
MarketNet: Protecting Access to Information Systems
Through Financial Market Controls

Y. Yemini, A. Dailianas, D. Florissi

Department of Computer Science
Columbia University,

450 Computer Science Bldg.
New York, NY 10027

Email: {yemini, apostolo, df}@cs.columbia.edu

G. Huberman

School of Business
Columbia University,

411 Uris Hall
New York, NY 10027

Email: gh16@columbia.edu

Abstract

This paper describes novel market-based technologies that uniquely establish quantifiable and adjustable limits on
the power of attackers, enable verifiable accountability for malicious attacks, and admit systematic and uniform
monitoring and detection of attacks. These technologies, incorporated in the MarketNet system, establish a financial
economy to regulate the trade and use of access rights in information systems. Resources are instrumented to use
currency for access control and monitoring, establishing accountability in their use. Domains control access to their
resources through resource prices and budgets available to clients. Domains control and fine tune their exposure to
attacks; adjust this exposure in response to emerging risks; detect intrusion attacks through automated, uniform sta-
tistical analysis of currency flows; and tune their exposure to resource unavailability by purchasing protection
through financial-like instruments.

Keywords: Information systems protection, access control through currency, information economy, quantifiable
exposure to attacks, financial-like instruments.

1

2

1 Proofs and reorder form should be sent to: Dr. Danilo Florissi, Department of Computer Science, Columbia Uni-
versity, 450 Computer Science Bldg., New York, NY 10027

2 This research is sponsored in part by the USAF, Air Force Materiel Command, under contract F30602-97-1-0252,
"MarketNet: A Survivable, Market-based Architecture for Large-scale Information Systems". The views and con-
clusions contained in this document are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied of the Defense Advanced Research Projects
Agency (DARPA), the Air Force, or the U.S. Government.

1. Introduction
Protecting large-scale information systems and guaranteeing availability remains an elusive challenge of

ever-growing importance and complexity. Exposure to insecurities and the opportunities available to at-

tackers are increasing with the growth in the range of resources, scale, complexity, and operations man-

agement practices of different domains. Traditional protection technologies have focused on shielding

target resources; they involve ad-hoc instrumentation to monitor resource access and manual correlation

of these access logs to detect intrusion. Protection software monitors and filters distrustful accesses to

resources and manages trust relationships among users and resources. Attackers can pursue virtually un-

limited attempts to compromise a system. They are left completely unaccountable to abuses and crimes

that they commit. Access to information systems is therefore susceptible to uncertainties in the availabil-

ity or resources.

Rapid changes in technologies increase the vulnerability to attackers. First, currently protection technolo-

gies are specialized to each component. A minor insecurity in a new component can propagate substantial

exposure to other components. Thus, insecurities can be formed non-monotonically; i.e., a system that is

secure can be rendered insecure by the addition of a single component. Second, the combinatorial explo-

sion of interactions between new components and existing ones increases exponentially, creating ample

possible insecurities. Third, in the absence of a unifying security architecture it is practically impossible

for component vendors, or domain administrations to accomplish a coordinated protection.

Domain administrations are thus increasingly exposed to security risks and are unable to control, bound,

or even assess this exposure. They require expert manual labor to monitor and correlate access anomalies

and detect an attack, typically through off-line non-real-time processes completed hours or days after the

attack has been completed. And even when an attack is detected, identifying the source accountable for it

can be virtually impossible and requires complex ad-hoc collaborations of multiple expert police forces.

And this potential exposure and complexity of protection increases with each change in resources or their

configurations.

MarketNet uses market-based mechanisms to provide a novel approach to the protection of large-scale

information systems. In MarketNet, resources are instrumented to use currency for access control and

monitoring. Clients must pay resource managers, using appropriate currency and prices, to gain access to

respective resources. The budget available to an attacker limits its ability to gain access to resources and

to cause damage. Domains control the availability of currency to potential sources of attacks and dynami-

cally adjust prices of the resources and services they offer.

Domains quantify their exposure to attacks by strictly controlling the dissipation of currency, along with

the prices to access resources. Furthermore, by dynamically adjusting prices they essentially control dy-

namically varying access disciplines to resources. This access control can take into account variations in

the supply and demand, security considerations of the resource managers, and the relative importance of

resources to different users.

Currency flows provide uniform resource-independent instrumentation to monitor and correlate access

patterns and to detect anomalies. This enables the development of uniform resource-independent intru-

sion-detection mechanisms entirely based on the statistics of currency flows. Intrusion-detection can be

thus automated and accomplished in real-time during an attack. Furthermore, currency carries unique

identifiers. A domain maintains full accountability of the entities to which currency has been allocated. A

domain can account for sources of each access to its resources. In particular, once an attack has been

identified a domain can establish verifiable proof of accountability in tracing its sources.

Client and resource managers quantify and tune their exposure to unavailability of resources by purchas-

ing protection. Similar to the mechanisms used in financial markets to cope with uncertainties in future

availability and price, managers purchase risk reduction instruments such as futures and options to hedge

against uncertainties caused by loss or congestion. QoS can thus be guaranteed even with uncertainties in

the availability of resources. Managers tune their exposure to resource unavailability and optimize their

protection based on their needs and budget.

MarketNet mechanisms are structured to admit unlimited scalability and enable protection among mutu-

ally distrustful domains organized in a large scale federated system. These protection mechanisms, fur-

thermore, are entirely independent of the underlying resources and can thus be retrofitted into an existing

system with minor adaptation of its components.

This paper provides an overview of the MarketNet architecture, mechanisms and operations. Section 2

presents the use of currency for access control in information systems. Section 3 presents the MarketNet

financial infrastructure. Section 4 examines the use of currency for dynamically tunable access control.

Section 5 provides quantifiable limits on the power of attackers. Section 6 presents monitoring of cur-

rency flows to detect and isolate attacks. Section 7develops mechanisms to hedge against uncertainties in

resource availability. Section 8 exemplifies the protection MarketNet offers against common attacks.

2. Use of Currency for Access Control
In MarketNet distrustful domains use currency to control access to resources. Domains control the alloca-

tion of budget to clients and set the prices for access to resources. Clients pay resource managers, using

appropriate currency and prices, to gain access to respective resources. This section discusses the Mar-

ketNet system architecture.

2.1 Resources and clients are organized in currency domains

Resources and clients in MarketNet are organized in currency domains. Resources include physical re-

sources such as processor cycles, storage, bandwidth, peripheral devices, sensors as well as higher-level

software services such as file storage, name service, database, or web service. A currency domain estab-

lishes access protection for a group of resources. It provides administrative infrastructure for imposing

domain-level protection policies covering pricing of critical resources, assigning budgets to internal cli-

ents, limiting access from external domains, monitoring access to detect intrusion attacks and activating

responses to attacks.

Domains use special currency to provide unified and scalable access to their services. The currency is

uniquely identified by a currency ID. This establishes full accountability in the use of resources by tracing

access to resources back to the holder of the currency. To gain access to the resources in a domain, clients

first have to exchange currency of the target domain for their own. Currency of a domain gives the holder

the right to access any of the resources in the domain, providing unified, scalable access.

2.2 Domains control allocation of budget and prices of resources

Domains have full control over the allocation of budget to clients. This control is expressed through the

currency dissipation policy of a domain. The currency dissipation policy controls who can acquire domain

currency, the total currency outflow, the rate of currency outflow, and other parameters. These policies

impose strict domain-controlled limits on the access and attack power of any entity wishing to access the

domain resources.

Domains also control prices of the resources they offer. Each resource in a domain is priced in terms of

the domain currency. Prices, along with their validity period, are advertised in respective price directories.

Prices are dynamically updated to reflect various operation parameters such as access control policies and

changing demand for a resource. The unique currency identifiers enable the deployment of price dis-

crimination, according to the source of the request.

2.3 A sample transaction

In a typical scenario, depicted in Figure 1, a client belonging to domain X wants to access a resource be-

longing to domain Y. The client consults the price directory (step 1) to get information about the price and

currency accepted by the service provider. The client then contacts the local bank server (step 2) and re-

quests exchange of his currency for currency accepted by the target service. The local bank server (X bank

server) contacts the domain Y bank server (step 3) and request ex-change of currency. The Y bank server

authenticates the request and decides whether the request should be granted. If the decision is positive, it

records the transaction and passes the Y currency to the X bank server (step 4). The X bank server also

records the transaction and passes the currency to the client (step 5). Once the client manager obtains re-

spective currency from its bank server, it can proceed to execute accesses to the service (step 6). Each

access will incur a payment collected by the server manager. The revenue collected by the resource man-

ager may now (or at any time later) be deposited to the local bank (step 7). Prices may be updated (step 8)

to reflect the new demand level.

Access
Payment

Domain Y

Y Bank Srvr

Domain X

X Bank Srvr

Price
Dir

Video on
demand

1

2

3

4

6
7

8

5

authenticate
& record

Figure 1: A Sample Transaction

Notice that for efficiency reasons most of the transactions in the above scenario can be performed off-line

with respect to the actual transaction. The exchange of currency (steps 2, 3, 4 and 5) are typically per-

formed in advance in anticipation of the clients’ needs. Therefore, no significant delay is added to the

transaction.

3. The Resource Access Layer (RAL) – A Market-based Protection Kernel

3.1 The architecture and components of the RAL

MarketNet introduces a distributed protection middleware infrastructure, the Resource Access Layer

(RAL), for financial access control. The RAL, which is overlaid on existing infrastructure (Figure 2),

captures end to end security. The key MarketNet functionality is confined in a minimal kernel that will be

rigorously scrutinized against implementation errors or failures.

Domain X
Access

Payment

Y Bank
Srvr

Clnt
mgr

X Bank
Srvr

Price
Directory
Services

Client
Application

Rsrc
mgr

Transport Layer

Payment Services

Transport Layer

Payment Services

Server
Application

auditing &
monitoring

Price
Directory
Services

RAL

Figure 2: Resource Access Layer (RAL)

The RAL includes several mechanisms. Resource managers are responsible to set the price for a resource,

collect payments for its access and deposit revenues with the bank server of the respective domain. Client

managers are responsible to manage client budget, obtain pricing information and pass respective pay-

ments required to access services used by the client. Bank servers control the flow of currency in Mar-

ketNet. They provide accounting, clearing and monitoring of currency flows. Price directories provide

pricing information. The payment services layer provides the API through which resources are accessed

in MarketNet. It is a thin layer that is logically stacked on top of the transport layer in traditional protocol

layering. Payment is performed through a secure money transfer protocol that guarantees that money is

not counterfeit, stolen or duplicated (see [2] and [9]).

The most important feature of the RAL is that it kernelizes security, that is, it abstracts protection of re-

sources in the creation of a secure kernel through which resources are accessed.

It is important to note several other salient features of the RAL.

• The RAL mechanisms:

Are resource and application independent

Provide incremental extensions of existing components and systems.

• All transactions involving currency flows between managers and their bank servers and between bank

servers are secured through encryption and authentication.

• The overheads involved in converting currency among domains and in allocating currency to a client

can be minimized through caching of currency. For example, the bank server of domain X can cache

sufficient currency of domain Y in anticipation of requests by clients in its domain.

• Once a client obtains currency, the payment to resource managers involves very minimal overhead.

• The infrastructure is scalable.

• The RAL enables protected domains to operate within an unprotected environment.

The design and implementation of the RAL is of central importance to MarketNet. Due to space limita-

tions, in this section we only present the design of the banking infrastructure, which is among the most

important components of the RAL. Examples of resource and client managers are presented in Section 7.

3.2 The Banking Infrastructure

The banking infrastructure in MarketNet is responsible for generating and controlling the dissipation of

access rights. Furthermore, it has to clear transactions, audit currency flows, and identify sources of ac-

cess for attack detection and isolation (as will be explained in Section 6).

Access rights are generated in the form of currency that gives the holder the right to access resources. The

banking infrastructure is therefore bound to be of major interest to attackers. Its design has to guarantee

that the access-right-power an attacker gains is strictly limited even if the attacker succeeds in taking over

a bank. This will provide the basis for the development of quantifiable limits on the power of attackers

outlined in Section 5. A minimal set of requirements then in terms of guaranteeing limits in the power an

attacker consists of the following. First, the banking infrastructure has to strictly control the amount of

access rights an intruder can gain access to when successful in taking over a bank. Second, it has to con-

trol exposure to external attacks, i.e., even if an attacker has somehow managed to create or accumulate

an unlimited amount of currency of some external domain, this will not affect the security of the internal

resources.

Central
Bank

MIT amazonCU

csmath marketing

US BR

dccirt

* Currency generation
* Accounting & Auditing

* Accountable Exchange
* Policy Enforcement
* Accounting & Auditing

* Policy Enforcement
* Accounting & Auditing

Figure 3: Banking Architecture and Functionality

The banking architecture is hierarchical. It is depicted in Figure 3. Each currency domain has its own do-

main bank that is responsible for enforcing the domains’ currency dissipation policy. For example, in

Figure 3 Columbia University has its own bank (CU). The Computer Science Department within CU has

its own protection policies and currency, enforced by the cs bank. For technological reasons (primarily

scalability) and legal reasons, different banks in the banking hierarchy have different functionality:

The Central Bank, along with a few other banks, is the only ones responsible for generating currency for

children domains. They also perform accounting and auditing of transactions.

A number of banks such as MIT, CU and amazon, typically high in the hierarchy, are the only legally ac-

countable entities authorized to perform exchanges of currency. They also enforce the currency dissipa-

tion policy of the currency domain and perform accounting and auditing of transaction. These banks are

entitled to perform exchanges on behalf of their descendent banks.

The rest of the banks, such as cs (which could be thought of as CU.cs), dcc (or CU.cs.dcc), marketing,

etc., are responsible for enforcing the currency dissipation policy of the currency domain they represent.

They also perform accounting and auditing of transactions. They forward requests for currency exchange

to their parent banks.

Currency for a domain, e.g., CU, is generated only upon the deposit to the Central Bank of an equal

amount of currency from another currency domain, e.g., amazon. The newly generated currency contains

the name of the currency domain it is intended for, along with a unique currency identifier, and is signed

by the Central Bank. The domain bank (CU in this case) further signs it prior to exchanging it for other

currencies (amazon in this case). Even if the Central Bank is conquered, no one will be able to generate

valid CU currency.

All of the above transactions are strictly authenticated. Notice that for reasons of efficiency, authentica-

tion keys can be cached locally and updated periodically. Caching is possible because of the limited num-

ber of banks that can perform exchanges and the limited number of keys needed at each level of the hier-

archy.

All the banks are implemented using stripped down versions of operating systems that only support the

functionality and ports necessary for the banking infrastructure. This minimizes the exposure to attackers.

Furthermore, they monitor currency flows to detect breaches in other banks.

A sample transaction

Figure 4 depicts a sample transaction, where client A in the cs domain acquires amazon currency to access

service B. Client A contacts her local bank (cs) and asks to exchange part of her budget to amazon cur-

rency (step 1). cs cannot perform exchange, so it forward the request to CU bank (step 2). CU contacts

amazon bank (step 3). Amazon checks if granting the request would violate its currency dissipation pol-

icy. If not, it records that it is passing local (amazon) currency with unique identifier 1234 to CU, signs

the currency and passes it to CU (step 4). CU passes the currency to cs (step 5), and records the fact that it

did so. cs passes the currency to A (step 6) , and records the fact that it did so. A now accesses the service

B and pays for the transaction (step 7). B may now, or at any time later, deposit the revenue with its local

bank (amazon), that will credit its account. Off-line from the transaction, amazon contacts the central

bank, deposits the CU currency it received and asks for generation of amazon currency. Central bank

generates new amazon currency, with unique id 9876 and passes it back to amazon. Notice that most of

the transactions in steps 1 through 6 are performed in advance in anticipation of future demands, therefore

insignificant delays are added to transactions.

Central
Bank

cs

amazonCU

1 (CU.cs ë amazon)

3 (CU ë amazon)

4 (amazon)
 5 (amazon)

6 (amazon)

7 (amazon)

8 (amazon)2 (CU.cs ë amazon)

off-line

(CU ë amazon)

1234 CUamazon 1234 cs

amazon 1234 A

CU ë amazon
ok with policy ?

 (amazon, id 9876)

A

B

Figure 4: A Sample Transaction

4. Prices/Budgets Establish Dynamically Tunable Access Control

Pricing of resources along with limits on available budgets of clients are used to dynamically control ac-

cess to a specific set of clients.

Raising the prices ensures that only qualified clients (those that have sufficient budget) can access them.

Furthermore, currency identifiers enable additional price discrimination techniques. Budget and price dis-

crimination can achieve a continuous spectrum of limits imposed on the use of a resource, based on the

source domain of a request.

Prices are adjusted to reflect changes in the supply and demand for a resource. A loss of a resource due to

failure or attack reduces the supply, resulting in increased prices. An increase in the demand for a re-

source has similar effect. Rising prices due to loss or congestion automatically cause clients to redirect

their demands to backup less expensive replicas. Reduced availability results in rising prices of the repli-

cated resources. Rising prices create a natural selection process where applications automatically adapt to

resource availability and obtain access to alternate resources according to their intrinsic priority captured

by their budget. High-priority clients can apply their budget to continue and obtain high QoS, while low

priority clients are priced-out. Thus a loss results in graceful selective degradation of services that opti-

mizes the balance between available resources and demands.

Prices are set and adjusted taking into account the currency dissipation policy imposed by the domain. It

is conjectured that most access control policies can be formulated as a combination of currency dissipa-

tion policies and price control policies.

5. Domains Set Quantifiable Limits on Power of Attackers
Access through currency provides a framework to quantify and measure exposures to attacks. Domains

use their control over the budget available to clients to and the prices of resources to:

• Control and fine-tune their exposure to attacks.

• Dynamically adjust exposures in response to emerging risks.

Exposure to attacks is expressed as quantifiable bounds on the damage that can be caused by attackers.

These bounds are described parametrically and enable tuning of resource security. They take into account

the budget already allocated to clients, the budget allocation policy parameters such as the rate of alloca-

tion of budget, the maximum total budget that can be available to clients at any time, and the characteris-

tics of the pricing mechanism.

Due to space limitations we are only going to provide an example of the kinds of bounds that can be de-

veloped in MarketNet. For more information, please refer to [3]. The example refers to the duration of a

denial of service attack and shows how the pricing mechanism provides a means to convert a fixed budget

(belonging to a specific client or a coalition of clients potentially residing in different domains), to a much

lower effective budget.

In general it is hard to parameterize what constitutes an attack. For the purposes of demonstration of the

bounds in the denial of service attacks, we introduce the notion of desirable regions of operation of a re-

source. The desirable region of operation is resource-dependent, and in general refers to the region of op-

eration specified by the resource manager, where specific QoS constraints or other considerations are sat-

isfied (e.g., the average incoming rate to a switch should be controlled to provide low delays and loss).

Assume the purpose of attacking a resource is to move it to an undesirable region of operation. Control of

prices can force the operation of resources within a desirable region of operation. The price of the re-

source should reflect its reluctance to operate in the undesirable region. Should the attacker or coalition of

attackers desire to sustain the attack, they would see a continuously increasing price to access the re-

source, forcing them to spend their budget at an increasing rate to sustain the attack. The formula de-

scribing the duration of the attack Tattack, with a fixed budget Battack belonging to an attacker or coalition of

attackers, assuming that all users see the same price to access the resource is the following (for derivation

see [3]):

 0∫Tattack Cothers(t) dt = Tattack*Cthres - Battack /P(Cthres)

In the above formula, Cthres is the maximum capacity the system can offer without degrading the QoS seen

by clients, P(Cthres) is the price seen by users at this capacity, and Cothers(t) is the capacity requested by us-

ers other than the attacker. Given a target maximum duration of attack Tattack, and the budget allocation

policy of the domain, expressions such as the above can be used by the service providers to dynamically

adjust pricing policy and thus adjust their exposure.

Similar formulas can be used to design and dynamically adjust pricing policies when price discrimination

is deployed, or to quantify other limits on the power of attackers.

6. Attacks are Detected and Isolated by Monitoring Currency Usage

Currency flows provide uniform resource-independent instrumentation to monitor and correlate access

patterns and to detect anomalies. It enables the development of uniform resource-independent intrusion-

detection mechanisms entirely based on the statistics of currency flows. Intrusion-detection can be thus

automated and accomplished in real-time with an attack. Furthermore, currency carries unique identifiers.

A domain maintains full accountability of the entities to which currency has been allocated. A domain can

account for sources of each access to its resources. In particular, once an attack has been identified a do-

main can establish verifiable proof of accountability in tracing its sources.

Currency flows provide a good way to model temporal spending behaviors of clients and patterns of re-

source access to classify activities into those that are legitimate and those that seem suspicious and hence

warrant further inspection and authorization. Monitoring the budget spending patterns of clients can thus

provide a resource independent technique to detect attacks. Consider as an example Figure 5. This figure

is based on real access traces and depicts the amounts spent by different users on accessing network

services. For this particular experiment, only access to ports was priced. The left side of the figure depicts

the spending patterns of a collection of users with similar total spending over a period of time of 6000 sec.

There are three users with similar spending patterns very close to time 0. Their behavior is suspicious

since they spend a big amount of budget in a very short period of time. A closer look at their behavior on

the right hand side of Figure 5, reveals that in reality only one of them exhibits an unusual spending pat-

tern, which indicates the actual syn flood attack the specific user was performing at the time.

Similar techniques are applied in observing the revenues generated by specific services. Anomalies in the

revenues of a single service or in the correlation of revenues generated by services in a domain, are good

indications of attacks.

Figure 5: Observing Spending Patterns

7. Financial Instruments Provide QoS Guarantees

Financial markets have created risk reduction instruments such as futures and options, used to purchase

resources in the future and hedge against intrinsic uncertainties in the price and the availability of re-

sources. Analogous instruments can provide protection against loss of resources due to congestion or at-

tacks in information systems. Client managers acting on behalf of applications purchase protection in the

form of instruments, subject to their budget, to guarantee their QoS requirements are met even when un-

certainty in the availability of a resource is involved. Similarly, resource managers rationally purchase

backup resources or replicate their own resources to optimally guarantee continuous provision of services

to their customers. The QoS guarantees provided through the use of instruments are optimally tailored to

the needs and budgets of the acquirers.

We demonstrate the concepts, through the use of instruments to provide QoS guarantees that depend on

bandwidth availability. Bandwidth is traded through the use of financial instruments similar to those in

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10000 20000 30000 40000 50000 60000

Time (sec)

B
u

d
g

et

1.2.3.4

128.252.93.2

144.194.16.13

159.142.1.202

192.150.12.103

192.151.11.13

192.5.214.20

199.95.207.35

204.151.55.109

204.202.136.230

207.69.200.135

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20

Time (sec)
B

u
d

g
et

1.2.3.4

128.252.93.2

144.194.16.13

159.142.1.202

192.150.12.103

192.151.11.13

192.5.214.20

199.95.207.35

204.151.55.109

204.202.136.230

207.69.200.135

financial markets. Two types of instruments are used: forwards contracts and options on these contracts.

The mechanism is not restricted to these instruments. Consider as an example a user in Figure 6 who

wants to participate in a teleconferencing with a remote site at noon. There are two kinds of risks the user

is facing. First, congestion for link bandwidth at noon jeopardizes transmission quality. To avert this risk,

the user buys forwards contracts on link A that guarantee his access to the resource (bandwidth), inde-

pendent of the congestion level. Second, link A may go down. To avoid this risk, the user buys options

contracts on bandwidth on link B. If link A goes down, the options are exercised to purchase bandwidth

on link B.

link A

link B

Figure 6: Financial Instruments Provide QoS Guarantees

In the pilot implementation the participants in the market are one service provider and several customers.

Both can assume the role of buyers and sellers. Offers and requests along with the corresponding prices

are posted in a bulletin board, which plays the role of a broker that matches the requests and the offers.

The bulletin board implements the primary market that trades forwards contracts offered by the service

provider and secondary market that trades options on forwards contracts offered by resellers.

There are two kinds of customers: customers with strict QoS guarantees and high budgets (rich custom-

ers) and customers with loose QoS requirements and low budgets (poor customers). Customers try to

maximize their utility function subject to their budget constraints, while the service provider tries to

maximize its revenue and guarantee that the maximum number of users is satisfied. We have experi-

mented with simple strategies that are consistent with the selfish optimization objectives of the partici-

pants. The simplest such strategy for the service provider is one where she is trying to maximize the utili-

zation of the bandwidth. The provider objectives are expressed through the pricing policy that assigns

prices to reflect demand statistics for corresponding bandwidth utilization in the past. Prices are dynami-

cally adjusted to reflect the level of the current (real) demand. Customers interested in buying guaranteed

service participate in either market as buyers, while customers who have previously purchased surplus

guaranteed service participate in the secondary market as re-sellers. Poor customers try to send their traf-

fic using best-effort service, which is cheaper than guaranteed service. They buy options to use guaran-

teed bandwidth when they predict there will not be enough bandwidth to guarantee their QoS constraints.

They resell their options through the secondary market as soon as they realize they are not going to exer-

cise them. Rich customers try to acquire the required bandwidth to strictly meet their QoS requirements.

They are always willing to buy at the market price set by the service provider. They buy enough band-

width to absorb any uncertainty in their traffic characteristics; as soon as they realize they are not going to

use some of the bandwidth they have previously bought, they will try to resell it in the secondary market

as options. The price of the options is calculated through the Black-Scholes formula (see for example [4]).

Our studies of purchasing access protection through instruments similar to those in financial markets have

demonstrated several advantages. First, provision of differentiated, user-defined guarantees. These guar-

antees are optimally tailored to the user needs and budget. Second, better utilization of resources com-

pared to systems that do not provide the ability to resell resources. Third, decreased cost for the users.

Fourth, dynamic deployment of new resource management algorithms that are reflected in the pricing

strategy of the service provider.

8. Examples of MarketNet’s Reaction to Attacks
In this section we take as an attack example the famous “worm attack” ([10]) and show how MarketNet

would have reacted to it. The purpose of the worm was to spread itself, i.e., to break into systems, install

and locally run itself. To achieve this goal it exploited flaws in utility programs based on BSD-derived

versions of Unix. The worm program eventually spread itself to thousands of machines around the Inter-

net, and disrupted normal activities and Internet connectivity for many days. The disruption was caused

by the worm’s heavy use of system resources in order to break to other systems. The worm was not de-

structive in nature, i.e., it did not delete user files or try to cause other such disruptions, but it has to be

noticed that if its intention were to do so, nothing would have prevented it.

The worm spread using three techniques:

1. Exploiting a bug in the gets standard C I/O library used by the finger daemon (fingerd). The gets call

stores its input into a buffer without doing any bounds checking. The worm overran the buffer

boundaries, gained access to privileged memory regions, and installed and executed itself locally.

2. Using the debug option in sendmail servicing the SMTP port. The debug feature enables testers to run

programs on remote machines to display the state of the remote mail system without sending mail or

establishing a login connection.

3. Guessing passwords and exploiting trust between hosts. Once present in a system the worm would try

to guess user passwords, break into their accounts, and exploit trust between hosts (e.g., hosts found

in /etc/hosts.equiv and /.rhosts) to remotely execute into those systems as well. Password guessing is

a computationally very intensive operation.

Using any of the above methods, the worm would successfully spread without leaving any trace of where

it came from.

MarketNet can protect against several features of worm-like attacks. First, the prospective attacker would

have to pay to use sendmail or fingerd, leaving an unforgeable trace of the originator of the attack. Sec-

ond, using system resources is not free. To perform password guessing the process would involve heavy

system resource utilization. Monitoring of the budget usage at the conquered account domain would soon

trigger alarms due to the unusual behavior. Furthermore, the amount of damage (e.g., overloading system

resources) the process can achieve is limited by the budget available to it. Mechanisms to impose restric-

tions on the budget available to processes are currently under investigation in MarketNet.

MarketNet protects systems without eliminating software bugs. It assumes that software bugs are always

very likely to exist and creates a layer of protection that is independent of the correctness of software.

The worm attack is one of the most difficult attacks to handle and shows some of the limitations of Mar-

ketNet. These limitations are not particular to MarketNet. The limitations under consideration stem form

the fact that software implementation bugs may allow intruders to impersonate legal users of systems and

therefore gain the same privileges the legal user would have. We are currently investigating how Market-

Net can efficiently react in the following scenarios:

Assume that the worm had destructive intentions. Budget enforcement along with usage monitoring in

MarketNet would limit the scope and the extent of the damage. We are currently investigating price dis-

crimination techniques that may be able to limit such attacks by making resources very expensive when

the process does not normally use it. For example, deletion of files would be very expensive for unknown

processes, which will not have enough money for the attack.

In a worm-like attack, the attacker manages to impersonate the owner of an account. Even when this hap-

pens, it should not be equivalent to getting hold of the budget of the conquered account. One of the

mechanisms to break this equivalence is usage monitoring. Abnormal access patterns can be restricted

providing adjustable limits on the amount of damage a malicious or faulty processes can cause. A second

mechanism under investigation is the separation of budgets available on a per process and/or per task ba-

sis. The tradeoff in this case is protection level vs. ease of use of the system.

9. Conclusions
Market-based technologies can provide an effective solution to the protection of information systems.

MarketNet develops unified, systematic, market-based technologies to provide scalable and tunable ac-

cess control for large multi-domain networked systems. These technologies enable unified monitoring and

correlated analysis of resource access to detect intrusion attacks, isolate the sources of attacks and respond

quickly to control its damages. MarketNet develops mechanisms to protect critical network services,

based on their quantifiable value to users, and assure their continuous availability through failures or at-

tacks based on user’s priority.

In summary, some of the key ideas in MarketNet are the following:

Currency is used to provide unified, scaleable, resource-independent access control to resources and

services and account for their use.

Resources and clients are organized in currency domains. Each domain has its own currency. Resources

are instrumented to use currency for access control and monitoring. Clients wishing to access a resource

must pay in currency acceptable to the domain that owns the resource.

Organization in currency domains can limit the spread of faults and attacks.

Domains control exposure to attacks, by controlling allocation of budget to clients and prices of re-

sources. This exposure is quantifiable and can be dynamically adjusted in response to emerging risks.

The banking infrastructure strictly controls the dissipation of access rights, and guarantees strict limits on

their acquisition.

Currency carries unique unforgeable identifiers that can be monitored and traced back to the holder. Cur-

rency identifiers establish verifiable accountability on the use of resources.

Currency provides a resource-independent instrumentation to monitor and correlate access patterns and to

detect intrusion attacks through automated, uniform analysis of anomalous currency flows.

Financial instruments are used to hedge against uncertainties in the availability of resources. Managers

use them to tune their exposure to resource unavailability and optimally purchase protection according to

their QoS needs and budget.

These mechanisms are resource-independent, and admit scalability for very large systems consisting of

federated domains operated by mutually distrustful administrations

Bibliography

[1] S. Clearwater, editor, Market-based Control of Distributed Systems, World Scientific Press, 1996.

[2] A. Dailianas, and Y. Yemini, A Protocol for Secure Financial Transactions, Technical Report, Dis-

tributed Computing and Communications Lab, Dept. of Computer Science, Columbia University.

[3] A. Dailianas, Use of Currency for Access Control in Large-scale Information Systems, Ph.D. Thesis

Proposal, Department of Computer Science, Columbia University, Sept. 1998.

[4] J. C. Hull, Options, Futures, and Other Derivatives, third edition, Prentice Hall.

[5] J. Kurose, M. Schwartz, and Y. Yemini, A Microeconomic Approach to Optimization of Channel

Access Policies in Multiaccess Networks, in: Proc. Of the 5th International Conference on Distrib-

uted Computer Systems, Denver, Colorado, 1995.

[6] J. MacKie-Mason and H. Varian, Economic FAQs About the Internet, Journal of Economic Per-

spectives, vol. 8, no. 3, pp. 75-96, 1994. Reprinted (with revisions) in Internet Economics, J. Bailey

and L. McKnight, eds. Cambridge, MIT Press, 1996.

[7] J. MacKie-Mason and H. Varian, Pricing the Internet, in: B. Kahin and J. Keller, editors, Public Ac-

cess to the Internet, ACM, Boston, Massachusetts, May 1993.

[8] J. Sairamesh, D. Ferguson, and Y. Yemini, An Approach to Pricing, Optimal Allocation and Quality

of Service Provisioning in High-speed Packet Networks, in Proc. of the Conference on Computer

Communications, Boston, Massachusetts, April 1995.

[9] B. Schneier, Applied Cryptography, second edition, John Wiley & Sons, pp. 139-147.

[10] E. Spafford, The Internet Worm Incident, Technical Report CSD-TR-933, Department of Computer

Sciences, Purdue University, Sept. 19, 1991.

[11] W. Walsh, M. Wellman, P. Wurman, and J. MacKie-Mason, Some Economics of Market-Based

Distributed Scheduling, in: Proc. of the 8th International Conference on Distributed Computing

Systems (ICDCS-98), Amsterdam, the Netherlands, May 1998.

[12] Y. Yemini, Selfish Optimization in Computer Networks, Proc. of the 20th IEEE Conference on De-

cision and Control, pp. 281-285, San Diego, CA., Dec. 1981.

