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Towards Photo Watercolorization
with Artistic Verisimilitude

Miaoyi Wang, Bin Wang, Yun Fei, Kanglai Qian, Wenping Wang, Jiating Chen, and Jun-Hai Yong

Abstract—We present a novel artistic-verisimilitude driven system for watercolor rendering of images and photos. Our system
achieves realistic simulation of a set of important characteristics of watercolor paintings that have not been well implemented
before. Specifically, we designed several image filters to achieve: 1) watercolor-specified color transferring; 2) saliency-based
level-of-detail drawing; 3) hand tremor effect due to human neural noise; and 4) an artistically controlled wet-in-wet effect in
the border regions of different wet pigments. A user study indicates that our method can produce watercolor results of artistic
verisimilitude better than previous filter-based or physical-based methods. Furthermore, our algorithm is efficient and can easily
be parallelized, making it suitable for interactive image watercolorization.

Index Terms—non-photorealistic rendering, watercolor rendering, image processing, artistic-verisimilitude.
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1 INTRODUCTION

DUE to the attractive features and artistic ap-
peals of watercolor paintings, various rendering

methods have been proposed for processing images,
videos and 3D scenes into watercolor works. There are
popular software tools for watercolorization, such as
Adobe Photoshop that provides powerful control for
professional artists, as well as CinemaFX on mobile
devices for ordinary casual users. Most of these tools
are based on image filters [1], [2], [3], [4], [5], since
the image filter approach is usually efficient, easy
to implement, GPU friendly, and allows flexible user
interaction.

However, there is still significant room for the
improvement on the results by these methods. For
example, some distinct physical characteristics in wa-
tercolor paintings, such as the wet-in-wet effect, are
usually ignored in filter-based methods due to their
complexity. Physical simulation using shallow water
hydrodynamics [6], [7], [8] has been employed for
paper-stroke interaction, providing realistic appear-
ance for pigments and strokes. Despite the promis-
ing potential of physical-based methods, their depen-
dence on physical laws makes the process inflexible
for user interaction. Moreover, these physical-based
methods require much more computations and thus
are more time-consuming than the filter-based meth-
ods.

Artists with different styles and experiences may
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draw watercolor paintings using different techniques,
color choices and layouts. Many artistic skills are
required to determine image regions to apply appro-
priate physical effects. Besides, because of the noise in
the human nervous system [9], an artist hardly paints
exactly the same result twice for the same scene. In
our discussion with many professional artists these
considerations haven been found to be crucial for a
watercolor painting to appear watercolor-like.

Our goal in this work is to develop an artistic-
verisimilitude driven system that is capable of pro-
ducing highly watercolor-like results by more user con-
trol. To this end, we have adopted a filter-based ap-
proach to meet the demands of professional painters.
A user study has been conducted to validate the
acceptance of our method. In most cases our results
achieve scores very close to the artworks of watercol-
orists, and are preferred by the professional artists to
the results by computed-assisted watercoloring meth-
ods.

In sum, our method has made the following contri-
butions:
• A new framework for automatically selecting ap-

propriate painting techniques, color, and level-of-
detail (LOD) for different regions based on color
abstraction and saliency information.

• A new image filter for simulating the wet-in-
wet effect that can be controlled either locally or
globally.

• A new image filter to simulate the hand tremor
effect that is natural in the real watercoloring.

• A GPU-based image watercolorization system
with interactive performance.

Figure 1 shows some watercolor results created by
our system from images and photos. An overview of
the pipeline is shown in Figure 2.

In the following we will first introduce some related
work in Section 2 and present the technical details
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(a) Color Transfer (b) LOD Abstraction (c) Hand Tremor Effect (d) Wet-in-Wet Effect

Figure 1. Samples of watercolor paintings created by our system from images or photos. Top row: our results.
Middle row: the input. Bottom row: the zoomed regions corresponding to the novel effects proposed in this paper.
In (a) the color has been tuned to the one that is more common in watercolor paintings; in (b) the details of the
background are blurred while the interesting foreground can be emphasized; in (c) the boundaries of strokes are
distorted with overlap and gap due to hand tremor phenomenon; and in (d) the wet-in-wet effect can be well
simulated.

in Section 3. We will then provide our watercolor
results and discuss the findings in a comprehensive
user study in Section 4.

2 RELATED WORK

Methods for simulating watercolor effects fall largely
into three categories: 1) physical-based methods [6],
[7], [10]; 2) stroke-based methods [11], [12], [13]; and
3) filter-based methods [1], [2], [3], [4]. Our method
belongs to the third category, which is suited for
automatically converting images and photos into wa-
tercolor paintings.

The earliest work on physics-based simulation of
watercolor dates back to 1991 when Small [10] simu-
lated the flow of watercolor pigments on paper with
a Connection Machine. This work inspired the three-
layer model by Curtis et al. [6] that simulates pigment
flow more accurately. Then this work was further

improved by Laerhoven et al. [7] to achieve an in-
teractive frame rate using a distributed paper model.
An interactive oriental ink paint system Moxi was
developed by Chu and Tai [8], which simulates per-
colation of ink with the Lattice Boltzmann Equation.
These methods can simulate water-paper interaction
with accurately modeled virtual brushes, but they
are not suited for converting images into watercolor
paintings. When using the stroke method to simulate
watercolor painting, strokes will mix together and
light color strokes cannot override dark color ones,
which makes the result look like oil paintings.

Image processing methods focus on using vari-
ous image filters to recreate watercolor effects. Jo-
han et al. [11] generated strokes along a vector field
defined over an input image. Its results are easily
distinguished from real watercolor. Kang et al. [12]
proposed a unified scheme to create paintings with
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strokes in different styles relying on edge detection
and optimization. Recently, DiVerdi et al. [14] pro-
posed a vectorized watercolor painting system aiming
at better user interactivity.

Lum and Ma [1] presented a multi-layer texturing
method for rendering surfaces in watercolor style.
Their method operates in 3D object space for bet-
ter temporal coherence. However, natural watercolor
appearance is not achieved in their results. Lei and
Chang [2] presented a rendering pipeline using 2D
filters to simulate watercolor effects. They used a So-
bel filter to simulate the edge darkening effect, which
is widely used in later studies. Luft et al. [3] presented
several approaches to watercolor rendering. Their key
idea is to decompose the image into several canvas
layers and process these layers using different image
filters or image space techniques, and then combine
these layers to produce the final image. Bousseau et
al. [4], [5] used random noise to simulate granula-
tion and used fractal Perlin noise [15] to simulate
the turbulence flow effect. Although parameters are
provided for controlling these effects, changes made
must be applied to the whole image globally, thus it
not possible to apply different effects in different parts
of the image.

Level-of-detail (LOD) abstraction is an important
step in image stylization because watercolor artists
often just want to emphasize details in the image
regions of interest. Different methods have been pro-
posed for abstraction. These methods require the users
to interactively specify important regions [16], [17],
[18], rely on semantic information [19], [20], or iden-
tify local features based on gradient, curvature or
texture complexity [12], [21], [22]. To automatically
identify global important regions without semantic
information or special devices, we perform saliency
detection [23] to achieve LOD abstraction for water-
color effect control.

3 NEW APPROACH

Our system first adjusts the color of the input images
to better emulate the color features that are character-
istic to real watercolor paintings (Section 3.1). In order
to highlight the salient regions of the image (Sec-
tion 3.2), we then perform an abstraction algorithm
(Section 3.3) on the image. Next, we add the wet-in-
wet (Section 3.4) and hand tremor (Section 3.5) effects,
as well as some other effects (Section 3.6), including as
edge darkening, granulation and turbulence flow. The
flow chart of the system pipeline is shown in Figure 2.

3.1 Color Adjustment
Because only a limited number of colors are available
in watercolor paintings, artists often have to paint
with colors that are somehow different from what
they actually see. Color choices are also affected by
the personal aesthetic preferences (see Figure 3). In

Input 
Image

Artistic Color 
Adjustment

Saliency 
Distance Field

Abstraction Output 
Painting

Other Effects

Hand Tremor

Wet-in-Wet

EffectsSaliency-based 
Level-of-Detail

Figure 2. Pipeline of our image watercolorization.

Figure 3. An artist’s painting of a windmill. Note that
the colors of the painting (right) are different from the
observed colors (left).

order to adopt proper color adjustment, we collected
on the Internet and studied over 700 real watercolor
paintings by 17 artists, and found that the colors used
in a particular artist’s works are usually similar and
consistent, which probably help define the distinct
style of each individual artist. In our system, we
classify these paintings by their color characteristics
(Figure 4). Then, given an input image, we choose the
class that best matches the input image as the color
scheme for the output image.

Figure 4. Examples of partial categories in our water-
color database, which are created by clustering images
using a specified color feature.

Specifically, we define color features using the
CIELab (Illuminant E) color space (L, a, b), which
is designed to fit human vision and usually per-
forms better than the RGB color space for vari-
ous image processing applications [24]. We com-
pute the mean and standard deviation of (L, a, b)
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for each image as a six-dimensional feature vector
(Lave, aave, bave, Lstd, astd, bstd). This feature vector in-
dicates the brightness, contrast, and main color tone
of an image. We use the its components of this feature
vector, weighted using the method in [25], to cluster
the collection of the 700 watercolor paintings.

Figure 5. Color adjustment according to the color
feature of a suitable class.

When computing color adjustment, the colors of
an input image are adjusted to be its closest class
of color features, using the color transfer algorithm
presented by Reinhard et al. [26]. Sometimes there
is no discernible difference between the adjusted re-
sult and the original, that is because the original is
already very close the color schema of one class of
watercolor paintings we considered. We have tested
several color spaces and conclude that the CIELab
(Illuminant E) achieves the best results, confirming the
recommendation in [27]. Figure 5 shows an example
of color adjustment with the referenced painting class.
Although we allow the user to choose any class for
color adjustment, in most cases the default choice gen-
erates acceptable results for user. The results provided
in this paper and user study are all generated in this
way.

3.2 Saliency Distance Field

Figure 6. In real watercolor paintings, unimportant re-
gions are often omitted, less saturated or more blurred.

Artists usually wish to emphasize some objects of
interest in a painting while depicting the other regions
with less detail, either less saturated or more blurred,
as shown in Figure 6. To simulate this effect, we
perform saliency detection [23] to identify the regions
that are likely to be emphasized (Figure 7b). Accord-
ing to the detected saliency, a normalized distance
field is generated with its value ranging from 0 to
1, where the smaller distance in the saliency region
indicates higher importance, as shown in Figure 7.
This saliency distance field is used later to guide the
implementation of the abstraction effect, the wet-in-
wet, and the hand tremor effects.

(a) (b) (c)

(d) (e)

Figure 7. Generating a saliency distance field. (a)
The input image. (b) Salient region detection [23]. (c)
The absolute distance computed from (b) using the
Jump Flooding Algorithm. (d) The normalized distance
field computed from (c) by replacing dx with dx/dy.
(e) Smoothing (d) to eliminate discontinuous artifacts
which could be observed around the bottom-right cor-
ner.

To compute the saliency distance field, we use the
Jump Flooding Algorithm [28] (Figure 7c) and then
normalize the values to be within [0, 1]: for each pixel
x, its nearest pixel o on the boundaries of salient
regions is detected as well as its collinear pixel y
on the image border. The absolute distance dx is
replaced by dx/dy to generate a normalized distance
field. For salient regions with concave boundaries or
disconnected regions, the normalized distance field
may be discontinuous because some pixels cannot
find a proper border pixel y for normalization. In such
a case we apply a recursive Gaussian filter [29] to
smooth these discontinuous artifacts.

3.3 Abstraction
In watercoloring, regions that need not be emphasized
will be simplified by abstraction (see Figure 8).

For abstraction, we segment the input image into
color regions using mean shift segmentation in L*a*b
with (hs, hr,M) = (8, 5.5, 50). Then we apply a mean
filter to create color boundaries with small color
variations inside individual segments. For the seg-
ments inside the salient region, only the pixels in
the same segment are smoothed by mean filtering
with kernel size 5; for the segments in the non-
salient regions, pixels belonging to different neighbor
segments that have color difference smaller than 0.3d
are also smoothed where d is the value in the distance
texture for current pixel, with a larger kernel size
clamp(5 ∗ 2 ∗ (d + 0.3), 4, 9). As a result, variations
in salient regions will be better preserved while the
surrounding regions will tend to be be abstracted.

These parameters keep the same for all images in
our experiments.

3.4 Wet-in-Wet
Wet-in-wet is an important and frequently used tech-
nique in watercolor paintings (Figure 9). Artists paint
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(a) (b) (c) (d)

Figure 8. LOD abstraction. (a) The input image.
(b) Segmentation. (c) Saliency distance field. (d) Ab-
stracted result in which the middle areas keep more
details than the surrounding areas.

with a wet brush very a freshly painted wet region so
that the pigments are mixed to produce feather-like
patterns along a region boundary. Among the previ-
ous methods for generating watercolor paintings, only
those based on physical simulation approaches are
capable of generating the wet-in-wet effect by simu-
lating diffusion. However, where and how much this
effect should be applied cannot be controlled due to
the complexity of the shallow water hydrodynamics
technique employed. We shall propose a technique
based on image-filtering for simulating the wet-in-wet
effect.

Figure 9. Wet-in-wet effect in the real watercolor
painting (left) and our results with (middle) and without
(right) this effect. The representative parts are enlarged
in the bottom row.

The feather-like effect is caused by diffusion and
vaporization involving water-carried pigment parti-
cles. In the wet-in-wet technique, the darker color is
usually painted later for better control of color mixing.
To generate this effect, we first randomly scatter some
seeds around the boundaries, and then filter these
areas with an ellipse-shaped kernel oriented along the
normal vectors of a region boundary, as illustrated in
Figure 10. If the filter is circle-shaped with a large
radius, it will simulate painting effect with much
water. Note that the seeds are distributed only on the

brighter side of the boundary and assigned with the
darker color of the opposite side.

Figure 10. Creating feather-like effect. Left: The fil-
ter kernel. Middle: Scattering noise pixels around the
boundary. Right: Filtering the noise area along the
normal vectors of the boundary (the yellow lines) to
generate a feather-like pattern.

The wet-in-wet effect should only be applied to
certain type of boundaries. As a rule of thumb, the
wet-in-wet effect should keep fine details in important
regions. By studying real watercolor paintings, we
propose the following rules according to color and
saliency information to help determine the wet-in-
wet areas so as to generate satisfactory results. Let δh
and δi be the hue difference and intensity difference
between the two adjacent regions, respectively. Let ~gc
be the averaged color gradient in the current region
under consideration, and ~gcx, ~gcy stand for ~gc in x, y
directions. The wet-in-wet technique is applied if one
of the following conditions is satisfied:
• ||~gcx|| ≥ 0.1 and ||~gcy|| ≥ 0.1;
• Inside salient regions and δh < 20◦;
• Outside salient regions and δh < 90◦.
These rules are default settings. To enhance in-

teraction and user control, our system provides a
parameter wet-in-wet mode that has four settings: 1)
default; 2) no wet-in-wet effect near the boundaries
of salient regions; 3) no wet-in-wet effect inside the
salient regions; and 4) no wet-in-wet for the whole
image. In most cases the default setting generates
satisfactory results. The process of creating the wet-
in-wet effect is shown in Figure 11.

3.5 Hand Tremor Effect
A watercolorist hardly draws straight lines without
breaks or wiggling [30], [31], [32], because human
muscles can hardly be controlled accurately due to
the noise in the human nervous system [9]. The hand
tremor effect is visually different from the micro-
scale distortion caused by paper roughness [4]. It has
not been investigated in previous methods for wa-
tercolorization. According to comments from several
professional artists, this is often one of the most cru-
cial factors that distinguish a real watercolor painting
from a computer-generated one.

We have implemented this important effect in our
system. The hand tremor effect can be realized as
overlaps and gaps, as shown in the areas A in Figure 12,
where the boundaries of adjacent color regions are
distorted and therefore do not match exactly. But for
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(a) (b)

(c) (d)

Figure 11. The process of creating the wet-in-wet
effect. (a) The input. (b) Edge detection using sobel
operator. The areas along the the green lines are
determined to apply wet-in-wet effect. (c) Scattering
noise pixels on the brighter side. (d) The final wet-in-
wet effect.

the areas B, the darker color is painted over the
brighter color since it would not mess the colors.

Figure 12. Hand tremor effect in real watercolor paint-
ings (left) and our result with (middle) and without
(right) this effect.

In our implementation, region boundaries are clas-
sified into the following three groups with regard to
the application of the hand tremor effect.

1) Boundaries in a wet-in-wet area should not be
distorted;

2) Boundaries of regions with similar hues are
distorted without overlaps and gaps;

3) The other boundaries are distorted with overlaps
and gaps, as supposed to be generated by the
hand tremor effect.

The wet-in-wet effect is applied only to the first
type of boundaries. For the second type of boundaries,
based on the wave analysis of tissue noise [33], we
use a low-frequency fractal Perlin noise texture to
simulate the distortion effect. The new color f ′1(x) of
pixel x is calculated by:

{
f ′1(x) = f(x+ t1),

t1 = (P1(x), P2(x)).
(1)

where t1 is an offset vector computed from two
different Perlin noise textures [15] P1(x) and P2(x).
From the above equation we get f ′1 by distorting f .

To simulate the third type of boundaries, we use
Equation 2 to compute the new color f ′2, where ⊕
is an operation for mixing the two colors, where fA
and fB in the figure denote two virtual textures for
illustration. We use gradient and color information to
find in which region x and x+ t are located.

f ′2(x) = fA(x+ t1)⊕ fB(x+ t2),

t1 = (P1(x), P2(x)),

t2 = (P3(x), P4(x)).

(2)

In implementation, the magnitude of tremor can be
adjusted with scale between t1 and t2. The smaller ti
is, the straighter the corresponding boundary is.

(a) (b)

Figure 13. (a) shows the result of applying Equation 1,
(b) shows the result of applying Equation 2.

3.6 Other Watercolor Effects

For completeness, we also implemented some other
watercolor effects that have been proposed in previ-
ous methods [2], [3], [4]. The implementation details
can be found in the original references, so are skipped
here. These effects include:
• Edge darkening: darkened stroke boundaries

due to water evaporation;
• Granulation: high-frequency boundary distor-

tion due to rough paper surface;
• Turbulence flow: low-frequency pigment separa-

tion due to uneven water density.
Since pure white and black colors can hardly appear
in watercolor paintings, we tune the image with a
piecewise continuous function to eliminate these col-
ors before adding the granulation effect. Finally, a
post-processing filter [34] is applied for full-screen
anti-aliasing. FXAA [35] is applied to produce smooth
boundaries.

Figure 14 shows the intermediate results after each
step of the pipeline for a specific input image.

4 RESULTS

Figure 15 shows some watercolor paintings produced
with our system. For comparison, we have also
implemented the filter-based method proposed by
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(a) Input (b) Color Transfer (c) Abstrastion (d) Wet-in-Wet

(e) Hand Tremor Effect (f) Other effects (g) Pigement Variation (h) Output

Figure 14. We show the intermediate results at different stage of the pipeline. In (f) Other effects we show the
result by applying the other effects mentioned in section 3.6.

Bousseau et al. [4] (Figure 17). Note that the morpho-
logical filter adopted by their method indiscriminately
eliminates small but important regions, such as the
details in the center of the train image. The watercolor
of the car image in Figure 17 is as dark as the input,
a treatment not commonly found in real watercolors.
Without considering hand tremor, their results look
dry and contain exactly matched boundaries of adja-
cent regions which are unusual in real watercolor. In
comparison, our method produces better results due
to the simulation of a variety of key watercolor effects.

Our system runs on an Intel Core i7 3770 processor
and an nVidia GeForce GTX 580 video card. It takes
about 1.5 seconds to render an image at 800x600, fast
enough for interactive application. The computation
process scales linearly to the number of the input
pixels according to Table 1. The most time-consuming
parts are salient region detection and image segmen-
tation, which take up 54% and 19% of the total time,
respectively.

Table 1
System performance for image with different scales.

Size
(pixels)

4.1× 104 1.6× 105 6.5× 105 2.6× 107

Performance
(seconds)

0.6 0.9 2.2 5.8

User Study To evaluate the artistic-verisimilitude
of our results, we conducted a user study online
on a social network platform, involving 110 people
with different backgrounds, most of whom are stu-
dents. These people were divided into the profes-
sional group (37 people with training in painting for
more than two years and familiar with watercolor)

and the non-professional group (the others). The im-
ages used for the user study also include result images
by other methods from the original publications.

In the first part of the user study, we compare
artistic verisimilitude of the results of our method and
that of the methods by Bousseau et al. [4] and Johan
et al. [11], which are chosen as the representatives
of filter-based and stroke-based watercolor rendering
methods. The images were collected from the original
papers, the Internet or generated by our method, and
are displayed in a random order. The participants
were asked to score each painting on the scale of 0
to 10, where “0” means “this is definitely generated
by computer” and “10” means “this is definitely a
real watercolor painting”. The results are shown in
Figure 16. In the non-professional group, our results
get nearly the same score as real watercolors. In the
professional group, the score for the real paintings
is higher, since presumably the professionals have a
more discerning eye. Nevertheless, with this group
of the professionals, the scores of our results are still
measurably higher than those of real watercolors.

Real watercolor Our results Bousseau et al. Johan et al.
0

2

4

6

8

10

 

 

The professional group
The non−professional group

Figure 16. The averaged scores and standard devia-
tions (marked by the red lines).

In the second part, every participant was asked to
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Figure 15. Watercolor paintings generated with our method. The inputs are shown in the bottom row.

vote between our results and the results generated
from other methods, including Curtis et al. [6], which
is the representative method of physical-based water-
colorization. The results from the professional group
in Figure 18 show that our method received higher
scores than the others.

5 CONCLUSION AND FUTURE WORK
We have proposed a system for automatically synthe-
sizing watercolor paintings from photos. Our system
adjusts the color of the input image to achieve a
better watercolor appearance and detects the salient
scenes to emphasize important objects while abstract-
ing other less important parts, following the practice
of watercolorists. Our method also simulates the wet-
in-wet effect in a simple and efficient way. Further-
more, we proposed a technique to emulate the hand
tremor effect characteristic to real watercolor painting.
A user study indicated that the effects proposed in our
system are favored by both the professional artists and
ordinary users.

Future Work There are more watercolor effects
that can be integrated into our system such as dry
brush, splattering, alcohol and salt effects, etc. We
stipulate that an exemplar-driven approach such as
Lu et al. [36] might be an appropriate solution to
extracting the principles for selecting and applying
these complex watercolor effects.

An extension to our work would be video watercol-
orization. The main challenge there is the frame co-
herence problem facing frame segmentation, saliency-
based abstraction and effect control. This problem
may be resolved by applying an efficient labeling
scheme for optical flow, as done by Lang et al. [35].
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(a) Bousseau et al.: 5.4% (b) Ours: 94.6% (c) Johan et al.: 29.7% (d) Ours: 70.3%

(e) Kang et al.: 5.4% (f) Ours: 94.6% (g) Curtis et al.: 23.8% (h) Ours: 76.2%

Figure 18. Vote results from the professional group, who were also asked for some comments: compared with
(a), (b) is more saturated; compared with (c), (d) looks more real with the wet-in-wet effect and the distorted
boundaries, and has some white space and dirty color mixtures as expected in real watercolor; compared with
(e), (f) is better for its rich detail levels; finally, compared with (g), (h) looks better since it has a more natural
outline, especially in the shadows and dark regions. The original input images can be found in their publications.

Figure 17. Bousseau et al. [4]’s results. Selected
details (in red frames) are compared with the details of
our results (in blue frames) in the bottom row. The input
images are shown in Figures 1 and 15, respectively.
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