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Fig. 10. Our adaptive strategy generalizes across different Neo-Hookean
variants. Here in the last three columns, we experiment with different strain
energies, including Mooney-Rivlin, ARAP, and Symmetric Dirichlet energy,
each augmented with a volume-preservation term ( 𝐽 − 1)2.
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Original Initial abs clampadaptive 
(Ours)PR=0.495

Fig. 11. Our method is robust to different tetrahedralizations. Here we
tetrahedralize the same cylinder to two different tetrahedral meshes. The
meshes on the top and bottom row have 6.1k and 6.6k vertices, respectively.
In both settings, our method outperforms existing strategies.

Comparison. Last but not least, we compare our method with

another two Hessian projection strategies, namely, the Projection-

On-Demand (POD) strategy [Longva et al. 2023] in Fig. 8 and the per-

element Tikhonov regularization [Paternain et al. 2019] in Fig. 9. As

the POD strategy is mostly designed for dynamic simulation where

the Hessian can be close to positive-definite given a small timestep,

its convergence is similar to eigenvalue clamping in the quasistatic

setting, but it suffers from additional Cholesky decomposition cost

for the positive-definiteness check. Moreover, Tikhonov regulariza-

tion [Paternain et al. 2019] requires the eigendecomposition on the

global Hessianmatrix, which is computationally intractable for large

meshes. Therefore, we compare our approach to the per-element

version of [Paternain et al. 2019] (see Fig. 9), where the local ele-

ment’s eigenvalues are projected to their absolute values when large

than a threshold and clamped otherwise. As the eigenvalues can

have drastically different magnitudes under different deformations

and Poisson’s ratios, it is challenging to set a universal projection

threshold for local eigenvalue projection in [Paternain et al. 2019].

6 CONCLUSION & FUTURE WORK
We introduce a novel adaptive eigenvalue filtering strategy for Pro-

jected Newton’s method to stabilize and accelerate the minimization

of Neo-Hookean energy. Our method is simple to implement and

requires only two lines of code change in the Projected Newton

framework, making it easy to integrate into existing simulation

pipelines. Our trust-region based framework opens up the possi-

bility of analyzing different eigenvalue projection schemes while

taking the quality of the quadratic approximation into account.

54
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Fig. 12. We perform a collision experiment using Incremental Potential
Contact (IPC) [Li et al. 2020] by placing a cylinder (orange) above the
back of a horse. Note that IPC’s intersection-aware line search dominates
convergence and step size after collisions happen. Extending our framework
to accelerate the convergence of barrier functions could be an interesting
future direction.

We primarily experiment on the quasistatic simulation of stable

Neo-Hookean energy in this work. Extending our framework to

other hyperelastic models, collisions (Fig. 12) and dynamic simula-

tion, such as combining our work with [Longva et al. 2023], could be

a promising direction. Our choice of𝑤 eliminates the need of check-

ing the positive-definiteness of the global Hessian, and is well-suited

for quasistatic simulation where the energy is highly nonconvex.

For other more convex scenarios (e.g., dynamic simulation with a

small timestep), the global Hessian can sometimes be serendipitously
positive definite even if some local Hessians are indefinite, in which

case setting𝑤 ∈ [0, 0.5] could potentially lead to faster convergence
[Longva et al. 2023].

Exploration of having 𝑤 as a continuous function in [0, 1] for
more fine-grained control could be another interesting future di-

rection. Computing the trust-region ratio and projection strategy

independently for each element could potentially further improve

the convergence. Our method requires picking a threshold 𝜖 for

the trust region ratio. Further investigation on the choice of this

threshold could be beneficial, especially for the case of small com-

pression (see Fig. 14). Our approach always starts from the absolute

eigenvalue projection for the first Newton iteration. Deriving a bet-

ter strategy for the initial eigenvalue projection could potentially

further improve the performance.
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Fig. 13. Histogram of the speedup of our adaptive method over the absolute eigenvalue projection [Chen et al. 2024] and eigenvalue clamping [Teran et al.
2005] on TetWild Thingi10k dataset. Here, we test with a diverse set of large deformations (shown in each column). First row: speedups over eigenvalue
clamping with a Poisson’s ratio 0.495. Second row: speedups over absolute eigenvalue projection with a Poisson’s ratio 0.495. Third row: speedups over
eigenvalue clamping with a Poisson’s ratio 0.3. Fourth row: speedups over absolute eigenvalue projection with a Poisson’s ratio 0.3.
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A PROOF OF LEMMA 4.1
Lemma A.1. Let |A𝑒 | be the matrix obtained by performing per-

element absolute eigenvalue projection of A, i.e., |A𝑒 | =
∑
𝑖 P⊤𝑖 |A𝑖 |P𝑖 ,

where |A𝑖 | are the matrix obtained by taking the absolute value of
each of the eigenvalues of A𝑖 . Then it holds that

��x⊤Ax�� ≤ x⊤ |A𝑒 |x.

��x⊤Ax�� = �����x⊤
(∑︁

𝑖

P⊤𝑖 A𝑖P𝑖

)
x

�����
=

�����∑︁
𝑖

(P𝑖x)⊤A𝑖 (P𝑖x)
�����

=

�����∑︁
𝑖

∑︁
𝑘

(
(P𝑖x)⊤e𝑖𝑘

)
𝜆𝑖𝑘

(
e⊤
𝑖𝑘
(P𝑖x)

)�����
=

�����∑︁
𝑖

∑︁
𝑘

(
(P𝑖x)⊤e𝑖𝑘

)
𝜆𝑖𝑘

(
e⊤
𝑖𝑘
(P𝑖x)

)�����
=

�����∑︁
𝑖

∑︁
𝑘

𝜆𝑖𝑘
(
(P𝑖x)⊤e𝑖𝑘

)
2

�����
≤

∑︁
𝑖

∑︁
𝑘

|𝜆𝑖𝑘 |
(
(P𝑖x)⊤e𝑖𝑘

)
2

=
∑︁
𝑖

∑︁
𝑘

(
(P𝑖x)⊤e𝑖𝑘

)
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(
e⊤
𝑖𝑘
(P𝑖x)

)
= x⊤

(∑︁
𝑖

P⊤𝑖 |A𝑖 |P𝑖

)
x

= x⊤ |A𝑒 |x
□

B PROOF OF LEMMA 4.2
Lemma B.1. u⊤Hu + u⊤ |H𝑒 |u = 2u⊤H+

𝑒 u.

Let 𝜆+
𝑖𝑘

and 𝜆−
𝑖𝑘

be the positive and negative eigenvalues of each

A𝑖 . Then we have:

x⊤Ax + x⊤ |A𝑒 |x

=
∑︁
𝑖

∑︁
𝑘

𝜆𝑖𝑘
(
(P𝑖x)⊤e𝑖𝑘

)
2 +

∑︁
𝑖

∑︁
𝑘

|𝜆𝑖𝑘 |
(
(P𝑖x)⊤e𝑖𝑘

)
2

= 2

∑︁
𝑖

∑︁
𝑘

𝜆+
𝑖𝑘

(
(P𝑖x)⊤e𝑖𝑘

)
2

= 2x⊤A+
𝑒 x.

□
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