
MarketNet: Using Virtual Currency
To Protect Information Systems

Y. Yemini, A. Dailianas, D. Florissi

Department of Computer Science, Columbia University,
450 Computer Science Bldg.

New York, NY 10027
{yemini, apostolo, df}@cs.columbia.edu

Abstract. This paper describes novel market-based technologies for systematic,
quantifiable and predictable protection of information systems against attacks. These
technologies, incorporated in the MarketNet system, use currency to control access
to information systems resources and to account for their use. Clients wishing to ac-
cess a resource must pay in currency acceptable to the domain that owns it. An at-
tacker must thus pay to access the resources used in an attack. Therefore, the op-
portunities to attack and the damage that can be caused are strictly limited by the
budget available to the attacker. A domain can control its exposure to attacks by set-
ting the prices of critical resources and by limiting the currency that it makes avail-
able to potential attackers. Currency carries unique identifiers, enabling a domain to
pinpoint the sources of attacks. Currency also provides a resource-independent in-
strumentation to monitor and correlate access patterns and to detect intrusion attacks
through automated, uniform statistical analysis of anomalous currency flows. These
mechanisms are resource-independent, and admit unlimited scalability for very large
systems consisting of federated domains operated by mutually distrustful admini-
strations. They uniquely establish quantifiable and adjustable limits on the power of
attackers; enable verifiable accountability for malicious attacks; and admit system-
atic, uniform monitoring and detection of attacks.

1 Introduction

Protecting large-scale information systems remains an elusive challenge of ever-
growing importance and complexity. Exposure to insecurities and the opportunities
available to attackers are increasing with the growth in the range of resources, scale,
complexity, and operations management practices of different domain administra-
tions. Current information systems enable attackers to pursue virtually unlimited at-
tempts to compromise a system; they involve ad-hoc instrumentation to monitor re-
source access and manual correlation of these access logs to detect intrusion; and they
leave attackers completely unaccountable to abuses and crimes that they commit.

Rapid changes in technologies increase the vulnerability to attackers. First, at present
protection technologies are specialized to each component. A minor insecurity in a
new component can propagate substantial exposure to other components. Thus, inse-
curities can be formed non-monotonically; i.e., a system that is secure can be rendered
insecure by the addition of a single component. Second, the combinatorics of interac-
tions between new components and existing ones increases exponentially, creating
ample possible insecurities. Third, in the absence of a unifying security architecture it

is practically impossible for component vendors, or domain administrations to ac-
complish a coordinated protection.

Domain administrations are thus increasingly exposed to security risks and are unable
to control, bound or even assess this exposure. They require expert manual labor to
monitor and correlate access anomalies and detect an attack, typically through off-line
non-real-time processes completed hours or days after the attack has been completed.
And even when an attack is detected, identifying the source accountable for it can be
virtually impossible and requires complex ad-hoc collaborations of multiple expert
police forces.

MarketNet uses market-based mechanisms to provide a novel approach to the protec-
tion of large-scale information systems. In MarketNet, resources are instrumented to
use currency for access control and monitoring. Clients must pay resource managers,
using appropriate currency and prices, to gain access to respective resources. An at-
tacker is limited by its budget in gaining access to resources and in creating damage.
A domain administration can control access to its resources and establish quantifiable
limits on its exposure to attacks by adjusting prices of critical resources and control-
ling the availability of currency to potential sources of attacks.

Currency flows provide uniform resource-independent instrumentation to monitor and
correlate access patterns and to detect anomalies. This enables the development of
uniform resource-independent intrusion-detection mechanisms entirely based on the
statistics of currency flows. Intrusion-detection can be thus automated and accom-
plished in real-time with an attack. Furthermore, currency carries unique identifiers. A
domain maintains full accountability of the entities to which currency has been allo-
cated. A domain can account for sources of each access to its resources. In particular,
once an attack has been identified a domain can establish verifiable proof of account-
ability in tracing its sources.

MarketNet mechanisms are structured to admit unlimited scalability and enable pro-
tection among mutually distrustful domains organized in a large scale federated sys-
tem. These protection mechanisms, furthermore, are entirely independent of the un-
derlying resources and can thus be retrofitted into an existing system with minor ad-
aptation of its components.

This paper provides an overview of the MarketNet architecture, mechanisms and op-
erations.

2 MarketNet architecture and mechanisms

2.0 MarketNet Architecture

MarketNet introduces a distributed protection middleware infrastructure, the Resource
Access Layer (RAL), overlaid on existing infrastructure (Figure 1). RAL includes
several mechanisms. Resource managers are responsible to set the price for a re-
source, collect payments for its access and deposit revenues with the bank server of
the respective domain. Client managers are responsible to manage client budget, ob-
tain pricing information and pass respective payments required to access services used
by the client. Bank servers provide accounting, clearing and monitoring of currency
flows. Price directories provide pricing information. These mechanisms are depicted
in Figure 1 below.

In a typical scenario, depicted in Figure 1, a client belonging to domain X wishes to
access a resource belonging to domain Y. The client needs to first obtain currency
acceptable to domain Y. The client manager obtains respective pricing information
and issues a request to the bank server of domain X to provide it with currency for
domain Y. The bank server of domain X must obtain currency issued by domain Y
and credit the account of domain Y with a respective central bank for this amount.
The two domain bank servers pursue secure transactions with the central bank to ac-
complish this. Once the client manager obtains respective currency from its bank
server, it can proceed to execute accesses to the service. Each access will incur a
payment collected by the server manager.

Figure 1: Overall Architecture of MarketNet

It is important to note several salient features of this architecture.
• The RAL mechanisms provide incremental extensions of existing components
and systems.
• The client and resource managers provide uniform (i.e., resource independent)
and minimal extensions of existing software components to control access.
• All transactions involving currency flows between managers and their bank serv-
ers and between bank servers are secured through encryption and authentication.
• The overheads involved in converting currency among domains and in allocating
currency to a client can be minimized through caching of currency. For example, the
bank server of domain X can cache sufficient currency of domain Y in anticipation of
requests by clients in its domain.
• Once a client obtains currency, the payment to resource managers involves very
minimal overhead.

Thus, the RAL provides in effect a distributed secure access management kernel that
is independent of underlying resources.

2.1 Currency domains organize global protection

Resources and clients in MarketNet are organized in currency domains. Resources
include physical resources such as CPU cycles, storage, bandwidth, I/O devices, or

Dom ain Y
Dom ain X

Access

Rsrc M grClnt m gr

Paym ent

Y Bank
Srvr

X Bank
Srvr

Central
Bank

Price
Dir

Price
Dir

Resource Access Layer (RAL)

sensors as well as higher-level software services such as file storage, name service,
database, or web service. A currency domain establishes access protection for a group
of resources. It provides administrative infrastructure for imposing domain-level pro-
tection policies covering pricing of critical resources, assignment of budgets to inter-
nal clients, limitation of access by external domains, monitoring access to detect in-
trusion attacks and activating responses to attacks.

Domains use special currency to provide unified, scalable access to their services. The
currency is uniquely identified by a currency ID. This establishes full accountability
in the use of resources by tracing access to resources back to the holder of the cur-
rency. To gain access to the resources in a domain, clients first have to exchange cur-
rency of the target domain for their own. Currency of a domain gives the holder the
right to access any of the resources in the domain, providing unified, scalable access.
Finer access control at the resource level is achieved through the pricing and usage-
monitoring mechanisms presented in Sections 2.2 and 2.4. The currency of a domain
encapsulates domain-level protection policies set by the domain. Specifically, do-
mains control who can acquire their currency, along with the total currency outflow,
the rate of currency outflow and other parameters, imposing strict domain-controlled
limits on the access and attack power of any entity wishing to access the domain re-
sources.

2.2 Prices/budgets establish dynamically adjustable access control

Prices of resources along with available budgets of clients establish a dynamically
tunable access control mechanism; provide the means for optimized load redistribu-
tion and graceful degradation upon loss; and impose quantifiable dynamically adjust-
able limits on the exposure to attackers.

Each resource in a domain is priced in terms of the domain currency. This price is
advertised in respective price directories of the RAL. Prices are dynamically updated
to reflect various operation parameters such as access control policies and changing
demand for a resource. The combination of prices and budgets available to clients
provides a fine granularity, dynamically adjustable access control mechanism. Limit-
ing access to a specific set of clients can be achieved by raising the prices to higher
levels, guaranteeing that only qualified clients (those that have sufficient budget) can
access them. Furthermore, currency identifiers enable additional price discrimination
techniques. Budget and price discrimination can achieve a continuous spectrum of
limits imposed on the use of a resource, based on the source domain of a request.

The pricing mechanism can also be used to reflect resource unavailability due to con-
gestion or loss. A loss of a resource reduces the supply, thus automatically causing
clients to redirect their demands to backup replicas. Reduced availability results in
rising prices of the replicated resources. Rising prices create a natural selection proc-
ess where applications automatically adapt to resource availability and obtain access
to alternate resources according to their intrinsic priority captured by their budget.
High-priority clients can apply their budget to continue and obtain high QoS, while
low priority clients are priced-out. Thus a loss results in graceful selective degradation
of services that optimizes the balance between available resources and demands.

Furthermore, prices can force the operation of resources within a "desirable" region of
operation. The desirable region of operation is resource-dependent, and in general

refers to the region of operation specified by the resource manager, where specific
QoS constraints or other considerations are satisfied (e.g., the average incoming rate
to a switch should be controlled to provide low delays and loss). Assume the purpose
of attacking a resource is to move it to an "undesirable" region of operation. Then the
price of the resource should reflect its reluctance to operate in that region. Should the
attacker or coalition of attackers desire to sustain the attack, they would see a continu-
ously increasing price to access the resource, forcing them to exhaust their budget at
an increasing rate to sustain the attack. The pricing mechanism in this case provides a
means to convert a "fixed" budget (belonging to a specific client or a coalition of cli-
ents potentially residing in different domains), to a much lower "effective" budget.
Knowledge of the specific pricing policy can provide analytical upper bounds on the
duration of attacks achievable by given collective budgets.

2.3 Setting Quantified Limits on The Power of Attackers

MarketNet limits the power of attackers by their available budget. An attacker can
gain access to resources only to the extent that his budget permits it. Furthermore,
with each access required for an attack, the remaining budget and with it the power of
the attacker decreases.

Thus, enforcement of budgets (i.e., guarantees that no client or application can spend
more than their budget) is a very powerful tool for limiting attacks and damages.
MarketNet pursues hierarchical budget enforcement by organizing network entities
(i.e., resources, clients, or subdomains) in hierarchically nested domains; each domain
has a bank that controls the budget us-
age of the entities inside the domain.
For example, in the figure to the right,
the budget of a user in domain A is
controlled by the bank of this domain,
the budget of the entire domain A is
controlled by the domain X bank, and
the budget of the domain X is con-
trolled by the central bank. Even if an
intruder conquers the A bank, his/her
budget (and power of attack) cannot
exceed the budget for the whole A domain. Similarly, even if the X bank is conquered
the amount of damage the intruder can do is limited by the X budget, enforced by the
central bank. Moreover, an intruder that conquered the X domain is not only limited
in its power to attack other domains outside the scope of X, but also in its ability to
attack interior domains. For example, to access any resources of the nested domain A,
the intruder must still obtain sufficient currency of A. The amount of currency of A
maintained in the bank of X, or made available to it, is strictly controlled by A.

The total exposure of a domain to external attacks is thus limited by the total budget
that it maintains in external domains as well as the rate at which it accepts payments
for services from external clients. A domain can tune both parameters to control its
exposure.

Exchanges of currency between domains are performed by the banks at the outermost
enclosing domains. For example, a client from domain A that wishes to access serv-
ices of B needs to pursue an exchange conducted between the X bank and Y bank.

 Central
 Bank

 X

 A

 Y

 B

This restriction is imposed for scalability and authentication reasons. Organization of
resources in currency domains provides the means to scaleably limit the spread of
faults or attacks and localizes their effects. For example, assume an intruder has con-
quered the whole X domain. Once any domain detects this, the information can be
rapidly propagated to other domains and the currency of X can be declared invalid
until appropriate action is taken to restore normal operation of the X domain.

2.4 Monitoring, detection and response to intrusion attacks

Current intrusion monitoring, detection and response mechanisms depend on specific
resource details. They require specialized instrumentation to monitor resource access
data, ad-hoc manual techniques to correlate this data and identify attack patterns and
specialized response mechanisms that depend on the resource.

In contrast, currency provides a uniform -- resource independent -- instrumentation to
monitor resource access. This enables one to use standard statistical correlation tech-
niques to automatically analyze currency flows and to identify anomalous patterns of
access. Currency IDs, the unique identifiers carried by currency, establish account-
ability for the use of resources by enabling one to determine the entity responsible for
given resource accesses. The combination of resource access monitoring, and correla-
tion of access and entities through currency IDs is used to identify and isolate attack
sources.

Once an attack has been identified, currency IDs are used to identify and isolate the
source of the attack, without affecting the operation of users in legal domains. The
responses to attacks can be specified in uniform response policies, based on the nature
of the attack and its source. For example, one can disable access to certain resources
by the source domain of the attack, or in extreme cases isolate the source domain from
any access to other domains. These responses can be deployed rapidly in all currency
domains by the domain attacked to prevent similar attacks on other domains. This
entire process, currently handled through complex and slow manual clearing proc-
esses can be accomplished automatically in real time isolating an attacker and limiting
the damage that it can cause.

3 Attack Sources

MarketNet is designed to detect, react to, and prevent attacks to systems. The goal of
this section is to clearly define what are the sources of attack to computer systems and
what MarketNet can do in each case.

3.1 Vulnerability of the MarketNet Infrastructure

A system is as safe as the protection subsystem it uses. The natural question is there-
fore how safe the MarketNet infrastructure is itself and how does it prevent undesir-
able protection leaks. There are two potential attacks of interest: (1) circumvention of
MarketNet, (2) tempering with the MarketNet infrastructure.

Figure 1 illustrates how the Resource Access Layer (RAL) middleware introduced by
MarketNet is overlaid on existing infrastructure. What if an attacker decides to ma-
nipulate resources by circumventing the MarketNet APIs? For example, a process
may decide to directly allocate memory at a particular node using the OS API. Mar-
ketNet should encompass such allocations, which may otherwise undermine or lower

its own allocations. Therefore a crucial task in the MarketNet infrastructure is to en-
force that resource manipulations may only happen via well-defined MarketNet APIs.
The system that installs MarketNet must disable any "back-door" APIs that may en-
able attackers to directly manipulate resources.

Another option is to use the MarketNet infrastructure itself to attack. The best way to
accomplish this is to tamper with the protocols and processes to gain illegitimate ac-
cess to resources. The most obvious case of such attacks is to abuse bugs in the im-
plementations. This is a problem with any software system and we are using sophisti-
cated Software Engineering technology that minimizes such bugs.

More peculiar to MarketNet is to counterfeit, duplicate, or steal money. For example,
some agent may discover a way of generating money that looks legal either from
scratch or by duplicating money already in the system. Alternatively, it may attack the
communication channels to acquire digital money in transit. Illegitimate wealth can
become a security threat for any system relying on MarketNet for security. The proto-
cols in MarketNet outlined in Section 4.1 are designed to virtually eliminate the pos-
sibility of such occurrences.

3.2 The Power of Wealth in MarketNet

Money concentration, even if legitimate, is undesirable due to the potential attack
power it represents. Rich agents constitute a potential attack threat. They are also
prone to attacks by intruders who are attracted by the attack power they would gain by
taking over the rich agents.

The owner of a popular resource or service will accumulate unbound wealth over time
if the resource generates revenues in excess of its operational costs. One option would
be to impose restrictions on the wealth a single agent can accumulate. This would
limit the power of any single entity to attack, but it would also reduce the incentive of
resource managers to provide services. An alternative is to impose restrictions on the
rate at which the accumulated wealth can be used to purchase other resources or
services. This is made possible by the intervention of the banking infrastructure in the
transactions between clients and resource managers.

3.3 Abusive Consumption of Resources

Another potential attack is to abuse consumption of resources. It may take place in
multiple ways. Firstly, one may simply conquer the resource and use it without paying
dues or even profiting by re-selling services. Such situation must be prevented at all
costs by enforcing that only MarketNet APIs can be used to access and manipulate
resources.

Secondly, an agent may acquire cheaper or even nominal access to resources and ei-
ther use them or re-sell them for profit. The MarketNet APIs prevent such situations
by requesting immediate payment for resource consumption.

3.4 Non-for-profit Attacks

Some attackers are willing to disrupt or deny services to other users even when they
do not profit directly from the attack. Open systems are susceptible to such attacks,

and have proven particularly vulnerable to them. Part of the reason is that there is no
uniform and scalable way to protect against them. The famous denial-of-service attack
is a good example of this category of attacks. The goal of such an attack is to bring
down some service or resource by overloading it with requests for service, (e.g., re-
quests for access to web sites, consumption of memory cache or processor cycles).
Other users perceive the resource or service as unavailable or unable to deliver the
expected performance.

Non-for-profit attacks usually manifest themselves in two ways. The first form of
attack is to overload resources in the system, like in the denial-of-service case. Mar-
ketNet uses its price adjustment mechanism to cope with such situations. Increases in
demand force prices to go up and eventually the attacker will run out of budget. The
effectiveness of this mechanism may be emphasized if discriminatory pricing is used.
This mechanism has been outlined in Section 2.2

The second form of non-for-profit attack is to sabotage MarketNet itself. For example,
an agent may start destroying MarketNet money passing through a given device.
Since the volume of transactions is proportional to the amount of currency transferred
between client and resource managers, it is apparent that money destruction would
severely reduce the utilization of the system. An alternative way to reduce system
utilization would is to overload MarketNet processes such as the bank server, by is-
suing ever-increasing requests for currency exchanges. This difficult problem needs
further investigation. Two issues should be pointed out with respect to such attacks in
MarketNet: (1) malicious destruction of information is an issue orthogonal to Mar-
ketNet. For example an eavesdropper can easily alter or drop information in transit
independent of what this information might be; and (2) the liability established
through currency identifiers significantly alleviates the problem, first by identifying
the source of attack and second by providing the means to isolate it.

4 Bounds on attack power

Money is synonymous with attack power in MarketNet. It is important to quantify
precisely what is the attack power of an agent or domain. In the case of a particular
agent such as a server, its accumulated wealth represents its power of attack. A do-
main policy may force donation of excesss wealth as discussed in the previous sec-
tion. This section quantifies the attack power of a domain.

The attack power of a domain is the sum of two components: (1) surplus in the trade
balance with other domains and (2) domain wealth. The trade balance is the difference
between the in flowing money to the domain and the out flowing money to other do-
mains. The domain wealth is the summation of these differences from the time the
domain started up to the current time. Both measures are a function of the revenues
that services offered by the domain can generate and the number of customers they
attract.

What can one do to bound the attack? Domain policies can enforce the bounds on
trade flows and consequently limit the accumulation of wealth. For example, one may
force a domain to always balance in flow and out flow. Ideally, a zero trade balance
will force domains to not accumulate wealth. Another policy could be that the domain
must convert excess wealth in some special currency where the transaction is logged.
For example, a domain may be forced to convert revenues to dollars.

Another protection is the price mechanism in MarketNet. Attacks to resources will
increase the demands for services and consequently increase prices. Eventually the
domain budget finishes and the attack is contained.

Let us now consider the situation when a domain launches an attack to some other
domain. It may operate according to the domain policies but still attack. It may
change its patterns of expenditure so that it balances its trade, but the out flow of
money is directed to attack. In this case, the power to attack is really a function of the
domain wealth plus the revenues its resources may generate. This situation can only
be contained issuing an embargo against the domain that will discourage or forbid
other domains from acquiring resources that belong to the malicious domain. Such
decisions may be issued by the central bank.

5 An Example: The Worm Attack

In this section we take as an attack example the famous “worm attack” (9) and show
how MarketNet would have reacted to it. The purpose of the worm was to spread it-
self, i.e., to break into systems, install and locally run itself. To achieve this goal it
exploited flaws in utility programs based on BSD-derived versions of Unix. The
worm program eventually spread itself to thousands of machines around the Internet,
and disrupted normal activities and Internet connectivity for many days. The disrup-
tion was caused by the worm’s heavy use of system resources in order to break to
other systems. The worm was not destructive in nature, i.e., it did not delete user files
or try to cause other such disruptions, but it has to be noticed that if its intention were
to do so, nothing would have prevented it.

The worm spread using three techniques:

1. Exploiting a bug in the gets standard C I/O library used by the finger daemon
(fingerd). The gets call takes input to a buffer without doing any bounds checking.
The worm would overran the buffer and rewrite the stack frame, allowing it to gain
control in the target machine and install and execute itself locally.

2. Using the debug option in sendmail servicing the SMTP port. This feature en-
ables testers to run programs on remote machines to display the state of the remote
mail system without sending mail or establishing a login connection.

3. Guessing passwords and exploiting trust between hosts. Once present in a system
the worm would try to guess user passwords, break into their accounts and exploit
trust between hosts (e.g., hosts found in /etc/hosts.equiv and /.rhosts) to remotely exe-
cute into those systems as well. Password guessing is a computationally very inten-
sive operation using a big portion of the system resources.

Using any of the above methods, the worm would successfully spread without leaving
any trace of where it came from.

MarketNet can protect against several features of worm-like attacks:

1. The prospective attacker would have to pay to use sendmail or fingerd, leaving an
unforgeable trace of the originator of the attack.

2. Using system resources is not free. To perform password guessing the process
would involve heavy system resource utilization. Monitoring of the budget usage at
the conquered account domain would soon trigger alarms due to the unusual behavior.

Furthermore, the amount of damage (e.g., overloading system resources) the process
can achieve is limited by the budget available to it. Notice that we make a worst-case
assumption, namely that the intruder manages to use the budget available to the ac-
count for using the system resources. Mechanisms to impose restrictions on the
budget available to processes are currently under investigation in MarketNet.

MarketNet protects systems without eliminating software bugs. It assumes that soft-
ware bugs are always very likely to exist and creates a layer of protection that is inde-
pendent of the correctness of software.

The worm attack is one of the most difficult attacks to handle and shows some of the
limitations of MarketNet. These limitations are not particular to MarketNet. The
limitations under consideration stem form the fact that software implementation bugs
may allow intruders to impersonate legal users of systems and therefore gain the same
privileges the legal user would have. We are currently investigating how MarketNet
can efficiently react in the following scenarios:

Assume that the worm had destructive intentions. Budget enforcement along with
usage monitoring in MarketNet would limit the scope and the extent of the damage.
We are currently investigating price discrimination techniques that may be able to
limit such attacks by making resources very expensive when the process does not
normally use it. For example, deletion of files would be very expensive for unknown
processes, which will not have enough money for the attack.

In a worm-like attack, the attacker manages to impersonate the owner of an account.
Even when this happens, it should not be equivalent to getting hold of the budget of
the conquered account. One of the mechanisms to break this equivalence is usage
monitoring. Abnormal access patterns can be restricted providing adjustable limits on
the amount of damage a malicious or faulty processes can cause. A second mecha-
nism under investigation is the separation of budgets available on a per process and/or
per task basis. The tradeoff in this case is protection level vs. ease of use of the sys-
tem.

6 Conclusions

Market-based technologies can provide an effective solution to the protection of in-
formation systems. MarketNet develops unified, systematic market-based technolo-
gies to provide scalable and tunable access control for large multi-domain networked
systems. These technologies enable unified monitoring and correlated analysis of re-
source access to detect intrusion attacks, isolate the sources of attacks and respond
quickly to control its damages. MarketNet develops mechanisms to protect critical
network services, based on their quantifiable value to users, and assure their continu-
ous availability through failures or attacks based on user's priority.

In summary, some of the key ideas in MarketNet are the following:

• Currency is used to provide unified, scaleable, resource-independent access con-
trol to resources and services and account for their use.

• Resources and clients are organized in currency domains. Each domain has its
own currency. Clients wishing to access a resource must pay in currency acceptable to
the domain that owns the resource. A domain has full control over its exposure to at-
tacks, by controlling access to its resources through several parameters: the price of a

resource; the budget allocated to a given client; and the rate at which currency is pro-
vided to a given client.

• Organization in currency domains can limit the spread of faults and attacks.

• The power of attacks is limited by the budget available to the attacker and by the
price of resources.

• Currency carries unique unforgeable identifiers that can be monitored and traced
back to the holder. Currency identifiers establish verifiable accountability on the use
of resources.

• Currency provides a resource-independent instrumentation to monitor and corre-
late access patterns and to detect intrusion attacks through automated, uniform statis-
tical analysis of anomalous currency flows.

• Prices are dynamic. They can be used to fine tune access control to resources.
They provide the means for optimized load redistribution and graceful degradation
upon loss, and impose quantifiable dynamically adjustable limits on the exposure to
attackers.

These mechanisms are resource-independent, and admit unlimited scalability for very
large systems consisting of federated domains operated by mutually distrustful ad-
ministrations

References

1. Clearwater, S., editor. "Market-based Control of Distributed Sys-
tems," World Scientific Press, 1996.

2. Dailianas, A., and Y. Yemini “A Protocol for Secure Financial Transactions,”
Paper in Preparation.

3. Hull, J. C. "Options, Futures, and Other Derivatives," third edition, Prentice Hall.

4. Kurose, J., M. Schwartz, and Y. Yemini "A Microeconomic Approach to Optimi-
zation of Channel Access Policies in Multiaccess Networks," Proc. Of the 5th In-
ternational Conference on Distributed Computer Systems, Denver, Colorado,
1995.

5. MacKie-Mason, J., and H. Varian ”Economic FAQs About the Internet,” in The
Journal of Economic Perspectives, vol. 8, no. 3, pp. 75-96, 1994. Reprinted (with
revisions) in Internet Economics, J. Bailey and L. McKnight, eds. Cambridge,
MIT Press, 1996.

6. MacKie-Mason, J., and H. Varian "Pricing the Internet," in B. Kahin and J.
Keller, editors, Public Access to the Internet, ACM, Boston, Massachusetts, May
1993.

7. Sairamesh, J., D. Ferguson, and Y. Yemini "An Approach to Pricing, Optimal
Allocation and Quality of Service Provisioning in High-speed Packet Networks,"
in Proc. of the Conference on Computer Communications, Boston, Massachu-
setts, April 1995.

8. Schneier, B. “Applied Cryptography,” second edition, John Wiley & Sons, pp.
139-147.

9. Spafford, E. “The Internet Worm Incident,” Technical Report CSD-TR-933, De-
partment of Computer Sciences, Purdue University, Sept. 19, 1991.

10. Walsh, W., M. Wellman, P. Wurman, and J. MacKie-Mason "Some Economics of
Market-Based Distributed Scheduling," In Proc. of the 8th International Confer-
ence on Distributed Computing Systems (ICDCS-98), Amsterdam, the Nether-
lands, May 1998.

11. Yemini, Y. "Selfish Optimization in Computer Networks," Proc. of the 20th IEEE
Conference on Decision and Control, pp. 281-285, San Diego, CA., Dec. 1981.

