Columbia University - Crypto Reading Group Apr 6, 2011
Local List Decoding and The Goldreich-Levin Theorem

Igor Oliveira

We discuss an alternative view of the proof of the Goldreich-Levin Theorem.

1 Error-Correcting Codes: The Walsh-Hadamard Code

An error-correcting code is a function E : {0,1}"™ — {0,1}"™ that maps n-bit strings into m-bit code-
words. A codeword E(z) should contain redundant information about x, in the sense that even if we
have a string E () corrupted at a few locations, we are still able to recover the original string x from E ().

For two string z,r € {0,1}", we define z ©r = > ", x;7; (mod 2). The Walsh-Hadamard code (WH)
is an exponentially long error-correcting code: each input string x is mapped to a 2"-bit string WH(z),
where the i-th bit of WH(z) is given by z ® r, where 7 is the i-th n-bit string.

Given \ﬁ(w), a corrupted codeword, we would like to recover . Remember that \ﬁ(m) is a 2™-bit
string, and we would like to have an efficient decoding procedure to obtain the original string x. Hence we
assume that we have only local access to a polynomial number of bit positions of the corrupted codeword,
and we would like to recover the correct x with high probability.

Finally, if \ﬁ(az) is corrupted on more than a 1/4 fraction of bit positions, it may be the case that the
decoding of \X/'T{(:U) is not necessarily unique. In this case we are happy if the decoding procedure outputs
in polynomial time (and with good probability) a list L of candidate inputs x for this corrupted codeword
(this list may also contain irrelevant strings; in applications we usually have external information that
allow us to narrow the list). It is possible to show that any corrupted codeword is (1/2 + 1/p(n))-close
to at most a polynomial number of correct codewords (i.e, the original list L is not very large).

2 The Goldreich-Levin Theorem

The proof of the Goldreich-Levin theorem is equivalent to the existence of an efficient local list
decoding procedure for the Walsh-Hadamard code. We try to explain this connection in this section.

Theorem 1 (Goldreich-Levin). Suppose that f : {0,1}* — {0,1}* is a one-way function such that f is
one-to-one and |f(x)| = |z| for every string x € {0,1}*. Then for every probabilistic polynomial-time
algorithm A there is a negligible function € : N — [0, 1] such that

LB A @) =2 o] S 12+),

where x ® 1 is defined as before.

Remember that to prove this result we assume the existence of an algorithm A such that:

Pr [A(f(z),r)=z0r] =2 1/242/p(n)
z,re{0,1}"
infinitely often (of course using 2/p(n) instead of 1/p(n) is inessential, since p(n) is arbitrary), and use this
assumption to prove the existence of an algorithm B that is able to invert f with noticeable probability.
By an averaging argument, there exist at least an 1/p(n) fraction of the z’s such that:

Pr [A(y,r)=xzGr]>1/24+1/p(n),
re{0,1}»
where y = f(x).

In other words, for the good input strings z’s we can view the sequence of output bits of A(f(x),r)
for all » € {0,1}" as a corrupted version of the Walsh-Hadamard codeword WH(z). The Goldreich-Levin
algorithm uses A(y,.) as a black-box, i.e., it makes local queries to this corrupted codeword and obtain
a list L of candidate inputs that invert y = f(z). We know that with noticeable probability the original
x will be on the list. The algorithm uses the fact that f is efficiently computable to test if some x in L
satisfies y = f(x).

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge, 2009.

