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Current linear modal sound models are tightly coupled with their frequency
content. Both the modal vibration of object surfaces and the resulting sound
radiation depend on the vibration frequency. Whenever the user tweaks
modal parameters to adjust frequencies the modal sound model changes
completely, necessitating expensive recomputation of modal vibration and
sound radiation.

We propose a new method for interactive and continuous editing as well
as exploration of modal sound parameters. We start by sampling a num-
ber of key points around a vibrating object, and then devise a compact,
low-memory representation of frequency-varying acoustic transfer values
at each key point using Prony series. We efficiently precompute these se-
ries using an adaptive frequency sweeping algorithm and volume-velocity-
preserving mesh simplification. At runtime, we approximate acoustic trans-
fer values using standard multipole expansions. Given user-specified modal
frequencies, we solve a small least-squares system to estimate the expan-
sion coefficients, and thereby quickly compute the resulting sound pressure
value at arbitrary listening locations. We demonstrate the numerical accu-
racy, the runtime performance of our method on a set of comparisons and
examples, and evaluate sound quality with user perception studies.

Categories and Subject Descriptors: I.3.6 [Computer Graphics]: Method-
ology and Techniques—Interaction techniques

General Terms: Numerical Methods, Interactive Design

Additional Key Words and Phrases: Modal Vibration, Acoustic Transfer,
Prony’s Method, Asymptotic Waveform Evaluation

1. INTRODUCTION

Modal sounds are widely used for synthesizing plausible solid-
object sounds synchronized with computer-simulated animations
(e.g., see [van den Doel et al. 2001; O’Brien et al. 2002; Zheng
and James 2011; Ren et al. 2013]). The standard pipeline consists
of two steps: (i) integration of surface vibrations followed by (ii)
the computation of sound radiation. The former produces surface
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motions that are driven by external forces and vibrate at individual
modal frequencies, while the latter accounts for wave phenomena
such as diffraction and interference that can recognizably change
the sound’s timbre [James et al. 2006]. Both steps are closely cou-
pled with modal vibration frequencies.

The most expensive step of generating a modal sound is computing
sound radiation. For every vibration mode with a frequency ω, it
can be computed by solving a frequency-domain wave equation,
the Helmholtz equation,

∇2p(x) + k2p(x) = 0, x ∈ Ω, (1)

where p(x) is the acoustic transfer value at x, k = ω/c is the
wavenumber of the corresponding vibration mode, and c is the
speed of sound. To accelerate this step, various methods have
been devised [Ciscowski and Brebbia 1991]. In computer graph-
ics, James et al. [2006] introduced precomputed acoustic transfer
(PAT), wherein, after hours of precomputation of equivalent point
sources, fast runtime transfer evaluation is achieved at any listen-
ing location. However, in all of these methods, the entire Helmholtz
solution needs to be recomputed whenever the frequency ω is
changed.

The tight dependence of modal sound radiation on its vibration fre-
quencies as well as its expensive (pre-)computation of sound radi-
ation give rise to many difficulties when one starts to tweak model
sound parameters for desirable sound effects. In practice, tuning pa-
rameters is almost unavoidable, as the material parameters (e.g., the
Young’s modulus) are measured and tabulated in a range of values,
and there are no generally accepted damping values [Adhikari and
Woodhouse 2001]. Both kinds of parameters directly affect modal
frequencies (see §3), which have been found critical for achieving
desired sound characteristics [Klatzky et al. 2000]. Unfortunately,
when the user changes these parameters and thus the frequencies,
it becomes necessary to recompute the entire modal sound, leading
to a rather inefficient parameter tuning cycle.

In light of this, we propose a new method that decouples surface
modal vibration and acoustic transfer evaluation from modal vi-
bration frequencies. It allows the user to freely change modal fre-
quencies at runtime, and quickly synthesize resulting sounds at an
arbitrary listening location.

At first glance, one simple approach to enable runtime editing of
modal frequencies is to precompute individual modal sound models
using a set of frequency samples, and rely on runtime interpolation
to approximate with user-specified vibration frequencies. Unfortu-
nately, it is unclear how we should interpolate between different
models of modal sound. Moreover, the acoustic transfer p(x) is
highly oscillatory with respect to the vibration frequency (see §5
and Figure 6). As a result, such an approach will need lots of fre-
quency samples for plausible runtime interpolation, causing a pro-
hibitively long precomputation time and an overwhelming memory
footprint.

In our approach, we first select a set of key positions around a vi-
brating object. At every key position we precompute a frequency-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



2 • D. Li et al.

damping

sti
�n
es
s

Fig. 1: Parameter Exploration using our method: With our precomputed
information, we are able to explore the space of modal sound parameters
at runtime, achieving numerous sound effects (bottom) synchronized with
a physics-based animation. The three spectrograms highlighted in the col-
ored boxes correspond to (left to right) metal, porcelain, and wood materi-
als shown on the top. We refer to this link for all 225 sounds shown here.
http://www.cs.columbia.edu/cg/interactivetransfer/

sweeping transfer function compactly represented using Prony se-
ries. We accelerate the precomputation by devising two key tech-
niques: (i) we solve Helmholtz equations only at a few carefully
selected frequency samples. And for each frequency sample, we
build an asymptotic Padé approximant in frequency domain to
evaluate transfer values at nearby frequencies. (ii) To speed up
Helmholtz solves, we propose a frequency-adaptive mesh simplifi-
cation algorithm; for low-frequency Helmholtz solves, we simplify
the mesh more aggressively in exchange for larger computational
speedup. At runtime, given a user-specified modal frequency, we
represent the resulting transfer function at any spatial position us-
ing an acoustic multipole expansion. We first evaluate key-position
transfer values, which are in turn used to construct a small least-
squares problem to estimate the multipole expansion coefficients.
An overview of our proposed method is shown in Figure 2.

With our proposed precomputation technique, we are able to gen-
erate various sound effects without expensive recomputation. This
greatly eases the parameter tuning for different sound characteris-
tics, whether one desires high-pitch long-ringing metal sounds or
low-tone quickly damped wood-like sounds. We can explore the
parameter space and quickly hear the sound feedback. The result-
ing sounds are almost identical to the ones using expensive full re-
computation, both qualitatively and numerically.

Our technique also enables more control of sound characteristics
for animators wishing to add synchronized modal sounds. We ex-
plore examples of nonlinear time-varying modal sound effects us-
ing user-guided nonphysical change of frequencies.

PRECOMPUTATION

modal  analysis
↓

mesh simp. § 5.3
↓

freq. sweep § 5.2
↓

compact rep. § 5.1

RUNTIME

freq. params & animation
↓

  vibration q(t) § 4.1
↓

     transfer p(x,t) § 4.2
↓

sum up eqn. (5)

Fig. 2: Overview: given an input mesh, we efficiently perform the precom-
putation (left). At runtime, given a rigid animation, we can then quickly
synthesize resulting rigid-body sounds with user-specified frequency pa-
rameters (right).

2. RELATED WORK

The computer graphics community has a long history of synthe-
sizing synchronized sound effects for computer animation [Takala
and Hahn 1992]. Modal sound models, based on linear modal
analysis, have been widely used to generate plausible contact
sounds [van den Doel and Pai 1996] synchronized with physics-
based simulation. They are often constructed using recorded
sounds [van den Doel et al. 2001; Ren et al. 2013] or linear modal
analysis [Pentland and Williams 1989; O’Brien et al. 2002]. More
recent development has used modal vibration for synthesizing rigid
fracture sound [Zheng and James 2010], deformable sound [Zheng
and James 2011], and fast interactive sound [Raghuvanshi and Lin
2006; Bonneel et al. 2008; Ren et al. 2010]. But all these methods
are closely coupled with vibration frequencies, and none of them
enable fast user editing of modal sound parameters with acoustic
transfer functions.

The object’s geometry can significantly affect modal sound radi-
ation and change the sound’s timbre in a spatially varying way,
as demonstrated by James et al. [2006]. Unfortunately, comput-
ing sound radiation for all vibration modes is very expensive. To
improve the performance, existing methods [James et al. 2006;
Chadwick et al. 2009; Zheng and James 2011] assume fixed modal
vibration frequencies, and precompute an efficient representation
of acoustic transfer functions. The precomputation can take many
hours. Once it is finished, the user can evaluate transfer values at
an arbitrary position almost instantaneously. However, whenever
the user adjusts vibration frequencies, the entire acoustic transfer
representation needs to be recomputed. [Corbett et al. 2007] de-
veloped a system to acquire near-field acoustic transfer field from
recorded sounds and synthesize spatial sounds interactively. Yet,
this approach relied on an automated measuring system, in which
the measurement is closely coupled with each object’s specific ge-
ometry and material. Different from these approaches, our method
only relies on precomputation and allows the user to change modal
sound parameters at runtime and still enjoys the high quality of
sound synthesis.

For fast estimation of sound wave radiation, O’Brien et al. [2001]
adopted the Rayleigh method which assigns a monopole on
each surface element and summed the sound radiation from all
monopoles. This is essentially a first-order approximation of sound
radiation, neglecting the fact that the shaped structure constitutes
a scatter for the radiated sound. Furthermore, they considered time
delays from the monopoles to the listener. In contrast, we solve
the Helmholtz radiation equation but ignore the time delays. We
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also note that the difference of resulting sounds using the Rayleigh
method and the Helmholtz solution has been shown in [James et al.
2006].

On the other hand, when simulating the acoustics of rooms and con-
cert halls, the dimensions of the rooms or obstacles are many times
larger than the sound wavelength. As a result, a variety of geometric
acoustical methods have been developed [Funkhouser et al. 1999;
Tsingos et al. 2001; Tsingos et al. 2002], analogous to the geo-
metric optics in image rendering. The geometric acoustic methods
enjoy fast performance while producing plausible results. However,
when the characteristic dimension of objects becomes comparable
to the wavelength, as in our problems, the wave diffraction begins
to play an import part, necessitating the modeling of sound wave
behaviors usually described by near-field transfer functions. A few
previous works have demonstrated the importance of transfer func-
tions [James et al. 2006; Corbett et al. 2007] for typical rigid object
sounds in computer animations.

There exist several example-based methods on estimating sound
parameters from input audio clips. Early work by Pai et al. [2001]
estimated rigid modal sound models from recorded sounds and
measurements. More recently, Lloyd et al. [2011] analyzed the
short-time Fourier Transform and identify the strongest peaks in
the spectrogram to estimate modal parameters. Ren et al. [2013]
computed a set of features from given examples of audio clips, and
used them to optimize modal sound parameters. While they can
produce high-quality parameter estimation, they are not focused on
acoustic transfer functions of vibration modes. With our model, we
are able to explore modal sound parameter space straightforwardly
(see §7) and synthesize resulting sounds that take into account the
sound radiation effects.

The frequency-varying sound radiation problem has been studied in
many engineering applications. Fast frequency sweep methods are
most closely related to our method [Pillage and Rohrer 1990; Lenzi
et al. 2013]. The basic idea is to compute Helmholtz solutions at
a few key frequencies and interpolate/extrapolate Helmholtz radi-
ation at intermediate points. However, these methods aim to pro-
duce engineering accuracy rather than high performance at run-
time. Although they provide approximations of frequency-varying
Helmholtz solutions, it is nontrivial to evaluate transfer values at
an arbitrary point at runtime. In contrast, we aim for fast evaluation
of acoustic transfer at any spatial and frequency point. To this end,
we propose to use a Prony series representation [Hauer et al. 1990]
constructed using adaptive frequency sweeping.

In addition to the sound synthesis from physically based simula-
tion, there exist numerous audio processing software. Almost all
these tools rely on signal processing algorithms to edit sound ef-
fects such as frequency modulation [Chowning 1973], reverbera-
tion [Smith 1985], and spectrum adjustment [Strawn 1987], or use
stochastic sound models and granular synthesis methods to pro-
duce natural sound textures [Cook 2002]. However, these meth-
ods lack automatic synchronization with computer-simulated ani-
mation, and often need to store a large database of sound effects.
Our model is complementary to those tools, enabling automatic au-
diovisual synchronization using physical simulation.

Our method utilizes frequency-adaptive mesh simplification to
accelerate the individual Helmholtz solves. There are numerous
methods for surface mesh simplification (see a survey by Lue-
bke [2001]). Among them, our method is based on the edge col-
lapse algorithms [Garland and Heckbert 1997], which coarsen a
mesh through a sequence of edge collapse operations. In particular,

we augment the method introduced in [Hoppe 1999] and [Lind-
strom and Turk 1998] to preserve mesh volume as well as volume
vibration velocity. The latter is an important quantity to preserve
sound radiation power. Consequently, the optimization problem
for edge collapse becomes significantly harder: rather than solv-
ing a linear system, we need to solve a quadratically constrained
quadratic programming (QCQP) problem, for which we propose a
staggered iterative algorithm.

The idea of using geometric simplification for efficient acoustic
computation has been used in the research of room acoustical mod-
eling. The input CAD models are often simplified architectural
models in an exchange for faster computation. Siltanen et al. [2008]
proposed a geometry reduction method based on volumetric re-
construction using a modified Marching Cubes algorithm. Further,
geometrical acoustical simulation has adopted level-of-detail ap-
proaches to adaptively select polygon meshes used in the computa-
tion [Tsingos et al. 2007; Pelzer and Vorländer 2010]. The adaptiv-
ity of these approaches is based on incident sound waves for sound
auralization. While these approaches mostly focus on room acous-
tics, our method is concerned with sound radiation produced by
the modal vibration of an object. Therefore, the adaptivity of our
method is based on the modal vibration frequencies of the object.

3. MODAL SOUND PRELIMINARY

Before presenting the details of our method, we briefly review the
widely used modal sound model (see [Shabana 1991; O’Brien et al.
2002; James et al. 2006] for details) and clarify the frequency-
related parameters that can be freely changed in our model.

Modal Vibration First, a solid object vibration is approximated
by a linear vibration equation,

Mü+ Du̇+ Ku = fext, (2)

where M, K, and D are respectively the mass, stiffness, and damp-
ing matrices depending on the object materials, u ∈ R3n de-
scribes the finite element nodal displacement with n nodes, and
fext ∈ R3n is the external force driving the vibration. The damp-
ing matrix D is usually approximated using the Rayleigh damping
model [Shabana 1991], i.e., D = αM+βK, where the scalars α and
β are user-specified parameters. Linear modal analysis then solves
a generalized eigenvalue problem KU = MUS to compute a modal
shape matrix U and a diagonal eigenvalue matrix S. The former de-
scribes the vibration pattern of each mode while the latter indicates
the square of undamped natural frequencies, i.e., Si,i = ω2

i . Sub-
stituting u = Uq and then premultiplying U on both sides of (2)
decouples the system into a set of 1D second-order ordinary differ-
ential equations (ODEs), each of which is an ODE describing the
modal vibration of a single mode i, namely,

q̈i + diq̇i + ω2
i qi = UTi fext, (3)

where di is the damping parameter of mode i, and Ui is the i-th
column of U.

Sound Radiation A vibration mode with an observed frequency
ω produces propagating sound waves that have a wavenumber
k = ω/c. A standard tool to model its sound radiation is the
Helmholtz equation (1), which is coupled with surface modal vibra-
tion through a Neumann boundary condition defined on the object
surface S,

∂p

∂n
= −iωρv on S, (4)
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where i is the imaginary unit, ρ is the air density, and v is the
mode’s time-harmonic vibration velocity along the surface normal
direction, computed as v = iω(n · ũi), where n · ũi is the normal-
direction modal displacement of a mode i. Note we also use i to
represent mode index when there is no ambiguity. Solving (1) for
each mode i results in a complex-valued transfer function pi(x).
Finally, following the approximation in [James et al. 2006], the
sound wave at a listening position x is computed as a weighted
summation of all audible vibration modes,

s(x) =
∑
i

|pi(x)|qi(t). (5)

This expression is accurate up to a phase, ignoring the time de-
lay of sound propagation. The Helmholtz solution describes modal
sound radiation affected by the object’s own geometry, and ignores
environment acoustics. This is sufficient in our problem because
environment acoustics are independent from a modal sound model;
if the environment is known, one can easily feed the resulting sound
of our model to any sound auralization methods (e.g., [Tsingos
et al. 2001; Raghuvanshi et al. 2010; Mehra et al. 2013]) to add
room acoustic effects.

Frequency-Related Parameters As observed by Klatzky et
al. [2000], two sets of parameters are of particular importance
for achieving desired sound characteristics: vibration frequencies,
ωi, that determine sound pitch, and damping coefficients, di, that
affect the timbre of particular materials. For instance, a small
damping value results in the long ringing sounds that metal or
porcelain objects often produce, whereas a large damping value
tends to produce sounds more like wood or stone. We note that
the damping coefficients di are also frequency-related; they affect
the observed damped natural frequency through the relationship
ω̃i =

√
ω2
i − d2

i /4. This frequency value is used for computing the
wavenumber k, and thus affects the Helmholtz solution. In standard
modal sound models, the user can change material parameters such
as Young’s modulus to adjust ωi, and change α and β values in
Rayleigh damping to control di. In our implementation, we change
the scales of Young’s modulus, which we call stiffness scales, and
damping scales. They form a 2D parameter space (see Figure 1), in
which the modal shape matrix U remains constant. We also explore
the examples that allow the user to change ωi and di directly and
individually (see §7).

4. RUNTIME SOUND SYNTHESIS

In this section, we introduce our runtime sound synthesis algorithm
while deferring the precomputation details until §5 (see the flow
chart of our model in Figure 2). At runtime, we take as input an
animation sequence, the user-specified ωi and di, and the contact
forces that appear on the right-hand side of (2) to drive the surface
vibration. Given a listening location x, it computes surface modal
vibration qi for every mode (in §4.1), and evaluates the transfer
function pi(x) (in §4.2). The final sound is computed using the su-
perposition (5) of individual modes. For simplicity of presentation,
we describe the sound synthesis algorithm for a single mode. An
outline of our runtime algorithm is shown in Algorithm 1.

4.1 Vibration Integration for qi(t)

We first solve the decoupled 1D modal vibration equation (3),
where the external force fext is the contact forces resulting from
the simulated animation. Many previous methods [Hamming 1983;

Algorithm 1 Runtime Sound Computation for Mode i

Require: frequency ωi of mode i and listening position x
1: procedure SOUNDEVAL(i,x)
2: Compute qi(t) at audio rate by integrating (3) . §4.1
3: Compute transfer p(ωi) at key positions using (9) . §5.1
4: Estimate Mm

n using a least-squares solve (7) . §4.2
5: Compute transfer p(x) using Mm

n and (6)
6: Compute

∑
i |p(x)|qi(t) at the audio rate

7: end procedure

James and Pai 2002] solve this inhomogeneous second-order ODE
using a digital Infinite Impulse Response (IIR) filter. Our imple-
mentation uses the fourth-order Runge-Kutta method [Press et al.
2007], since we found it has comparable performance but higher
accuracy than the digital IIR filter, especially when the user spec-
ifies time-varying ωi and di values, as in the examples of §7 (see
Figure 3).

RK4

Analytical
IIR

time samples

Fig. 3: Comparison between Runge-
Kutta and IIR filter: Given a time-
varying vibration equation, fourth-order
Runge-Kutta (RK4) integrator (orange)
offers higher accuracy against the IIR fil-
ter (purple), which was used in previous
methods.

4.2 Transfer pi(x) Estimation via Least-Squares
A main challenge for runtime sound synthesis is the evaluation
of transfer values pi(x). This is because pi, the solution of the
Helmholtz equation (1), is frequency-dependent. Whenever the
user changes frequency parameters, we need to update pi(x), but
solving the Helmholtz equation from scratch is impractical compu-
tationally very expensive.

Multipole Approximation To allow the user to freely change
the listening location x while editing a sound, we need a compact
representation of p(x) in the spatial domain. Similar to [Zheng and
James 2010], we represent a Helmholtz solution p(x) using a sin-
gle point multipole expansion [Gumerov and Duraiswami 2004],
which takes an expansion form,

pi(x) ≈ ik
N∑
n=0

n∑
m=−n

Smn (x, x̄0)Mm
n (ω). (6)

Here x̄0 is the expansion center near the object. In practice, we
always place it at the object’s center of mass. We follow the rule
of thumb [Liu 2009; Zheng and James 2010] and set the expansion
order N = max( 1

4
kL, 4) (N ≤ 18 in all our examples). Smn are

singular Helmholtz basis functions, Smn (r) = h
(2)
n (kr)Y mn (θ, φ),

where r = (r, θ, φ) is the spherical coordinate of x−x0, h(2)
n ∈ C

are spherical Hankel functions of the second kind, and Y mn ∈ C are
spherical harmonics. The expansion coefficients Mm

n depend on
the modal vibration frequency ω, and are what we need to quickly
update when ω is changed at runtime.

Previous methods of computing Mm
n (e.g. [Gumerov and Du-

raiswami 2004; Zheng and James 2010]) integrate the results of
a boundary element (BE) solve of (1) over the entire object surface.
Both the BE solve and surface integral are expensive. One might
precompute a set of Mm

n using frequency values sampled in a fre-
quency range, and use the interpolated Mm

n at runtime. However,
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Fig. 4: Non-smoothness of Mm
n :

The high-order Mm
n becomes non-

smooth and fluctuates strongly at
high frequencies, making direct in-
terpolation difficult. We note that
these orders (i.e., N=7,8) are neces-
sary in the expansion for sufficient
accuracy.

as shown in Figure 4, Mm
n at high orders fluctuates dramatically as

the frequency value sweeps. Consequently, the frequency needs to
be densely sampled to interpolate Mm

n , leading to a prohibitively
long precomputation time.

Fast Least-Squares Approximation of Mm
n Inspired by the

subspace construction for shape deformations [Meyer and Ander-
son 2007], we approximate Mm

n using a small-scale least-squares
approximation. Here, the Helmholtz basis functions Smn construct a
set of reduced-space bases of the Helmholtz solution. We estimate
the basis coefficients Mm

n based on the transfer values at a set of
key positions, and use the resulting Mm

n to compute transfer value
pi(x) at any listening location x.

Fig. 5: Key Positions

First, we sample a set of key positions
xj , j = 1, ..., J outside of the object
(see Figure 5). In the precomputation,
we construct a frequency-sweeping trans-
fer function pj(ω) at xj . The represen-
tation of pj(ω) is compact, adding very
little memory overhead over the standard
modal sound model (see §6). And its con-
struction requires only coarse frequency
samples. We defer the details of its con-
struction until §5.1. Here we use the precomputed representation to
evaluate pj(ω) with user-specified ω at every key position xj and
stack them into a vector p̃.

The summation of (6) can be expressed in matrix form, p̃ = Am,
where m stacks all the coefficients Mm

n , and A consists of the
Helmholtz basis function values at all selected positions xj . Con-
cretely, they have the form

A =

S
0
0(x1, x̄0) . . . SNN (x1, x̄0)

...
. . .

...
S0

0(xJ , x̄0) . . . SNN (xJ , x̄0)

 andm =

M
0
0

...
MN
N

 .
We then estimate the unknown coefficientsMm

n by solving the least
squares problem

Am = p̃. (7)

As long as the number of key positions is larger than the number
of columns of A, we have an over-constrained and complex-valued
least-squares problem, and thus the solution is unique. Recall that
the order of multipole expansion (6) is small (i.e., N ≤ 18). The
number of columns is also small (i.e., N2 ≤ 324), and thus the
least-squares problem can be efficiently solved at runtime. Once
Mm
n are computed, we substitute them into (6) to evaluate the

transfer value at any location x. In §6, we validate the accuracy
and convergence of our transfer evaluation algorithm.

When sampling key positions, we need to cover the region where
the listener will be located. We therefore select three spheres cen-
tered at the object’s center of mass x̄0 with radii of 1.6, 2.6, and
3.4 times the object’s geometric size. We then uniformly sample

Real PartReal Part

Prony Approx. (N=4)
Prony Approx. (N=6)

frequency (kHz)

Prony Approx. (N=4)
Prony Approx. (N=6)

Imaginary PartImaginary PartImaginary Part

frequency (kHz)

Fig. 6: Frequency-Sweeping Transfers: We choose one mode of the
BUNNY model, evaluate p(ω) using BEM at a fixed point as frequency
sweeps and plot both real and imaginary parts. p(ω) oscillates dramatically
(purple); factoring out e−ikr produces a much smoother curve (green); 4th-
order Prony series gives a coarse interpolation curve (orange), while 6th-
order series produces a curve (red) almost identical to the original function.

positions over the spheres (see Figure 5). In §6, we validate the
numerical accuracy and convergence of this scheme.

5. PRECOMPUTATION OF OUR METHOD

The core goal of our precomputation is to construct a representa-
tion of frequency-sweeping transfer function pj(ω) for every key
position xj , j = 1, ..., J and every vibration mode. This repre-
sentation is used at runtime to construct the right-hand-side vector
p̃ in (7). For a mode i with a natural vibration frequency ω0, we
allow the user to adjust its vibration frequency in the range R =
[ω0 −∆ω, ω0 + ∆ω]. In practice, we allow the runtime frequency
adjustment in a range of 5kHz (i.e., ∆ω = 2.5kHz · 2π).

A simple approach is to compute pj(ωt) at a set of frequency sam-
ples ωt, t = 1, . . . , T in R, and interpolate to obtain pj(ω). How-
ever, this approach requires a large number of frequency samples,
since pj(ω) oscillates at a high frequency as shown in Figure 6.
And evaluation of transfer samples pj(ωt) at different frequencies
requires expensive individual Helmholtz solves. Therefore, we seek
to sample R using a sparse set of ωt. Our algorithm strives to (i)
avoid as many Helmholtz solves as possible (in §5.2) and (ii) im-
prove the solving performance (in §5.3). We start by first presenting
an efficient representation of pj(ω) using sparse transfer samples
pj(ωt). For simplicity, we will drop the subscript j, because we
will consider transfer values at a single key position xj .

5.1 Frequency-Sweeping Transfer Representation

Monopole
To reveal why p(ω) is oscillatory, consider a
first-order approximation of sound radiation. As
commonly used in the Rayleigh method [Cremer
et al. 2005], we can discretize a vibrating sur-
face into small elements, and estimate its radi-
ation (up to first order) by placing a monopole
on every element and summing up their contri-
butions. Namely, the acoustic transfer at x is es-
timated as

p(x) ≈
N∑
j=1

Cje
−ikrj =

N∑
j=1

Cje
−iωc rj , (8)

where Cj is the weight of a monopole on element j and rj is the
distance from x to the position of j-th monopole (i.e., rj = |x −
xj |). This expression clearly shows that as ω sweeps in a range
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R, p(x) oscillates because e−i
ω
c rj is harmonic with respect to ω.

In fact, for a far-field listener, rj is large, and thus p(x) oscillates
strongly.

Interpolation of p(ω) We propose the following scheme to in-
terpolate p(ω). For every acoustic transfer sample p(ωt), we com-
pute p̃(ωt) = eiktrp(ωt), where kt is the wavenumber ωt/c, and
r = |xj − x̄0| is the distance from a key position xj to the object’s
center of mass. We claim that p̃(ω) is much smoother than p(ω)
(see Figure 6), and thus we can easily construct an interpolation of
p̃(ωt) inR. To understand the reason, we again look to the approx-
imation (8), and have eikrp(ω) ≈

∑
j Cje

−ik(rj−r). For a far-field
listening location, we have |rj − r| � |r|. Therefore, e−ik(rj−r)

and hence eikrp(ω) are much less oscillatory. Lastly, given a fre-
quency ω, we interpolate p̃(ω) and compute the transfer value using
p(ω) = e−ikrp̃(ω).

Representation of p̃(ωt) using Prony’s Method The remain-
ing question is how to represent p̃(ωt). Since we will create a repre-
sentation of p̃(ω) for every key position and every vibration mode,
the representation needs to be compact. Note p̃(ω) still oscillates
with respect to ω, albeit smoothly, because of the term eik(rj−r).
This suggests that we should use a small number of harmonic basis
functions to interpolate p̃(ωt). Fourier basis functions were consid-
ered; they are efficient for representing periodic signals. However,
in our case, the amplitude of p(ωt) generally tends to decrease as ω
increases, because the high-frequency waves dissipate energy faster
than low-frequency waves do. These damped signals require more
Fourier bases for a plausible representation (see Figure 16 in Ap-
pendix F). Instead, we propose to use Prony’s method [Hauer et al.
1990; Lobos et al. 2003], which approximates a uniformly sampled
signal using a series of weighted complex exponentials. In our case,
it approximates p̃(ω) as

p̃(ω) ≈
N∑
i=1

cie
µiω (9)

where ci and µi are complex values determined using the trans-
fer samples p̃(ωt). For readers not familiar with this method, we
list the details in Appendix A. Here we highlight its advantages
in our problems. (i) Prony series has been known for its efficiency
on estimating damping coefficients apart from frequency, phase,
and amplitude [Lobos et al. 2003]. It requires only sparse samples
to represent the signals (i.e., 2N samples for N harmonic compo-
nents). (ii) It offers a compact representation of p̃(ω), allowing fast
runtime evaluation of p(ω). With precomputed ci and µi, we use
the Prony series (9) to construct the right-hand-side vector in the
least-squares problem (7) for estimating the multipole coefficients
Mm
n as described in § 4.2. Figure 6 shows that N = 6 is suffi-

cient for a close approximation in our experiments. Table I lists the
storage needed for runtime use, less than 25MB per model. (iii)
Computing the parameters ci and µi is fast, involving only two
small least-squares solves and a polynomial root-finding (see Ap-
pendix A).

5.2 Adaptive Frequency Sweep

Creating a Prony’s representation of p̃(ω) takes as input a set of
transfer values p(ωt) at uniformly sampled ωt ∈ R, t = 1, .., T .
Straightforward evaluation of p(ωt) needs to solve the Helmholtz
equation from scratch, which is expensive. Thus, we wish to by-
pass those solves as many as possible. To this end, we build our
algorithm upon the method of Asymptotic Waveform Evaluation

Algorithm 2 Frequency Sweep Precomputation for Mode i

Require: the damped natural frequency ωi of mode i
1: procedure ADAPTIVEFREQUENCYSWEEP(ωi)
2: Frequency rangeR ← [ωi −∆ω, ωi + ∆ω]
3: Uniformly sampleR with ωt s.t. ω1 > ω2 > . . . > ωT
4: ω∗ = ω1

5: Construct AWE coefficients at ω∗ (i.e., αi and βi in (13))
6: for all ωt in descending order do
7: if ωt not in the convg. radius of ω∗ (using (14)) then
8: ω∗ ← ωt − (ω∗ − ωt+1)
9: Construct AWE coefficients at ω∗

10: end if
11: Compute pj(ωt) at key positions using (13) and (21)
12: end for
13: for all key position j do
14: Build Prony series representation (9)
15: end for
16: end procedure

(AWE) [Pillage and Rohrer 1990; Gallivan et al. 1994] and per-
form adaptive Helmholtz solves.

Our key idea is to sweep the frequency rangeRwith multiple steps.
At each step, we choose a reference frequency ω0 and build a local
asymptotic expansion of the frequency-varying Helmholtz solution.
At the next step, we choose a new reference frequency that cannot
be covered by the estimated convergence radius of the expansion
at ω0 in the previous solve. We repeat the step until the entire R is
covered by the convergence ranges of all expansions (see an outline
in Algorithm 2).

Boundary Element Solve We use BEM to solve the Helmholtz
equation at every reference frequency. For the exterior Helmholtz
radiation problem as in our case, The conventional boundary inte-
gral equation (CBIE) has non-unique solutions at certain fictitious
frequencies [Matsumoto et al. 2010]. This will cause serious prob-
lems as we need to sweep through a wide frequency range, which
likely covers those fictitious frequency values. Instead, we follow
the Burton-Miller method [Burton and Miller 1971], which solves a
linear combination of CBIE and a hypersingular boundary integral
equation (HBIE) to overcome the non-uniqueness (see Figure 13
for numerical validation). We refer the reader to Appendix B for
our implementation details. Ultimately, we solve a dense linear sys-
tem

A(ω)φ(ω) = b(ω). (10)

Here we explicitly express the system with a frequency parameter
ω to emphasize its dependence on the frequency value that we are
sweeping inR. The solution φ(ω) is a vector stacking the acoustic
transfer value on object surface elements. With this solution, the
transfer value p(xj) at a key position xj is computed using the
Kirchhoff integral formula detailed in (21) of Appendix B.

Asymptotic Waveform Evaluation After a BE solve at a
frequency ω0, we have φ(ω0) that satisfies the linear system
A(ω0)φ(ω0) = b(ω0). Then, a polynomial asymptotic expansion
of φ(ω) can be built in a local region centered at ω0,

φ(ω) =

N∑
i=0

φi(ω − ω0)i, (11)

where φ0 = φ(ω0) and φi, i = 1, . . . ,N are coefficients to be
determined. To compute φi, we take the derivatives of both (10)
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Taylor Approx. (Order 9)
Padé Approx. (Order 9)

Padé Approx. (Order 5)
Taylor Approx. (Order 5)
Accurate Solution

frequency (kHz)

Convg. Radius

Padé Approx. (Order 9)
Padé Approx. (Order 8)

Accurate Solution

frequency (kHz)

Fig. 7: Asymptotic Waveform Evaluation: Using the BUNNY model, we
sweep a frequency range and evaluate |φ(ω)|2 in (10) using different ex-
pansions and accurate Helmholtz BE solves. (left) We compare the conver-
gence radius of polynomial expansions against Padé approximant. Accu-
rate BE solution is plotted in red. Both 5th-order and 9th-order polynomial
expansion diverge from the accurate solution faster than their Padé coun-
terparts. (right) 8th-order Padé approximant agrees with the 9th-order one
closely until the convergence radius is reached.

and (11) with respect to ω and form a linear system of φ1,

A(ω0)φ1 = b′(ω0)− A′(ω0)φ(ω0).

Here A′(ω0) and b′(ω0) can be computed analytically (see Ap-
pendix D for details), and we have factorized A(ω0) when solving
A(ω0)φ(ω0) = b(ω0). Therefore only a fast back-substitution is
needed here. Higher-order coefficients φi can be solved in a simi-
lar manner using higher-order derivatives of (10) and (11). We defer
the detailed derivation in Appendix C. In short, we have the follow-
ing equation to solve for φi,

n!A(ω0)φn +

n∑
i=1

(n− i)!CinA(i)(ω0)φn−i = b(n)(ω0). (12)

where Cin = n!
i!(n−i)! are the binomial coefficients. This is a linear

system of the form A(ω0)φn = c, since all theφi, i = 0, . . . , n−1
are known from previous computation. And again we quickly solve
this system by reusing the factorization of A(ω0). After all φi, i =
0, . . . ,N are solved, we can quickly compute the Helmholtz solu-
tion at a frequency ω using (11).

Extending Convergence Radius with Padé Approximant One
drawback of the straightforward polynomial expansion (11) is that
it tends to have a limited convergence radius (see Figure 7). Con-
sequently, we need many AWE solves to cover the frequency range
R. To alleviate this problem, we propose to build a Padé approxi-
mant, which is known to provide a larger convergence radius than
a polynomial expansion although it is derived from polynomial co-
efficients [Karlsson 1976]. In particular, provided a set of solved
polynomial expansion coefficients φi, i = 0, . . . ,N , we match the
polynomial expansion (11) with a rational polynomial,

L+M+1∑
i=0

φi(ω − ω0)
i =

PL(ω − ω0)

QM (ω − ω0)
=

∑L
i=0 αi(ω − ω0)

i

1 +
∑M

j=1 βj(ω − ω0)j
(13)

where both αi and βi are vectors with the same length as φi;
the quotient is computed using a component-wise division. In prac-
tice, we set the rational polynomial orders, M = bN/2c and
L = N −M , so this Padé approximant has the same complexity as
the polynomial expansion (11). We solveαi and βi by multiplying
both sides of (13) by QM (ω − ω0) and matching the coefficients
for all orders of terms. This amounts to solving

φL φL−1 . . . φL−M+1

φL+1 φL . . . φL−M+2

...
...

. . .
...

φL+M−1 φL+M−2 . . . φL



β1

β2

...
βM

 = −


φL+1

φL+2

...
φL+M

 .

998 Hz 11545 Hz 17887 Hz17661 Hz

Fig. 8: Smooth Modal Shapes: Color encodes the modal displacement
amplitude of the PLATE model; modal frequencies are listed below each
subfigure. Even for high frequency modes, their modal displacement varies
smoothly on the surface, making it possible to perform mesh simplification.

Let D denote the number of boundary elements and also the length
ofφi. The above equation describesD independent linear systems,
each corresponding to a single component of φi and βi; therefore
we can solve all D linear systems in parallel. Once βi is obtained,
we compute αi using αi =

∑i
j=0 βjφi−j . Again the product

βjφi−j indicates a component-wise multiplication. Figure 7 illus-
trates the improvement of the convergence radius.

Adaptive Helmholtz Solves With a depiction of our AWE
solver in place, we now present our algorithm to sweep through
R and adaptively perform AWE solves. Let ωt t=1,...,T denote our
uniform frequency samples sorted in descending order. Our goal is
to evaluate p(ωt) at all key positions. We start from the highest fre-
quency sample ωT and build an AWE expansion series at ωT . Then
we move on to ωT−1 and check if ωT−1 is within the convergence
radius of the series at ωT . If it is, we directly evaluate the series to
compute p(ωT−1) and continue to the next sample ωT−2. At some
point, a sample ωi is out of the convergence radius, and thus the ob-
tained AWE series becomes invalid. At this point, we know a lower
bound of the convergence radius of the series at ωT is ωT − ωi+1.
We also observe that the convergence radius of the AWE series in-
creases as the expansion frequency decreases. Therefore, we build a
new AWE series at the frequency sample ωj = ωi − (ωT − ωi+1).
Since ωj is smaller than ωT , we guarantee that ωi is now within
the convergence radius of the series at ωj . From there we switch
to the new series at ωj and continue our transfer evaluation. We re-
peat these steps until the entire frequency samples ωt, t = 1, . . . , T
are evaluated (see Algorithm 2). The main advantage of this pro-
cess is that we solve the AWE only at a few automatically selected
frequency samples while relying on the expansion form to quickly
evaluate transfer values for all the samples.

A simple approach to check if a frequency ω is within the conver-
gence radius is to evaluate the series at ω and substitute it back
into (10) to compute the residual. However, this approach needs
to construct the dense matrix A(ω) for every check. Instead, we
propose a faster algorithm by exploiting a mathematical insight of
Padé approximant: two consecutive orders of Padé solutions are
very close inside the convergence radius, but they diverge rapidly
when this radius is reached. To harness this insight, we com-
pute

φ̂(ω) =
PL−1(ω − ω0)

QM−1(ω − ω0)
and φ(ω) =

PL(ω − ω0)

QM (ω − ω0)
, (14)

and require ‖φ̂(ω) − φ(ω)‖ ≤ ε. For all our examples, we use
L = 6, M = 5 and ε = 10−4. On average we only need about
5 AWE solves to cover a frequency range of 5kHz to achieve this
error tolerance (See Figure 7).
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5.3 Frequency-Adaptive Mesh Simplification

To further speed up the precomputation, we accelerate each
Helmholtz solves by adaptively simplifying object surface meshes.
It is well known that the complexity of BEMs depend on the num-
ber of surface elementsN . The smallerN is, the faster computation
can be. For Helmholtz solves, it is also found that the element size
should be bounded by the wavelength [Jerri 2005]. Correspond-
ing to human hearing range from 20Hz to 20kHz, the wavelength
varies from 17 meters to 1.72 centimeters. Thus we can use fewer
elements while retaining the accuracy for lower frequencies. Fur-
thermore, we observe that the scale of spatial variance of an ob-
ject’s mode shapes is often much larger than the size of the mesh
elements (see Figure 8). As a result, the modal displacement data
can be well resolved even with a coarse surface mesh.

We therefore use frequency-adaptive surface discretization in our
BE solves. We start from a fine surface mesh sufficient for the high-
est frequency (e.g., 20kHz). For each mode i, surface vertices are
also associated with their modal displacement vectors ũi extracted
from the shape matrix U. Next, we divide our interested frequency
rangeR = [ω0 −∆ω, ω0 + ∆ω] into multiple intervals, each with
a fixed frequency band. In practice, we use a 2kHz frequency band
and hence up to 3 intervals for R. For each frequency interval and
each mode i, we construct a simplified surface mesh as well as cor-
responding modal displacement data. We perform the mesh sim-
plification at the beginning of our precomputation stage. During
our Helmholtz solves performed in §5.2, we adaptively choose the
mesh resolution and modal displacement data based on the target
frequency range and mode.

Edge Collapse Algorithm We build our mesh simplification al-
gorithm based on the edge collapse algorithm of Hoppe [1999], and
follow their notations therein. Each mesh vertex v has a 6D vector
v = [pT uT ]T , where p is the vertex position, and the modal dis-
placement vector u is used as a vertex attribute. The quadric error
function for collapsing an edge is defined as

Qv(v) =
∑

f∈N (v)

A(f)
(
Qfp(v) +Qfu(v)

)
where A(f) is the area of a triangle f adjacent to v, Qfp(v) mea-
sures the distance of p to the plane containing f , and Qfu(v) mea-
sures the deviation of u from a linearly changing modal displace-
ment field on the triangle f . Both terms are simply zero-extended
versions of those in [Hoppe 1999]. We therefore refer the reader
to that paper for details. In short, Q(v) has a 6D quadratic form,
Qv(v) = vTAv+2bTv+c. When collapsing an edge connecting
v1 and v2 into a new vertex vnew, we solve for its position pnew
and modal vibration vector unew by minimizing

vnew = arg min
v
Qv1(v) +Qv2(v)

s.t. gTvolp+ dvol = 0. (15)

Here gvol and dvol are respectively a 3D vector and scalar deter-
mined by the 1-ring local geometry of the collapsing edge. This
linear constraint is to ensure volume preservation.

Volume Velocity Preservation While previous methods can
achieve volume preservation, they shrink the modal amplitude in
the process of edge collapse, resulting in a loss of sound power (see
Figure 9). We address this problem by introducing a constraint on
the object’s volume-velocity. Given a modal displacement vector u

30076 triangles
4647 seconds

Original Traditional Simplification Our VVP Simplification 

2004 triangles
370 seconds

2004 triangles
370 econds

Fig. 9: Volume-Velocity-Preserving Mesh Simplification: We solve the
Helmholtz equation using the original high-resolution mesh (left). We then
simplify the mesh without volume-velocity preservation (middle) and with
volume-velocity preservation (right). For both meshes, the Helmholtz solve
is 12.6× faster than the original Helmholtz solve. Without volume-velocity
preservation (middle), the acoustic transfer field loses radiation power,
while the volume-velocity-preserving mesh simplification (right) results in
almost identical pressure field to the original high-resolution solve.

at a frequency ω, the object’s volume velocity is defined as∫
S

(u · n)ωeiωtdS = ωeiωt
∫
S

u · ndS.

This quantity has been previously used as a far-field approximation
of sound power [Johnson and Elliott 1995]. Our goal is to ensure
its preservation during our mesh simplification. When an edge col-
lapses into a vertex v, only the volume-velocity contributed by its
1-ring triangle fan can be changed. Ignoring the unchanged time-
harmonic part and assuming a piece-wise constant modal vibration,
we have the volume-velocity constraint,

1

6

∑
f∈N (v)

[
(p− pf1)× (p− pf2)

]T
(u+ uf1 + uf2) = Cv (16)

where f denote a triangle adjacent to v, (p,pf1,pf2) are f ’s ver-
tex positions, (u,uf1,uf2) are the modal displacement vectors on
those vertices, and Cv is a constant volume velocity value com-
puted from the corresponding triangle region before the edge col-
lapse. Now we need to minimize Q̄v(v) = Qv1(v) +Qv2(v) with
two constraints when collapsing an edge,

v = arg min
v
Q̄v(v) subject to constraint (15) and (16).

This is a quadratically constrained quadratic programming (QCQP)
problem, generally considered to be NP-hard. Fortunately, in this
particular QCQP problem, because the quadratic constraints in-
volve only pTu but not pTp or uTu, we are able to solve it using
iterations of linearly constrained problems: we start from an ini-
tial guess of v by minimizing Qv(v) without any constraints, and
this amounts to solving a 6D linear system, Av = b. Then we it-
eratively apply a staggered sequence of two quadratic optimization
solves

u = arg min
u
Qv([pT uT ]T ) subject to (16) only, (17)

p = arg min
p
Qv([pT uT ]T ) subject to (15) and (16). (18)

In the first solve (17), we use vertex positions p from previous itera-
tions and compute u. In the second solve (18), we fix displacement
vector u using values resulting from (17) and compute vertex po-
sitions. Both solves minimize a quadratic form with linear equality
constraints. We solve them using the method of Lagrange Multipli-
ers: problem (17) becomes a 4D linear system, while problem (18)
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Original Mesh

Our VVP Simplified Mesh

30067 triangles                 30067 triangles           30067 triangles            

2000 triangles           13.6x 
832Hz    Error: 0.002 5468Hz    Error: 0.007 12308Hz    Error: 0.081 

3842 triangles             6.4x 7945 triangles              3.9x 

Fig. 10: Transfer Values with Frequency-Adaptive Remeshing: We com-
pare transfer values computed using the original high-resolution mesh (top)
with the values using simplified meshes (bottom) for three modes with low,
medium and high frequency values. Even for high-frequency modes which
require a relatively high-resolution mesh, our method achieves nearly 4×
speedup, while retaining a low L2 error (< 8.2%).

amounts to a 5D linear solve (see Appendix E). In practice, only
tens of iterations are needed for convergence. As demonstrated in
Figure 10, using the adaptively simplified meshes greatly speeds up
the boundary element solves (in §5.2), while introducing very little
numerical error.

6. VALIDATION

Performance We profiled the performance of each step of our
algorithm, and summarized speedups of each step over the straight-
forward approaches, as well as the runtime speedups. Table I lists
the statistics of our examples. The precomputation timings were
measured on a 20-core Intel Xeon E5 cluster, and the runtime pro-
filing was performed on a desktop with a quad-core Intel Xeon E5
(3.4GHz) CPU. Due diligence has been taken to exploit multi-core
parallelization for both the precomputation and runtime sound syn-
thesis. On average, our adaptive mesh simplification achieved 5×
speedups for Helmholtz solves; our adaptive frequency sweep led
to at least 10× speedups; and at runtime, given user-specified pa-
rameters, we are able to synthesize sound with more than 300×
speedups over the traditional approach which needs to recompute
the Helmholtz solutions. We note that it is possible to further boost
runtime performance for interactive parameter editing: for exam-
ple, at runtime one can start a background thread performing the
least-squares solves of multipole coefficients at more densely sam-
pled frequencies while the user is adjusting parameters, and cache
the computed transfer coefficients for later reuse.

The additional memory size needed for runtime use of our Prony
representation for all key positions is less than 25MB per model.
We also note that the major memory bottleneck of a modal sound
model is the storage of shape modal matrix U that can take hun-
dreds of megabytes of memory, depending on the mesh resolu-
tion. Our frequency-sweeping transfer representation is resolution-
independent, and adds little memory overhead. We note a recent
method [Langlois et al. 2014] that compresses the modal matrix U
and complements to our approach.

6274 Hz 9977 Hz 13903Hz
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FastBEM
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Standard BEM

Fig. 11: Accuracy of Least-Squares Approximation: we sample 483 key
positions for the least-squares estimation of Mm

n . We estimate Mm
n with

three frequency values and use them to evaluate acoustic transfer values at
500 randomly selected locations (blue). Meanwhile, we compute the ac-
curate Helmholtz solution at the same locations (orange). For better visu-
alization, we sort the locations based on their accurate transfer values. As
frequency increases, the accuracy of our approximated transfer values de-
grades gracefully.
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1449 samples
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Fig. 12: Convergence of Least-Squares Approximation: Fixing the fre-
quency value f = 12758Hz, we estimate Mm

n using an increasing num-
ber of key positions. We use the estimatedMm

n to evaluate acoustic transfer
values at 500 randomly selected locations (orange, blue, and green curves),
and compare them against accurate transfer values solved using conven-
tional BEM (red). As the number of key positions increases, we get higher
fidelity for the estimated transfer values.

Comparisons To demonstrate the effects of transfer values on
final sounds and the accuracy of our transfer evaluation, we com-
pared the sounds computed without transfer, with transfer at a fixed
frequency, with transfer using our model, and the exact transfer us-
ing BE solves. For this comparison, we also chose different modal
sound parameters to generate different sound effects. We observed
that the resulting sounds from our model are very close to the
sounds using brute-force transfer evaluation, while the sounds with-
out transfer and with constant transfer both show audible differ-
ences from the ground-truth sounds. Please see the accompanying
video for animations and sound comparisons.

Numerical Validation We further validated our models numer-
ically. Our runtime transfer evaluation are approximated by least-
squares problems formulated using key-position transfers. In Fig-
ure 11, we validate its accuracy by comparing with the results
from full BE solves. For low-frequency Helmholtz solves (Fig-
ure 11 left), our results agree with the brute-force solution very

Our Implmentation
Conventional BEM

Analytic

frequency (Hz)

pr
es

su
re

 va
lue

Fig. 13: BEM Comparison: Using a pul-
sating sphere with known analytic solution,
our BE implementation (orange) agrees
with the analytic solution (green) as fre-
quency sweeps, whereas the CBIE solver
(purple) has large error at fictitious frequen-
cies.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



10 • D. Li et al.

Example
(i) Complexity (ii) Mesh Simplification (iii) Adaptive Freq. Sweep (iv) Runtime Evaluation

# tet. # modes before (avg.) after (avg.) simp. speedup before after speedup before after speedup# tri. BE Solve # tri. BE Solve time # solves # solves size time size time
PLATE 404k 59 100k 19m 5750 4.2m 16.8m 4.2× 4740 253 17.2× 8.1MB 59m 5.1MB 12.9s 274×
MUG 292k 61 68k 35m 7255 6.1m 14.7m 5.5× 4492 379 11.3× 8.7MB 96m 5.4MB 13.6s 424×
BUNNY 130k 56 30k 52m 4297 4.6m 10.2m 10.1× 3360 198 14.5× 7.7MB 132m 4.8MB 22.2s 356×
BOTTLE (solid) 160k 197 35k 21m 4139 4.1m 30.6m 4.9× 13396 1068 10.4× 30.2MB 237m 22.1MB 28.9s 492×
IJUMP 62k 70 14k 14m 3123 3.8m 6.5m 3.7× 5075 267 17.6× 9.2MB 96m 6.0MB 24.8s 232×
STAIRS 78k 49 12k 14m 5425 5.8m 21.2m 2.9× 3626 221 13.2× 6.7MB 38m 4.2MB 11.6s 197×
OLOID (shell) - 300 32k 29m 7841 5.6m 28.4m 4.9× 12623 715 17.1× 62.4MB 258m 26.1MB 12.2s 1270×
COW (shell) - 300 65k 42m 6406 5.1m 40.3m 7.8× 14131 624 22.2× 61.2MB 312m 25.7MB 23.8s 785×
BOTTLE (shell) - 200 35k 23m 5364 4.7m 36.6m 4.4× 9246 436 20.5× 42.7MB 186m 19.9MB 19.4s 575×

Table I. : Statistics and Timings: (i) the size of tetrahedral meshes and modes; (ii) the averaged number of triangles before and after mesh
simplification, the averaged BE solve time with and without simplification, the mesh simplification time, and the speedup to compute transfers
of all modes, (iii) the total number of Helmholtz solves without and with adaptive frequency sweep, the speedup achieved using adaptive
frequency sweep with simplified meshes. (iv) the memory overhead for transfer evaluation without and with key-position least-squares solves,
the timings of transfer update using standard BE solves on a 20-core cluster, the timings of transfer evaluation using our approach on a quad-
core desktop, and the computational speedup. Note: the memory without key-position least-squares solves only represents the storage on a
single frequency. This storage increases as we sweep through the frequency rangeR, whereas our model uses a fixed memory.

well. As expected, the high-frequency solves (Figure 11 right) are
numerically more challenging, and our approximation degrades.
However, Figure 12 shows the convergence of our approximation
as the number of key positions increases. Therefore, we can al-
ways increase the accuracy of our runtime approximation by adding
more key points. This feature provides the user easy control of the
performance-accuracy tradeoffs for specific applications.

Lastly, Figure 13 validates our BEM implementation with the con-
ventional CBIE approach. As shown, our implementation based on
the Burton-Miller method [Burton and Miller 1971] is more robust
and agrees with the analytical solution very closely.

7. RESULTS

7.1 Sound Editing Examples

Our interactive transfer estimation enables flexible and efficient
approaches to tweak modal sound parameters, explore different
sound characteristics, and achieve desirable sound effects. We now
demonstrate with three applications. All the animations are simu-
lated using [Kaufman et al. 2008] except IJUMP is from [Tan et al.
2012]. Please see the accompanying video for full results.

Fast Parameter Editing Modal sound models are often used to
synthesize sounds automatically synchronized with simulated an-
imations. To achieve certain sound characteristics, the user might
start with physical parameters of target materials. However, even
for a single material, its material parameters are given in a range.
For instance, polyethylene, a common plastic, has a Young’s modu-
lus in a range from 0.11GPa to 0.45GPa, which doubles the modal
frequencies when changed from the lower end to the upper end.
In addition, there are no mechanically well-defined damping pa-
rameters [Adhikari and Woodhouse 2001], although the damping
can significantly affect the sound perception [Klatzky et al. 2000].
Consequently, one has to rely on a trial-and-error approach to tune
the parameters. It is therefore desirable to have a fast sound syn-
thesis method to shorten the tuning cycle. In our examples, we take
a rigid-body simulation as input, and edit Young’s modulus and
damping ratio to synthesize sounds produced by different materials
ranging from wood, plastic, porcelain to metal (see Figure 14.h).
Our runtime synthesis time is always less than 30 seconds.

Parameter Space Exploration Our method allows the user to
continuously explore the parameter space. In our implementation,

we present the user with a 2D parameter space whose two axes
are damping scale and stiffness scale respectively (see the video).
When the user clicks a point in the coordinate system, we immedi-
ately synthesize the sounds with corresponding stiffness and damp-
ing values and present to the user. Take STAIRS as a demonstra-
tion. With a single pass of precomputation, we explore the param-
eter space, and identify a set of parameters that produces different
pitches corresponding to a set of music notes with different tim-
bres. After we are satisfied with the resulting sound characteristics,
we use the parameters to generate sounds of more complex ani-
mations. In STAIRS, we choose three different materials and pro-
duce sounds that match the melody “Song of the Wind” (see Fig-
ure 14.h).

Thin-Shell Modal Models Our method is not limited to edit-
ing solid modal sound models. We also apply our method to edit
thin-shell modal sound models. In the precomputation, we com-
pute thin-shell modal matrices and vibration frequencies following
the method proposed by Chadwick et al. [2009]. The rest of the
pipeline is exactly the same as the solid modal sound model. In the
accompanying video, we demonstrate different thin-shell sound ef-
fects edited using our method (see Figure 14.e, f and g).

Extension: Time-varying Frequency Effects Finally, we ex-
tend our method to allow the user to specify time-varying pa-
rameters, we can thus approximate sound effects with frequency
shift, which is usually caused by nonlinear modal vibrations. This
extension is straightforward: with user-guided time-varying pa-
rameters, we sample the values across the temporal domain and
evaluate transfers for smooth interpolation. The modal vibration
equation (3) with time-varying coefficients is still integrated us-
ing Runge-Kutta method as presented in §4.1. In our examples, we
used the time-varying stiffness scale to mimic the nonlinear pitch
changes, such as pitch gliding [Penttinen et al. 2006] (see Fig-
ure 14.c). We also explored an example in which the user specifies
nonphysical time-varying frequencies to produce interesting artis-
tic effects such as the one in IJUMP (see Figure 14.d).

7.2 Preliminary User Studies

Experiment Setup We perform four user studies to evaluate
the perceptual quality of different levels of transfer approximation
accuracy in our method.
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(a) BUNNY (b) MUG (c) BOTTLE (solid) (d) IJUMP

(e) COW (shell) (f) OLOID (shell) (g) BOTTLE (shell) (h) STAIRS

Fig. 14: (a and b) We edit the Young’s modulus and damping values at runtime, and produce sound effects corresponding to various materials.
(c and d) We explore the examples that allow the user to change individual frequency values in a time-varying way, producing nonlinear
artistic effects while retaining physical realism. (e, f and g) We apply our method to edit sound effects of thin shells. (h) We explore modal
sound parameters so that each stair makes sounds corresponding to a music note, and the entire ball bouncing sequence produces a melody.

(1) We generate sounds using four different sets of hit locations
and impact forces. For each setting, we compute three versions
of sounds, denoted as A, B, and C, using different approxima-
tion accuracies. The accuracy is measured as the normalized
least-squares residual as used in §6 (Table II). We then perform
the Two-alternative forced choice (2AFC) tests: we generate
three pairs of sounds, AB, BC and AC, for every set of sounds,
and present the human subjects with each pair of sounds side
by side, along with a reference sound generated without trans-
fer approximation. The subjects are asked which sound in each
pair is closer to the reference.

(2) We ask the subjects to rank the similarity of pairs of sounds,
one approximated sound from above and one reference audio,
on a Likert scale (i.e., choosing from “very similar”, “similar”,
“neutral”, “different”, and “very different”). We repeat this ex-
periment for all sound settings computed in previous study.
This study is to examine preliminarily the correlation between
the numerical errors and the perceived difference.

(3) Then, for each sound generation setting, we choose different
number of samples to estimate transfer values. This results in
sounds with different accuracies (measured by the normalized
L2 error in Table III). We present the subjects with each of
these sounds and a fully simulated sound, along with the refer-
ence sound. We then ask them which sound (the approximated
sound or the fully simulated sound) is closer to the reference.

(4) Lastly, we validate our assumption of using fixed modal
shapes. For each test example, we computed two sounds,
one with varying modal shapes and one with fixed modal
shapes. We use the BUNNY example with three materials
(wood, porcelain and metal). When building the modal sound
model with fixed modal shapes, we use our method to simplify
meshes. While the mesh simplification is frequency dependent,
on average we observed more than 20× reduction of the num-
ber of triangles. We then ask the subjects to rate the similarity
of the two sounds on a Likert scale. We present these sounds
in a random order to avoid possible biase from ordering.

sound A B C
# samples 100% 50% 25%

averaged error 10−9 0.299 0.641
winning percentage 86.6% 47.8% 15.6%

Table II. : Statistics of the first user study. The error is measured as the
normalized least-squares residual. As the error increases, fewer and fewer
subjects consider the approximated sounds to be similar to the reference.

# samples 100% 80% 60% 40% 25%

error 10−9 0.08 0.19 0.37 0.53
winning percentage 47.5% 32.5% 5% 2.5% 2.5%

Table III. : Statistics of the third user study. As the error increases, more
and more subjects can perceive the difference between the reference sound
and the approximated sound.

Analysis of the Results We conducted the experiments with 40
subjects. In the first pairwise comparisons, we aggregated the re-
sults from all examples. Overall, 86.6% of the subjects thought the
full-sample sound was more similar to the reference sound among
all three sounds. Using half and a quarter of the samples won 47.8%
and 15.6% of user selections, respectively. (see Table II).

Figure 15 visualizes the results of the second experiment. For each
sound (of A, B and C), we plot its frequencies of being classified on
each Likert scale category. We found that as the approximation er-
ror increases, it becomes easier for the subjects to notice the differ-
ence between the approximated sounds and the reference.

The third study shows that when the error is very small, the ap-
proximated sound and the reference sound were indistinguishable.
As the L2 error is slightly increased to 0.08, 32.5% of the subjects
perceived the approximated sound to be similar to the reference
sound. As the number of samples drops below 60%, we observed
a clear decline in the perceived similarity. In other words, subjects
were able to discern the difference once the errors were above 0.08
(see Table III).

Lastly, in the fourth user study, 82.5% of the subjects considered
two sounds with fixed and varying modal shapes to be “Very simi-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



12 • D. Li et al.

very similar similar neutral di�erent very di�erent
0

20%

40%

60%

80%

100%

A (100%)
B (50%)
C (25%)

Fig. 15: Statistics of the second user study.

lar”, and 17.5% of them chose “Similar”. This suggests that using
fixed modal shapes for fast transfer approximation is indeed plau-
sible.

8. CONCLUSION

We have presented the method for fast runtime modal sound syn-
thesis via efficient and more general precomputation. It greatly
eases parameter tuning for desirable sound effects, and has the abil-
ity to generate various sound effects even using a single model.
Our efficient runtime synthesis is realized by solving small-scale
least-squares problems to estimate multipole coefficients of trans-
fer functions. The least-squares formulation relies on precompu-
tation. To improve its efficiency, we utilize Padé approximant to
sample key frequencies adaptively and propose a volume-velocity-
preserving mesh simplification algorithm to speed up individual
Helmholtz solve. With numerical comparisons and user studies,
we demonstrate its use in sound synthesis applications such as fast
parameter tuning for various sound effects, and extend it to sup-
port the creation of time-varying sound effects. We augment and
leverage several numerical techniques throughout, such as Prony’s
method and Padé approximant, hoping that these tools can be use-
ful in other graphics research areas as well.

Limitations and Future Work Although we have shown that
our approximation is comparable to the ground-truth results both
numerically and qualitatively, it remains unexplored how far we
can go to further speed up the computation. For example, can we
take even coarser samples and solve Helmholtz on even simpler
meshes while maintaining the perceptual plausibility? In addition,
it is well-known that the Helmholtz problem at higher frequencies
tends to be more ill-conditioned and thus numerically more chal-
lenging. This difficulty is also observed in our experiments, as our
least-squares solves in §6 can not perfectly agree with the accu-
rate solutions for frequencies higher than 12kHz, and the numer-
ical error of transfer solves (shown in Figure 10) becomes larger
as the frequency increases. For modal vibration sound, the high-
frequency modes have large damping coefficients, and therefore
this inaccuracy is hardly noticeable. However, when extending this
method for editing other sound models such as fluid sounds, we
hope to have a more accurate high-frequency approximation. In the
proposed model we are able to generate different sound effects such
as wood, porcelain, metal, etc.. With different input models, the re-
sults of linear model analysis, mostly the modal frequencies, are
very distinct. As a result, it may require different parameters to
achieve similar sound effects. One possible extension is to build a
geometry-invariant measure such that a set of parameters can pro-
duce similar sound effects regardless of the input model geome-

try. Moreover, as observed in the OLOID (shell) example, differ-
ent transfer approaches may produce similar sounds that the users
cannot distinguish. We would like to better understand the reason
that causes this ambiguity, which might in turn suggest a way to
exploit this ambiguity. One common feedback from users is that
the stiffness and damping parameters are not very intuitive at the
beginning; they only started realizing their different effects during
the second or even third trial. Therefore, one possible future work
is to identify more intuitive sound model parameters for user ad-
justment. Finally, another interesting direction is to investigate a
combination of our method and traditional Foley sound tools based
on sound recording and granular synthesis to circumvent the nu-
merical difficulties at high frequencies.
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APPENDIX

A. PRONY’S METHOD FOR TRANSFER COMPUTATION

Consider M complex-valued transfer samples p(ωt), t =
0, . . . ,M − 1 that are uniformly sampled in a frequency range R.
We seek a N -th order Prony’s series to approximate it,

p(ωt) ≈
N∑
i=1

cie
µiωt =

N∑
i=1

ciλ
ωt
i . (19)

where λi = eµi . First, we define a N -th order polynomial

ψ(z) =

N∏
i=1

(z−λi) = zN +a1z
N−1 + . . .+aN−1z+aN , (20)

which has N roots, λi, i = 1, . . . ,N . And thus λki ψ(λi) =
0,∀k ≥ 0. Next, notice the equality relationship,
N∑
i=1

λki ciψ(λi) = p(ωN+k) + a1p(ωN+k−1) + . . .+ aNp(ωk) = 0.

This is a linear equation of ai, i = 1, . . . ,N . Let k go from
[0, . . . ,M −N − 1]. We form a linear system

p(ωN−1) p(ωN−2) . . . p(ω0)

p(ωN ) p(ωN−1) . . . p(ω1)
...

...
. . .

...
p(ωM−2) p(ωM−3) . . . p(ωM−N−1)



a1

a2

...
an

 =


p(ωN )

p(ωN+1)
...

p(ωM−1)

 .
As long as we chooseN ≤M/2, this is an over-constrained least-
squares system with a unique solution ai. Knowing the polynomial
coefficients ai of (20) allows us to find all its roots λi, and thus
compute µi. Finally, after substituting λi into (19), we form another
least-square system to solve ci.

B. HELMHOLTZ BOUNDARY ELEMENT SOLVE

Our adaptive frequency sweeping algorithm in §5.2 samples fre-
quency points and solves the Helmholtz equation. Our basic
Helmholtz solver uses a BEM introduced in [Matsumoto et al.
2010]. Here we sketch out the important formulas to make the pa-
per self-contained.

The BE solver is built upon the Kirchhoff integral formula, which
is also used in [Tsingos et al. 2007].

p(x) =

∫
S

[
G(x;y)

∂φ

∂n
(y)− ∂G

∂n
(x;y)φ(y)

]
dS(y), (21)

where S denote the entire object surface; G(x;y) = eik‖x−y‖

4π‖x−y‖ is
the free-space Helmholtz Green’s function; φ is the surface transfer
value resulting from the BE solve (10); and ∂φ

∂n
is the surface nor-

mal derivative of the acoustic transfer, as specified in the Helmholtz

Neumann boundary condition (4). Once we have known the acous-
tic transfer φ(y) and its normal derivative ∂φ

∂n
on object surface, we

can use this integral formula to evaluate the transfer function at any
location x.

When the evaluation point is on the surface, i.e., x ∈ S, we have
the conventional boundary integral equation (CBIE),

1

2
φ(x) = C

∫
S

[G(x,y)∂nφ(y)− φ(y)
∂G(x,y)

∂n(y)
]dS(y). (22)

Here we use C
∫
S

to indicate a Cauchy principal value at point x over
the surface S. It is known that for the exterior Helmholtz prob-
lem, directly discretizing this equation using boundary elements
fails to produce a unique solution at certain fictitious frequency val-
ues. Fictitious frequency results from numerical procedures and is
related to the eigenfrequencies of the associated interior problem.
The Burton-Miller method [Burton and Miller 1971] takes the di-
rectional derivation of (22) to get a hypersingular boundary integral
equation (HBIE),

1

2
∂nφ(x) = C

∫
S

[
∂G(x,y)

∂n(x)
∂nφ(y)− φ(y)

∂2G(x,y)

∂n(x)∂n(y)

]
dS(y),

and uses a linear combination of CBIE and HBIE in boundary ele-
ment discretization. Formally, it solves

1

2
φ(x) + D[φ(y)] + βH[φ(y)] =

S[∂nφ(y)] + βM[∂nφ(y)]− β

2
∂nφ(y), (23)

where the integral operators D,H,S and M are respectively

D[φ(y)] = C

∫
S

φ(y)
∂G(x,y)

∂n(y)
dS(y)

H[φ(y)] = C

∫
S

φ(y)
∂2G(x,y)

∂n(x)∂n(y)
dS(y)

S[φ(y)] = C

∫
S

∂nφ(y)G(x,y)dS(y)

M[φ(y)] = C

∫
S

∂nφ(y)
∂G(x,y)

∂n(x)
dS(y)

As long as the coefficient β has a nonzero imaginary part, this linear
combination has a unique solution. A common practice is to choose
β = i/k. This equation is then discretized and forms a dense linear
system (10). In the integral equation (23), the surface transfer value
φ(y) is unknown. Discretizing the equation (23) using the object’s
surface mesh yields a dense linear system (10) to solve for φ(y) on
the surface.

C. DERIVATION OF (12)

To compute the nth order expansion coefficientsφi in (11), we take
the n-th order derivative of (10) at ω0, i.e.,

n∑
i=0

CinA
(i)(ω0)φ(n−i)(ω0) = b(n)(ω0), (24)

where Cin = n!
i!(n−i)! are the binomial coefficients. Noticing the n-

th order derivative of the expansion (11) is φ(n)(ω0) = n!φn, we
substitute it into (24) and arrive (12) to solve for φi.
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D. FREQUENCY DERIVATIVE OF LINEAR SYSTEM (10)

Our asymptotic waveform evaluation method involves the fre-
quency derivative of (10) as derived in Appendix C. In particular,
we need to compute

∂nA(ω)

∂ωn
and

∂nb(ω)

∂ωn
.

Their analytic forms can be computed by taking the derivatives
of (23). In our implementation, we use piecewise constant bound-
ary element. Therefore, ∂nφ(y) and φ(y) in (23) can be moved
outside of the integral (i.e., the Cauchy principle value). For exam-
ple, we discretize the first term of (23) as

C

∫
S

φ(y)
∂G(x,y)

∂n(y)
dS(y) ≈

∑
triangle i

φ(yi)C

∫
∆i

∂G(x,y)

∂n(y)
dS(y),

where ∆i denotes the surface of the i-th triangle element, and
φ(yi) is the constant sound pressure value at ∆i. We evaluate the
integral on ∆i using a Gaussian quadrature scheme,

C

∫
∆i

∂G(x,y)

∂n(y)
dS(y) ≈

∑
j on ∆i

wj
∂G(x,yj)

∂n(yj)
,

for a set of Gaussian quadrature points yj on ∆i. This expression
also shows that to compute the frequency derivative of (10) analyt-
ically we need to compute

∂n

∂ωn

(
∂G(x,yj)

∂n(yj)

)
.

And similarly for other integral terms in (23), we need to com-
pute

∂n

∂ωn

(
∂G(x,yj)

∂n(x)

)
,
∂n

∂ωn
G(x,yj) and

∂n

∂ωn

(
∂2G(x,yj)

∂n(x)∂n(yj)

)
.

For the infinite-space Green’s functionG(x,y) = eikr

4πr
, where r =

‖x− y‖2, the analytic normal derivatives are

∂G(x,y)

∂n(y)
= − eikr

4πr2
(1− ikr) ∂r

∂n(y)

∂G(x,y)

∂n(x)
= − eikr

4πr2
(1− ikr) ∂r

∂n(x)

∂2G(x,y)

∂n(x)∂n(y)
=

eikr

4πr3
[(−3 + 3ikr + k2r2)

∂r

∂n(x)

∂r

∂n(y)
+

(1− ikr)n(x)n(y)]

The n-th order frequency derivative of these terms are polynomials
with respect to k, because k = ω/c is linear in ω and appears only
in eikr and the polynomials of k in these formulas. Finally, since
β = i/k depends on ω, we compute

∂n

∂ωn
β = (−1)nn!icω−n−1,

where c is the speed of sound.

E. LINEAR SOLVES FOR MESH SIMPLIFICATION

The quadric error function for collapsing an edge is

Qv(v) =
1

2
pTAp+

1

2
uTCu+ pTGu+ aTp+ bTu+ c0,

Real PartReal PartReal PartReal PartReal Part

Fourier series (N=6)
Fourier series (N=15)

Prony’s method. (N=6)

Imaginary PartImaginary PartImaginary PartImaginary Part

Fourier series (N=6)
Fourier series (N=15)

Prony’s method. (N=6)

Fig. 16: Prony Series vs Fourier Series: We compare the approximation
of frequency-dependent pressure curves using Prony series and Fourier se-
ries. The ground-truth pressure curves are the same as the ones in Figure 6.
We plot the Prony approximation using 6 terms, and Fourier approximation
using 6 and 15 Fourier basis functions respectively.

where A,G, and C are 3 × 3 matrices, a and b are 3D constant
vectors, and c0 is a constant scalar. We refer the reader to [Hoppe
1999] for their formulas. Initially, we minimize Qv(v) without
constraints by solving[

A G
G C

] [
p
u

]
= −

[
a
b

]
.

Next, we iteratively solve the linearly constrained quadratic pro-
gramming (LCQP) problems, (17) and (18). When we solve (17),
both pTAp and aTp are constant values, and the constraint (16) is
linear to u with a form tTu+ s = 0, where t = 1

6

∑
f∈N (v)(p−

pf1) × (p − pf2) following the notations in (16) and s =
1
6

∑
f∈N (v) [(p− pf1)× (p− pf2)]T (uf1 + uf2) − Cv . Using

the method of Lagrange Multipliers, we solve this LCQP problem
using a 4D linear system,[

A t
tT 0

] [
u
λ

]
= −

[
a
s

]
.

Next, we fix u and solve the vertex position p. This is an LCQP
problem (18) with two linear equality constraints, including the vol-
ume preservation constraint gTV OLp+ dV OL = 0 and the volume-
velocity constraint which is of a form hTp + n = 0. Using La-
grange Multipliers, we solve a 5D linear system, A gV OL h

gTV OL 0 0
hT 0 0

uλ1

λ2

 = −

 a
dV OL
n

 .

F. PRONY SERIES VS FOURIER SERIES

Here we compare the approximations using Prony series and
Fourier series. As shown in Figure 16, Prony series with just
6 terms approximate the frequency-varying pressure curves (also
shown in Figure 6) very closely. However, the Fourier series with
only 6 basis oscillate dramatically at the beginning and the end-
ing part of the frequency window. Increasing the number of Fourier
basis (even using 15 terms) still cannot completely eliminate the
oscillation.
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