
Market-Based Protection of Information Systems
Apostolos Dailianas

Department of Computer Science, Columbia University,
450 Computer Science Bldg., New York, NY 10027

Email: apostolo@cs.columbia.edu
The Challenge

We propose the development of novel market-based mechanisms to ensure the systematic, quanti-
fiable and predictable protection of large-scale information systems against attacks. Success in
this research will result in scalable and resource-independent mechanisms that
1. establish quantifiable and tunable limits on the power of attackers to access or damage criti-

cal information systems resources
2. establish full accountability among separately administered and mutually distrustful domains;

and enable rapid tracing and isolation of attack sources
3. provide resource-independent instrumentation to monitor resource access and to detect intru-

sion attacks automatically
4. provide quantifiable hedging against loss of critical resources due to attacks or failures and

graceful recovery that reallocates resource access based on quantifiable priorities

Technical Approach

Resources and their clients are organized in currency domains. Resources include both physical
resources such as CPU cycles, storage, bandwidth, I/O devices or sensors as well as higher-level
services such as operating systems calls, file systems, name servers, database or web servers.

Domains use currency to provide unified, scalable, and traceable access to their services. Each
domain has its own currency. A client accessing a resource must pay for its use with the currency
of the domain that owns the resource. To acquire foreign currency, clients first have to use part of
their budget and exchange it for the desired currency. Access is thus limited by the budget avail-
able to the client and by the price of the respective resource. Each domain fully controls access to
its resources through several parameters: the price of a resource; the budget allocated to a given
client (whether an internal client or an external distrusted domain); and the rate at which currency
is provided to a given client. Currency carries unique unforgeable identifiers that can be moni-
tored and traced to establish full accountability of the source of an access.

The combination of prices and available budgets provides uniform resource management, dy-
namically tunable access control, and resource protection. Prices are dynamic. They rise with in-
crease in demand and fall with increase in supply. With a fixed supply, a rise in price indicates
an increase in demand, and suggests to current or potential owners of resources to spend part of
their revenue to increase supply. If supply does not increase, or decreases due to a failure or at-
tack, higher prices moderate demand, and allocate the scarce resource to those valuing the re-
source most. Protected resources have extremely high access price; only qualified clients that
have been given the appropriate budget can access them. In case of shortage in supply due to loss,
attacks, or congestion, access is provided to high-priority customers, i.e., those willing to pay the
high prices and possessing the available budget. The rest are priced out and automatically redis-
tribute their demand to similar services. Protected resources can limit access to a specific set of
qualified clients that have been given the appropriate budget to access them. In case of attacks
rising prices force attackers to spend their budget at an increasing rate to sustain the attack. While
rising prices severely limit the power of attackers by essentially lowering their budget, high pri-
ority (high budget) customers are still able to access the resources under attack.

Resource managers use value of resources to rationalize replication. Provision of resources and
services generates revenue that is directly related to the demand for and the importance of the

provided good. Resource managers quantify the loss of revenue due to a loss of a resource. They
use this estimate to hedge against loss by investing current revenues to insure future availability.
The services most valuable by their clients are provided with the highest redundancy.

The flow of currency among clients, resource managers and different domains is managed by re-
spective bank servers. Bank servers maintain accounts, enforce budget constraints, clear transac-
tions among clients and resource managers, and monitor currency flows. The bank servers are
hierarchically organized to admit scalable organization of nested domains with independent re-
source protection and control policies. Bank servers maintain accountability among independent
domains by controlling currency flows among them. The banking system is protected through
strict traditional mechanisms as well as market-based mechanisms.

Resource access is monitored to automatically detect intrusion attacks. Attack sources are identi-
fied and isolated. Monitoring is done in much the same fashion as in transaction processing sys-
tems. The unique currency identifiers are used to correlate resource accesses to sources of access.
Currency flows provide a good way to model temporal behaviors of clients and patterns of re-
source access to classify activities into those that are legitimate and those that seem suspicious
and hence warrant further inspection and authorization. Once an attack has been identified, identi-
fication through the currency identifiers isolates the source of the attack. This knowledge is rap-
idly propagated to other domains to avoid further spread of faults or attacks.

The power of attackers is quantifiable and tunable. A first limit to the attack power of a network
entity (where an entity could be a set of clients or a set of domains) is imposed by its available
budget. The buying power of any entity is limited by the income it generates through the services
it provides to the rest of the world. Spending within the available budget is enforced by the hier-
archical banking infrastructure. A second limit is imposed by the currency policies enforced by
domains. The budget a domain provides to some entity, along with the rate at which it provides it,
imposes a strict limit on the access (and attack) power of any entity. A third limit is imposed by
the pricing mechanism. Prices provide a means to convert a "fixed" budget (belonging to a spe-
cific client or a coalition of clients potentially residing in different domains), to a much lower "ef-
fective" budget. For example, if the purpose of attacking a resource is to move it to an "undesir-
able" region of operation, then the price of the resource should reflect its reluctance to operate in
that region. Should the attacker or coalition of attackers desire to sustain the attack, they would
see a continuously increasing price to access the resource, forcing them to exhaust their budget at
an increasing rate. Knowledge of the specific pricing policy in this case can provide analytical
upper bounds on the duration of attacks achievable by given collective budgets.

An example: The Worm Attack
As an example consider the “worm attack”, one of the hardest to prevent and react to. The pur-
pose of the worm was to break into systems, install and locally run itself and spread to other sys-
tems. Three techniques were used to do so: a. exploiting a bug in the gets C I/O library used by
the fingerd daemon; b. exploiting the debug option in sendmail servicing the SMTP port; c.
guessing passwords and exploiting trust between hosts. If MarketNet were in place, the attacker
would leave an unforgeable trace by paying to use sendmail or fingerd. Furthermore, the pass-
word guessing attack would soon be detected and isolated since it involves heavy system re-
sources utilization. Monitoring of the budget usage would trigger alarms due to the unusual be-
havior. Furthermore, the amount of damage (e.g., overloading system resources) the process can
achieve is limited by the budget available to it. Notice that we make the worst-case assumption
that the intruder manages to get hold of the budget of the conquered account. Mechanisms to im-
pose restrictions on the budget available to processes are currently under investigation in Mar-
ketNet. MarketNet protects systems without eliminating software bugs. It assumes that software
bugs are always very likely to exist and creates a layer of protection that is independent of the
correctness of software.

