
Appendix

1 Sliding Window

In this appendix, we provide detailed derivation for equation (1) and equation (2) in the main paper, i.e.
the accumulated delay for fixed-size and dynamic sliding window approaches. Audio denoising can be divided
into three steps: audio recording, denoised network processing and denoised audio playback. We show the
fixed-size and dynamic sliding window examples in Fig. 1 and Fig. 2 respectively. In the figures, our timeline
is from left to right.

We use block to indicate a certain time span. Each rectangle in the figures is regarded as a block. The
blank area represents the waiting time between two neighbor blocks. We use Ri, Ni and Pi to indicate
the recording, processing and playback block, use s(block) and e(block) to indicate the start time and end
time of each block. In particular, we define ti as the network processing time for a processing block, i.e.
ti = e(Ni) − s(Ni), and di as the total delay of a certain audio block i. di is the time from the moment of
receiving to the moment of outputting , i.e. di = s(Pi) − s(Ri).

We first claim some facts for sliding window approach:
(1). There is no blank area for all recording block, i.e. s(Ri) = e(Ri−1) for any i > 1.
(2). The network will process current audio immediately when there exists unprocessed audio and the previous
audio has been processed, i.e. s(Ni) = max (e(Ri), e(Ni−1)), for any i > 1.
(3). The player will play current audio immediately when there exists unplayed audio and the previous audio
has been played, i.e. s(Pi) = max (e(Ni), e(Pi−1)), for any i > 1.
(4). The recording block and the playback contains the audio of the same length, i.e. e(Ri) − s(Ri) =
e(Pi) − s(Pi) for any i > 0. In particular, e(Ri) − s(Ri) = L for any i in fixed-size sliding window approach.
Here L is the fixed window size.
(5). Over time, the total delay will be accumulated, i.e. di ≤ di−1 for any i > 1.

The following analysis shows the theoretical delay di, which in practices is smaller than the actual measured
audio playback delay (DA) as introduced in main paper.

1.1 Fixed-Size Sliding Window

(a). Fixed-size sliding window

𝑅𝑢 𝑅𝑖

𝑁𝑢

𝑃𝑢 𝑃𝑖

𝑁𝑖

𝑑𝑖

𝑡𝑖

blank
𝐿

Recording time Processing time Playback time

Timeline

Figure 1: Fixed-size sliding window

1



To calculate di in fixed-size sliding window approach, we first find the previous processing blank area, and the
processing block Nu right after that blank. Thus, by fact (2), we have e(Ru) = s(Nu). There are i− u blocks
with length L between Ri and Ru, thus we have s(Ri) = S(Ru) + (i− u)L and e(Pi−1) = e(Pu−1) + (i− u)L.
By fact (3), we can derive

di = s(Pi) − s(Ri)

= max (e(Ni), e(Pi−1)) − s(Ri)

= max (s(Nu) +

i∑
k=u

tk, e(Pu−1) + (i− u)L)) − s(Ri)

= max (e(Ru) +

i∑
k=u

tk, e(Pu−1) + (i− u)L)) − (s(Ru) + (i− u)L)

= max (s(Ru) + L +

i∑
k=u

tk − s(Ru) − (i− u)L, e(Pu−1) − s(Ru))

= max (2L +

i∑
k=u

(tk − L), e(Pu−1) − e(Ru−1))

= max (2L +

i∑
k=u

(tk − L), du)

(1)

Through recursion, we can get

di = 2L + max
1≤p≤q≤i

q∑
k=p

(tk − L) (2)

1.2 Dynamic Sliding Window

(b). Dynamic sliding window

Recording time Processing time Playback time

𝑁𝑢−1

𝑅𝑢

𝑁𝑢

𝑃𝑢

𝑅𝑖

𝑁𝑖

𝑃𝑖−1 𝑃𝑖

𝑑𝑖

𝑡𝑖

blank

Timeline

Figure 2: Dynamic sliding window

For dynamic sliding window approach, the recording time is always equal the previous processing time, i.e.
Ni−1 = Ri = Pi for any i > 1. We have three cases that need to be analyzed.

Case 1: If there is no blank area between Pi and Pi−1, for any i > 1,

di = s(Pi) − s(Ri)

= e(Pi−1) − e(Ri−1)

= di−1

(3)

2



Case 2: If there is a blank area before Pi, and i > 1, then we can always find the previous playback blank area
and the playback block Pu right after the blank area. By fact (3), we can derive

di = s(Pi) − s(Ri)

= max (e(Ni), e(Pi−1)) − s(Ri)

= max (s(Nu) +

i∑
k=u

tk, s(Pu) +

i−1∑
k=u

(e(Pk) − s(Pk))) − (s(Ru+1) +

i−1∑
k=u+1

(e(Pk) − s(Pk)))

= max (s(Nu) +

i∑
k=u

tk, s(Pu) +

i−1∑
k=u

(e(Nk−1) − s(Nk−1))) − (s(Ru+1) +

i−1∑
k=u+1

(e(Nk − 1) − s(Nk − 1)))

= max (s(Nu) +

i∑
k=u

tk, s(Pu) +

i−1∑
k=u

tk−1) − (s(Ru+1) +

i−1∑
k=u+1

tk−1))

= max (

i∑
k=u

tk, tu +

i−1∑
k=u

tk−1) −
i−1∑

k=u+1

tk−1)

= max (ti−1 + ti, tu−1 + tu)

(4)

Through recursion, we can get

di = max
k≤i

(tk−1 + tk), i ≥ 2. (5)

Case 3: When i = 1, d1 = L0 + t1, where L0 is an initial window size to start the denoising process at the
beginning.

In summary, we have

di =

{
L0 + t1, i = 1
max
k≤i

(tk−1 + tk), i ≥ 2 (6)

3


