






hint

Figure 16: The yellow arrow suggests how the designer could move
the seat to avoid interference with the armrests.

it difficult to precisely move in the direction of the hint, so we also
provide a slider to move the UI element along the hint direction.
The interface and the designer work symbiotically to solve the in-
tersection.

Often however this magnitude can be determined automatically and
the direction may change as result. This leads naturally to a gradient
descent resolution scheme that is fully automatic.

6.6 Automatic Resolution

In many instances during the design process the designer is required
to make several tedious edits that can often be automatically han-
dled by the system. We formulate this automatic resolution scheme
as a non-linear optimization problem that attempts to minimize the
energy formulated as the surface area of the collision interface, as
described in Equation (1). Our implementation of gradient descent
employs the Golden Section Search Algorithm [Press et al. 1992]
and assumes that the local energy landscape has a single global min-
imum nearby.

Our experiments showed higher success resolving multi-object in-
terferences in pairs independently rather than as a simultaneous
optimization over all pairwise interferences. We employ a greedy
approach, resolving the collision between the pair of objects con-
tributing most to the intersection energy (1). Resolving the most
severe collisions first mimics the approach a designer might take,
focusing first on severe collisions and later on grazing cases.

6.7 Spacetime Geometry Carving

In the previous sections we considered ways to mitigate collisions
by altering objects via the available user-interface elements. We
now consider altering an object’s geometry dramatically by carving
away the relative swept volume of another interfering object.

Ideally we would like to subtract—in a constructive solid geometry
sense—an offset of the relative swept volume of the carving object
B from the carved object A:

A← A \ offset
(
sweep

(
B, f−1

A ◦ fB
)
, ε
)

(4)

where offset(X, ε) ⊂ R3 computes an ε-offset of a given volume
X ⊂ R3 and sweep(X, f) ⊂ R3 computes a swept volume of a
given volume X undergoing a rigid motion f(t).

If B and A are each undergoing rigid motions fA(t) and fB(t)
respectively, then we consider the swept volume of B according to
its motion observed in the reference frame of A.

Computing offset volumes and swept volumes of triangle meshes
exactly poses computational and representational problems. The
exact swept volume of a solid bounded by a triangle mesh undergo-
ing a rigid motion is a piecewise-ruled surface [Weld and Leu 1990]
(i.e., in general not representable with mesh of flat triangles). Sim-
ilarly the exact offset surface of a solid bounded by a triangle mesh
is a piecewise quadric surface [Pavic and Kobbelt 2008]. However,
to fit into the rest of our pipeline, we need the output of this carving
sub-routine to produce a new triangle mesh. Therefore, previous
works on exact offsets and swept volumes are inappropriate in our
contexts due to their output respresentation.

Previous tools for computing triangle-mesh approximations of
swept volumes (e.g., [Peternell et al. 2005]) and surface offseting
(e.g., [Campen and Kobbelt 2010]) focus on accuracy over perfor-
mance and simplicity. Instead, we propose directly computing a
conservative triangle-mesh approximation of an offset to the swept
volume by contouring a signed distance field. We then subtract this
approximation from the exact geometry of the static object to en-
sure its details remain in tact.

Approximate offset of swept volume Our approach adapts and
accelerates the implicit method of [Schroeder et al. 1994]. Without
loss of generality, the input to this subroutine is an object B, a rigid
motion f(t) for t ∈ [0, 1], and a desired offset amount ε. The
output is a triangle mesh approximating the ε-offset surface to the
swept volume of B moving along f(t) (see Figure 17).

First we lay a grid over the bounding box containing the spatial
extent of B transformed by f(t) for all t ∈ [0, 1] padded by 2ε.
The grid step size h is an exposed parameter trading off between
computation time (larger is coarser, faster) and accuracy (smaller is
finer, more accurate). The step size should be chosen smaller than
the smallest relevant feature on B.

For each grid vertex, we will approximate the signed distance to
the swept volume’s surface. The swept volume S is the union of B
moving along f(t):

S =
⋃

t∈[0,1]

f(t)B. (5)

This is easily re-written in terms of signed distances (assuming neg-
ative distances inside a solid):

d(S,p) = min
t∈[0,1]

d (f(t)B,p) , (6)

where d(X,p) is the signed distance from the surface of some solid
X to a query point p.

Given a signed distance field to S, the surface of S (or any offset)
can be extracted as the zero (ε) level set. We approximate this on
our grid by taking small discrete steps in time and using march-
ing cubes to extract the level set at ε. Because the signed-distance
field is only useful insofar as it reveals the ε level set, we cull grid
vertices determined far enough away (>

√
3ε) or too far inside

(< ε−
√

3ε) during acceleration tree evaluation.

Finally, we subtract our triangle mesh approximation of S from the
triangle mesh representation of A using the robust boolean library
within LIBIGL [Jacobson et al. 2013].

It is tempting to conduct this final boolean subtraction also on the
signed distance grid, using the signed distance to A. This would



Inputs A’s reference frame B’s swept volume

ε-contour

Outputs

Figure 17: Two objects A and B overlap in spacetime (ghosting projection, left). We consider the relative motion of B in A’s reference
frame. Sampling densely in time we aggregate the signed distance to B on a grid as B transitions. We contour the ε-offset surface to the
swept volume and subtract this mesh from A. The new A does not overlap B in space time.

Scale model replica validationCluttered cabinet Unloaded state, 
styrofoam block

Loaded state, styrofoam 
minus swept volumes

Figure 18: A cluttered kitchen cabinet is tidied up by inserting a styrofoam block and subtracting the swept volumes of each object placed
into place. Using a 3D printer, we validate this design.

certainly be more efficient, but unfortunately forfeits the sharp de-
tails and sparse representation of A.

Instead, our approach uses an approximate representation of the
swept volume S, but conducts the boolean subtraction exactly. This
maintains the original details ofA away from the subtracted region,
forfeiting details of the swept volume, but this is already abstracted
from the designer and obscured by the necessary offsetting.

7 Results

We implemented our prototype in C++11 using a background
thread (std::thread) to detect collisions as the designer makes
edits. On a MacBook Air 2GHz Intel Core i7 8GB memory ma-
chine, our spacetime collision detection and resolution runs interac-
tively for our examples (meshes with 100 to 10,000 triangles). For
examples with multiple transitions, each transition runs an instance
of our 3D viewer with keyframe timeline. End states and object
geometries are shared and edits propagate immediately. Changes to
the collision intervals (CIs) are announced to the graph view.

In Figure 3, the designer would like to add armrests to a park
bench that reconfigures into a picnic table. The armrests do not
cause problems at either end state, but do cause collisions along the
way. The designer experiments with a variety of solutions available
within our tool: (a) carving away the swept volume of the armrests
from the bench seat, (b) interactively reshaping the armrests until
collisions disappear, and (c) adding a hinge mechanism to stow the
armrests beneath the table.

In Figure 5, the designer adds various accessories to a folding bicy-
cle. Adding a basket and altering the handle bars creates collisions
(red highlight) when folding laterally. After interactive experimen-
tation, the designer finds that changing the folding mechanism will
accommodate the additions.

The reconfigurable kitchen in Figure 2 involves a graph of six tran-
sitions between seven states. We show a few of the most interesting
states with ghosting (see §4.2) to indicate transitions. In the clean
up state (1), all deployable objects are hidden and there is plenty of
space to walk around. In the food prep state (2), the stove vent low-
ers to reveal more counter space. In appliance state (4), medium-
size machines appear ready for use via a Murphy-bed-style shelving

system. If more counter space is needed when using the appliances,
extra counter space unfolds over the sink (5). The designer employs
the carving tool of §6.7 to leave space for the faucet. When cook-
ing is done and the appliances are put away, the telescoping table
deploys and benches swing out from under the cabinets (6). See the
accompanying material for a video of the full length editing session
of this example.

Reconfigurability helps tidy up a chaotic cabinet of appliances,
cups, and glass in Figure 18. In this theoretical example, the de-
signer considers filling the cabinet with a block of styrofoam and
then carving from it the swept volume of each object as it is placed
into a non-overlapping position in the cabinet. We validated the
effectiveness of this idea with a 3D-printed scale model.

In Figure 20, the designer plans furniture arrangements for a re-
configurable studio apartment in Manhattan. By identifying and
resolving impossible transitions, the apartment fits a wide assort-
ment of furniture featuring a sleeping mode, bathroom mode, and
entertainment mode.

Our tools function on the macro apartment-size scale and also on
the micro scale. In Figure 19, the designer reshapes and adds com-
plexity to a reconfigurable Burr puzzle. We validated this result
using a 3D printer: all parts fit together neatly.

7.1 Limitations & Future Work

We focused the feature set of our prototype on visualization, mon-
itoring and resolution aids unique to the problem of designing re-
configurables. We delegated advanced geometric editing to third
party tools. Integrating advanced real-time mesh editing [Gal et al.
2009; Liu et al. 2014] into our tool should be possible.

We also assumed that the designer had geometric models available.
While 3D scanning is becoming more common place, we imag-
ine that integrated the wealth of online 3D data (à la [Schulz et al.
2014]) would be an interesting extension.

Finally, our interpretation of physical feasibility is limited to inter-
penetration during reconfiguration. We rely on the user’s human
intuition or domain expertise to prevent unnatural or mechanically
impossible transitions (e.g., levitating couches). Adapting our con-



Burr puzzle in disassembled state Burr puzzle assembledOriginal Redesigned

Figure 19: We validated the feasibility of our Burr puzzle design by 3D printing the parts.

1 2 2 3 4transition graph state

Figure 20: A reconfigurable apartment. Transition graph (leftmost) summarizes four overall states. (1) An open floorplan is used for parties
and housekeeping. (2) In daytime and evening, the sofa faces the TV, the WC is accessible via a swinging door, and for showering, the sink
folds up, the undersink piping telescopes into the drain. (3) For dining, a table and benches swing into place; the sink remains accessible but
not WC. (4) At night, a wall bed swings down.

tact resolution optimization to account for mechanical constraints
would be a challenging but exciting future work.

Acknowledgements

The Columbia Computer Graphics Group is supported by Dis-
ney Research, Pixar, Adobe, and Altair. We thank Keenan Crane
and Henrique Maia for illuminating discussions. Funded in part
by NSF grants CMMI-11-29917, IIS-12-08153, IIS-14-09286, and
IIS-17257.

References

ALLARD, J., FAURE, F., COURTECUISSE, H., FALIPOU, F.,
DURIEZ, C., AND KRY, P. G. 2010. Volume contact constraints
at arbitrary resolution. ACM Trans. Graph. 29, 4 (July), 82:1–
82:10.

BÄCHER, M., BICKEL, B., JAMES, D. L., AND PFISTER, H.
2012. Fabricating articulated characters from skinned meshes.
ACM Trans. Graph..

BÄCHER, M., WHITING, E., BICKEL, B., AND SORKINE-
HORNUNG, O. 2014. Spin-it: Optimizing moment of inertia
for spinnable objects. ACM Trans. Graph..

BÄCHER, M., COROS, S., AND THOMASZEWSKI, B. 2015.
Linkedit: interactive linkage editing using symbolic kinematics.
ACM Trans. Graph..

BARAFF, D., WITKIN, A., AND KASS, M. 2003. Untangling
cloth. ACM Trans. Graph. 22, 3, 862–870.

BERNSTEIN, G. L., AND WOJTAN, C. 2013. Putting holes in
holey geometry: Topology change for arbitrary surfaces. ACM
Trans. Graph..

BHARAJ, G., LEVIN, D. I. W., TOMPKIN, J., FEI, Y., PFISTER,
H., MATUSIK, W., AND ZHENG, C. 2015. Computational de-
sign of metallophone contact sounds. ACM Trans. Graph..

CAMERON, S. 1990. Collision detection by four-dimensional in-
tersection testing. IEEE T. Robotics and Automation.

CAMPEN, M., AND KOBBELT, L. 2010. Polygonal boundary eval-
uation of minkowski sums and swept volumes. Comput. Graph.
Forum.

CEYLAN, D., LI, W., MITRA, N. J., AGRAWALA, M., AND
PAULY, M. 2013. Designing and fabricating mechanical au-
tomata from mocap sequences. ACM Trans. Graph..

ERLEBEN, K. 2004. Stable, Robust, and Versatile Multibody Dy-
namics Animation. PhD thesis, Univ. of Copenhagen.

EVERITT, C. 2001. Interactive order-independent transparency.
Tech. rep., nVidia Corp.

GAL, R., SORKINE, O., MITRA, N. J., AND COHEN-OR, D.
2009. iWIRES: An analyze-and-edit approach to shape manipu-
lation. ACM Trans. Graph..

GARG, A., SAGEMAN-FURNAS, A. O., DENG, B., YUE, Y.,
GRINSPUN, E., PAULY, M., AND WARDETZKY, M. 2014. Wire
mesh design. ACM Trans. Graph..

GUIBAS, L. J. 1998. Kinetic data structures–a state of the art
report. Proc. WAFR.

HARMON, D., PANOZZO, D., SORKINE, O., AND ZORIN, D.
2011. Interference-aware geometric modeling. ACM Trans.
Graph..

IGARASHI, Y., IGARASHI, T., AND MITANI, J. 2012. Beady: In-
teractive beadwork design and construction. ACM Trans. Graph..

JACOBSON, A., PANOZZO, D., ET AL., 2013. libigl: A simple C++
geometry processing library. http://igl.ethz.ch/projects/libigl/.

JOUBERT, N., ROBERTS, M., TRUONG, A., BERTHOUZOZ, F.,
AND HANRAHAN, P. 2015. An interactive tool for designing
quadrotor camera shots. ACM Trans. Graph..

KAVRAKI, L. E., ŠVESTKA, P., LATOMBE, J.-C., AND OVER-
MARS, M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE TRA.

http://www.google.com/search?q=Volume+contact+constraints+at+arbitrary+resolution
http://www.google.com/search?q=Volume+contact+constraints+at+arbitrary+resolution
http://www.google.com/search?q=Fabricating+articulated+characters+from+skinned+meshes
http://www.google.com/search?q=Spin-it:+Optimizing+moment+of+inertia+for+spinnable+objects
http://www.google.com/search?q=Spin-it:+Optimizing+moment+of+inertia+for+spinnable+objects
http://www.google.com/search?q=Linkedit:+interactive+linkage+editing+using+symbolic+kinematics
http://www.google.com/search?q=Untangling+cloth
http://www.google.com/search?q=Untangling+cloth
http://www.google.com/search?q=Putting+holes+in+holey+geometry:+Topology+change+for+arbitrary+surfaces
http://www.google.com/search?q=Putting+holes+in+holey+geometry:+Topology+change+for+arbitrary+surfaces
http://www.google.com/search?q=Computational+design+of+metallophone+contact+sounds
http://www.google.com/search?q=Computational+design+of+metallophone+contact+sounds
http://www.google.com/search?q=Collision+detection+by+four-dimensional+intersection+testing.
http://www.google.com/search?q=Collision+detection+by+four-dimensional+intersection+testing.
http://www.google.com/search?q=Polygonal+boundary+evaluation+of+minkowski+sums+and+swept+volumes
http://www.google.com/search?q=Polygonal+boundary+evaluation+of+minkowski+sums+and+swept+volumes
http://www.google.com/search?q=Designing+and+fabricating+mechanical+automata+from+mocap+sequences
http://www.google.com/search?q=Designing+and+fabricating+mechanical+automata+from+mocap+sequences
http://www.google.com/search?q=Interactive+order-independent+transparency
http://www.google.com/search?q=iWIRES:+An+analyze-and-edit+approach+to+shape+manipulation
http://www.google.com/search?q=iWIRES:+An+analyze-and-edit+approach+to+shape+manipulation
http://www.google.com/search?q=Wire+mesh+design
http://www.google.com/search?q=Wire+mesh+design
http://www.google.com/search?q=Kinetic+data+structures--a+state+of+the+art+report
http://www.google.com/search?q=Kinetic+data+structures--a+state+of+the+art+report
http://www.google.com/search?q=Interference-aware+geometric+modeling
http://www.google.com/search?q=Beady:+Interactive+beadwork+design+and+construction
http://www.google.com/search?q=Beady:+Interactive+beadwork+design+and+construction
http://www.google.com/search?q=libigl:+A+simple+C+++geometry+processing+library
http://www.google.com/search?q=libigl:+A+simple+C+++geometry+processing+library
http://www.google.com/search?q=An+interactive+tool+for+designing+quadrotor+camera+shots
http://www.google.com/search?q=An+interactive+tool+for+designing+quadrotor+camera+shots
http://www.google.com/search?q=Probabilistic+roadmaps+for+path+planning+in+high-dimensional+configuration+spaces
http://www.google.com/search?q=Probabilistic+roadmaps+for+path+planning+in+high-dimensional+configuration+spaces


KLOSOWSKI, J. T., HELD, M., MITCHELL, J. S., SOWIZRAL,
H., AND ZIKAN, K. 1998. Efficient collision detection using
bounding volume hierarchies of k-dops. IEEE TVCG.

KOO, B., LI, W., YAO, J., AGRAWALA, M., AND MITRA, N. J.
2014. Creating works-like prototypes of mechanical objects.
ACM Trans. Graph..

LI, H., ALHASHIM, I., ZHANG, H., SHAMIR, A., AND COHEN-
OR, D. 2012. Stackabilization. ACM Trans. Graph..

LIU, S., JACOBSON, A., AND GINGOLD, Y. 2014. Skinning cu-
bic Bézier splines and Catmull-Clark subdivision surfaces. ACM
Trans. Graph..

LIU, T., HERTZMANN, A., LI, W., AND FUNKHOUSER, T.
2015. Style compatibility for 3D furniture models. ACM Trans.
Graph..

MERRELL, P., SCHKUFZA, E., LI, Z., AGRAWALA, M., AND
KOLTUN, V. 2011. Interactive furniture layout using interior
design guidelines. ACM Trans. Graph..

PAVIC, D., AND KOBBELT, L. 2008. High-resolution volumetric
computation of offset surfaces with feature preservation. Com-
put. Graph. Forum.

PETERNELL, M., POTTMANN, H., STEINER, T., AND ZHAO, H.
2005. Swept volumes. Computer-Aided Design Appl..

POPOVIĆ, J., SEITZ, S. M., ERDMANN, M., POPOVIĆ, Z., AND
WITKIN, A. 2000. Interactive manipulation of rigid body simu-
lations. In Proc. SIGGRAPH.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 1992. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press.

SCHROEDER, W. J., LORENSEN, W. E., AND LINTHICUM, S.
1994. Implicit modeling of swept surfaces and volumes. In Proc.
of the Conference on Visualization.

SCHÜLLER, C., PANOZZO, D., AND SORKINE-HORNUNG, O.
2014. Appearance-mimicking surfaces. ACM Trans. Graph..

SCHULZ, A., SHAMIR, A., LEVIN, D. I. W., SITTHI-AMORN, P.,
AND MATUSIK, W. 2014. Design and fabrication by example.
ACM Trans. Graph..

SECORD, A., LU, J., FINKELSTEIN, A., SINGH, M., AND
NEALEN, A. 2011. Perceptual models of viewpoint preference.
ACM Trans. Graph..

SHAO, M.-Z., AND BADLER, N. 1996. Spherical sampling by
archimedes’ theorem. Tech. rep., Univ. of Penn.

SHOEMAKE, K. 1992. Uniform random rotations. In Graphics
Gems III. Morgan Kaufmann.

SKOURAS, M., THOMASZEWSKI, B., BICKEL, B., AND GROSS,
M. 2012. Computational design of rubber balloons. Comput.
Graph. Forum.

SKOURAS, M., THOMASZEWSKI, B., COROS, S., BICKEL, B.,
AND GROSS, M. 2013. Computational design of actuated de-
formable characters. ACM Trans. Graph..

SNIBBE, S. S. 1995. A direct manipulation interface for 3d com-
puter animation. Comput. Graph. Forum.

SUN, T., AND ZHENG, C. 2015. Computational design of twisty
joints and puzzles. ACM Trans. Graph..

TANG, M., MANOCHA, D., YOON, S.-E., DU, P., HEO, J.-P.,
AND TONG, R.-F. 2011. Volccd: Fast continuous collision
culling between deforming volume meshes. ACM Trans. Graph.
30, 5 (Oct.), 111:1–111:15.

TESCHNER, M., KIMMERLE, S., ZACHMANN, G., HEIDEL-
BERGER, B., RAGHUPATHI, L., FUHRMANN, A., CANI, M.-
P., FAURE, F., MAGNENAT-THALMANN, N., AND STRASSER,
W. 2004. Collision detection for deformable objects. In Proc.
Eurographics (STAR).

THOMASZEWSKI, B., COROS, S., GAUGE, D., MEGARO, V.,
GRINSPUN, E., AND GROSS, M. 2014. Computational design
of linkage-based characters. ACM Trans. Graph..

UMETANI, N., KAUFMAN, D. M., IGARASHI, T., AND GRIN-
SPUN, E. 2011. Sensitive couture for interactive garment editing
and modeling. ACM Trans. Graph..

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. ACM
Trans. Graph..

UMETANI, N., KOYAMA, Y., SCHMIDT, R., AND IGARASHI, T.
2014. Pteromys: Interactive design and optimization of free-
formed free-flight model airplanes. ACM Trans. Graph..

VOLINO, P., AND MAGNENAT-THALMANN, N. 2006. Resolv-
ing surface collisions through intersection contour minimization.
ACM Trans. Graph..

WANG, B., FAURE, F., AND PAI, D. K. 2012. Adaptive image-
based intersection volume. ACM Trans. Graph. (Proc. SIG-
GRAPH) 31, 4.

WELD, J. D., AND LEU, M. C. 1990. Geometric representation
of swept volumes with application to polyhedral objects. Int. J.
Rob. Res..

WITKIN, A., AND KASS, M. 1988. Spacetime constraints. Proc.
SIGGRAPH.

XIN, S., LAI, C.-F., FU, C.-W., WONG, T.-T., HE, Y., AND
COHEN-OR, D. 2011. Making burr puzzles from 3d models.
ACM Trans. Graph..

YU, L.-F., YEUNG, S. K., TANG, C.-K., TERZOPOULOS, D.,
CHAN, T. F., AND OSHER, S. 2011. Make it home: automatic
optimization of furniture arrangement. ACM Trans. Graph..

ZHOU, Y., SUEDA, S., MATUSIK, W., AND SHAMIR, A. 2014.
Boxelization: Folding 3d objects into boxes. ACM Trans.
Graph..

Appendix: Chain-rule

We expand upon the gradient of the mesh vertex positions at a fixed
time with respect to the user-interface elements, ∇UIVt in Equa-
tion (3).

We assume all objects of the reconfigurable to be rigid (their ge-
ometric shapes are constant over time up to rigid motion). The
degrees of freedom exposed to the user are: movements of each
mesh vertex’s “rest pose” location, p ∈ R3); cubic Bézier spline
translational keyframes, each including backward, interpolated and
forward spatial points u, t,w ∈ R3 and a time s ∈ [0, 1] on the
timeline; and spherically interpolated rotational keyframes, each in-
cluding a rotation θ ∈ SO(3) and a time on the timeline σ ∈ [0, 1].

Exploding all degrees of freedom in our UI as a vector we have:

UI = (p1, . . . , (u1, t1,w1, s1), . . . , (θ1, σ1), . . . ) . (7)

http://www.google.com/search?q=Efficient+collision+detection+using+bounding+volume+hierarchies+of+k-dops
http://www.google.com/search?q=Efficient+collision+detection+using+bounding+volume+hierarchies+of+k-dops
http://www.google.com/search?q=Creating+works-like+prototypes+of+mechanical+objects
http://www.google.com/search?q=Stackabilization
http://www.google.com/search?q=Skinning+cubic+B'ezier+splines+and+Catmull-Clark+subdivision+surfaces
http://www.google.com/search?q=Skinning+cubic+B'ezier+splines+and+Catmull-Clark+subdivision+surfaces
http://www.google.com/search?q=Style+compatibility+for+3D+furniture+models
http://www.google.com/search?q=Interactive+furniture+layout+using+interior+design+guidelines
http://www.google.com/search?q=Interactive+furniture+layout+using+interior+design+guidelines
http://www.google.com/search?q=High-resolution+volumetric+computation+of+offset+surfaces+with+feature+preservation
http://www.google.com/search?q=High-resolution+volumetric+computation+of+offset+surfaces+with+feature+preservation
http://www.google.com/search?q=Swept+volumes
http://www.google.com/search?q=Interactive+manipulation+of+rigid+body+simulations
http://www.google.com/search?q=Interactive+manipulation+of+rigid+body+simulations
http://www.google.com/search?q=Implicit+modeling+of+swept+surfaces+and+volumes
http://www.google.com/search?q=Appearance-mimicking+surfaces
http://www.google.com/search?q=Design+and+fabrication+by+example
http://www.google.com/search?q=Perceptual+models+of+viewpoint+preference
http://www.google.com/search?q=Spherical+sampling+by+archimedes'+theorem
http://www.google.com/search?q=Spherical+sampling+by+archimedes'+theorem
http://www.google.com/search?q=Uniform+random+rotations
http://www.google.com/search?q=Computational+design+of+rubber+balloons
http://www.google.com/search?q=Computational+design+of+actuated+deformable+characters
http://www.google.com/search?q=Computational+design+of+actuated+deformable+characters
http://www.google.com/search?q=A+direct+manipulation+interface+for+3d+computer+animation
http://www.google.com/search?q=A+direct+manipulation+interface+for+3d+computer+animation
http://www.google.com/search?q=Computational+design+of+twisty+joints+and+puzzles
http://www.google.com/search?q=Computational+design+of+twisty+joints+and+puzzles
http://www.google.com/search?q=Volccd:+Fast+continuous+collision+culling+between+deforming+volume+meshes
http://www.google.com/search?q=Volccd:+Fast+continuous+collision+culling+between+deforming+volume+meshes
http://www.google.com/search?q=Collision+detection+for+deformable+objects
http://www.google.com/search?q=Computational+design+of+linkage-based+characters
http://www.google.com/search?q=Computational+design+of+linkage-based+characters
http://www.google.com/search?q=Sensitive+couture+for+interactive+garment+editing+and+modeling
http://www.google.com/search?q=Sensitive+couture+for+interactive+garment+editing+and+modeling
http://www.google.com/search?q=Guided+exploration+of+physically+valid+shapes+for+furniture+design
http://www.google.com/search?q=Guided+exploration+of+physically+valid+shapes+for+furniture+design
http://www.google.com/search?q=Pteromys:+Interactive+design+and+optimization+of+free-formed+free-flight+model+airplanes
http://www.google.com/search?q=Pteromys:+Interactive+design+and+optimization+of+free-formed+free-flight+model+airplanes
http://www.google.com/search?q=Resolving+surface+collisions+through+intersection+contour+minimization
http://www.google.com/search?q=Resolving+surface+collisions+through+intersection+contour+minimization
http://www.google.com/search?q=Adaptive+image-based+intersection+volume
http://www.google.com/search?q=Adaptive+image-based+intersection+volume
http://www.google.com/search?q=Geometric+representation+of+swept+volumes+with+application+to+polyhedral+objects
http://www.google.com/search?q=Geometric+representation+of+swept+volumes+with+application+to+polyhedral+objects
http://www.google.com/search?q=Spacetime+constraints
http://www.google.com/search?q=Making+burr+puzzles+from+3d+models
http://www.google.com/search?q=Make+it+home:+automatic+optimization+of+furniture+arrangement
http://www.google.com/search?q=Make+it+home:+automatic+optimization+of+furniture+arrangement
http://www.google.com/search?q=Boxelization:+Folding+3d+objects+into+boxes


Now, considering the gradient of the mesh vertex positions at a time
t with respect to the user-interface decomposes into partial deriva-
tives:

∇UIVt =



∂v1
∂p1

· · · ∂vn
∂p1

...
. . .

∂v1
∂(u1,t1,w1,s1)

...
∂v1

∂(θ1,σ1)

...


, (8)

where vi is the vertex position at time t.

That vertex position vi is determined by its rest pose pi, the ob-
ject’s center of mass c ∈ R3, the current rotation θ(t) ∈ SO(3)
about that center mass, and the current translation x(t) ∈ R3:

vi = θ(t)(pi − c) + c + x(t). (9)

Let us consider each type of partial derivative in turn.

Clearly moving a rest-pose vertex position does not influence some
other vertex, so

∂vi
∂pj

= δijθ(t) ∈ R3×3, (10)

where δij is Kronecker’s delta.

The current translation x(t) is defined by the cubic Beziér interpo-
lation of the two keyframes immediately closest to t on either side,
sj < t < sj+1:

x(f) = (1− f)3tj+ (11)

3(1− f)2fwj+ (12)

3(1− f)f2uj+1+ (13)

f3tj+1 (14)
f = (t− sj)/(sj+1 − sj). (15)

Changing a translational spline keyframe has no effect outside its
immediate neighborhood:

∂vi
∂(uj , tj ,wj , sj)

=
∂x(t)

∂(uj , tj ,wj , sj)
, (16)

(= 0 if t ≤ sj−1 or t ≥ sj+1). (17)

Otherwise, let us assume (by symmetry) that sj < t < sj+1, then

∂x

∂f
= 3(1− f)2(wj − tj)+ (18)

6(1− f)f(uj+1 − wj)+ (19)

3t2(tj+1 − uj+1), (20)
∂x

∂tj
= (1− f)3, (21)

∂x

∂wj
= 3(1− f)2f, (22)

∂f

∂sj
= − 1/(sj+1 − sj) + (t− sj)/(sj+1 − sj)2. (23)

The current rotation θ(t) is defined by the spherical interpolation
of the the two keyframes immediately closest to t on either side,

σj < t < σj+1:

θ(g) = θj(θ
−1
j θj+1)g, (24)

g = (t− σj)/(σj+1 − σj). (25)

where we now interpret θj as a unit quaternion.

Changing a rotational keyframe has no effect outside its immediate
neighborhood:

∂vi
∂(θj , σj)

=
∂vi
∂θ(t)

∂θ(t)

∂(θj , σj)
(26)

= (pi − c)
∂θ(t)

∂(θj , σj)
, (27)

(= 0 if t ≤ sj−1 or t ≥ sj+1). (28)

Again, let us assume that σj < t < σj+1:

∂θ(g)

∂g
= θ(g) log (θ−1

j θj). (29)

The final remaining term, ∂θ(g)
∂θj

, is left to the ambitious reader or to
the industrious MATHEMATICA.


