Appendix

1 Sliding Window

In this appendix, we provide detailed derivation for equation (1) and equation (2) in the main paper, i.e.
the accumulated delay for fixed-size and dynamic sliding window approaches. Audio denoising can be divided
into three steps: audio recording, denoised network processing and denoised audio playback. We show the
fixed-size and dynamic sliding window examples in Fig. 1 and Fig. 2 respectively. In the figures, our timeline
is from left to right.

We use block to indicate a certain time span. Each rectangle in the figures is regarded as a block. The
blank area represents the waiting time between two neighbor blocks. We use R;, N; and P; to indicate
the recording, processing and playback block, use s(block) and e(block) to indicate the start time and end
time of each block. In particular, we define ¢; as the network processing time for a processing block, i.e.
t; = e(N;) — s(V;), and d; as the total delay of a certain audio block i. d; is the time from the moment of
receiving to the moment of outputting , i.e. d; = s(P;) — s(R;).

We first claim some facts for sliding window approach:

(1). There is no blank area for all recording block, i.e. s(R;) = e(R;_1) for any i > 1.

(2). The network will process current audio immediately when there exists unprocessed audio and the previous
audio has been processed, i.e. s(N;) = max (e(R;), e(N;—1)), for any i > 1.

(3). The player will play current audio immediately when there exists unplayed audio and the previous audio
has been played, i.e. s(P;) = max (e(V;), e(P;—1)), for any i > 1.

(4). The recording block and the playback contains the audio of the same length, i.e. e(R;) — s(R;) =
e(P;) — s(P;) for any i > 0. In particular, e(R;) — s(R;) = L for any 4 in fixed-size sliding window approach.
Here L is the fixed window size.

(5). Over time, the total delay will be accumulated, i.e. d; < d;_; for any i > 1.

The following analysis shows the theoretical delay d;, which in practices is smaller than the actual measured
audio playback delay (D4) as introduced in main paper.

1.1 Fixed-Size Sliding Window

Timeline

D Recording time |__! Processing time

(a). Fixed-size sliding window

Figure 1: Fixed-size sliding window

To calculate d; in fixed-size sliding window approach, we first find the previous processing blank area, and the
processing block N, right after that blank. Thus, by fact (2), we have e(R,,) = s(N,). There are i — u blocks
with length L between R; and R, thus we have s(R;) = S(R,) + ({ —u)L and e(P;_1) = e(Py—1) + (i —u)L.
By fact (3), we can derive
di = S(Pl> — S(R,)
= max (e(N;), e(Pi—1)) — s(R;)

= max (s(Ny) + Y _ tr, e(Puc1) + (i — u)L)) — s(R;)
k=u

= max (e(Ru) + Y _t, e(Pu—1) + (i —u)L)) — (s(Ry) + (i — u)L)
k=u

Z. 1)
=max (s(R,) + L + Z trp —s(Ry) — (i —uw)L, e(Py—1) — s(Ry))
k=u
= max (2L + Z<tk — L), e(Py—1) — e(Ru-1))
k=u
= max (2L + Z<tk — L), dy)
k=u
Through recursion, we can get
a
d; = 2L + 1%??9’ (tx — L) (2)
k=p
1.2 Dynamic Sliding Window
Timeline
R, “
!
Ny—1 Ny Ni
J
' 1
...... d;

r-
D Recording time L ! Processing time

(b). Dynamic sliding window
Figure 2: Dynamic sliding window

For dynamic sliding window approach, the recording time is always equal the previous processing time, i.e.
N;_1 = R; = P; for any i > 1. We have three cases that need to be analyzed.

Case 1: If there is no blank area between P; and P;_q, for any i > 1,

d; = s(P;) — s(R;)
=e(P;—1) — e(Ri-1) (3)
=di—

Case 2: If there is a blank area before P;, and 7 > 1, then we can always find the previous playback blank area
and the playback block P, right after the blank area. By fact (3), we can derive

d; = s(P;) — s(Ry)
max (e(N;), e(Pi—1)) — s(R;)

s (s(N) + 3 s (Pu) + S (e(PY) — 5(PE) — (5(Rusn) + 3 (e(PL) — s(Pe)))
k=u k=u k=u+1
1 1—1 1—1
= max (s(Va) £+ St 5(Pa) + S (e 1) — 5Nk 1)) = (s(Rust) + 3 (e(Vy — 1) — s(Ny — 1))
k=u k=u k=u-+1

s (5(N) + 3t (P S 1) — (5(Rus) + S)
k=u k=u

k=u-+1

7 i—1 1—1
=max ()t tu+ Y teo1) = Y te1)
k=u k=u

k=u-+1
= max (ti_1 + i, tu—1 + tu)

(4)
Through recursion, we can get

d; = 12125((tg—1 +tr), i>2. (5)

Case 3: When i = 1, d; = Lg + t1, where Lg is an initial window size to start the denoising process at the
beginning.

In summary, we have

