We discuss an alternative view of the proof of the Goldreich-Levin Theorem.

1 Error-Correcting Codes: The Walsh-Hadamard Code

An error-correcting code is a function $E : \{0, 1\}^n \rightarrow \{0, 1\}^m$ that maps n-bit strings into m-bit codewords. A codeword $E(x)$ should contain redundant information about x, in the sense that even if we have a string $\hat{E}(x)$ corrupted at a few locations, we are still able to recover the original string x from $\hat{E}(x)$.

For two string $x, r \in \{0, 1\}^n$, we define $x \odot r = \sum_{j=1}^{n} x_j r_j \pmod{2}$. The Walsh-Hadamard code (WH) is an exponentially long error-correcting code: each input string x is mapped to a 2^n-bit string $\text{WH}(x)$, where the i-th bit of $\text{WH}(x)$ is given by $x \odot r$, where r is the i-th n-bit string.

Given $\text{WH}(x)$, a corrupted codeword, we would like to recover x. Remember that $\text{WH}(x)$ is a 2^n-bit string, and we would like to have an efficient decoding procedure to obtain the original string x. Hence we assume that we have only local access to a polynomial number of bit positions of the corrupted codeword, and we would like to recover the correct x with high probability.

Finally, if $\text{WH}(x)$ is corrupted on more than a $1/4$ fraction of bit positions, it may be the case that the decoding of $\text{WH}(x)$ is not necessarily unique. In this case we are happy if the decoding procedure outputs in polynomial time (and with good probability) a list L of candidate inputs x for this corrupted codeword (this list may also contain irrelevant strings; in applications we usually have external information that allow us to narrow the list). It is possible to show that any corrupted codeword is $(1/2 + 1/p(n))-close$ to at most a polynomial number of correct codewords (i.e, the original list L is not very large).

2 The Goldreich-Levin Theorem

The proof of the Goldreich-Levin theorem is equivalent to the existence of an efficient local list decoding procedure for the Walsh-Hadamard code. We try to explain this connection in this section.

Theorem 1 (Goldreich-Levin). Suppose that $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ is a one-way function such that f is one-to-one and $|f(x)| = |x|$ for every string $x \in \{0, 1\}^*$. Then for every probabilistic polynomial-time algorithm A there is a negligible function $\epsilon : \mathbb{N} \rightarrow [0, 1]$ such that

$$\Pr_{x,r \in \{0,1\}^n} [A(f(x),r) = x \odot r] \leq 1/2 + \epsilon(n),$$

where $x \odot r$ is defined as before.
Remember that to prove this result we assume the existence of an algorithm \(A \) such that:
\[
\Pr_{x,r \in \{0,1\}^n} [A(f(x), r) = x \oplus r] \geq 1/2 + 2/p(n)
\]
ininitely often (of course using \(2/p(n) \) instead of \(1/p(n) \) is inessential, since \(p(n) \) is arbitrary), and use this assumption to prove the existence of an algorithm \(B \) that is able to invert \(f \) with noticeable probability. By an averaging argument, there exist at least an \(1/p(n) \) fraction of the \(x \)'s such that:
\[
\Pr_{r \in \{0,1\}^n} [A(y, r) = x \oplus r] \geq 1/2 + 1/p(n),
\]
where \(y = f(x) \).

In other words, for the good input strings \(x \)'s we can view the sequence of output bits of \(A(f(x), r) \) for all \(r \in \{0,1\}^n \) as a corrupted version of the Walsh-Hadamard codeword \(WH(x) \). The Goldreich-Levin algorithm uses \(A(y,.) \) as a black-box, i.e., it makes local queries to this corrupted codeword and obtain a list \(L \) of candidate inputs that invert \(y = f(x) \). We know that with noticeable probability the original \(x \) will be on the list. The algorithm uses the fact that \(f \) is efficiently computable to test if some \(x \) in \(L \) satisfies \(y = f(x) \).

References