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1. Introduction

Protecting large-scale information systems remains an elusive challenge of ever-growing
importance and complexity.  Exposure to insecurities and the opportunities available to
attackers are increasing with the growth in the range of resources, scale, complexity, and
operations management practices of domain administrations. Current information sys-
tems enable attackers to pursue virtually unlimited compromise attempts; they involve
ad-hoc instrumentation to monitor resource access and manual correlation of access logs
to detect intrusion; and they leave attackers unaccountable to abuses and crimes they
commit. Rapid changes in technologies increase the vulnerability to attackers. First, at
present protection technologies are component-specific. A minor insecurity in a new
component can propagate substantial exposure to other components. A secure system can
be rendered insecure by the addition of a single component. The combinatorics of inter-
actions between new components and existing ones increase exponentially. Second, in
the absence of a unifying security architecture it is impossible for component vendors, or
domain administrations to accomplish a coordinated protection.

Domain administrations are thus increasingly exposed to security risks and are unable to
control, bound or even assess this exposure. They require expert manual labor to monitor
and correlate access anomalies and detect an attack, typically through off-line non-real-
time processes completed hours or days after the attack has been completed. And even
when an attack is detected, identifying the source accountable for it can be virtually im-
possible and requires complex ad-hoc collaborations of multiple expert police forces.

We propose the use of currency for access control as a novel approach to the protection
of large-scale information systems. Currency is used both as a token of value and as a
token of unique identification. Resources are instrumented to use currency for access
control and monitoring. Resources include physical resources such as CPU cycles, stor-
age, bandwidth, etc., as well as higher-level software services such as file storage, name
service, databases, etc. Clients must pay resource managers, using appropriate currency
and prices, to gain access to respective resources. Payment is performed through secure
financial transaction protocols. Attackers are limited by their budget in gaining access to
resources and in causing damage. Budgets are enforced by secure banks. Domain admini-
strations control access to resources and establish quantifiable limits on exposure to at-
tacks by adjusting prices of resources and controlling the availability of their currency.

Currency flows provide uniform resource-independent instrumentation to monitor and
correlate access patterns and to detect anomalies. This enables the development of uni-
form resource-independent intrusion-detection mechanisms based on the statistics of cur-
rency flows. Intrusion-detection can be thus automated and accomplished in real-time
with an attack. Furthermore, currency carries unique identifiers. A domain maintains full
accountability of the entities to which currency has been allocated. A domain can account
for sources of each access to its resources. In particular, once an attack has been identi-
fied a domain can establish verifiable proof of accountability in tracing its sources.

The proposed mechanisms are structured to admit scalability and enable protection
among mutually distrustful domains organized in a large-scale federated system. These
protection mechanisms are resource-independent and can thus be retrofitted into an ex-
isting system with minor adaptation of its components.
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2. Related Work

Most of the work related to this thesis falls in one of the following four categories: (a)
mechanisms for protection of individual components or whole network domains (e.g.,
firewalls, authentication, access control lists, etc); (b) electronic commerce mechanisms
and protocols for secure trading over wide area networks; (c) economic-based mecha-
nisms for network resource management; and (d) intrusion detection mechanisms.

A significant body of research and implementation work has been devoted in the past in
protecting individual resources or whole network domains. Two of the most commonly
used such mechanisms are firewalls/security gateways and a combination of authentica-
tion and access control lists. Firewalls ([5]) are typically computers that sit between an
internal network and the rest of the world, filtering packets as they go by, according to
various criteria. Even though their value should not be undermined, firewalls and security
gateways offer limited security, slow down the system operation, and require special ef-
fort to support every possible new application that is developed. Authentication mecha-
nisms ([15], [16], [24], [25]) establish the identity of an entity that wishes to access a re-
source, and access control lists (ACLs) determine the authorization of the entity to access
a specific resource. An ACL is associated with each resource whose access needs to be
restricted. ACLs become prohibitively expensive as they increase in size. They become
expensive to store, hard to maintain, and provide little help in isolating attack sources
once the source(s) of an attack has been identified.

Over the past decade significant research has been performed in the area of e-commerce,
resulting in the development of several electronic payment protocols and respective fi-
nancial institutions for secure transactions over wide area networks ([1], [4], [7], [8],
[13], [22], [23], [26], [27], [28], [31], [32]). The financial institutions associated with this
body of work do not address a few of the central issues in our work. The first is scalabil-
ity. Most of the work focuses on centralized infrastructure particular to the associated
payment mechanism. The second is the protection of the online financial infrastructure
itself from intruders.

Also, in terms of the protocols for secure financial transactions, this body of work does
not address some central requirements that arise from the application of such protocols in
the architecture proposed here. Specifically, the volume of transactions created by trading
both physical resources as well as higher level services is orders of magnitude bigger than
what is assumed by typical e-cash protocols. Therefore protocols with very low over-
heads in terms of bandwidth, information that needs to be stored, and cost of the payment
functionality are imperative. Another issue that is important is the provision of cheap
guarantees that service contracts are honored. Service providers should deliver the re-
quested services and customers must pay for the services requested and delivered. Fi-
nally, the nature of the traded commodities, sometimes referred to as “soft” commodities,
is such that it cannot tolerate delays by the payment functionality.

Economic-based mechanisms for network resource management ([2], [6], [17], [20], [21],
[29], [30], [35], [37]) have focused on the efficient allocation of resources through the
application of economics-based principles and have provided insights on the role of
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prices and the operation of markets in a distributed network economy. We are building on
this body of work by applying the accumulated knowledge to the creation of a market for
trading access rights to resources and to the control of prices as a means to achieve access
control and protection of resources.

Intrusion detection systems can be classified in two main categories: (a) misuse detection
systems ([14]) attempt to identify intrusions by monitoring systems to identify patterns of
well-known attacks; (b) anomaly detection systems ([19]) try to distinguish between
normal and abnormal access patterns. Many intrusion detection systems currently involve
manual ad hoc means; they rely on the experience of the mechanisms creators to invent
thresholds for differentiating normal from abnormal behavior and employ hand-coded
intrusion patterns in the attempt to identify intrusions. These practices limit their effec-
tiveness and applicability to future unpredicted attacks. Furthermore, most of the intru-
sion detection instrumentation is resource specific, imposing restrictions on the correla-
tion of events to detect abnormal access patterns. Current work ([18]) attempts to develop
a systematic framework to semi-automate the process of building intrusion detection
systems.
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3. Use of Currency for Access Control

3.1 Objectives

The goal of this work is to develop novel information-systems protection mechanisms
based on the use of currency and the application of market-based paradigms to access re-
sources and services. These mechanisms seek to ensure the systematic, quantifiable and
predictable survivability of large-scale information systems.

Specifically, the objectives of our research are:

• Provision of scalable, resource independent access to protected resources and services
and establishment of quantifiable and  tunable limits on the power of attackers to ac-
cess or damage critical information systems resources

• Establishment of full accountability among separately administered and mutually
distrustful domains; and provision for rapid tracing and isolation of attack sources

• Provision of resource-independent instrumentation to monitor resource access; detect
intrusion attacks automatically, identify their sources and rapidly isolate attack
sources and deny access

• Provision of quantifiable protection against loss of critical resources due to attacks or
failures

• Efficient and graceful recovery from loss of resources through dynamic load distribu-
tion to alternate resources based on quantifiable priorities

3.2 Technical Approach

Resources and clients are organized in currency domains. Resources include physical re-
sources such as CPU cycles, storage, bandwidth, I/O devices, or sensors as well as
higher-level software services such as file storage, name service, database, or web serv-
ice. A currency domain establishes access protection for a group of resources. It provides
administrative infrastructure for imposing domain-level protection policies covering
pricing of critical resources, assignment of budgets to internal clients, limitation of access
by external domains, monitoring access to detect intrusion attacks and activating re-
sponses to attacks.

Domains issue their own currency. This currency is used to provide unified, scalable ac-
cess to their services. The currency is uniquely identified by a currency ID. This estab-
lishes full accountability in the use of resources by tracing access to resources back to the
holder of the currency. To gain access to the resources in a domain, clients first have to
exchange currency of the target domain for their own. Currency of a domain gives the
holder the right to access any of the resources in the domain, providing unified, scalable
access. The currency of a domain encapsulates domain-level protection policies set by the
domain. Specifically, domains control who can acquire their currency, along with the to-
tal currency outflow, the rate of currency outflow and other parameters, imposing strict
domain-controlled limits on the access and attack power of any entity wishing to access
the domain resources.
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Currency domains encapsulate protection policies for the whole domain. Finer access
control at the resource level is achieved through the pricing mechanism. Prices of re-
sources along with available budgets of clients establish a dynamically tunable access
control mechanism; provide the means for optimized load redistribution and graceful
degradation upon loss; and impose quantifiable dynamically adjustable limits on the ex-
posure to attackers.

Each resource in a domain is priced in terms of the currency acceptable by the domain.
This price is advertised in respective service directories.  Prices are dynamically updated
to reflect various operation parameters such as access control policies and changing de-
mand for a resource. The combination of prices and budgets available to clients provides
a fine granularity, dynamically adjustable access control mechanism. Limiting access to a
specific set of clients can be achieved by raising the prices to higher levels, guaranteeing
that only qualified clients (those that have sufficient budget) can access them. Further-
more, currency identifiers enable additional price discrimination techniques. Budget and
price discrimination can achieve a continuous spectrum of limits imposed on the use of a
resource, based on the source domain of a request.

The pricing mechanism can also be used to reflect resource unavailability due to conges-
tion or loss. A loss of a resource reduces the supply, thus automatically causing clients to
redirect their demands to backup replicas. Reduced availability results in rising prices of
the replicated resources. Rising prices create a natural selection process where applica-
tions automatically adapt to resource availability and obtain access to alternate resources
according to their intrinsic priority captured by their budget. High-priority clients can ap-
ply their budget to continue and obtain high quality of service (QoS), while low-priority
clients are priced-out. Thus a loss results in graceful selective degradation of services that
optimizes the balance between available resources and demands.

Furthermore, prices can force the operation of resources within a "desirable" region of
operation. The desirable region of operation is resource-dependent, and in general refers
to the region of operation specified by the resource manager, where specific QoS con-
straints or other considerations are satisfied (e.g., the average incoming rate to a switch
should be controlled to provide low delays and loss). Assume the purpose of attacking a
resource is to move it to an "undesirable" region of operation. Then the price of the re-
source should reflect its reluctance to operate in that region. Should the attacker or coali-
tion of attackers desire to sustain the attack, they would see a continuously increasing
price to access the resource, forcing them to exhaust their budget at an increasing rate to
sustain the attack. The pricing mechanism in this case provides a means to convert a
"fixed" budget (belonging to a specific client or a coalition of clients potentially residing
in different domains), to a much lower "effective" budget. Knowledge of the specific
pricing policy can provide analytical upper bounds on the duration of attacks achievable
by given collective budgets.

The power of attackers is limited by their available budget. An attacker can gain access to
resources only to the extent that his budget permits it. Furthermore, with each access re-
quired for an attack, the remaining budget and with it the power of the attacker decreases.

Thus, enforcement of budgets (i.e., guarantees that no client or application can spend
more than their budget) is a very powerful tool for limiting attacks and damages.  Hierar-
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chical budget enforcement is pursued by organizing network entities (i.e., resources, cli-
ents, or subdomains) in hierarchically nested domains; each domain has a bank that con-
trols the budget usage of the entities inside the domain as well as the dissipation of cur-
rency to external domains. Bank servers maintain accountability among independent do-
mains by controlling currency flows among them. The banking system is protected
through strict traditional mechanisms (such as encryption and authentication) as well as
market-based mechanisms (such as monitoring of currency flows, monitoring of ex-
change rates and balances, etc.).

Resource access is monitored to automatically detect intrusion attacks. Attack sources are
identified and isolated. Monitoring is done in much the same fashion as in transaction
processing systems. The unique currency identifiers are used to correlate resource ac-
cesses to sources of access. Currency flows provide a good way to model temporal be-
haviors of clients and patterns of resource access to classify activities into those that are
legitimate and those that seem suspicious and hence warrant further inspection and
authorization. Once an attack has been identified, identification through the currency
identifiers isolates the source of the attack. This knowledge is rapidly propagated to other
domains to avoid further spread of faults or attacks.

3.3 Novel Forms of Protection

Access to resources through currency provides several novel forms of protection. First, it
provides unified protection of access to critical resources. Critical resources can be com-
bined in a special currency domain. Access to these resources requires this special cur-
rency. External customers can convert their currencies to the currency of the protected
domain. However, this conversion is strictly controlled and authenticated by the respec-
tive bank-servers of the domains, and limitations are imposed on the total currency of the
protected domain that can be dissipated out. An attacker that took over another domain
and breaks through the authentication of the bank servers still gains very limited access,
subject to currency conversion limitations, entirely controlled by the protected domain.

Second, it provides quantifiable and tunable limits on the power of attackers. A first limit
is imposed by the budget available to a client, which is in turn limited by the income it
generates through the services it provides to the rest of the world. Spending within the
available budget is enforced by the banking infrastructure. A second limit is imposed by
the currency policies enforced by domains that have full control over currency dissipation
to perspective clients. A third limit is imposed through price adjustment. Rising prices in
case of attacks force attackers to exhaust their budget at an increasing rate to sustain the
attack, thus limiting the effects of attacks. Knowledge of the specific pricing policy in
this case can provide analytical upper bounds on the duration of attacks achievable by
given collective budgets.

Third it provides a uniform instrumentation for intrusion detection and establishes proof
of liability. Currency carries unique unforgeable identifiers that can be monitored and
traced to establish full accountability of the source of an access; and provides uniform
instrumentation to monitor and account for resource access in a give domain. Intrusion
monitoring agents use this information to detect attack patterns and establish the domains
responsible for it. Once an attack has been identified, identification through the currency
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identifiers isolates the source of the attack. This knowledge is rapidly propagated to other
domains to avoid further spread of faults or attacks.

Finally, access to resources through currency provides a unifying framework for the de-
velopment of market-based resource management and protection mechanisms.

Resource managers offer protection of resource availability and graceful degradation
under loss. Critical resources are dynamically and rationally replicated to optimize ex-
pected revenues that they generate. Prices for resource access rise with increase in de-
mand and fall with increase in supply.  With a fixed supply, a rise in price indicates an
increase in demand. Resource managers quantify the loss of revenue due to a loss of a
resource, and hedge against it by investing current revenues to insure future availability.
The services most valuable by their clients are provided with the highest redundancy. If
supply does not increase, or decreases due to a failure or attack, higher prices moderate
demand, limiting access to high-priority customers, i.e., those willing to pay the high
prices and possessing the available budget. The rest are priced out and automatically re-
distribute their demand to similar services.

Customers deploy their own market-based strategies for resource acquisition and pro-
tection against resource unavailability that best satisfy their requirements under their
budget constraints. Protection for resources that are critical for applications can be pur-
chased to hedge against future resource unavailability due to failures or attacks. Custom-
ers dynamically quantify the importance of resources and services and rationally pur-
chase resources or protection against resource unavailability in the form of rights to use
alternate resources.



The RAL Infrastructure and Mechanisms

8

4. The Resource Access Layer (RAL) Infrastructure and Mechanisms

4.1 The RAL Architecture

We propose the introduction of a distributed protection middleware infrastructure, the
Resource Access Layer (RAL), overlaid on existing infrastructure (Figure 1). RAL in-
cludes several mechanisms. Resource managers are responsible to set the price for a re-
source, collect payments for its access and deposit revenues with the bank server of the
respective domain. Client managers are responsible to manage client budget, obtain
pricing information and pass respective payments required to access services used by the
client. Bank servers provide accounting, clearing and monitoring of currency flows. Price
directories provide pricing information. These mechanisms are depicted in Figure 1 be-
low.

In a typical scenario, depicted in Figure 1, a client belonging to domain X wishes to ac-
cess a resource belonging to domain Y. The client needs to first obtain currency accept-
able to domain Y. The client manager obtains respective pricing information and issues a
request to the bank server of domain X to provide it with currency for domain Y.  The
bank server of domain X must obtain currency issued by domain Y and credit the account
of domain Y with a respective central bank for this amount. The two domain bank servers
pursue secure transactions with the central bank to accomplish this. Once the client man-
ager obtains respective currency from its bank server, it can proceed to execute accesses
to the service. Each access will incur a payment collected by the server manager.

Figure 1 Overall System Architecture

It is important to note several salient features of this architecture.

• The RAL mechanisms provide incremental extensions of existing components and
systems.

• The client and resource managers provide uniform (i.e., resource independent) and
minimal extensions of existing software components to control access.

Domain Y
Domain X

Access

Rsrc MgrClnt mgr

Payment

Y Bank 
Srvr

X Bank 
Srvr

Central
Bank

Price
Dir

Price
Dir

Resource Access Layer (RAL)
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• All transactions involving currency flows between managers and their bank servers
and between bank servers are secured through encryption and authentication.

• The overheads involved in converting currency among domains and in allocating cur-
rency to a client can be minimized through caching of currency. For example, the
bank server of domain X can cache sufficient currency of domain Y in anticipation of
requests by clients in its domain.

• Once a client obtains currency, the payment to resource managers involves very
minimal overhead.

The RAL provides in effect a distributed secure access management kernel that is inde-
pendent of underlying resources. In the following sections we present some of the essen-
tial components in implementing the middleware infrastructure depicted in Figure 1.

4.2 Currency Domains

The proposed architecture organizes resources (i.e., physical resources such as CPU cy-
cles, storage, bandwidth, I/O devices, or sensors as well as higher-level software services
such as file storage, name service, database) and clients in currency domains. Currency
domains encapsulate domain specified protection of the included resources through strict
control over currency dissipation; enable monitoring of currency flows, intrusion detec-
tion and tracing; establish accountability among mutually distrustful domains; and limit
propagation of attacks.

The currency of a domain gives the holder the right to access resources in that domain.
Therefore, to gain access to the resources in a domain, clients first have to use part of
their budget and exchange it for the desired currency. Domain currencies are traded
through secure domain banks at current exchange rates. The currency carries unique cur-
rency identifiers. Foreign domain banks requesting local currency are authenticated prior
to the exchange and their identity along with the currency identifiers of the currency they
acquire is recorded. Thus, the unique identifiers establish full accountability in the use of
resources by tracing access to resources back to the holder of the currency. Exchange
rates are set to balance the overall inter-domain access demands; they capture global be-
haviors and trigger alarms for abnormal access patterns. The currency carries unique cur-
rency identifiers.

A currency domain establishes access protection for a group of resources. It provides ad-
ministrative infrastructure for imposing domain-level protection policies covering pricing
of critical resources, assignment of budgets to internal clients, limitation of access by ex-
ternal domains, monitoring access to detect intrusion attacks and activating responses to
attacks. Domains have full control over the dissipation of their currency. Specifically,
domains control who can acquire their currency, along with the total currency outflow,
the rate of currency outflow and other parameters, imposing strict domain-controlled
limits on the access and attack power of any entity wishing to access the domain re-
sources.

Domain currency establishes domain-level protection of resources. Finer access control at
the resource level is achieved through the pricing and usage-monitoring mechanisms.
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4.3 Banking Infrastructure

4.3.1 Introduction

The role of the banking infrastructure is to provide the means to guarantee quantifiable
limits on the power of attackers. The power of attackers is limited by their available
budget. An attacker can gain access to resources in a specific domain only to the extent
that the currency of that specific domain he holds permits it. Furthermore, with each ac-
cess required for an attack, the remaining budget and with it the power of the attacker de-
creases.

Thus, enforcement of budgets (i.e., guarantees that no client or application can spend
more than their budget) is a very powerful tool for limiting attacks and damages.  Budg-
ets are enforced by the banking infrastructure. There are two aspects of budget enforce-
ment we are considering. First, even if an attacker manages to legally accumulate or ille-
gally produce big (or even unlimited) amounts of wealth, this should not compromise the
security of other domains. Second, compromising any bank in the distributed banking
infrastructure should not give the intruder access to unlimited amounts of currency.

4.3.2 Banking Architecture and Mechanisms

The banking infrastructure is based on the organization of network entities (i.e., re-
sources, clients, or subdomains) in hierarchically nested domains. Each domain has a
bank that monitors and controls the budget usage
of the entities inside the domain. Each bank in the
budget hierarchy monitors the budget usage of its
children banks.

For example, in Figure 2, the budget of a user in
domain A is controlled by the bank of this domain,
and the budget of users in the entire domain A is
monitored by the domain X bank. The role of the
central bank is to control the generation of cur-
rency. Its role will become clear later in this sec-
tion.

Limiting exposure to the wealth available to attackers

The primary means of limiting exposure of domains to external conquered domains is
through the currency dissipation policies set by individual currency domains and en-
forced by the banking infrastructure. The total exposure of a domain to external attacks is
limited by the total budget that it maintains in external domains and the rate at which it
provides new currency to external domains. A domain can tune these parameters to con-
trol its exposure.

In Figure 2, a client from domain A that wishes to access services of B needs to pursue an
exchange of local currency for currency acceptable by B. Exchanges of currency between
domains are performed by the banks at the outermost enclosing domains. This restriction
is imposed for scalability and authentication reasons. For example, a client from domain
A that wishes to access services of B needs to pursue an exchange conducted between the
X bank and Y bank. Domain Y bank has full control over how much of its currency it
will exchange for currency offered by the X bank. This control is independent of the

    Central
     Bank

   X

 A

     Y

    B

Figure 2: Banking Architecture
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wealth available to clients in domain X.  Therefore, the currency dissipation policies en-
forced by the Y bank can limit the exposure of the whole Y domain to external attackers
independent of the amount of wealth they posses.

Further, organization of resources in currency domains – captured by the banking infra-
structure – provides the means to scaleably limit the spread of faults or attacks and local-
izes their effects. For example, assume an intruder has conquered the whole X domain.
Once any domain detects this, the information can be rapidly propagated to other do-
mains and the currency of X can be declared invalid until appropriate action is taken to
restore normal operation of the X domain.

Limiting the damage a conquered bank can cause

If we give a bank the ability to produce currency we cannot guarantee any limit on the
internal domain wealth available to an intruder that has taken over the bank. A solution
we are investigating is to give the ability to produce currency only to one bank – the cen-
tral bank in the banking hierarchy. Rather than a single central bank, we envision the ex-
istence of a limited number of banking hierarchies, each with its own central bank. The
inability of any bank other than the central bank to produce currency does not solve the
problem in general, since one can still conquer the central bank and produce unlimited
amounts of currency, but reduces its complexity to securing and strictly monitoring the
operation of the central bank.

The operation of the scheme under investigation is based on the notion of budget certifi-
cates. Budget certificates are promises for future currency generation signed by the cen-
tral bank and held at each bank in the hierarchy. The total amount of certificates in a bank
node equals the wealth (budget) of the customers at that node, excluding the wealth of
banks attached as children of that node. In Figure 2, a client from domain A that wishes
to access services of B, sends the appropriate amount of budget certificates to the X bank.
The X bank forwards the budget certificates to the central bank, requesting appropriate
generation of X domain currency. This currency (carrying unique currency ids) is sent to
the Y bank. The Y bank gets the appropriate Y domain currency from the central bank in
exchange for the X domain bank it deposits. Y records the unique currency ids associated
with this currency and the fact that this currency is given to X. The domain Y currency is
now sent to the X bank. The X bank also records the transaction and associates it to the
specific client that is the end recipient of the currency.

In this scheme, an intruder that conquers any node in the distributed banking hierarchy,
does not have access to the budget available to entities (customers/banks) higher or lower
in the hierarchy. This is because the intruder cannot produce the appropriate budget cer-
tificates required to request currency. The intruder only has access to the budget specified
by the budget certificates stored locally. Further, the banks higher in the hierarchy moni-
tor the intruder’s use of these budget certificates. New budget certificates are created by
the central bank and stored at respective banks when depositing takes place.

Mechanisms such as aggregation of budget certificates and caching of some amount of
domain currency at the root bank of a domain (such as bank X), are investigated as means
to guarantee that the banking infrastructure does not slow down the operation of the sys-
tem.
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4.4 Payment Protocols

4.4.1 Introduction

Access to resources and services through currency introduces the need for a protocol to
securely transfer currency from the customer to the service provider.

Over the past decade significant research has been performed in the area of e-commerce,
resulting in the development of several electronic payment protocols ([1], [4], [7], [8],
[22], [23], [26], [27], [31]). Unfortunately this body of work does not address some cen-
tral requirements that arise from the application of such protocols in the proposed archi-
tecture. First, the volume of transactions created by trading both physical resources as
well as higher level services is orders of magnitude bigger than what is assumed by typi-
cal e-cash protocols. Therefore protocols with very low overheads in terms of bandwidth,
very low storage requirements, and negligible cost of the payment functionality are im-
perative. Second, the need for very cheap guarantees that service contracts are honored,
i.e., service providers provide the services they are paid for and clients pay for the serv-
ices they are provided with, also becomes of central importance. Third, the nature of the
traded commodities, sometimes referred to as “soft” commodities, is such that it cannot
tolerate delays by the payment functionality. Therefore, the payment for resources has to
be part of the transactions with minimal delays associated with it.

The approach proposed in the following sections provides secure payment functionality
without delaying transactions. It has very low overheads in terms of bandwidth require-
ments and state information that needs to be kept by the entities participating in the trade.
Further it provides an initial solution to the problem of decentralized policing of service
provision. In the approach we propose, packets are carrying wallets paying for services
they receive along the way. The customers keep paying as long they keep getting the
service they requested, and providers keep providing service as long as they get paid for
their services. This provides strong incentives for both customers and service providers
not to misbehave and avoids the costly and time consuming policing functionality that
would otherwise be required. Customers are policing service providers by discontinuing
to pay if the service contract is not honored, and vice versa service providers stop pro-
viding service if the customer tries to cheat or does not pay in time.

4.4.2 Requirements

The payment protocol has to satisfy a number of requirements. First, since electronic cash
is just a sequence of bits that can easily be duplicated, it has to guarantee that money is
only used once. In other words, it has to guarantee that the customer does not double-
spend the electronic currency and the service provider does not double deposit the same
currency. A more relaxed version of this requirement, previously used in [4], [31], is that
in case of double usage of money, some authority can indisputably distinguish whether
the money was double-spent by the customer or double-deposited by the provider. This is
the approach taken in the protocol proposed here.

Second, the cost of the payment infrastructure and operation should be negligible com-
pared to the cost of the services themselves. This implies restrictions on (a) the amount of
information transmitted as overhead in the transactions; (b) the amount of information
that needs to be kept by the involved entities; and (c) the processing requirements.
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Third, the delay associated with payment should be negligible. This implies that (a) the
processing requirements are minimal; and (b) decisions about the validity of the received
payment are taken locally without the need to contact remote authorities.

Fourth, currency should not be stolen along the way. In environments where a malicious
user can anyway disrupt service by destroying packets, a reasonable relaxed version of
this requirement is that stolen currency should be of no value to its new owner.

Fifth, it is desirable that the payment infrastructure provides guarantees that service con-
tracts are honored, i.e., that service providers deliver the service they are paid for and that
customers pay for the service they have received.

4.4.3 The proposed solution

This section specifies the format and content of the messages exchanged between the dif-
ferent entities involved in a transaction. Section 4.4.4 describes how these packets
achieve the desirable properties outlined in the previous section. The solution outlined
here uses public/private key encryption ([15]). The public and private keys used for en-
crypting these messages are shown below:

Bank-to-customer: the money withdrawn from the bank to pay for services is of the
form depicted to the right. The transaction info field, which is encrypted with the bank’s
private key, contains a unique money ID and other
information relevant to the transaction. It ensures
the recipient that the specific bank is responsible
for the validity of the money and provides other
payment-related information. The money string is a simple binary string of some length
associated with the money ID. Each bit of the money string represents some amount of
money specified in the transaction info field. The reply from the bank to the customer is
encrypted with a pre-established shared secret key corresponding to the customer.

Customer-to-service-provider: the withdrawn money is now used to pay for services.
There is an important distinction between the first payment packet and subsequent pay-
ment packets for the same service. The first payment packet, encrypted with the cus-
tomer’s private key and the provider’s public key, contains information for the whole du-

ration of the transaction and is
more space consuming and com-
putationally complex due to the
encryption. It has the form de-
picted to the left. The part of

money string field contains the first few bits of the money string. The rest of the money
string will be used in subsequent packets. Assume that the money string is:
01110100001100… In the first packet the customer might send the first, say, 7 bits of this
string (01110100001100…). The next packet containing payment will start from the sub-
sequent bits (01110100001100…). The provider ID uniquely identifies the provider the
payment is intended for. The timestamp is simply the current time. The <provider ID,

Transaction Info Money String

Bank public Bank private

Customer private Provider public

Shared secret key

Transaction
     info

     Part of
money string

Provider
    ID

Time-
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timestamp> tuple will ensure no double-spending/depositing of money (as explained in
the next section).

Subsequent payment packets simply contain a few more unencrypted bits of the money
string. For example, in the above money string (01110100001100…) if we send the first
seven bits in the first packet and if each subsequent payment header contains three more
bits of the money string, we would next send 000 (01110100001100…), then 110
(01110100001100…), and so on. The provider slowly builds up the random string, which
will be presented to the bank to get money credited on their account. If the provider pres-
ents to the bank only part of the random string, they will get credited accordingly.

4.4.4 Functional description of the protocol operation

This section describes the steps involved in the transaction and the actions performed by
the involved entities.

1. The customer contacts the local bank and withdraws money to pay for the service.

2. The customer then sends the first packet containing payment information according to
the protocol specification in the previous section. The provider decrypts the payment
information with his private key and the appropriate fields with the customer’s public
key. The timestamp and the provider ID fields are now checked. If the timestamp is
outside the time window for which information is kept in the provider’s database (i.e.,
too old) or the provider ID is different than the provider’s own ID, the payment is re-
fused and the packet dropped. Otherwise, the provider decrypts the transaction info
with the bank’s public key to make sure the money is legitimate. A lookup for money
ID in the local database is now performed. Notice that the provider keeps a record of
only a few recent transactions within a time window dictated by the time skew be-
tween clocks, delays across the network and the storage space available at the pro-
vider’s site. If the search succeeds (i.e., the money has been seen before), the payment
is refused. Otherwise the money ID along with the timestamp is recorded. Service is
now provided.

3. The customer keeps paying by sending more unencrypted bits of the money string as
long as the providers keep providing the agreed upon service.

4. The provider takes the money to the bank either for checking during the transaction or
to credit the money to his account at some time after the end of the transaction. The
bank checks the money ID. If the money has not been deposited before (i.e., the
money ID has not been seen before), and the provider ID is that of the provider de-
positing the money, it credits the provider’s account and records the money ID along
with the <provider ID, timestamp> tuple. If the provider ID is not that of the provider
the bank refuses the transaction and the provider is liable for cheating. If the money
ID has been seen before (i.e., the money has been deposited before), the previously
recorded <provider ID, timestamp> tuple is compared against the received one. If
they are the same the provider is cheating. Otherwise the customer is cheating.

4.4.5 Strengths and weaknesses of the proposed solution

The protocol has very low processing requirements, low overheads in terms of bits
transmitted, and requires minimal state to be kept by providers and customers. It provides
strong incentives for service providers to provide the service they are paid for through
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decentralized, real-time customer monitoring of service provision overcoming the need
for centralized policing of service providers. Guarantees that money won’t be used more
than once, and that it can’t be used for any purpose other than the intended (i.e., money
that is useless if stolen), are provided through local, decentralized, off-line operations and
decisions. The combination of these properties makes the proposed protocol a strong
candidate for secure financial transactions in our framework.

We have identified a couple of weaknesses of the proposed solution, which require fur-
ther investigation. The first is that the way the protocol was described, the only way for
the service provider to know the received sequence is valid is to contact the bank and
verify it. Expensive solutions to this weakness exist. For example, the first payment
packet could also contain partial hashes of various parts of the payment sequence signed
by the bank. The received payment sequence could then be compared against these partial
hashes to check its validity. Apart from it being expensive, the partial hashes solution is
also susceptible to off-line guessing attacks. The second is that an intruder can forge
source and destination address and include a false part of the random number sequence,
causing service disruption (since the service provider thinks the customer is cheating).
Our current solution is to include a few verification bits along every payment packet. The
verification bits are part of a verification string sent along with the first payment packet
and their position in the payment packet is known in advance to the service provider.

4.4.6 Implementation

A prototype version of the protocol outlined above has been implemented in C. The pro-
tocol is used to conduct payment in the Msocket environment described in the next sec-
tion. We plan to measure the performance of the protocol to prove its feasibility as a se-
cure payment mechanism that does not significantly delay transactions. Initial experi-
ments are encouraging.

4.5 The MarketNet Sockets (Msockets) layer

An important consideration for the adoption of the proposed middleware protection infra-
structure is the ease of application development and porting. The initial strategy for its
deployment and easy devel-
opment of new applications
and porting of existing appli-
cations is through the devel-
opment of Msockets, a socket
layer that mimics the syntax
and operation of the Unix
Sockets. Porting of existing
applications is trivial. The
operation of the initial im-
plementation along with some
of the software components
developed to ease deployment of the protection middleware is depicted in Figure 3.

Service request
and payment
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Editor
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Figure 3: Msockets
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Let us briefly describe what happens when a transaction takes place. Assume the client
wants to access a service offered by a remote service provider :

• The client opens a Msocket to the server

• Before contacting the service provider, Msocket issues a call to the Financial User
Agent (FUA), with the user’s request. FUA is acting on behalf of the user; its main
task is to automate budget management and make the currency infrastructure as
transparent as possible to the user applications.

• FUA contacts the directory service and gets information related to thspecific service.
This information consists of the cost of the service, and the currency the service pro-
vider accepts.

• FUA contacts the user profile. The user profile stores user preferences in the form
“for service x spend no more than y over the period z”. The profile is edited through
the profile editor and automatically updated and reinitialized by the profile daemon.

• If the service is within budget, the budget information is updated, and the bank is
contacted to acquire the appropriate currency for the transaction (local cashing of cur-
rency will in many cases eliminate this step).

• The currency is returned to the Msocket function that issued the call to FUA.

• The Msocket call establishes a connection with the service provider. The appropriate
Msocket function at the provider side accepts the call, extracts the payment and starts
providing the service.

• The Msocket function at the provider side, updates the server's profile, and periodi-
cally extracts payment sent by the client for the specific connection.

• At the end of the transaction, the Msocket at the client side instructs the FUA to de-
posit any unused part of the money withdrawn for the transaction. The FUA updates
the user profile, and contacts the bank to deposit unused money.

• Similarly, at the provider side the FUA updates the earnings of the provider and de-
posits the revenues earned for the service provided.

4.6 Monitoring of Currency Flows for Intrusion Detection

Currency provides a uniform instrumentation to measure resource access and to identify
anomalous patterns of access. Currency flows can be monitored and correlated in both
space and time to discover potential attacks. Correlation in time enables monitoring of
both temporal behaviors of resource accesses as well as the behaviors of source domains.
The behaviors of source domains can be monitored both during currency acquisition as
well as during resource access. Anomalies in access patterns can include elevated level of
access by a particular source domain (e.g., an attacker accessing a critical service), or
elevated level of correlated accesses by several source domains (e.g., an attacker using
proxies). Correlation in space enables monitoring of correlated access activities to a
group of related resources by a given source domain.
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Instrumentation with currency enables use of uniform statistical correlation and anomaly
detection algorithms to detect intrusion attacks involving arbitrary resources. This con-
trasts with specialized instrumentation and filters, and manual correlation presently used
to handle the tasks. Furthermore, it permits correlation of access patterns to multiple re-
lated resources.

Once an attack has been identified, currency IDs are used to identify and isolate its source
domain; the target domain can then automatically prevent any further accesses by the
source domain by invalidating the respective currency, without affecting the operation of
legitimate users. The target domain can resolve this potential attack with the source do-
main administration and these can identify and shut down access by the attacker.
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5. Quantification of Attack Power

5.1 Introduction

A central goal of our work is the development of quantifiable bounds on the damage that
can be caused by attackers. The aim is to describe these bounds mathematically (paramet-
rically) to enable tuning of resource security. In this chapter we develop initial such
bounds that quantify the effectiveness of the mechanisms; reveal dependencies among the
security mechanisms; provide feedback for the design and operation of the security
mechanisms; and capture the dependency of the mechanisms on the aggregate behavior
of users (both attackers and legal users).

The security mechanisms that can be taken into account in this attempt are the following:

• Control of currency dissipation through currency domain policies

• Limits imposed by the banking infrastructure on the budget available to intruders

• Control of prices by service providers

• Intrusion detection and isolation of attack sources through monitoring of currency
flows and resource utilization

5.2 Definition of Attacks

A major obstacle in trying to come up with bounds on attack power is that the definition
of what constitutes an attack varies from resource to resource. For example, for a web
server, a common attack is that of denial of service, where the attacker keeps bombarding
the server with requests for service, essentially bringing the server down. In contrast, for
a site supporting remote login of users, an attack could be the attempt of an attacker to
login to the system by stealing or guessing a legal user’s password.

If an attack can be parameterized in terms of accessing patterns to the resource, then what
constitutes an attack can be advertised as part of the access contract, and access compli-
ance can be monitored and enforced. For example, part of the advertisement for access to
a database could be that no client can pose more than, say, 10 requests per second. Un-
fortunately, such definitions are rarely possible. Furthermore, even though such an ap-
proach is useful in ruling out single attacking entities it fails in cases where a coalition of
entities decide to collectively attack a specific resource.

From the multitude of cases of attacks, in our initial study we examine the case where we
want to protect a resource from being forced to operate outside a desirable region of op-
eration. The desirable region of operation is resource-dependent, and in general refers to
the region of operation where specific QoS constraints or other considerations are satis-
fied. For example, consider any resource that can be modeled as a queue with a specific
service rate. When the input rate of requests to the queue gets close to the service rate, or
temporarily exceeds it, the queue will start growing and the requests will see an ever in-
creasing delay for service; eventually some of them will be dropped. Therefore the serv-
ice provider could consider the desirable region of operation to be that where the total
demand from customers does not exceed, say, 80% of the service rate.
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5.3 Parameters

In this section we introduce the parameters we are going to use for quantifying the power
of attackers. We are currently examining a subset of the parameters defining the system
operation. The subset refers to the dissipation of currency performed according to domain
policies and the role of dynamic prices for access to resources and services. In the future,
the parameters referring to the limits imposed by the banking-infrastructure protection
mechanisms, along with the limits introduced by the transaction monitoring mechanisms
will be introduced in the equations.

Let the following parameters describe the currency dissipation policies of a domain:

• Atot – maximum total amount given to external domains

• Atot_dom – maximum amount given to a specific domain

• Rtot – maximum total rate of currency outflow

• Rtot_dom  – rate of currency outflow to a specific domain

Also, let the price per unit of resource or service per unit of time be denoted by

• P(c)

where c is the total demand for the service. Therefore, a user with demand c' will pay
c'P(c) per unit of time. The function P(c) generally reflects availability of the resource
and other considerations such as the willingness of the provider to restrict operation of a
resource within the “desirable region of operation”. P(c) may not be continuous (e.g., it
could be a step function). For now we assume that the price for the service only depends
on the demand and is independent of time. Also for now we assume that there is no price
differentiation, i.e., two customers with the same request will see the same price. Finally,
we assume that the customers see a price per unit that is independent of the units of serv-
ice they request. All these simplifying assumptions in terms of pricing, are worst-case
assumptions in terms of protection of resources.

5.4 Bounds

This section presents two examples of bounds that can be derived from the above pa-
rameters and mechanisms.

5.4.1 Damage that can be caused to a specific service by a given budget.

The budget considered here belongs to a single attacker or a coalition of attackers. A
central assumption is that the attackers have a fixed budget to spend on the attack, i.e.,
they do not acquire more domain currency during the attack. This is the simplest case
since it does not depend on the rate of currency dissipation.

Assume an attacker (or coalition of attackers) wants to bring a resource to an “undesir-
able region” of operation. For the purposes of our analysis, the attacker wants to increase
the demand for this resource to such a level that other users will see a degradation in the
quality of service they observe. Call this level Cthres. This level is defined by the service
provider with respect to considerations about the QoS offered to customers. The worst
case for the attacker (or coalition of attackers) is when no other user is using the service,
therefore the attacker has to incur the cost for a demand level equal to Cthres. The best
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case for the attacker is when the demand of other users is very close to Cthres. In this case
with minimal demand (and therefore cost) he will bring the system in the undesirable re-
gion of operation. Even when the system starts in the best case for the attacker, it will
gradually move to the worst case, since other users experiencing congestion coupled with
higher prices for the service, will redirect their requests to other service providers. We
further assume that the service is critical for a number of customers with collective de-
mand Ccrit. These customers will still demand service from the service provider ignoring
the rise in prices or the congestion they are experiencing. The pricing model has to guar-
antee that the critical demand can always be accommodated; for example by rising the
price to extraordinary amounts when Cmax- Ccrit is reached, where Cmax is the maximum
service capacity for service of the resource.

Let Cothers(t) denote the capacity requested collectively by legal users at time t. Then for
the attacker to bring the system to the undesirable region of operation incurring minimum
cost, the following should hold at any time t:

Cothers(t) + Cattacker(t) = Cthres    or Cattacker(t) = Cthres - Cothers(t).

It follows that the duration of the attack, Tattack, depends on the collective behavior of the
other users (i.e., how fast their collective demand will reduce to Ccrit). Let Battack be the
total budget available for the attack. The attack duration as a function of the collective
behavior of other users, is the solution for Tattack of the following equation:

0∫Tattack Cattacker(t)*P(Cthres) dt = Battack  ⇒  0∫Tattack (Cthres - Cothers(t)) dt = Battack /P(Cthres)

⇒  0∫Tattack Cothers(t) dt = Tattack*Cthres - Battack /P(Cthres)

In the worst case the budget Battack available for the attack, equals Atot. This upper limit
does not make much sense, since it would prevent other users from accessing the service,
but nonetheless it gives an upper bound on the value of Battack.

There are a few interesting things to notice from the above equation. First, the price P(C)
of the service for congestion levels below the threshold Cthres does not affect the worst
case duration of the attack. Second, the collective behavior of other users is critical to the
duration of the attack. The sooner they stop requesting service, the sooner the attack will
terminate. This favors implementations where a user agent adjust its access patterns at the
provider site. Third, assuming the price for a given service is independent of time (as in
the formula above, where it is only a function of the congestion level), the parameter that
effects the worst case duration of the attack is not Battack but Battack /P(Cthres). This consti-
tutes an "effective attack budget”. A time-dependent pricing policy that rises the price for
a given congestion level with respect to the time the resource stays in a congestion level
would lead to a steeper decline of Cothers(t). Finally, the equation demonstrates the poten-
tial usefulness of price differentiation.

5.4.2 Damage that can be caused to a specific service.

This is similar to the previous case, only here we relax the assumption that the budget is
fixed. We assume that the attacker or coalition of attackers can keep acquiring domain
currency while the attack is in progress.
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Assume that the attackers start with an initial budget Battack_init for the attack and during
the attack they keep acquiring domain currency at the maximum allowable rate R(t).
Similar to the equation in the previous case, we can write:

0∫Tattack Cattacker(t)*P(Cthres) dt = Battack_init + 0∫Tattack R(t) dt

⇒  0∫Tattack (Cthres - Cothers(t)) dt = Battack_init /P(Cthres) + 0∫Tattack R(t)/ P(Cthres)  dt

⇒  0∫Tattack (Cothers(t)+ R(t)/ P(Cthres)) dt = Tattack*Cthres - Battack_init /P(Cthres)

For the above equations to have a solution for Tattack, i.e., for the attack time to be
bounded, we need to guarantee that the attacker spends money on the attack at a higher
rate than the rate at which more money is acquired (this is apparent from the first form of
the above equation). This means that after some point in time, T’, after the attack has
started, we need to guarantee that Cattacker(t)*P(Cthres) > R(t). Assuming that by time T’ the
request by other users has fallen to Ccrit, this restriction can be rewritten as (Cthress -
Ccrit)*P(Cthres) > R(t), which gives as an indication of what the price should look like be-
yond the threshold to be able to guarantee that the attack will have a limited duration
even under worst case conditions.

The above equation is pessimistic in the sense that it assumes the intrusion detection
mechanisms will not kick in to stop the attack when they see a request for domain cur-
rency equal to the maximum dissipation rate R(t) for a prolonged period of time.

5.4.3 Other bounds

Similar rational, along with extension of the parameters that are taken into account, can
be used to derive bounds on other aspects of the system operation, such as:

• The time to detect an attack

• The amount of currency a single compromised domain can acquire from another do-
main before its compromise or intention to attack are detected.

• The amount of currency a single compromised domain can acquire from a collection
of other domains before its compromise or intention to attack are detected.

5.5 Other types of attacks – The Worm Attack

In the previous sections we have examined a particular kind of attack. The results that can
be derived for such attacks may not be of much help in other kinds of attacks. Hence,
further investigation and research is needed. In this section we take as an attack example
the famous “worm attack” ([33]) and show the kind of protection and bounds the pro-
posed currency-based access mechanisms offer.

The purpose of the worm was to spread itself, i.e., to break into systems, install and lo-
cally run itself. To achieve this goal it exploited flaws in utility programs based on BSD-
derived versions of Unix. The worm program eventually spread itself to thousands of ma-
chines around the Internet, and disrupted normal activities and Internet connectivity for
many days. The disruption was caused by the worm’s heavy use of system resources in
order to break to other systems. The worm was not destructive in nature, i.e., it did not
delete user files or try to cause other such disruptions, but it has to be noticed that if its
intention were to do so, nothing would have prevented it.
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The worm spread using three techniques:

1. Exploiting a bug in the gets standard C I/O library used by the finger daemon (fin-
gerd). The gets call takes input to a buffer without doing any bounds checking. The
worm would overran the buffer and rewrite the stack frame, allowing it to gain con-
trol in the target machine and install and execute itself locally.

2. Using the debug option in sendmail servicing the SMTP port. This feature enables
testers to run programs on remote machines to display the state of the remote mail
system without sending mail or establishing a login connection.

3. Guessing passwords and exploiting trust between hosts. Once present in a system the
worm would try to guess user passwords, break into their accounts and exploit trust
between hosts (e.g., hosts found in /etc/hosts.equiv and /.rhosts) to remotely execute
into those systems as well. Password guessing is a computationally very intensive op-
eration using a big portion of the system resources.

Using any of the above methods, the worm would successfully spread without leaving
any trace of where it came from.

Assuming the proposed security infrastructure were in place:

1. The prospective attacker would have to pay to use sendmail or fingerd, leaving an
unforgeable trace of the originator of the attack.

2. Using system resources is not free. To perform password guessing the process would
involve heavy system resource utilization. Monitoring of the budget usage at the con-
quered account domain would soon trigger alarms due to the unusual behavior. Fur-
thermore, the amount of damage (e.g., overloading system resources) the process can
achieve is limited by the budget available to it. Notice that we make a worst-case as-
sumption, namely that the intruder manages to use the budget available to the account
for using the system resources.

The worm attack is one of the most difficult attacks to handle and shows some of the
limitations of the proposed system. These limitations are not particular to currency-based
access control. They stem form the fact that software implementation bugs may allow
intruders to impersonate legal users gaining the same privileges of legal users. We are
currently investigating how the following scenarios can be efficiently handled:

Assume that the worm had destructive intentions. Budget enforcement along with usage
monitoring would limit the scope and the extent of the damage. Price discrimination
techniques may alleviate the effects of such attacks by making resources very expensive
when the process does not normally use them.

In a worm-like attack, the attacker manages to impersonate the owner of an account.
Even when this happens, it should not be equivalent to getting hold of the budget avail-
able to the account. One of the mechanisms to break this equivalence is usage monitor-
ing. Abnormal access patterns can be restricted providing adjustable limits on the amount
of damage a malicious or faulty processes can cause. A second mechanism under investi-
gation is the separation of budgets available on a per process and/or per task basis. The
tradeoff in this case is protection level vs. ease of use of the system.
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6. Hedging to Reduce Uncertainties Due to Loss or Congestion

6.1 Introduction

The use of currency for access control in large-scale information systems creates a
framework that enables the development of new market-based client and resource man-
agers for resource acquisition, management, protection, rationalized replication, intro-
duction of new services, and others. As an example of such mechanisms, in this chapter
we develop a model for the provision of cheap, versatile, user-defined quality of service
(QoS) guarantees. The model is based on the use of financial instruments to protect
against resource unavailability due to loss or congestion.

Financial markets have created risk reduction instruments such as futures and options,
used to purchase resources in the future and hedge against intrinsic uncertainties in the
price and the availability of resources. Analogous instruments can provide QoS guaran-
tees in network environments. Resources such as bandwidth are traded through the use of
financial instruments. Applications try to optimize the QoS they get, subject to their
budget, by purchasing instruments that entitle them to use resources in the future. Simi-
larly service providers can rationally purchase backup resources or replicate their own
resources to optimally guarantee continuous provision of services to their customers.

To demonstrate the concepts, we study QoS guarantees that depend on bandwidth de-
mands. Bandwidth is traded through the use of financial instruments similar to those in
financial markets. We are using two types of instruments: forwards contracts and options
on forwards contracts. The mechanisms presented are not restricted to these instruments.
The participants in the market are the service provider and the customers. Both can as-
sume the role of buyers or sellers. Offers and requests along with the corresponding
prices are posted in a bulletin board, which plays the role of a broker that matches the re-
quests and the offers. Two kinds of customers are considered: customers with strict QoS
guarantees and high budgets and customers with loose QoS guarantees and low budgets.
The former purchase guaranteed bandwidth in the form of forwards contracts. The rest try
to achieve their QoS requirements through the use of cheap best-effort service, and pur-
chase financial instruments to hedge against the uncertainty associated with competing
demand for best-effort service. Customers interested in buying guaranteed service par-
ticipate in the market as buyers, while customers who have previously purchased guar-
anteed service they are not going to use participate as re-sellers. Examples of their strate-
gies for trading instruments are presented in Section 6.3.1. Prices are dynamic, driven by
demand and by competition among the service provider and the customers reselling pre-
viously acquired resource contracts.

The system provides differentiated, user-defined QoS guarantees, and can support new
QoS guarantees without the need for new hardware or software support. Users get the
QoS guarantees they want – they are not restricted to one of the QoS classes traditionally
offered by systems providing QoS guarantees. Better resource utilization and cost reduc-
tion can potentially be achieved, since users purchase only the resources they need. Fi-
nally, users see a system where they can accurately tailor the QoS they get to their avail-
able budget.
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6.2 Forwards contracts, options on forwards contracts, and markets

Two kinds of instruments, forwards and options, are used for the demonstration of the
protection mechanisms developed. The mechanisms we present are not limited to these
particular kinds of instruments. [3] and [12] provide thorough coverage of instruments.

Forwards Contracts. A forwards contract is an agreement between two parties to buy or
sell an asset at a certain time in the future for a certain price. The future time the contract
refers to is called maturity time. There are two parties involved in every forwards con-
tract. One party takes the long position and buys the forwards contract. The other party
takes a short position by selling the forwards contract. A range of commodities and fi-
nancial assets can form the underlying asset in a contract (e.g., sugar, cement, stock indi-
ces, treasury bonds, etc.). The forwards price of some commodities increases as the time
to maturity increases (normal market), whereas the price of others is a decreasing func-
tion of the time to maturity (inverted market). As the delivery time of a forwards contract
approaches, the forwards price converges to the spot price of the underlying asset (con-
vergence property). Forwards are extensively used to hedge against price uncertainties.

Options Contracts. In forwards contracts, the holder is obligated to buy or sell the un-
derlying asset. In contrast, an option contract gives the holder the right to do something.
The holder does not have to exercise this right. Whereas it costs nothing to enter in a fu-
tures contract, there is a cost to entering into an option contract. The underlying assets
include stocks, stock indices, foreign currencies, debt instruments, commodities, and
forwards contracts. There are two basic types of options. A call options gives the holder
the right to buy the underlying asset by a certain date for a certain price. A put option
gives the holder the right to sell the underlying asset by a certain date for a certain price.
The price in the contract is the exercise or strike price. The date in the contract is known
as the expiration date, exercise date or maturity. There are two main types of options
contracts. American options can be exercised at any time up to the expiration date. Euro-
pean options on the other hand can be exercised only at the expiration date itself. In this
work we consider european options. Similar to forwards contracts, one of the sides as-
sumes the long position (buyer) and the other assumes the short position (seller). The
price of an options contract is based on the price of the underlying asset. It is typically
calculated through the Black-Scholes formula.

Markets. Trading of forwards and options contracts takes place in two kinds of markets.
In the primary market new issues of forwards contracts are offered to the customers. In
the secondary market trading among investors of already issued securities takes place.
Trading in the secondary market does not affect the outstanding amount of securities;
ownership is simply transferred between investors.

6.3 Application to the domain of bandwidth reservation

We demonstrate the application of the proposed mechanisms to bandwidth reservation.
Time is divided in time slots. Within each time slot, there is a specific number of band-
width units available. Part of the bandwidth within each time slot is sold as guaranteed
service through forwards contracts by the service provider, and the rest as best effort
service. There is a single service provider (for simplicity), and several customers. Each
customer can have its own strategy for trading bandwidth. Each participant tries to
maximize their utility function subject to their budget constraint. The service provider
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wants to maximize revenue and guarantee that the maximum number of users are satis-
fied; users want to satisfy their QoS requirements incurring the minimum cost. For sim-
plicity in the presentation we assume that there are two kinds of customers. Rich custom-
ers that have a high budget and request strict QoS guarantees, and poor customers that
have a limited budget and request the best QoS guarantees their budget can afford.

6.3.1 Example strategies

The example strategies presented here are consistent with the selfish optimization objec-
tives of the participants. They are not unique. One could easily experiment with alterna-
tive strategies or experiment with other markets, such as non-monopolistic or economies
involving speculators. Experimenting with different strategies provides a flexible way to
implement new resource management schemes.

Service provider – Selling strategy

The service provider sells forwards contracts on the reserved part of the bandwidth. His
goals are to maximize revenue and guarantee the proper operation of system resources.
We assume proper operation of system resources to mean maximum utilization of band-
width. The provider’s goals are reflected in the prices advertised for units of reserved
bandwidth in future time slots. The dynamic pricing scheme, presented in Section 6.3.2,
encapsulates the strategy of the service provider. The assumption for the pricing strategy
presented in this paper is that the service provider is not taking advantage of the mo-
nopolistic nature of the market. We assume for simplicity that the service provider does
not participate in the secondary market.

Service provider – Buying strategy

The service provider does not buy bandwidth. Alternative strategies where the provider
participates in the secondary market as a buyer, could target tighter control of the market,
influence of the market prices to achieve desired system operation (e.g., traffic smooth-
ing), control over the behavior of users trading bandwidth in the secondary market, etc.

Rich customers – Buying strategy

Rich customers try to acquire the required bandwidth to strictly guarantee that the QoS
requirements of the traffic will be met. They are always willing to pay the cost for ac-
quiring the bandwidth at the market price set by the service provider. They are also al-
ways willing to buy enough bandwidth to absorb any uncertainty in their traffic charac-
teristics. They buy as early and as far in the future as allowed by their knowledge of traf-
fic characteristics and the policy of the service provider. For example, if they know the
peak and the mean rate of their traffic, they will buy forwards contracts from the service
provider for the peak rate for the whole duration of the connection. For simplicity in im-
plementing the bandwidth purchase decision algorithm, rich customers in our example do
not buy reserved bandwidth from the secondary market.

Rich customers – Selling strategy

Rich customers try to minimize the loss of budget due to purchase of unneeded band-
width. They try to sell unneeded bandwidth, as soon as they realize they will not use it.
They try to sell it in the secondary market in the form of options on the forwards con-
tracts. The price of the options is calculated through the Black-Scholes formula.
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Figure 4 depicts the example buying and selling strategy outlined above. The rich cus-
tomer knows at time tstart that the peak rate is 7 bandwidth units per slot (bups), the mean
rate is .75 bups and the call will last until tend. The customer does not know the exact traf-
fic pattern, so he buys 7 bups in all slots from tstart to tend. Assume that the traffic is bursty
and that the customer knows at the end of each burst the starting time of the next burst.
Then, at t1 he knows the next burst will
begin at t2 and so on. At t1 (i.e., as soon as
he knows) he goes to the secondary mar-
ket and puts the bandwidth up to t2 for
sale in the form of options. The same
happens at t3 (for the bw up to t4) and at t5

(for the bw up to tend). There is no guarantee that there will be buyers for these options in
the secondary market.

Poor customers – Buying strategy

Poor customers try to purchase cheap guarantees that their QoS requirements can be met
under a restricted budget. Typically they try to send their traffic using best-effort service
which is cheaper than guaranteed service. They only buy call options to use guaranteed
bandwidth when they predict there will not be enough best-effort bandwidth to guarantee
their QoS constraints. They prefer options that maximize their flexibility in deciding
whether they will need to exercise the options or not. These are options for slots as close
as possible to the transmission deadline of the traffic they try to protect, and as close to
the underlying time slot as possible.

Poor customers – Selling strategy

Poor customers try to minimize losses due to purchase of unneeded bandwidth. They try
to sell call options as soon as they realize they are not going to exercise them.

Figure 5 depicts an example of a buying
strategy for a poor customer. Assume that
at time tstart the customer produces a burst.
The burst can tolerate a maximum delay
(Dmax), i.e., if not transmitted by
tstart+Dmax it is considered lost. At time
tstart the customer buys an option to pur-
chase guaranteed bandwidth at tstart+Dmax. The option expires at toption expiration, i.e., by that
time the customer has to decide whether he is going to exercise the option or not. If by
the time the option expires he has managed to transmit the burst through best effort, he
will try to resell the option at the secondary market. If not, he exercises the option to buy
the guaranteed bandwidth. In the worst case the customer has overpaid an amount equal
to the premium paid for the option.

6.3.2 Pricing of bandwidth – The prices of forwards and options

The pricing policy encapsulates the strategy and dynamically reflects the goals of the
service provider. In our example the goal of the provider is to maximize utilization of
bandwidth. This translates to giving customers incentives to prefer low-demand band-
width slots over high-demand ones. This is reflected in the pricing policy that initially
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assigns prices as a function of the demand for the same time slots in previous days (pro-
jected demand based on statistical data for the corresponding time slots in the past).
Prices are dynamically adjusted to reflect changes in the current (real) demand. An in-
crease in the real demand leads to a corresponding increase in the price of the bandwidth,
encouraging users to distribute their load to time slots of lower demand.

We will first introduce some notation necessary for the discussion of the initial prices and
the price update policy.

P(T): The price of a reserved bandwidth unit in time slot T.

Pmin, Pmax: The minimum price and maximum price a bandwidth unit can have.

C: The total capacity (measured in number of bandwidth units within each time slot).

D(T): The demand for time slot T, measured as a percentage of the total capacity C.

Dthres: A threshold demand under which P(T) is constant and equal to Pmin.

PD(T): The past average demand for time slot T.

Initial prices of forwards contracts

The initial prices for reserved bandwidth (the price of the forwards contracts) are set
based on the statistical data describing past demand. For low demand – up to Dthres – the
price of a bandwidth unit is set to Pmin. For previous demand higher than Dthres, the ini-
tial price is a linear function of the demand PD(T). The price may not exceed Pmax, i.e.,
Pmax corresponds to demand equal to the capacity C. Therefore,

P(T) = Pmin for PD(T) ≤ Dthres, and

P(T) = Pmin + (Pmax-Pmin)*PD(T)/C otherwise

Similarly, the price for best-effort bandwidth units is initially set to Pmin/2 for past de-
mands below Dthres, and to Pmin/2(1+PD(T)/C) for past demands above Dthres.

Price adjustment of forwards contracts

Prices are updated to reflect the knowledge about the current (real) demand D(T). For
reserved bandwidth, as long as the current demand for a slot T remains below the average
past demand PD(T) or below Dthres, P(T) does not change. If the real demand D(T) ex-
ceeds the projected past demand PD(T) (and is of course above Dthres), then P(T) is up-
dated to a new value:

new P(T) = Pmin + (Pmax-Pmin)*D(T)/C

The price for best-effort bandwidth is not updated, since there is no way to know in ad-
vance the demand for it.

6.4 Advantages of the proposed system

The proposed system provides several advantages compared to traditional resource allo-
cation mechanisms providing QoS guarantees. First, it provides differentiated, user-
defined QoS guarantees. Traditional systems offer classes of QoS guarantees, and users
are forced to chose the one closer to their requirements. In contrast, in the proposed sys-
tem, the users buy the guarantees they want. The system does not impose any restrictions
on what these guarantees are.
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Second, it supports new kinds of QoS guarantees without hardware or software modifi-
cations. This is a direct consequence of customer ability to purchase the exact desired
guarantees. As long as the new kinds of guarantees depend on the resources traded by the
system, no changes in the hardware or software are needed to support them. It is up to the
client application to purchase the appropriate resources according to the new demands.

Third, it can potentially provide better utilization of resources compared to systems with
admission control. This is primarily because of two reasons. First, in most cases, fitting
the user requirements to one of the offered classes of QoS guarantees offered by the sys-
tem results in overestimating the required resources. Second, traditional admission con-
trol algorithms can only take few traffic parameters in consideration (e.g., peak and mean
rate, delay bounds, etc.). It would otherwise become computationally infeasible to admit
or reject a call in real time. Furthermore, the proposed system can continuously adapt to
changes in user demands. On the other hand, centralized decision-making and scheduling
of resources can take advantage of global knowledge to achieve better utilization. This is
a valid concern, but its cost has to be considered. For example, one would have to change
both the software (admission control algorithms) and the hardware (scheduler) to achieve
the desired effects every time new knowledge can be exploited.

Fourth, users see reduced cost. Users base the purchase of resources on knowledge of
their traffic characteristics and QoS requirements. Even if they do not know their exact
characteristics, they can be conservative in their estimates, purchase more resources than
they will actually need and then resell resources they are not going to use as soon as they
find out they are not going to use them. The ability to resell unneeded resources intro-
duces user feedback missing from today’s systems. Also, users with loose QoS require-
ments are able to buy cheap guarantees in the form of options and exercise their right to
use guaranteed (expensive) service, only if they are in danger of not being able to achieve
their QoS requirements by purchasing best-effort (cheap) service.

Fifth, time-consuming and often inefficient admission control is replaced by user deci-
sions based on their individual QoS requirements.

Finally, new resource management algorithms can be deployed dynamically, by altering
the pricing algorithms encapsulating the strategy of the service provider. In traditional
systems this would potentially require new hardware support and admission algorithms.

6.5 Discussion

The proposed mechanism can be extended in many interesting directions. Examples in-
clude:

• Extension of the results to more complicated markets (e.g., markets with competing
service providers and speculators

• Extension to a wider variety of QoS requirements and more sophisticated strategies of
participants.

• Extension to different kinds of placement and execution of orders, such as “dynamic
orders” ([36]), where parameters, conditions, or constraints will have to be satisfied
simultaneously to permit the execution of an order.
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• Reservation of resources that depend on each other, and provision end-to-end QoS
guarantees. Specific issues include bundling of guarantees by brokers trading end-to-
end assets in the markets; and introduction of timing and loose synchronization para-
digms similar to those presented in [9], [10].

• Application of the mechanisms to different application domains (the mechanisms ap-
ply to a wide range of domains where agents compete for access to shared resources).   
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7. Schedule

I plan to complete the thesis work and defend my thesis within a year from now, by
August 1999. The following is a list of things to be accomplished by then:

• Finalize the secure electronic transactions payment protocol and its prototype imple-
mentation; and provide initial measurements of its efficiency.

• Finalize the banking architecture and provide a prototype implementation of the in-
frastructure.

• Finalize the Msockets functions and their prototype implementation

• Study a variety of attacks; analyze how the proposed mechanisms would react to
them; expand the initial results on the quantification of attack power

• Finalize the proposed mechanisms on the use of financial instruments and their use to
hedge against uncertainties due to loss or congestion; provide simulation results that
prove their usefulness.
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