog

Simple IP routing of two video streams
to display network

Network bandwidth abuser
Consumes 90% of output link

Infinite memory waster
Java GC cleans up, restricted to 2MB

Endless CPU consumer
200 threads in infinite loops

janos

IP Forwarder
• Validates header checksum, decrements TTL,

picks OutChan
• Written in Java:

if (bufHandle.computeChecksum(0, IPHeader.HEADER_LENGTH_NO_OPTIONS)!= 0)

throw new Error(“Bad checksum…”);

if (!IPHeader.consumeTTL(bufHandle, 0))

throw new Error(“No time to live…”);

routeEntry = this.lookupRoute(this.iface,

IPHeader.getDestination(bufHandle, payloadOffset));

if ((outChan = routeEntry.getChannel()) != null)

oc.send(bufHandle);

• Zero-copy buffer access

IP
Fwd

janos

• Runs in own Janos domain
• Efficiently wastes just one resource

– Net hog gets significant CPU allocation
• Each written in Java

Hog (Net|CPU|Mem) Hog

Stats Stats & Control
� Talks to GUI on separate NIC

janos

Performance

• More than enough for the demo
– 500 pps, ~500 bytes per packet

• IP Forwarder handles almost 18Kpps
– About 40% of the C version

• Ping across forwarder in less than 1ms

janos

Demonstration

• Janos manages CPU, memory, network usage of
each domain.

• Parameters are setup such that
– Forwarder flow gets more than enough
– “X” hog gets a small share of “X”

• “Disabled” scheduler is simple round-robin over
quantum (time slice or “packet send”)

• Memory scheduler cannot be disabled
– Cannot revoke allocated pages

janos

Future Work

• Performance
– Interrupt -> Polling model for rx
– JanosVM optimizations
– (JIT & GC optimizations, etc.)

• Build applications to our model
– Validate the sharing/separation

• Improve resource schedulers
– Include latency requirements

janos

Summary

• Janos provides resource guarantees to active
network code

• Janos supports Java code for systems
– Zero-copy buffer access
– Full NodeOS API available (except Mem)

• Janos provides OS process model for Java
applications

janos

Available

• NodeOS in C: Moab
– OSKit, Linux, FreeBSD, Solaris

• NodeOS in Java:
– Bindings for: Moab, JDK, (soon) AMP

• JanosVM
– Available soon

• ANTS
– ANTSR available now
– ANTS 2.0 available soon

http://www.cs.utah.edu/flux/janos/

janos

Janos and KaffeOS
papers available

today and on web

Ninja

What Has This Demo Shown?

• Benefits of active network technologies
– Specifically, of AN service technologies
– Obvious benefit to a realistic service

• Ability of various active network services to
interoperate beneficially

• Application of active networks to non-
active applications

Demo Lessons

• Network configuration is a pain
• Wireless is a pain

– Suggesting it’s actually a good place to look for
active network opportunities

• Increasing maturity of components has
actually made them useful

• Demo devils are in the details

Why Didn’t We Get Better
Frame Rates?

• Multiple passes up and down through
ANTS and kernels

• Wireless limitations
• Need better adaptations

– E.g., packet aggregation
• Java runtime overheads

Credits

• Who actually did the work?
– Kevin Eustice (UCLA)
– Ramakrishna Gummadi (UCB)
– Patrick Tullman (Utah)
– Alexander Konstantinou and Gong Su (Columbia)

