
Columbia University - Crypto Reading Group Apr 6, 2011

Local List Decoding and The Goldreich-Levin Theorem

Igor Oliveira

We discuss an alternative view of the proof of the Goldreich-Levin Theorem.

1 Error-Correcting Codes: The Walsh-Hadamard Code

An error-correcting code is a function E : {0, 1}n → {0, 1}m that maps n-bit strings into m-bit code-

words. A codeword E(x) should contain redundant information about x, in the sense that even if we

have a string Ê(x) corrupted at a few locations, we are still able to recover the original string x from Ê(x).

For two string x,r ∈ {0, 1}n, we define x� r =
∑n

j=1 xjrj (mod 2). The Walsh-Hadamard code (WH)

is an exponentially long error-correcting code: each input string x is mapped to a 2n-bit string WH(x),

where the i-th bit of WH(x) is given by x� r, where r is the i-th n-bit string.

Given ŴH(x), a corrupted codeword, we would like to recover x. Remember that ŴH(x) is a 2n-bit

string, and we would like to have an efficient decoding procedure to obtain the original string x. Hence we

assume that we have only local access to a polynomial number of bit positions of the corrupted codeword,

and we would like to recover the correct x with high probability.

Finally, if ŴH(x) is corrupted on more than a 1/4 fraction of bit positions, it may be the case that the

decoding of ŴH(x) is not necessarily unique. In this case we are happy if the decoding procedure outputs

in polynomial time (and with good probability) a list L of candidate inputs x for this corrupted codeword

(this list may also contain irrelevant strings; in applications we usually have external information that

allow us to narrow the list). It is possible to show that any corrupted codeword is (1/2 + 1/p(n))-close

to at most a polynomial number of correct codewords (i.e, the original list L is not very large).

2 The Goldreich-Levin Theorem

The proof of the Goldreich-Levin theorem is equivalent to the existence of an efficient local list

decoding procedure for the Walsh-Hadamard code. We try to explain this connection in this section.

Theorem 1 (Goldreich-Levin). Suppose that f : {0, 1}∗ → {0, 1}∗ is a one-way function such that f is

one-to-one and |f(x)| = |x| for every string x ∈ {0, 1}∗. Then for every probabilistic polynomial-time

algorithm A there is a negligible function ε : N→ [0, 1] such that

Pr
x,r∈{0,1}n

[A(f(x), r) = x� r] ≤ 1/2 + ε(n),

where x� r is defined as before.

1

Remember that to prove this result we assume the existence of an algorithm A such that:

Pr
x,r∈{0,1}n

[A(f(x), r) = x� r] ≥ 1/2 + 2/p(n)

infinitely often (of course using 2/p(n) instead of 1/p(n) is inessential, since p(n) is arbitrary), and use this

assumption to prove the existence of an algorithm B that is able to invert f with noticeable probability.

By an averaging argument, there exist at least an 1/p(n) fraction of the x’s such that:

Pr
r∈{0,1}n

[A(y, r) = x� r] ≥ 1/2 + 1/p(n),

where y = f(x).

In other words, for the good input strings x’s we can view the sequence of output bits of A(f(x), r)

for all r ∈ {0, 1}n as a corrupted version of the Walsh-Hadamard codeword WH(x). The Goldreich-Levin

algorithm uses A(y, .) as a black-box, i.e., it makes local queries to this corrupted codeword and obtain

a list L of candidate inputs that invert y = f(x). We know that with noticeable probability the original

x will be on the list. The algorithm uses the fact that f is efficiently computable to test if some x in L

satisfies y = f(x).

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge, 2009.

2

