
Computational Design of Reconfigurables

Akash Garg Alec Jacobson Eitan Grinspun

Columbia University

Figure 1: Reconfigurables—objects that transform between multiple configurations—are found in many walks of life, from mechanisms
such as (from left to right) folding bicycles, transforming furniture such as table/bench, architectural advances such as micro-kitchens and
-apartments and their specialized cabinetry, to interlocking puzzles.

Abstract

A reconfigurable is an object or collection of objects whose trans-
formation between various states defines its functionality or aes-
thetic appeal. For example, consider a mechanical assembly com-
posed of interlocking pieces, a transforming folding bicycle, or
a space-saving arrangement of apartment furniture. Unlike tradi-
tional computer-aided design of static objects, specialized tools are
required to address problems unique to the computational design
and revision of objects undergoing rigid transformations. Collisions
and interpenetrations as objects transition from one configuration to
another prevent the physical realization of a design. We present a
software environment intended to support fluid interactive design of
reconfigurables, featuring tools that identify, visualize, monitor and
resolve infeasible configurations. We demonstrate the versatility
of the environment on a number of examples spanning mechanical
systems, urban dwelling, and interlocking puzzles, some of which
we then realize via additive manufacturing.

Spatial-temporal information about collisions between objects is
presented to the designer according to a cascading order of prece-
dence. A designer may quickly determine when, and then where,
and then how objects are colliding. This precedence guides the de-
sign and implementation of our four-dimensional spacetime bound-
ing volume hierarchy for interactive-rate collision detection. On
screen, the designer experiences a suite of interactive visualization
and monitoring tools during editing: timeline notifications of new
collisions, picture-in-picture windows for tracking collisions and
suggestive hints for contact resolution. Contacts too tedious to re-
move manually can be eliminated automatically via our proposed
constrained numerical optimization and swept-volume carving.

CR Category: I.3.0 [Computer Graphics]

Keywords: Computational design

1 Introduction

Using traditional computational tools, the design of a transforming
object or a collection of objects transitioning between configura-
tions requires laborious, time-consuming and expensive iterations.
This is especially true if relying on physical fabrication merely to
determine feasibility. For reconfigurable designs, collisions and in-
terpenetrations pose an editing problem. The solution requires a
synergy across space and time lacking in current tools.

We consider the problems unique to the design of objects or collec-
tions of objects whose functionality or aesthetic appeal is defined
by both the static geometry of participating rigid bodies and their
transformations into different configurations, or states. We call such
objects reconfigurables (see Figure 1).

Modeling in isolation one (spatial) component, or one (“temporal”)
state, of a reconfigurable opens a Pandora box of tempting modifi-
cations that invalidate physical realization. For example, exploring
appliance and cabinetry choices of a reconfigurable space-saving

1 2 4 5 6transition graph state

Figure 2: A reconfigurable kitchen saves space and maximizes utility. Operating on a graph of seven states (left), our interactive environment
enables the designer to add deployable, hidden features, such as a hidden countertop above the range (2), cabinet doors that do not interfere
(2), a hidden appliance tabletop (4) with over-sink counterspace (5), and a telescoping eat-in table with swing-out benches (6).

bench table

collisions carvingcarving

edit
geometry

edit
geometry

edit
motion

edit
motion

Figure 3: Alternative solutions for a reconfigurable that starts as a bench and ends as a table. Solution (a) carves the seat to make room for
the arm-rests, (b) reshapes the arm-rests to avoid collisions during transition and (c) arm-rests swing inward during the transition.

kitchen, without carefully considering how they affect mutual clear-
ance, could yield an expensive disappointment (see Figure 2). Like-
wise, adding armrests to a transforming bench/table might induce
interferences to the transition between states (see Figure 3).

We reimagine the typical computer-aided design interface. Rather
than optimize for editing static geometries, we treat the transitions
of objects between configurations as first class citizens. A designer
may interleave edits to an object’s geometry in space and edits to
its transition through a fictitious graph-based time dimension. All
the while, our interactive tools help identify, visualize, monitor and
resolve infeasible configurations that may occur along the way.

The first challenge to feasible spacetime editing arises when a
seemingly valid edit made in one configuration state creates a new
collision in a different state or during a transition. For example,
stylizing the handlebars of a bicycle in its unfolded state seems
possible, but animating the folding transition reveals new collisions
(see Figure 5). Relying on manual scrubbing along the timeline and
searching via camera controls is far too tedious to work effectively.

Since collisions might happen at a different time than the designer’s
current working time selection, the most pressing information is
when the problem is occurring. Only then is the spatial extent of
interpenetrations useful. This order of precedence guides the design
of our collision notifications and spacetime collision detection.

transition

state

collision

Fig. 4: Collision alerts
appear on the state-
transition graph view.

The timespans of collision events are
identified interactively as the designer
makes edits, visualized on each tran-
sition’s timeline corresponding to edges
of a state-transition graph view (see in-
set). We traverse a four-dimensional
bounding volume hierarchy biased to-
ward honing the temporal extent so that
notifications immediately appear first
on the timeline view. The designer may
then jump to this time or preview the
collision in a picture-in-picture window,
at which point collisions are localized
spatially and highlighted in the 3D view.

Some collisions inevitably occur outside the designer’s current field
of view. The automatic view selection tool transports the designer
to an optimal view of the interference. Stroboscopic “ghosts” sum-
marize the reconfigurable’s motion near the contact time.

As the designer resolves the collision by editing an object’s geom-
etry or configuration, collision notifications interactively update.
The designer can track collisions at one moment in time via the
picture-in-picture, while making edits at another moment.

Resolving nearly-imperceptible collisions manually can be tedious
and ungratifying. If a designer is not sure how to resolve a collision,
we provide on-screen hints of edits that would encourage feasibility.
Often a designer must make many small or obvious edits only to
find that they create new problems elsewhere in spacetime.

Going further than a hint, we can also assist by optimizing over
some of the reconfigurable’s spatial or temporal degrees of free-
dom, resolving all slight collisions across spacetime. Our optimiza-
tion builds on a novel formulation of contact normals, which we
derive by extending to 4D a recent contour minimization approach
to cloth untangling.

As an alternative to optimizing existing degrees of freedom, the
user may also decide that the transformation of one object takes
precedence over another object’s shape. We propose a novel tool,
which combines swept-volume computation with constructive solid
geometry to carve away the volume of one object swept along its
transformation from the rigid geometry of another.

Through a variety of designs, we demonstrate how the novel

• graph-based time dimension,
• lazy time-then-space collision detection,
• automated picture-in-picture view,
• collision-aware camera optimization,
• collision normal based on spacetime untangling,
• collision resolution hints,
• collision resolution in spacetime, and
• swept volume carving

collaborate harmoniously to afford a fluid interactive design envi-
ronment. Rapid combinations of our visualization and resolution
aids enable fast and creative editing of reconfigurables not possible
with traditional tools.

2 Related Work

Though computer-aided design (CAD) and computer animation
packages are mature and powerful, each on its own falls short when
trying to design a reconfigurable.

0 1

collisions

0 1

collisions

1 1
edit

geometry
edit

geometry
edit

geometry
edit

geometry
edit

transition
edit

transition
edit

transition
edit

transition
Figure 5: The original folding bike is collision free, but adding new handlebars and a basket invalidate this type of folding. The designer
changes to a swiveling hinge and finds a collision-free transition.

Optimized for creating intricate static objects, traditional CAD
packages offer only simple motion previewing, e.g., a screw twist-
ing into a bolt or a spinning collection of gears. Some commercial
tools incorporate interference detection, simply alerting the user if
a prescribed motion has created an overlap. For example, a user of
SOLIDWORKS can click a button to detect collisions and is alerted
via an audible bell sound effect. The detection is not interactive as
edits are made, nor does it cluster related collisions. The software
does not offer auto-correct or polishing tools. The transition and
reconfiguration of an object is not given importance on the same
level as the object’s surface quality or material strength.

In a complementary manner, computer animation packages do
place a primary emphasis on the time-synchronized motion of char-
acters and their environments, but time is linear and unidirec-
tional. Our transitions between states are in general a combinatorial
graph connecting many states with distinct, potentially bidirectional
stretches of time (see Figure 2). Animation, by intent, worries about
physical accuracy and feasibility of configurations only in so far
as they affect perception. For example, MAYA will detect and re-
spond to collisions during a rigid-/elastic-body simulation, but not
during geometry modeling or keyframe animating. Indeed, self-
interference of an unfolding bicycle or transformer robot may be
perfectly acceptable for a film or video game if unnoticeable.

While we do marry concepts from both CAD and computer anima-
tion, our primary investigation asks what new tools are needed in
the context of computational design of reconfigurables.

Static shape design The computational design of static shapes
also benefits from concepts developed for computer animation or
computer graphics. A variety of recent works help users find a
physically realizable static output shape that achieves a certain
functionality (e.g., [Bharaj et al. 2015]) or aesthetic appeal (e.g.,
[Igarashi et al. 2012; Garg et al. 2014; Schüller et al. 2014]). The
focus of this class of works is on providing an interactive tool for
finding a somehow “optimal” yet feasible static shape in a single
configuration. The quality metrics and feasibility considerations
vary depending on the specific application. Some may employ
static physics to tighten the design loop, e.g., for designing spin-
ning, balancing toys [Bächer et al. 2014] or structural-sound furni-
ture [Umetani et al. 2012].

In other scenarios, a shape’s quality is determined also by its dy-
namic behavior, e.g., designing optimal paper airplanes requires
consideration of aerodynamics [Umetani et al. 2014]. The interac-
tive garment design tool of Umetani et al. [2011] previews draping
dynamics, detecting and resolving collisions as garments contact
a mannequin. Unlike our proposal, these tools either ignore inter-
object collisions or resolve them in a weak sense à la computer
animation: e.g., collisions are important to garment design in so far
as they help capture or predict the draping behavior, but collisions
are not used explicitly to determine feasibility of a design.

Other works consider a static arrangement of static shapes accord-
ing to their aesthetic or functional appeal without worrying about

the feasibility of possible transitions between arrangements. For ex-
ample, the furniture in the arrangements of [Merrell et al. 2011; Yu
et al. 2011; Liu et al. 2015] are expected to remain in their assigned
place, unlike our reconfigurable apartment design in Figure 20.

Fabricating animations While our work is not the first to con-
sider physical constraints during computational design, previous
works primarily focus on a very specific class of animated ob-
jects. Some methods simply ignore collision during feasibility
analysis: e.g., when designing toys [Bächer et al. 2012; Ceylan
et al. 2013; Skouras et al. 2013] or mechanical linkage assemblies
[Thomaszewski et al. 2014; Bächer et al. 2015]. Similar to the
use of collision resolution for static garment design [Umetani et al.
2011], Skouras et al. weakly resolve collisions to design balloons
that inflate from a flat configuration [2012; 2013]

Existing works in the realm of reconfigurables consider and take
advantage of a heavily constrained space. For example, Li et al. de-
form shapes to stack vertically on other instances of the same shape
[2012], and Zhou et al. decompose and transform arbitrary objects
into rectilinear boxes [2014]. Interlocking and twisting puzzles are
an interesting subclass of reconfigurables [Xin et al. 2011; Sun and
Zheng 2015]. For both types of puzzles, managing collisions dur-
ing design is important, but also simpler due to the limited design
space.

We are inspired by the prototyping tool for hinge-based reconfig-
urables [Koo et al. 2014]. By working only with simple box-based
shapes, Koo et al. can dramatically simplify collision handling and
contact relationships. We expand this scope by examining compu-
tational design of reconfigurables composed of arbitrary rigid parts.

Interactive motion editing At a technological level, our space-
time collision detection and resolution shares components and mo-
tivation with the fundamental path-planning problem in robotics
(see e.g., [Kavraki et al. 1996]). However, we are not interested
in the fully automatic computation of the path of objects to achieve
a certain high-level goal, but rather to provide an interactive tool for
editing objects and their transitions between configurations simul-
taneously.

In computer animation, the spacetime constraints paradigm at-
tempts to reduce animator effort for creating realistic looking an-
imations of a character hitting certain configurations at certain mo-
ments in time [Witkin and Kass 1988]. Advanced spacetime meth-
ods incorporate contacts and collisions [Popović et al. 2000], but
the goal is inevitably to achieve a desirable animation arc. Re-
cently, interactive motion editing also finds interesting applications
in the physical world, e.g., designing paths for drone cinematogra-
phy [Joubert et al. 2015]. While this interface incorporated physical
flight constraints, possible collisions are ignored.

During reconfigurable design, our notion of time is artificial. Help-
ing the user find a clear transition path is important, but there is no
required concept of momentum, velocity or forces.

Modeling with collisions While we do not intend to model true
dynamics, our fictitious time dimension is not to be confused with
the use of interaction time to exploit collisions for modeling. For
example, Harmon et al. essentially treat each user edit during free-
form modeling as the next time step of a simulation [2011]. Mod-
eled objects respond to new collisions according to (possibly non-
physical) energy-minimizing forces. Similarly, Bernstein and Woj-
tan exploit the hysteresis between each edit to conduct constructive-
solid geometry operations on artifact-ridden geometry [2013]. In
contrast, our collision resolution operates directly on a 4D object–
the spacetime trajectory––while these earlier works operate on a
3D, spatial object. Their works incorporate (quasi-)time by se-
quencing spatial collision resolutions. By operating directly on
a 4D object, and avoiding the “orientation” of time in a sequen-
tial process, our response maintains temporal symmetry. We show
that computing a resolution normal for a spacetime trajectory can
be achieved exactly, robustly, and simply by integrating over time
the contour minimization normals proposed in earlier work for the
purely spatial setting.

Rather than liken our work to those that treat modeling as a time-
integrated simulation, we interpret our problem as high-dimension
analogue of “untangling cloth” [Baraff et al. 2003; Volino and
Magnenat-Thalmann 2006]. These works attempt to remove in-
tersections of surfaces in R3 (presumably resulting from a cloth
simulation) without knowledge of velocities or previous configura-
tions. One can interpret a standard surface modeling tool, such as
MAYA, as a tool suitable for the interactive, albeit manual, untan-
gling of surfaces. Under this philosophical analogy, our work may
be viewed as a conceptualization of how modeling packages might
be extended to treat spacetime hypersurfaces in R4. Going beyond
manual interactive tools and aids, we also propose automatic space-
time untangling.

To achieve this we construct a four-dimensional spacetime bound-
ing volume hierarchy for intersection detection. In contrast, there
are many previous works for detecting collisions instantaneously
[Allard et al. 2010] or in continuous time over short localized spans
of time [Tang et al. 2011; Wang et al. 2012].

3 Kinematics and Collision Intervals

The reconfigurable consists of a collection of objects (or parts) that
transition between various states. Abstracted as a graph, states and
transitions are nodes and edges, respectively. A visualization of
this graph provides a quick overview of the entire reconfigurable
(see Figure 4). The graph view quickly indicates to the designer if
new collisions appear and allows the designer to monitor collisions
within one transition while editing another.

Because we are not interested in dynamic effects such as inertia,
we parameterize the motion of an object during a transition along a
fictitious time interval [0, 1]. Each object is assumed to be a solid
bounded by a triangle mesh. In our implementation, objects are
limited to rigid motions, i.e., all vertices of one object follow the
same translations and rotations during a transition.

Borrowing from early work in collision detection [Cameron 1990],
each solid in motion can be viewed instead as a static object in
spacetime, occupying a spacetime volume (STV) in R3 × [0, 1].

t+∆t

t+ 2∆t

t

To simplify collision detection, we discretize
each vertex path piecewise linearly between
evenly sampled time intervals ∆t. We may
choose ∆t sufficiently small to control the toler-
ance between the true continuous path (orange
in inset) and the discretized path (green). The

spline motion

keyframes on timeline

Figure 6: Using our modeling interface, a designer choreographs
the motion of a couch moving inside a reconfigurable apartment
(green walls).

resulting piecewise-linear trajectory serves as the spacetime proxy
for collision detection.

Our collision detector accepts as input spacetime proxies for all ob-
jects of a transition. It identifies pairs of triangles that interfere in
spacetime. Each such pair is recorded by its spacetime axis aligned
bounding box [Cameron 1990], and a reference to the two involved
objects. We call such a record a collision interval (CI). In general,
multiple CIs output from the detector may overlap each other in
spacetime. We simplify further by merging overlapping CIs, until
the CIs are sufficiently coarse (see §4.1). A merged CI may now
reference multiple involved objects.

CIs lay the foundation for all visualization and resolution tools that
our design framework provides. The following sections will make
use of CIs extensively in order to support the development of tools
necessary to visualize collisions in both space and time as well as
help the user to resolve those collisions.

4 User Tools

Our investigation is driven by the aspiration to facilitate an interac-
tive, nonlinear, free flowing design process. As the designer alters
an object’s geometry, state configuration or transition motion, the
design environment provides interactive feedback about possible
invalid states or transitions. The design environment also guides
the designer to resolve these errors by an array of tools that range
from informative and unintrusive, yielding control of alterations to
the designer, to automatic intervention, alleviating tedium. Our re-
search goal is to understand both the interaction metaphors as well
as the under-the-hood infrastructure best suited for interactive, as-
sistive design. Discarding potential tools is just as important as
retaining the most effective ones. We present the set front-end tools
that we have found to be most effective and generalizable to a broad
class of reconfigurable design problems.

As depicted in Figure 6 and the accompanying movie, our design
tool builds on keyframe animation to sculpt motions (translations
and rotations) of objects, using a timeline and 3D viewer metaphor.
This keyframe timeline corresponds to a single edge/transition in
the graph view seen in Figure 4. Object transitions within the time-
line are represented by keyframed translations along a cubic Beziér
spline and spherically interpolated keyframed rotations.

maximaltemporal

Figure 7: Left: consolidation of spatial extents over small stretches
in time give us more context over collisions compared to, Right:
maximal consolidation in space. Both: The timeline always enjoys
maximal consolidation of CIs.

A typical design session begins with an arbitrary arrangement of
objects. Additional objects can be added and removed from the
scene dynamically. In our research implementation, we external-
ize those static-shape modeling tasks that are well established and
easily accessible in commercial tools, e.g., MAYA’s modeler. In the
following, we describe the tools that make up the design environ-
ment roughly ordered from least to most interventionistic.

4.1 Visualizing Collision Intervals

Complicated reconfigurables are difficult to navigate virtually. As
objects transition between states, their relative spatial arrangements
are functions of time. Therefore detecting overlaps and collisions
between objects manually, i.e., via visual inspection, is a tedious
process of view manipulations and timeline scrubbing.

We automate the process of identifying and isolating collision inter-
vals (CIs). This process runs continuously in a background thread
while the designer makes edits (§5). To direct attention to prob-
lem areas, the design environment’s 3D viewer displays optionally-
pulsating transparent boxes over the spatial extent of each CI (see
Figures 7, 9) and the timeline highlights the corresponding tempo-
ral extent (see Figures 7, 8). The 3D viewer highlights only those
CIs that overlap the selected moment in time, corresponding to the
time marker on the timeline.

If a CI is not easy to interpret from the current viewpoint, a hotkey
provides invocation to view optimization (§4.3) for rapid optimal
focus on a CI of interest. The corresponding spatial and temporal
highlights, combined with view optimization, enable the designer
to quickly navigate, reason, and act on problems that arise during
design revision.

We found that displaying the raw CIs produced by the collision
detection routine produces a picture that is in general too busy for
a designer to parse. We therefore consolidate CIs that overlap in
spacetime: CIs with overlapping or adjacent temporal extents, and
spatial extents, merge into one (conservative) CI.

Although considerable consolidation is useful for visualizing tem-
poral extents on the timeline, the same degree of consolidation pro-
duces spatial extents that are too conservative (large) to provide any
useful context over colliding objects. Thus we consolidate to differ-
ent extents for the timeline and 3D viewer. While the former enjoys
maximal consolidation, the latter is limited to consolidations that
keep the temporal extent no longer than a small stretch of time.
This ensures that all visualized pulsating highlights encompass col-
liding regions that occur at the frequency of a single visual frame
(see Figure 7).

collision intervalselected time

ghosting
ghosting

ghosting

ghosting
ghosting

Figure 8: The designer makes use of “ghosting” to relocate the
couch around a tight corner.

4.2 Ghosting

Inspired by Snibbe [1995], we optionally display “ghosts” of any
transitioning object. These allow the designer to see the object’s
transition without actively scrubbing the timeline. Formally, ghost-
ing is computed by projecting isotemporal slices of object’s space-
time volume onto the current 3D view at the selected time. We
render the object at regular samples over time, with progressively
decreased opacity away from the selected time [Everitt 2001].

toilettoilet

doorGhosting is particularly useful for laying
out objects in tight-fitting spaces, allow-
ing the designer to conservatively reason
about potential collision states without re-
peatedly scrubbing the timeline (see Fig-
ure 8). In the inset figure, the designer
reasons about the layout and clearance of
a swinging door and toilet obstacle.

4.3 View Selection

Visual occlusions due to perspective projection may hide collisions
in the scene. Other collisions may simply not be in the current
field of view. To help the user inspect problem areas, we propose
a method for selecting optimal camera views of collisions. Our
interactive design loop requires a fast optimization that considers
the dynamic objects. Though analogous in spirit to previous works
on optimal view selection [Secord et al. 2011], we have neither the
luxury of precomputation nor the convenience of a single, static
shape.

We assume a rigid camera with three translational degrees freedom
and three rotational degrees of freedom. Assuming a “fixed up axis”
(e.g., as in AUTOCAD, MAYA, etc.), we may omit the rotational
degree of freedom twisting about the viewing axis.

Given a collision interval selected via the timeline, we first identify
the center of the collision’s spatial extent. While one could imagine
various weightings on the spatial contact points to compute a center
position, we observe that simply taking the barycenter of the spa-
tial bounding box X containing all contact points found within the
collision interval is consistent, predictable and robust. The camera
is constrained to place this center position along its viewing ray:
two rotational parameters and the distance from the center remain
unknown.

Poor view along rB

X

rB rA

Selected collision interval Occluded view Optimized view

Figure 9: After selecting a collision interval on the timeline, a user can jump to an optimized view by hitting a hot key. Views along the
trajectory of an object (e.g., rB) are poor. Views orthogonal to the movement of both objects are ideal. Of these two views, we choose the one
with the least occlusion.

We select the smallest distance containing the bounding box X
completely in view for any angle.

Finally, to optimize the rotational degrees of freedom, we consider
two scenarios: 1) collisions involving two objects and 2) collisions
involving more than two objects.

Two objects Brief collisions involving two rigid objects A and
B are well approximated by their relative translation. Given the
rigid motions of A, we define the direction of approximation mo-
tion during the collision interval with temporal extent [t0, t1] to be
simply the difference in center of mass at the end and beginning of
the interval: rA = A(t1)−A(t0), and equivalently for rB.

A very degenerate (non-optimal) view would be along rA or rB:
in this view one object occludes its own motion and likely also the
collision with the other object. The ideal view places the approxi-
mate motion of both objects in the view plane: the view direction
should be perpendicular to both rA and rB. In other words, the
viewing direction should be parallel to the cross product of these
two directions: ±(rA × rB).

In this case, the optimization boils down to choosing between two
views (see Figure 9). This decision is made based on a measure
of the collision’s occlusion. The exact occlusion induced by these
and other objects meshes is difficult and expensive to measure. Our
view selection is only useful if instantaneous. Therefore, we ap-
proximate occlusion via the traditional real-time rendering pipeline.

We render the scene with an opaque bounding box X around the
collision’s spatial extent and count the number of visible pixels of
the bounding box. We implement this by rendering the scene once
to set the depth buffer and then rendering only the bounding box
again while counting pixels using the hardware “occlusion queries”
(GL_SAMPLES_PASSED in OPENGL). In our experimental setup,
this outperformed rendering with depth culling and counting pix-
els (even when using a GPGPU parallel reduction).

Many objects Now, let us consider the multi-object collision sce-
nario. In this case, the approximate directions of all objects will
not define a unique ideal viewing axis: any view axis will be non-
perpendicular to some direction. We experimented with deriving a
least-squares optimization to find an “as-perpendicular-as-possible”
viewing direction, but this frequently resulted in degenerate views.
Instead, we propose that in multi-object scenarios the prevention of
occlusions outweighs the importance of finding a perfect direction
relative to the object motions.

Optimizing over all views is infeasible, so we opt for a Monte-Carlo
approach: we sample many (>1000) random views and choose the
best according to the number of visible pixels from the collision
box as described above. For scenes with an obvious “ground” (e.g.,
the space-saving kitchen in Figure 2), we restrict the sampling to
the northern hemisphere. If the camera control is a trackball (i.e.,

PIP time

PIP

selected time

main view

Figure 10: As the designer attempts to resolve the current colli-
sion of the sofa against the wall, another collision is triggered and
shown in the PIP view.

without a fixed up axis), we uniformly sample random orbiting ro-
tations as quaternions [Shoemake 1992]. If using “fixed up” cam-
era controls, we uniformly sample directions via points on the unit
(hemi-)sphere [Shao and Badler 1996].

4.4 Picture in Picture

Side effects are a common occurrence when trying to resolve colli-
sions of a reconfigurable. While the designer focuses on repairing
a particular CI, a new collision may form elsewhere in spacetime.
Recognizing this, then scrubbing back and forth between collisions
and their side effects hinders productivity.

Our tool actives a picture-and-picture (PIP) view when a side effect
collision occurs. As seen in Figure 10, the PIP is view-optimized
(see §4.3) on the side effect CI. The corresponding temporal po-
sition of the PIP is marked by a secondary yellow marker on the
timeline. As the designer makes edits in the design the PIP view
updates accordingly. When the designer clicks on the PIP window,
the main and PIP views are swapped, accelerating the typical back-
and-forth workflow required to achieve multiple conflicting space-
time corrections.

Triggering PIP Modification of the reconfigurable triggers back-
ground collision detection (see §5), which yields a set {I1, I2, . . .}
of spacetime CIs, Ii ∈ R3 × [0, 1]. By comparing the sets before
and after the modification, {Îi} and {Ii}, respectively, we deter-
mine which CIs (i) remain unchanged, (ii) disappeared, (iii) ap-
peared, or (iv) changed spatiotemporal extent. Whereas cases (i)

and (ii) do not call for the designer’s attention, cases (iii) and (iv)
correspond to side effects that the designer must review.

We first considered displaying multiple PIPs for the multiple CIs,
but this clutters the user interface. Instead, we prioritize CIs and
alerting the designer to the most critical side effect via a single PIP.
This decision follows and reinforces the typical design workflow of
attending to the most critical problems first.

We first prioritize new CIs, case (iii), over altered CIs, case (iv).
Among new CIs, we prioritize longer time extents over shorter du-
rations Among altered CIs, we prioritize extending over contract-
ing durations. The sorting of PIPs based on duration is intended
to match the intended workflow of honing in on CI time and then
space.

The PIP, like all 3D views, is a slice through spacetime at a so-far-
undetermined fixed time. Keeping with our design philosophy of
attending to the most critical sections first, the time instance cho-
sen corresponds to when the collision is most severe within the CI.
Classically, one would use a measure of penetration depth to mea-
sure the severity of a collision region. However, measuring penetra-
tion depth usually requires the use of distance field methods, which
introduce substantial computational overhead and are not suitable
for interactive applications when geometry deforms significantly
[Teschner et al. 2004]. Thus, we rely on our notion of intersec-
tion energy (1), detailed in §6.2, as a measure of severity. Having
selected a most severe time during the CI, the PIP view shows the
spatial collision configuration using the view selection algorithm
(see §4.3).

Finally, the design can trigger the PIP view manually via a hot-
key while hovering over a CI on the timeline. This enables easy
navigation between CIs (see accompanying video).

5 Collision Detection

As the user edits and revises the design, our tool continuously runs
a spacetime collision detection thread. This spacetime collision de-
tection thread enables the user tools in the previous section to bring
attention to any design trajectories that may interfere with one an-
other, highlighting first when in time collisions occur before com-
puting exactly where they occur.

Given a reconfigurable, our goal is to identify collision intervals
(CIs) in spacetime where pairs of objects overlap. The follow-
ing basic algorithm identifies all overlaps between piecewise-linear
spacetime proxies. In order to achieve interactive rates for con-
tinuously modified designs, we use a spacetime k-DOP bounding
volume hierarchy (BVH). For complex designs, recomputing the
hierarchy on every edit would prohibit interactivity. We exploit the
locality of design edits by updating and traversing only modified
portions of the BVH.

5.1 Spacetime k-DOP

A wealth of bounding volume (BV) types have been explored
[Klosowski et al. 1998]; we adopt k-DOPs [Klosowski et al. 1998],
whose popularity stems from their easy construction, efficient up-
date and comparison operations. A k-DOP bounds a volume by
taking the intersection of tight fitting half-spaces associated with a
fixed family of k axes. The question arises, how large should k be?
In three dimensions, popular choices are 6 (an axis-aligned bound-
ing box) and 26 (choosing the corners, edge midpoints, and face
barycenters of the unit cube to form axes). If we interpret R3 in-
stead as two spatial dimensions plus time (e.g. R2 × [0, 1]), then
we may understand the effect of this choice in spacetime (see Fig-
ure 11).

x
yt

x
yt

Swept volume bounding box Spacetime KDOP

Figure 11: The 2D object A rotates over time. The bounding box
of the swept volume extruded into time is very conservative (left). A
k-DOP in spacetime hugs the spacetime volume tighter.

For our spacetime k-DOP, we consider a variety of generalizations.
We could take the axis-aligned bounding box in four-dimensional
spacetime: 8-DOP. On the opposite end of the spectrum, we could
take an 80-DOP with halfspaces corresponding to all combinations
of spatial and temporal axes. A good balance is to augment the
generous spatial 26-DOP halfspaces with two temporal halfspaces,
resulting in a 28-dop.

We implemented our bounding volume hierarchy generically to
these choices. Our experiments reveal that the 28-DOP slightly
outperforms the 80-DOP, and both greatly out perform the 8-DOP.
Although the 80-DOP provides fewer false-positives, the spacetime
proxies themselves only span small segments of time where false
positives are rare. Therefore, we avoid extra computational cost of
testing so many plane equations, using only the 28-DOP (on all our
examples).

5.2 Constructing the Bounding Volume Hierarchy

We construct binary tree BVH for each object once at initialization.
We employ a top-down tree construction strategy that recursively
splits our BVH until each leaf contains a single spacetime proxy (a
spacetime triangle). At each non-leaf node, the splitting procedure
creates a splitting plane all the 4D vertices of the spacetime proxies.
This plane is chosen orthogonal to the axis of the coordinate with
maximum extent, centered at the median value. Note that this split-
ting does not necessarily create two disjoint children, i.e., it may
result in children whose BVs overlap if a poxy is assigned partially
to each halfspace. We experimented with increasing the branching
factor to the tree: from binary to ternary and octonary, but we did
not experience any performance gains.

5.3 Local, Lazy Refitting

As the designer edits the reconfigurable, the structure of each ob-
ject’s BVH remains intact, while the extents of the affected k-DOPs
are updated. Since the designer typical makes structured, localized
and continuous edits, we found that refitting is usually much faster
than rebuilding the tree from scratch.

The animation keyframe user interface inherently leads to a tempo-
ral locality of revisions. Further, the use of a (mouse-)pointer-based
interface typically results in spatially-localized editing. In general,
only a small subset of the entire spacetime reconfigurable is altered
with each designer gesture. Marking the affected spacetime proxies
as “dirty,” we exploit the locality of editing operations by refitting
and “cleaning up” only those dirty k-DOPs impacted by dirty prox-
ies. This local refitting allows for interactive collision detection,
even for many objects in large scenes.

Correspondingly, pairwise BVH traversal need not be carried out
over the complete set of all BVHs. Rather, in the spirit of ki-
netic data structures [Guibas 1998], only comparisons involving

Ac
cu
ra
cy

Figure 12: Accuracy of the visualized CIs increase as deeper nodes
in the BVH are processed. Opaque CIs are the most accurate.

the “dirtied” subtrees of a BVH need to be checked against the clean
subtrees.

5.4 Visualizing Collision Intervals

In order to provide the designer with the most relevant information
immediately, we give precedence to first visualizing when collisions
occur, so that the design process may benefit from immediate high-
level feedback when edits invalidate trajectories of objects in the
scene.

When Collisions Occur Although BVH traversal schemes typi-
cally proceed top-down based on a stack, we opt for a breadth-first
traversal based on a queue. Each level of the BVH that is traversed
in this way provides an initial “preview” to where potential colli-
sions lurk. These previews are displayed on the timeline, with pro-
gressively increasing opacity at deeper tree levels (see Figure 12).
While the local, lazy refitting typically allows for nearly instanta-
neous completion of all collision detection, the breadth first traver-
sal with previews further reinforces the impression of immediacy
even for operations that less localized, such as the automatic reso-
lution described in §6.6.

Where Collisions Occur After honing in on the time extent of
the CI, the designer can jump via the timeline or picture-in-picture
to a moment within the CI. The BVH hones the spatial extents and
returns a set of candidate spacetime primitives, involving two trian-
gles a and b over a time step ∆t. The final CIs are built by con-
ducting continuous collision detection (CCD) over the time interval
∆t. The solution to the CCD procedure provides a δt ⊂ ∆t, where
δt is the time-extents when a and b are overlapping. The CI stores
this δt as well as the spatial extents of the collision region between
a and b within δt. We store mappings between CIs and the objects
to which the primitive a and b belong, allowing for fast queries of
CI and their objects.

6 Spacetime Collision Resolution

Our automatic resolution of collisions is set apart from earlier work
on collision response by its focus on altering spacetime configura-
tions, rather than the more common goal of computing forces or
displacements in the context of forward time integration.

To develop an automatic collision resolution method we must first
define a notion of a four-dimensional constraint gradient or contact
normal. For a spacetime point on our spacetime shapes this is the
direction of the admissible region of configuration space: no inter-
penetrations.

t
y

x

z
y

x
general “tangled cloths” tangled space-time surfaces

Figure 13: Left: intersection of general 2D surfaces in 3D. Right:
intersecting spacetime volumes of 2D curves.

6.1 Less Decent Descent Directions

Before embarking on our normal derivation, we summarize our
early failures with various alternatives. An obvious approach is to
move objects according to the spatial normal evaluated at the first
instant of contact. Similar to our chain rule differentiation with re-
spect to the UI, this direction can be projected onto the UI degrees
of freedom. Beyond the philosophical question of what is a “first”
instant of contact in a fictitious time dimension (and why is “first”
better than “last,” see Figure 15), we found this normal to be very
sensitive, or “noisy,” with respect to small perturbations to position
or shape.

To restore temporal symmetry we considered averaging the contact
normals at the first and last instants contact, but noise remained.
To reduce the noise, we considered averaging over all contact nor-
mals throughout the collision duration, but the result was not useful:
contact normals at a pair of overlapping mesh primitives, belong-
ing to two already overlapping objects, can point in essentially any
direction, and do not provide a useful direction for resolving the
intersection.

Another alternative we considered was not a definition of the con-
tact normal per se, but a different approach to collision response
altogether. We considered treating the collision interval as a phys-
ical simulation, plowing through the collisions by integrating for-
ward in time. To do this, we experimented with a traditional linear
complementary problem (LCP) formulation of collision response,
but found that the position-based variant did not always have a fea-
sible solution [Erleben 2004] while the velocity-based variant was
not guaranteed to resolve all collisions nor stay close to the de-
signer’s intended edit. Ultimately, we realized that our problem is
best approached not as a collision prevention/resolution, rather as
an existing spacetime mess that must be untangled.

6.2 Untangling Spacetime Cloth

We extend the untangling cloth method of [Volino and Magnenat-
Thalmann 2006] to spacetime. Although we consider reconfig-
urable composed only of rigid objects moving in space, the corre-
sponding trajectory spacetime volumes are highly deformable and
thus susceptible to “tangling,” analogous to how cloth tangles in
R3.

Volino and Thalmann [2006] consider the global problem of identi-
fying and minimizing the amount of overlap between deformable
cloth surfaces in space. They do so by identifying the one-
dimensional intersection contours and minimize their lengths via
gradient descent.

z
y

x

t
y

x
t=0.0 t=1.0t=0.25

t=0.25

t=1.0

Figure 14: Intersection between sphere and box. We illustrate in-
tersection contours for three instants in time (three images, left),
and depict the surface swept by all of intersection contours through-
out the duration of the intersection (one image, right).

6.3 Intersection Surface

At first, it appears that we require a full generalization of this ap-
proach from three to four dimensions. Resolving intersections be-
tween our spacetime trajectories indeed requires minimizing the
two-dimensional surface area of the intersection of two three-
dimensional volumes in spacetime.

We are saved however by the grace of the monotonicity of time.
Time serves as a natural independent variable for parameterizing
the spacetime trajectory and obtaining a 3D “slice” at an instant of
time. A corollary is that spacetime trajectories may fold over in
space but cannot fold over in time (see Figure 13). We exploit this
crucial fact to simplify the spacetime generalization of the contour
minimization method.

Suppose that the time interval [t0, t1] encloses a collision between
a pair of objects (i, j). At any instance t ∈ [t0, t1], there exists at
least one intersection contour (curve) between object i and object j
(see Figure 14). Integrating these contours over the entire intersec-
tion interval sweeps the entire 3D intersection surface immersed in
spacetime. Generalizing the earlier work on cloth untangling, we
wish to minimize an energy measuring the area of this intersection
surface |IS |,

|IS | =
∫ t1

t0

‖Ic(t)‖dt (1)

where, Ic(t) is the intersection contour at a time t and ‖·‖measures
the length of the contour.

6.4 Contact Normals

For untangling two-dimensional cloths in R3, Volino and Thal-
mann [2006] use gradient descent to minimize the length of the
one-dimensional intersection curve between the two surfaces: they
move the n surface mesh vertices V ∈ Rn×3 along the gradient
vector ∇V‖Ic‖. This gradient vector is referred to as the contact
normal.

We are dealing with “three-dimensional cloths” in R3 × [0, 1].
For now, we analogously consider moving spacetime mesh vertices
V ∈ R3 × [0, 1] by minimizing the intersection volume’s surface
area |IS | in Equation (1), moving along ∇V|IS |. Because integra-
tion and differentiation commute, this gradient is simply a sum of
the gradient of one-dimensional intersection curves for each mo-
ment along the collision interval’s temporal extent:

∇V|IS | =
∫ t1

t0

∇V‖Ic(t)‖dt (2)

Therefore, we directly employ their gradient calculation sampled
regularly in time.

Since each one-dimensional intersection curve Ic is independent of
time, the temporal component of our spacetime contact normal is

+ + + =

t = 1t = 0

+ ...
Solving the global problem

First contact

...
Spacetime collision interval

Figure 15: Consider a 2D example of a grey hook moving horizon-
tally over a green hook. The spatial normal at first (or last) contact
has no vertical component; moving in this direction will only lead to
more contact. In contrast, our method effectively solves the global
problem resulting in a normal pointing in the vertical direction,
successfully resolving the contact.

zero. As a concrete example, consider the spatial component of
the spacetime contact normal depicted in Figure 15. Naturally, the
gradient of the spatial intersection curve length (‖Ic(t)‖) at a fixed
time (t) with respect to the mesh vertex spatial positions at that
time (Vt ∈ Rn×3) only reveals spatial information: all slices of
the mesh through time seemingly stay in their time slice and do not
influence each other.

However, this apparent independence between temporal slices is
not as it initially appears. The spacetime mesh is coupled across
time via our design user-interface degrees of freedom. We only
consider rigid objects, so a change to an object’s geometry will
affect all moments in time. For example, changing a “rest pose”
vertex position pi will effect the vertex’s position vi(t) at every
time t. Similarly, the keyframes used for UI elements (cf. §4) effect
long stretches of time. Generally speaking, the gradient ∇UI|IS |
with respect to the UI will have a non-zero temporal action. Letting
Gt = ∇Vt‖Ic(t)‖ and applying the chain rule, we can determine
the gradient of the intersection surface area with respect to the user-
interface (cf. [Harmon et al. 2011; Umetani et al. 2011]):

∇UI|IS | = diag ((∇UIV0)G0, . . . , (∇UIV1)G1) , (3)

that is, a block diagonal matrix involving the gradient of the mesh
vertex positions with respect to the UI elements at each discrete
time sample, ∇UIVt. Although the temporal component of Gt is
set to zero due to the time independence of ‖Ic(t)‖, the chain-rule
when applied to UI elements results in non-zero changes to the tim-
ing of UI keyframes. This follows since the timing of keyframes
influence the object’s motion in space. We apply the chain rule to
this term for our most common UI elements (spherically interpo-
lated quaternion and spline translation keyframes) in the Appendix,
application to other user interactions follows analogously.

6.5 Resolution Hints

The contact normal computed in §6.4 immediately provides useful
insight that the designer can harness to resolve interferences. The
designer can explicitly request a hint for selected object of the cur-
rent collision interval (CI).

The chain rule derived in the Appendix effectively projects the en-
ergy descent direction on a particular UI element’s degrees of free-
dom, providing exactly the appropriate information necessary to
draw a hint. For example, the components corresponding to a spline
control point are interpreted as 3-vector in space rendered on screen
as a large yellow arrow (see Figure 16). The 3D interface can make

hint

Figure 16: The yellow arrow suggests how the designer could move
the seat to avoid interference with the armrests.

it difficult to precisely move in the direction of the hint, so we also
provide a slider to move the UI element along the hint direction.
The interface and the designer work symbiotically to solve the in-
tersection.

Often however this magnitude can be determined automatically and
the direction may change as result. This leads naturally to a gradient
descent resolution scheme that is fully automatic.

6.6 Automatic Resolution

In many instances during the design process the designer is required
to make several tedious edits that can often be automatically han-
dled by the system. We formulate this automatic resolution scheme
as a non-linear optimization problem that attempts to minimize the
energy formulated as the surface area of the collision interface, as
described in Equation (1). Our implementation of gradient descent
employs the Golden Section Search Algorithm [Press et al. 1992]
and assumes that the local energy landscape has a single global min-
imum nearby.

Our experiments showed higher success resolving multi-object in-
terferences in pairs independently rather than as a simultaneous
optimization over all pairwise interferences. We employ a greedy
approach, resolving the collision between the pair of objects con-
tributing most to the intersection energy (1). Resolving the most
severe collisions first mimics the approach a designer might take,
focusing first on severe collisions and later on grazing cases.

6.7 Spacetime Geometry Carving

In the previous sections we considered ways to mitigate collisions
by altering objects via the available user-interface elements. We
now consider altering an object’s geometry dramatically by carving
away the relative swept volume of another interfering object.

Ideally we would like to subtract—in a constructive solid geometry
sense—an offset of the relative swept volume of the carving object
B from the carved object A:

A← A \ offset
(
sweep

(
B, f−1

A ◦ fB
)
, ε
)

(4)

where offset(X, ε) ⊂ R3 computes an ε-offset of a given volume
X ⊂ R3 and sweep(X, f) ⊂ R3 computes a swept volume of a
given volume X undergoing a rigid motion f(t).

If B and A are each undergoing rigid motions fA(t) and fB(t)
respectively, then we consider the swept volume of B according to
its motion observed in the reference frame of A.

Computing offset volumes and swept volumes of triangle meshes
exactly poses computational and representational problems. The
exact swept volume of a solid bounded by a triangle mesh undergo-
ing a rigid motion is a piecewise-ruled surface [Weld and Leu 1990]
(i.e., in general not representable with mesh of flat triangles). Sim-
ilarly the exact offset surface of a solid bounded by a triangle mesh
is a piecewise quadric surface [Pavic and Kobbelt 2008]. However,
to fit into the rest of our pipeline, we need the output of this carving
sub-routine to produce a new triangle mesh. Therefore, previous
works on exact offsets and swept volumes are inappropriate in our
contexts due to their output respresentation.

Previous tools for computing triangle-mesh approximations of
swept volumes (e.g., [Peternell et al. 2005]) and surface offseting
(e.g., [Campen and Kobbelt 2010]) focus on accuracy over perfor-
mance and simplicity. Instead, we propose directly computing a
conservative triangle-mesh approximation of an offset to the swept
volume by contouring a signed distance field. We then subtract this
approximation from the exact geometry of the static object to en-
sure its details remain in tact.

Approximate offset of swept volume Our approach adapts and
accelerates the implicit method of [Schroeder et al. 1994]. Without
loss of generality, the input to this subroutine is an object B, a rigid
motion f(t) for t ∈ [0, 1], and a desired offset amount ε. The
output is a triangle mesh approximating the ε-offset surface to the
swept volume of B moving along f(t) (see Figure 17).

First we lay a grid over the bounding box containing the spatial
extent of B transformed by f(t) for all t ∈ [0, 1] padded by 2ε.
The grid step size h is an exposed parameter trading off between
computation time (larger is coarser, faster) and accuracy (smaller is
finer, more accurate). The step size should be chosen smaller than
the smallest relevant feature on B.

For each grid vertex, we will approximate the signed distance to
the swept volume’s surface. The swept volume S is the union of B
moving along f(t):

S =
⋃

t∈[0,1]

f(t)B. (5)

This is easily re-written in terms of signed distances (assuming neg-
ative distances inside a solid):

d(S,p) = min
t∈[0,1]

d (f(t)B,p) , (6)

where d(X,p) is the signed distance from the surface of some solid
X to a query point p.

Given a signed distance field to S, the surface of S (or any offset)
can be extracted as the zero (ε) level set. We approximate this on
our grid by taking small discrete steps in time and using march-
ing cubes to extract the level set at ε. Because the signed-distance
field is only useful insofar as it reveals the ε level set, we cull grid
vertices determined far enough away (>

√
3ε) or too far inside

(< ε−
√

3ε) during acceleration tree evaluation.

Finally, we subtract our triangle mesh approximation of S from the
triangle mesh representation of A using the robust boolean library
within LIBIGL [Jacobson et al. 2013].

It is tempting to conduct this final boolean subtraction also on the
signed distance grid, using the signed distance to A. This would

Inputs A’s reference frame B’s swept volume

ε-contour

Outputs

Figure 17: Two objects A and B overlap in spacetime (ghosting projection, left). We consider the relative motion of B in A’s reference
frame. Sampling densely in time we aggregate the signed distance to B on a grid as B transitions. We contour the ε-offset surface to the
swept volume and subtract this mesh from A. The new A does not overlap B in space time.

Scale model replica validationCluttered cabinet Unloaded state,
styrofoam block

Loaded state, styrofoam
minus swept volumes

Figure 18: A cluttered kitchen cabinet is tidied up by inserting a styrofoam block and subtracting the swept volumes of each object placed
into place. Using a 3D printer, we validate this design.

certainly be more efficient, but unfortunately forfeits the sharp de-
tails and sparse representation of A.

Instead, our approach uses an approximate representation of the
swept volume S, but conducts the boolean subtraction exactly. This
maintains the original details ofA away from the subtracted region,
forfeiting details of the swept volume, but this is already abstracted
from the designer and obscured by the necessary offsetting.

7 Results

We implemented our prototype in C++11 using a background
thread (std::thread) to detect collisions as the designer makes
edits. On a MacBook Air 2GHz Intel Core i7 8GB memory ma-
chine, our spacetime collision detection and resolution runs interac-
tively for our examples (meshes with 100 to 10,000 triangles). For
examples with multiple transitions, each transition runs an instance
of our 3D viewer with keyframe timeline. End states and object
geometries are shared and edits propagate immediately. Changes to
the collision intervals (CIs) are announced to the graph view.

In Figure 3, the designer would like to add armrests to a park
bench that reconfigures into a picnic table. The armrests do not
cause problems at either end state, but do cause collisions along the
way. The designer experiments with a variety of solutions available
within our tool: (a) carving away the swept volume of the armrests
from the bench seat, (b) interactively reshaping the armrests until
collisions disappear, and (c) adding a hinge mechanism to stow the
armrests beneath the table.

In Figure 5, the designer adds various accessories to a folding bicy-
cle. Adding a basket and altering the handle bars creates collisions
(red highlight) when folding laterally. After interactive experimen-
tation, the designer finds that changing the folding mechanism will
accommodate the additions.

The reconfigurable kitchen in Figure 2 involves a graph of six tran-
sitions between seven states. We show a few of the most interesting
states with ghosting (see §4.2) to indicate transitions. In the clean
up state (1), all deployable objects are hidden and there is plenty of
space to walk around. In the food prep state (2), the stove vent low-
ers to reveal more counter space. In appliance state (4), medium-
size machines appear ready for use via a Murphy-bed-style shelving

system. If more counter space is needed when using the appliances,
extra counter space unfolds over the sink (5). The designer employs
the carving tool of §6.7 to leave space for the faucet. When cook-
ing is done and the appliances are put away, the telescoping table
deploys and benches swing out from under the cabinets (6). See the
accompanying material for a video of the full length editing session
of this example.

Reconfigurability helps tidy up a chaotic cabinet of appliances,
cups, and glass in Figure 18. In this theoretical example, the de-
signer considers filling the cabinet with a block of styrofoam and
then carving from it the swept volume of each object as it is placed
into a non-overlapping position in the cabinet. We validated the
effectiveness of this idea with a 3D-printed scale model.

In Figure 20, the designer plans furniture arrangements for a re-
configurable studio apartment in Manhattan. By identifying and
resolving impossible transitions, the apartment fits a wide assort-
ment of furniture featuring a sleeping mode, bathroom mode, and
entertainment mode.

Our tools function on the macro apartment-size scale and also on
the micro scale. In Figure 19, the designer reshapes and adds com-
plexity to a reconfigurable Burr puzzle. We validated this result
using a 3D printer: all parts fit together neatly.

7.1 Limitations & Future Work

We focused the feature set of our prototype on visualization, mon-
itoring and resolution aids unique to the problem of designing re-
configurables. We delegated advanced geometric editing to third
party tools. Integrating advanced real-time mesh editing [Gal et al.
2009; Liu et al. 2014] into our tool should be possible.

We also assumed that the designer had geometric models available.
While 3D scanning is becoming more common place, we imag-
ine that integrated the wealth of online 3D data (à la [Schulz et al.
2014]) would be an interesting extension.

Finally, our interpretation of physical feasibility is limited to inter-
penetration during reconfiguration. We rely on the user’s human
intuition or domain expertise to prevent unnatural or mechanically
impossible transitions (e.g., levitating couches). Adapting our con-

Burr puzzle in disassembled state Burr puzzle assembledOriginal Redesigned

Figure 19: We validated the feasibility of our Burr puzzle design by 3D printing the parts.

1 2 2 3 4transition graph state

Figure 20: A reconfigurable apartment. Transition graph (leftmost) summarizes four overall states. (1) An open floorplan is used for parties
and housekeeping. (2) In daytime and evening, the sofa faces the TV, the WC is accessible via a swinging door, and for showering, the sink
folds up, the undersink piping telescopes into the drain. (3) For dining, a table and benches swing into place; the sink remains accessible but
not WC. (4) At night, a wall bed swings down.

tact resolution optimization to account for mechanical constraints
would be a challenging but exciting future work.

Acknowledgements

The Columbia Computer Graphics Group is supported by Dis-
ney Research, Pixar, Adobe, and Altair. We thank Keenan Crane
and Henrique Maia for illuminating discussions. Funded in part
by NSF grants CMMI-11-29917, IIS-12-08153, IIS-14-09286, and
IIS-17257.

References

ALLARD, J., FAURE, F., COURTECUISSE, H., FALIPOU, F.,
DURIEZ, C., AND KRY, P. G. 2010. Volume contact constraints
at arbitrary resolution. ACM Trans. Graph. 29, 4 (July), 82:1–
82:10.

BÄCHER, M., BICKEL, B., JAMES, D. L., AND PFISTER, H.
2012. Fabricating articulated characters from skinned meshes.
ACM Trans. Graph..

BÄCHER, M., WHITING, E., BICKEL, B., AND SORKINE-
HORNUNG, O. 2014. Spin-it: Optimizing moment of inertia
for spinnable objects. ACM Trans. Graph..

BÄCHER, M., COROS, S., AND THOMASZEWSKI, B. 2015.
Linkedit: interactive linkage editing using symbolic kinematics.
ACM Trans. Graph..

BARAFF, D., WITKIN, A., AND KASS, M. 2003. Untangling
cloth. ACM Trans. Graph. 22, 3, 862–870.

BERNSTEIN, G. L., AND WOJTAN, C. 2013. Putting holes in
holey geometry: Topology change for arbitrary surfaces. ACM
Trans. Graph..

BHARAJ, G., LEVIN, D. I. W., TOMPKIN, J., FEI, Y., PFISTER,
H., MATUSIK, W., AND ZHENG, C. 2015. Computational de-
sign of metallophone contact sounds. ACM Trans. Graph..

CAMERON, S. 1990. Collision detection by four-dimensional in-
tersection testing. IEEE T. Robotics and Automation.

CAMPEN, M., AND KOBBELT, L. 2010. Polygonal boundary eval-
uation of minkowski sums and swept volumes. Comput. Graph.
Forum.

CEYLAN, D., LI, W., MITRA, N. J., AGRAWALA, M., AND
PAULY, M. 2013. Designing and fabricating mechanical au-
tomata from mocap sequences. ACM Trans. Graph..

ERLEBEN, K. 2004. Stable, Robust, and Versatile Multibody Dy-
namics Animation. PhD thesis, Univ. of Copenhagen.

EVERITT, C. 2001. Interactive order-independent transparency.
Tech. rep., nVidia Corp.

GAL, R., SORKINE, O., MITRA, N. J., AND COHEN-OR, D.
2009. iWIRES: An analyze-and-edit approach to shape manipu-
lation. ACM Trans. Graph..

GARG, A., SAGEMAN-FURNAS, A. O., DENG, B., YUE, Y.,
GRINSPUN, E., PAULY, M., AND WARDETZKY, M. 2014. Wire
mesh design. ACM Trans. Graph..

GUIBAS, L. J. 1998. Kinetic data structures–a state of the art
report. Proc. WAFR.

HARMON, D., PANOZZO, D., SORKINE, O., AND ZORIN, D.
2011. Interference-aware geometric modeling. ACM Trans.
Graph..

IGARASHI, Y., IGARASHI, T., AND MITANI, J. 2012. Beady: In-
teractive beadwork design and construction. ACM Trans. Graph..

JACOBSON, A., PANOZZO, D., ET AL., 2013. libigl: A simple C++
geometry processing library. http://igl.ethz.ch/projects/libigl/.

JOUBERT, N., ROBERTS, M., TRUONG, A., BERTHOUZOZ, F.,
AND HANRAHAN, P. 2015. An interactive tool for designing
quadrotor camera shots. ACM Trans. Graph..

KAVRAKI, L. E., ŠVESTKA, P., LATOMBE, J.-C., AND OVER-
MARS, M. H. 1996. Probabilistic roadmaps for path planning in
high-dimensional configuration spaces. IEEE TRA.

http://www.google.com/search?q=Volume+contact+constraints+at+arbitrary+resolution
http://www.google.com/search?q=Volume+contact+constraints+at+arbitrary+resolution
http://www.google.com/search?q=Fabricating+articulated+characters+from+skinned+meshes
http://www.google.com/search?q=Spin-it:+Optimizing+moment+of+inertia+for+spinnable+objects
http://www.google.com/search?q=Spin-it:+Optimizing+moment+of+inertia+for+spinnable+objects
http://www.google.com/search?q=Linkedit:+interactive+linkage+editing+using+symbolic+kinematics
http://www.google.com/search?q=Untangling+cloth
http://www.google.com/search?q=Untangling+cloth
http://www.google.com/search?q=Putting+holes+in+holey+geometry:+Topology+change+for+arbitrary+surfaces
http://www.google.com/search?q=Putting+holes+in+holey+geometry:+Topology+change+for+arbitrary+surfaces
http://www.google.com/search?q=Computational+design+of+metallophone+contact+sounds
http://www.google.com/search?q=Computational+design+of+metallophone+contact+sounds
http://www.google.com/search?q=Collision+detection+by+four-dimensional+intersection+testing.
http://www.google.com/search?q=Collision+detection+by+four-dimensional+intersection+testing.
http://www.google.com/search?q=Polygonal+boundary+evaluation+of+minkowski+sums+and+swept+volumes
http://www.google.com/search?q=Polygonal+boundary+evaluation+of+minkowski+sums+and+swept+volumes
http://www.google.com/search?q=Designing+and+fabricating+mechanical+automata+from+mocap+sequences
http://www.google.com/search?q=Designing+and+fabricating+mechanical+automata+from+mocap+sequences
http://www.google.com/search?q=Interactive+order-independent+transparency
http://www.google.com/search?q=iWIRES:+An+analyze-and-edit+approach+to+shape+manipulation
http://www.google.com/search?q=iWIRES:+An+analyze-and-edit+approach+to+shape+manipulation
http://www.google.com/search?q=Wire+mesh+design
http://www.google.com/search?q=Wire+mesh+design
http://www.google.com/search?q=Kinetic+data+structures--a+state+of+the+art+report
http://www.google.com/search?q=Kinetic+data+structures--a+state+of+the+art+report
http://www.google.com/search?q=Interference-aware+geometric+modeling
http://www.google.com/search?q=Beady:+Interactive+beadwork+design+and+construction
http://www.google.com/search?q=Beady:+Interactive+beadwork+design+and+construction
http://www.google.com/search?q=libigl:+A+simple+C+++geometry+processing+library
http://www.google.com/search?q=libigl:+A+simple+C+++geometry+processing+library
http://www.google.com/search?q=An+interactive+tool+for+designing+quadrotor+camera+shots
http://www.google.com/search?q=An+interactive+tool+for+designing+quadrotor+camera+shots
http://www.google.com/search?q=Probabilistic+roadmaps+for+path+planning+in+high-dimensional+configuration+spaces
http://www.google.com/search?q=Probabilistic+roadmaps+for+path+planning+in+high-dimensional+configuration+spaces

KLOSOWSKI, J. T., HELD, M., MITCHELL, J. S., SOWIZRAL,
H., AND ZIKAN, K. 1998. Efficient collision detection using
bounding volume hierarchies of k-dops. IEEE TVCG.

KOO, B., LI, W., YAO, J., AGRAWALA, M., AND MITRA, N. J.
2014. Creating works-like prototypes of mechanical objects.
ACM Trans. Graph..

LI, H., ALHASHIM, I., ZHANG, H., SHAMIR, A., AND COHEN-
OR, D. 2012. Stackabilization. ACM Trans. Graph..

LIU, S., JACOBSON, A., AND GINGOLD, Y. 2014. Skinning cu-
bic Bézier splines and Catmull-Clark subdivision surfaces. ACM
Trans. Graph..

LIU, T., HERTZMANN, A., LI, W., AND FUNKHOUSER, T.
2015. Style compatibility for 3D furniture models. ACM Trans.
Graph..

MERRELL, P., SCHKUFZA, E., LI, Z., AGRAWALA, M., AND
KOLTUN, V. 2011. Interactive furniture layout using interior
design guidelines. ACM Trans. Graph..

PAVIC, D., AND KOBBELT, L. 2008. High-resolution volumetric
computation of offset surfaces with feature preservation. Com-
put. Graph. Forum.

PETERNELL, M., POTTMANN, H., STEINER, T., AND ZHAO, H.
2005. Swept volumes. Computer-Aided Design Appl..

POPOVIĆ, J., SEITZ, S. M., ERDMANN, M., POPOVIĆ, Z., AND
WITKIN, A. 2000. Interactive manipulation of rigid body simu-
lations. In Proc. SIGGRAPH.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 1992. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press.

SCHROEDER, W. J., LORENSEN, W. E., AND LINTHICUM, S.
1994. Implicit modeling of swept surfaces and volumes. In Proc.
of the Conference on Visualization.

SCHÜLLER, C., PANOZZO, D., AND SORKINE-HORNUNG, O.
2014. Appearance-mimicking surfaces. ACM Trans. Graph..

SCHULZ, A., SHAMIR, A., LEVIN, D. I. W., SITTHI-AMORN, P.,
AND MATUSIK, W. 2014. Design and fabrication by example.
ACM Trans. Graph..

SECORD, A., LU, J., FINKELSTEIN, A., SINGH, M., AND
NEALEN, A. 2011. Perceptual models of viewpoint preference.
ACM Trans. Graph..

SHAO, M.-Z., AND BADLER, N. 1996. Spherical sampling by
archimedes’ theorem. Tech. rep., Univ. of Penn.

SHOEMAKE, K. 1992. Uniform random rotations. In Graphics
Gems III. Morgan Kaufmann.

SKOURAS, M., THOMASZEWSKI, B., BICKEL, B., AND GROSS,
M. 2012. Computational design of rubber balloons. Comput.
Graph. Forum.

SKOURAS, M., THOMASZEWSKI, B., COROS, S., BICKEL, B.,
AND GROSS, M. 2013. Computational design of actuated de-
formable characters. ACM Trans. Graph..

SNIBBE, S. S. 1995. A direct manipulation interface for 3d com-
puter animation. Comput. Graph. Forum.

SUN, T., AND ZHENG, C. 2015. Computational design of twisty
joints and puzzles. ACM Trans. Graph..

TANG, M., MANOCHA, D., YOON, S.-E., DU, P., HEO, J.-P.,
AND TONG, R.-F. 2011. Volccd: Fast continuous collision
culling between deforming volume meshes. ACM Trans. Graph.
30, 5 (Oct.), 111:1–111:15.

TESCHNER, M., KIMMERLE, S., ZACHMANN, G., HEIDEL-
BERGER, B., RAGHUPATHI, L., FUHRMANN, A., CANI, M.-
P., FAURE, F., MAGNENAT-THALMANN, N., AND STRASSER,
W. 2004. Collision detection for deformable objects. In Proc.
Eurographics (STAR).

THOMASZEWSKI, B., COROS, S., GAUGE, D., MEGARO, V.,
GRINSPUN, E., AND GROSS, M. 2014. Computational design
of linkage-based characters. ACM Trans. Graph..

UMETANI, N., KAUFMAN, D. M., IGARASHI, T., AND GRIN-
SPUN, E. 2011. Sensitive couture for interactive garment editing
and modeling. ACM Trans. Graph..

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. ACM
Trans. Graph..

UMETANI, N., KOYAMA, Y., SCHMIDT, R., AND IGARASHI, T.
2014. Pteromys: Interactive design and optimization of free-
formed free-flight model airplanes. ACM Trans. Graph..

VOLINO, P., AND MAGNENAT-THALMANN, N. 2006. Resolv-
ing surface collisions through intersection contour minimization.
ACM Trans. Graph..

WANG, B., FAURE, F., AND PAI, D. K. 2012. Adaptive image-
based intersection volume. ACM Trans. Graph. (Proc. SIG-
GRAPH) 31, 4.

WELD, J. D., AND LEU, M. C. 1990. Geometric representation
of swept volumes with application to polyhedral objects. Int. J.
Rob. Res..

WITKIN, A., AND KASS, M. 1988. Spacetime constraints. Proc.
SIGGRAPH.

XIN, S., LAI, C.-F., FU, C.-W., WONG, T.-T., HE, Y., AND
COHEN-OR, D. 2011. Making burr puzzles from 3d models.
ACM Trans. Graph..

YU, L.-F., YEUNG, S. K., TANG, C.-K., TERZOPOULOS, D.,
CHAN, T. F., AND OSHER, S. 2011. Make it home: automatic
optimization of furniture arrangement. ACM Trans. Graph..

ZHOU, Y., SUEDA, S., MATUSIK, W., AND SHAMIR, A. 2014.
Boxelization: Folding 3d objects into boxes. ACM Trans.
Graph..

Appendix: Chain-rule

We expand upon the gradient of the mesh vertex positions at a fixed
time with respect to the user-interface elements, ∇UIVt in Equa-
tion (3).

We assume all objects of the reconfigurable to be rigid (their ge-
ometric shapes are constant over time up to rigid motion). The
degrees of freedom exposed to the user are: movements of each
mesh vertex’s “rest pose” location, p ∈ R3); cubic Bézier spline
translational keyframes, each including backward, interpolated and
forward spatial points u, t,w ∈ R3 and a time s ∈ [0, 1] on the
timeline; and spherically interpolated rotational keyframes, each in-
cluding a rotation θ ∈ SO(3) and a time on the timeline σ ∈ [0, 1].

Exploding all degrees of freedom in our UI as a vector we have:

UI = (p1, . . . , (u1, t1,w1, s1), . . . , (θ1, σ1), . . .) . (7)

http://www.google.com/search?q=Efficient+collision+detection+using+bounding+volume+hierarchies+of+k-dops
http://www.google.com/search?q=Efficient+collision+detection+using+bounding+volume+hierarchies+of+k-dops
http://www.google.com/search?q=Creating+works-like+prototypes+of+mechanical+objects
http://www.google.com/search?q=Stackabilization
http://www.google.com/search?q=Skinning+cubic+B'ezier+splines+and+Catmull-Clark+subdivision+surfaces
http://www.google.com/search?q=Skinning+cubic+B'ezier+splines+and+Catmull-Clark+subdivision+surfaces
http://www.google.com/search?q=Style+compatibility+for+3D+furniture+models
http://www.google.com/search?q=Interactive+furniture+layout+using+interior+design+guidelines
http://www.google.com/search?q=Interactive+furniture+layout+using+interior+design+guidelines
http://www.google.com/search?q=High-resolution+volumetric+computation+of+offset+surfaces+with+feature+preservation
http://www.google.com/search?q=High-resolution+volumetric+computation+of+offset+surfaces+with+feature+preservation
http://www.google.com/search?q=Swept+volumes
http://www.google.com/search?q=Interactive+manipulation+of+rigid+body+simulations
http://www.google.com/search?q=Interactive+manipulation+of+rigid+body+simulations
http://www.google.com/search?q=Implicit+modeling+of+swept+surfaces+and+volumes
http://www.google.com/search?q=Appearance-mimicking+surfaces
http://www.google.com/search?q=Design+and+fabrication+by+example
http://www.google.com/search?q=Perceptual+models+of+viewpoint+preference
http://www.google.com/search?q=Spherical+sampling+by+archimedes'+theorem
http://www.google.com/search?q=Spherical+sampling+by+archimedes'+theorem
http://www.google.com/search?q=Uniform+random+rotations
http://www.google.com/search?q=Computational+design+of+rubber+balloons
http://www.google.com/search?q=Computational+design+of+actuated+deformable+characters
http://www.google.com/search?q=Computational+design+of+actuated+deformable+characters
http://www.google.com/search?q=A+direct+manipulation+interface+for+3d+computer+animation
http://www.google.com/search?q=A+direct+manipulation+interface+for+3d+computer+animation
http://www.google.com/search?q=Computational+design+of+twisty+joints+and+puzzles
http://www.google.com/search?q=Computational+design+of+twisty+joints+and+puzzles
http://www.google.com/search?q=Volccd:+Fast+continuous+collision+culling+between+deforming+volume+meshes
http://www.google.com/search?q=Volccd:+Fast+continuous+collision+culling+between+deforming+volume+meshes
http://www.google.com/search?q=Collision+detection+for+deformable+objects
http://www.google.com/search?q=Computational+design+of+linkage-based+characters
http://www.google.com/search?q=Computational+design+of+linkage-based+characters
http://www.google.com/search?q=Sensitive+couture+for+interactive+garment+editing+and+modeling
http://www.google.com/search?q=Sensitive+couture+for+interactive+garment+editing+and+modeling
http://www.google.com/search?q=Guided+exploration+of+physically+valid+shapes+for+furniture+design
http://www.google.com/search?q=Guided+exploration+of+physically+valid+shapes+for+furniture+design
http://www.google.com/search?q=Pteromys:+Interactive+design+and+optimization+of+free-formed+free-flight+model+airplanes
http://www.google.com/search?q=Pteromys:+Interactive+design+and+optimization+of+free-formed+free-flight+model+airplanes
http://www.google.com/search?q=Resolving+surface+collisions+through+intersection+contour+minimization
http://www.google.com/search?q=Resolving+surface+collisions+through+intersection+contour+minimization
http://www.google.com/search?q=Adaptive+image-based+intersection+volume
http://www.google.com/search?q=Adaptive+image-based+intersection+volume
http://www.google.com/search?q=Geometric+representation+of+swept+volumes+with+application+to+polyhedral+objects
http://www.google.com/search?q=Geometric+representation+of+swept+volumes+with+application+to+polyhedral+objects
http://www.google.com/search?q=Spacetime+constraints
http://www.google.com/search?q=Making+burr+puzzles+from+3d+models
http://www.google.com/search?q=Make+it+home:+automatic+optimization+of+furniture+arrangement
http://www.google.com/search?q=Make+it+home:+automatic+optimization+of+furniture+arrangement
http://www.google.com/search?q=Boxelization:+Folding+3d+objects+into+boxes

Now, considering the gradient of the mesh vertex positions at a time
t with respect to the user-interface decomposes into partial deriva-
tives:

∇UIVt =

∂v1
∂p1

· · · ∂vn
∂p1

...
. . .

∂v1
∂(u1,t1,w1,s1)

...
∂v1

∂(θ1,σ1)

...

, (8)

where vi is the vertex position at time t.

That vertex position vi is determined by its rest pose pi, the ob-
ject’s center of mass c ∈ R3, the current rotation θ(t) ∈ SO(3)
about that center mass, and the current translation x(t) ∈ R3:

vi = θ(t)(pi − c) + c + x(t). (9)

Let us consider each type of partial derivative in turn.

Clearly moving a rest-pose vertex position does not influence some
other vertex, so

∂vi
∂pj

= δijθ(t) ∈ R3×3, (10)

where δij is Kronecker’s delta.

The current translation x(t) is defined by the cubic Beziér interpo-
lation of the two keyframes immediately closest to t on either side,
sj < t < sj+1:

x(f) = (1− f)3tj+ (11)

3(1− f)2fwj+ (12)

3(1− f)f2uj+1+ (13)

f3tj+1 (14)
f = (t− sj)/(sj+1 − sj). (15)

Changing a translational spline keyframe has no effect outside its
immediate neighborhood:

∂vi
∂(uj , tj ,wj , sj)

=
∂x(t)

∂(uj , tj ,wj , sj)
, (16)

(= 0 if t ≤ sj−1 or t ≥ sj+1). (17)

Otherwise, let us assume (by symmetry) that sj < t < sj+1, then

∂x

∂f
= 3(1− f)2(wj − tj)+ (18)

6(1− f)f(uj+1 − wj)+ (19)

3t2(tj+1 − uj+1), (20)
∂x

∂tj
= (1− f)3, (21)

∂x

∂wj
= 3(1− f)2f, (22)

∂f

∂sj
= − 1/(sj+1 − sj) + (t− sj)/(sj+1 − sj)2. (23)

The current rotation θ(t) is defined by the spherical interpolation
of the the two keyframes immediately closest to t on either side,

σj < t < σj+1:

θ(g) = θj(θ
−1
j θj+1)g, (24)

g = (t− σj)/(σj+1 − σj). (25)

where we now interpret θj as a unit quaternion.

Changing a rotational keyframe has no effect outside its immediate
neighborhood:

∂vi
∂(θj , σj)

=
∂vi
∂θ(t)

∂θ(t)

∂(θj , σj)
(26)

= (pi − c)
∂θ(t)

∂(θj , σj)
, (27)

(= 0 if t ≤ sj−1 or t ≥ sj+1). (28)

Again, let us assume that σj < t < σj+1:

∂θ(g)

∂g
= θ(g) log (θ−1

j θj). (29)

The final remaining term, ∂θ(g)
∂θj

, is left to the ambitious reader or to
the industrious MATHEMATICA.

