1 Preservation of Desiderata

We prove that the restitution model proposed in Reflections on Simultaneous Impact (Section 5) produces feasible post-impact velocities and continues to satisfy the five core desiderata outlined in the same work.

1.1 Feasibility

A feasible post-impact velocity satisfies \(G(q)^T q^+ \geq 0 \).

Theorem. Interpolation yields a feasible post-impact velocity for all coefficients of restitution \(c_r \in [0, 1] \).

Proof. Computing the post-impact relative velocity, we obtain:
\[
G^T q^+ = (1 - c_r) G^T q_0^+ + c_r G^T q_1^+.
\]
By construction the LCP model guarantees that \(G^T q_0^+ \geq 0 \). Similarly, upon termination the GR model guarantees that \(G^T q_1^+ \geq 0 \). Each term in this sum is non-negative. Therefore the interpolation yields a feasible velocity.

1.2 Conservation of Momentum

We begin with the observation that interpolating two post-impact velocities is equivalent to interpolating the corresponding impulses.

Lemma. Interpolating \(q_0^+ \) and \(q_1^+ \) is equivalent to interpolating \(\lambda_0 \) and \(\lambda_1 \).

Proof.
\[
\begin{align*}
\dot{q}^+ &= (1 - c_r) q_0^+ + c_r q_1^+ \\
&= (1 - c_r) (\dot{q}^- + M^{-1} G \lambda_0) + c_r (\dot{q}^- + M^{-1} G \lambda_1) \\
&= \dot{q}^- + M^{-1} G ((1 - c_r) \lambda_0 + c_r \lambda_1)
\end{align*}
\]
Therefore the net impulse magnitude is \(\lambda = (1 - c_r) \lambda_0 + c_r \lambda_1 \).

Theorem. Interpolation conserves momentum.

Proof. The generalized normals, by construction, conserve momentum and angular momentum, therefore \(G \lambda \) exerts a momentum conserving impulse on the system for any given set of magnitudes \(\lambda \). The interpolated response thus conserves momentum.

1.3 One-Sided

A one-sided impulse satisfies \(\lambda \geq 0 \).

Theorem. Interpolation produces one-sided impulses for all \(c_r \in [0, 1] \).

Proof. Given two sets of one-sided impulses \(\lambda_0 \geq 0 \) and \(\lambda_1 \geq 0 \), the sum \((1 - c_r) \lambda_0 + c_r \lambda_1 \geq 0 \) is also one-sided.

1.4 Bounded Kinetic Energy

The post-impact kinetic energy is given by
\[
T(c_r) = \frac{1}{2} ((1 - c_r) \dot{q}_0^+ + c_r \dot{q}_1^+)^T M ((1 - c_r) \dot{q}_0^+ + c_r \dot{q}_1^+).
\]

Theorem. Interpolating post-impact velocities from an inelastic and from an elastic response yields a post-impact kinetic energy bounded by that of elastic response.

Proof. The kinetic energy is quadratic in \(c_r \) and \(T(0) < T(1) \). Therefore, if the second derivative of the energy with respect to \(c_r \) is positive, the energy can never exceed that of the elastic response when \(c_r \in [0, 1] \). Computing the second derivative, we find that
\[
\frac{\partial^2 T}{\partial c_r^2} = (\dot{q}_1^+ - \dot{q}_0^+)^T M (\dot{q}_1^+ - \dot{q}_0^+).
\]
\(M \) is positive definite, which implies that the second derivative is positive. Therefore, the post-impact kinetic energy is bounded by that of the elastic response.

1.5 Preservation of Symmetry

The interpolation model does not act on the configuration \(q \) of the system, therefore we only consider its effect on the system’s velocity \(\dot{q} \).

Theorem. Interpolation preserves symmetry.

Proof. Let \(S(q) = q \) define a (potentially non-linear) symmetry in the system’s configuration. This map operates linearly on the velocity as \(\nabla S(q) \dot{q} = \dot{q} \). Given two velocities that respect this symmetry, we find for the interpolant:
\[
\nabla S \dot{q}^+ = \nabla S ((1 - c_r) \dot{q}_0^+ + c_r \dot{q}_1^+) \\
= (1 - c_r) \nabla S \dot{q}_0^+ + c_r \nabla S \dot{q}_1^+ \\
= (1 - c_r) \dot{q}_0^+ + c_r \dot{q}_1^+ \\
= \dot{q}^+
\]
Therefore, the interpolated response preserves symmetry.

1.6 Break-Away

Theorem. If a post-impact velocity satisfies \(\nabla g(q)^T \dot{q}^+ > 0 \) under GR, then the interpolated post-impact velocity satisfies \(\nabla g(q)^T \dot{q}^+ > 0 \).

Proof. Under interpolation with the inelastic LCP response \(\nabla g^T \dot{q}_0^+ \geq 0 \), we find that
\[
\nabla g^T \dot{q}^+ = (1 - c_r) \nabla g^T \dot{q}_0^+ + c_r \nabla g^T \dot{q}_1^+ > 0
\]
for all \(c_r \in (0, 1] \).