
Fast Multi-image-based Photon Tracing with Grid-based
Gathering

Yun Fei, Bin Wang
School of Software, Tsinghua University, Beijing, China, 100084

Abstract We developed a real-time solution for ap-
proximate global illumination, which greatly reduced

the temporal cost in complex scenes. Our approach ini-
tially traces photon-rays with multiple cube-maps, and
then gathers the irradiance of photons using uniform

grids filled with low-order spherical harmonics. There
are two contributions: 1) a heuristic strategy improving
the efficiency of ray-cube-map intersection; 2) a grid-
based algorithm that gathers all-frequency light from

photons: for smooth indirect lighting (diffuse, etc.), a
3D grid covering the whole scene is used, and for high-
frequency lighting (caustics, etc.), a high-resolution 2D

grid covering screen is used. Variant global illumination
effects can be rendered efficiently in our framework.

Keywords Photon tracing · Global illumination ·
Real-time rendering

1 Introduction

Ray-tracing and light-gathering are the two key step-
s in some advanced two-passes rendering algorithms,
such as photon mapping[13,14], a technique for global
illumination. It uses ray-tracing to calculate the distri-
bution of photons, and uses light-gathering to estimate
the intensity contributed by the photons. Recent work-
s focusing on multi-image-based photon mapping [36]
have shown their great efficiency in real-time. Before
tracing a photon-ray, they initially pick some points
in the space and render cube-maps whose centers lo-
cated at these points. Each cube-map stores the geo-

metric information (position, normal, color, and mate-
rial) around. Afterwards, they cast photon-rays from
light sources and sequentially intersect these rays with

Address(es) of author(s) should be given

the objects recorded in the cube-maps. Each intersec-
tion is evaluated and a most suitable one is chosen

from these candidates. The ray-tracer is built on a so-
called secant-method [32], which first calculates an ini-
tial testing point very roughly, and then does a refine-

ment around it. After tracing, they splat the photons
onto the surfaces of objects to estimate the intensity
contributed by the photons[11].

Their solution works well in a simple scene, but has
serious limitations in a complex one due to three reason-
s: a) the coarsely computed initial testing point, which

is crucial for an accurate intersection, can be far from
the correct one, which may lead the refinement to be
nonsense; b) when the number of cube-maps are high,
the number of evaluated intersections for each photon-

ray can strike the overall performance; c) the method
estimating the intensity, called splatting [30,11,21,36],
is not efficient when the number of photons is high, s-

ince a photon will be expanded into a quad that takes
hundreds of pixels, and splatting millions of photons
will produce billions of pixels.

In this paper, we propose an effective solution fo-
cusing on ray-tracing and intensity-estimating in com-
plex scenes (Table 1). Our first contribution is a heuris-
tic ray-tracing scheme that calculates the initial test-
ing point more reasonably, providing a reliable begin-
ning for the later refinement; afterwards only one or
two cube-maps are used by each photon-ray, increasing
the efficiency of ray-cube-map intersection over several
times. Our second contribution is an approximate grid-
based light-gathering technique for all-frequency effect-
s. Each photon is transformed into a spherical harmon-
ics (SH) vector, which is later stored into two types
of uniform grids. One grid called light-gathering vol-

ume, or LGV, is a 3D volume used to gather smooth
light such as diffuse lighting, and the other one, called

2 Paper 12

a) b) c) d)

Fig. 1 Without pre-computation, our technique renders dynamic global illumination effects in a complex scene in real-time
(11 ∼ 56Hz on a GTX480).

screen-space LGV (SSLGV), is a screen-space grid used

to gather more detailed light such as caustics. Our so-

lution has the following key features:

Efficiency In the ray-tracing phase, the number of

cube-maps that a photon-ray intersects with is indepen-

dent to the complexity of the scene; and in the gathering

phase, we compute all the radiance within a small 3D

texture that has tens of texels per dimension. These two

improvements greatly reduce the temporal cost while

maintaining the quality: the results produced with our

algorithm are comparable with the ones rendered off-

line, even if the scenes are complicated.

Generality As seen in Table 1, multiple features in a

complex dynamical scene can be rendered in real-time,

and our framework has the potential to be adaptive to

some more applications besides photon mapping, which

also requires ray-tracing or spatial integration.

2 Previous Work

2.1 Real-time Ray-tracing

Massive progress has been made in the field of real-time

ray-tracing. Several impressive works reached an inter-

active frame rate using complex acceleration data struc-

tures such as KD-trees [11,35], octrees [31] and BVH

[7]. Unfortunately, none of them showed the capability

of handling complex scenes in real-time. Alternatives

were focusing on image-space ray-tracing. They raster-

ized each photon-ray into a row of intersection textures

[20], or localized the ray-tracing process by intersecting

rays with a single cube-map [32]. A recent work [36]

extended the latter one to using multiple cube-maps.

We adopt their scheme, and further improve it to be

more efficient and accurate when handling scenes that

are more complicated.

a) b)

c)

d)

e)

Fig. 2 Our method can efficiently handle variant effects in
complex scenes. a) extremely rough hairballs, b) water caus-
tics, c) glossy reflections, d) volume caustics, e) caustics from
secondary lighting.

2.2 Intensity Estimation and Frequency Analysis

To estimate intensity at a specific pixel, some recent

works have studied how to gather light efficiently[9,10,

2,3,19]. Although rendering a complex dynamic scene

is still challenging, these works are remarkable mile-

stones. Other works based on splatting [30,11,21,36]

have also achieved great improvement but are still over-

whelmed by complex scenes. Besides in the spatial do-

main, light transport in the frequency domain[6] has

also been broadly investigated. Two frequently used ba-

sis functions are the wavelets[24] and the spherical har-

Fast Multi-image-based Photon Tracing with Grid-based Gathering 3

monics (SH)[25,28]. The spherical harmonics are more

commonly used in the field of real-time rendering, for its

simplicity and efficiency [28]. Some recent lattice-based

works injected the low-order SH-approximations of sec-

ondary light into a volumetric grid floating and covering

the whole scene, which is called an Irradiance Volume[8,

23] or a Light Propagation Volume (LPV)[16,17]. In the

LPV, intensity from direct lighting is coarsely propa-

gated between cells, creating indirect lighting, and the

scene is rendered in a subsequent pass. Their method

is embarrassingly fast. However, it is observed [18,4]

that only near-field indirect lighting (where the reflect-

ing and receiving surfaces are close to each other) can

be accurately computed. We try to solve this problem

by using photon tracing, and extend their lattice-based

methods for gathering the indirect light contributed by

photons. Moreover, inspired by the cascaded LPV [17],

we introduce a screen-space SH-grid to assist the gath-

ering for high-frequency lighting.

3 Multi-image-based Ray-tracing

In a single-image-based ray-tracer [32], rays are inter-

sected with distance impostors recorded in an environ-

ment cube-map. Since in some practical scenes it is

found that single cube-map can hardly cover all the

surfaces in the scene, a multi-image-based method is

proposed [36]. Intersections are computed from mul-

tiple cube-maps using the same scheme as its single-

image version. To drop the possibility of false intersec-

tion, each photon-ray is intersected sequentially with

each used cube-map. These intersections are evaluat-

ed by their distances to the photon, and the angles to

the photon ray. After selection, only one intersection is

remained.

Their method has two limitations. First, as the

complexity of a scene increased, the number of used

cube-maps will grow to be overwhelming both tempo-

rally and spatially. Besides, the image resolutions of

cube-maps are limited. When the center of a cube-map

is far from the point of intersection, the intersected sur-

face will be recorded in the cube-map with just a few

pixels, which will bring inaccuracy. Second, their so-

lution is unstable and can lead the intersection to be

wrong under complex situations, even if most cube-

maps are covering the correct point.

Let’s detail their method in a failure case. Regarding

the example in Figure 3a, distances from the objects to

V are rendered into an environment cube-map centered

at V . We denote the ray originating from t pointing a-

long direction r as t + d · r, where r is a normalized

vector and d is the distance from the starting point

to the intersection. To solve for a correct d, an initial

testing point is initially selected, by directly reading

the distance value in the direction of the photon-ray

(showed as the blue point in Figure 3a, or VA). Their

method assumed that the geometries can be approxi-

mated by some plane perpendicular to VA. Under such

assumption, a plane AB is made, with an intersection

denoted as B. This is achieved by calculating a dis-

tance from the photon to B, denoted as dp. Then they

find the intersection (denoted as B′) in the direction of

VB. A secant-based method[32] is then applied around

B′ to refine it to the exact position. Obviously, in our

tested scene in Figure 3a, the geometries can never be

approximated by AB, and the correct result (marked

by a green point) is far from the fictitious one, which

means the distance from photon to this plane, dp, is not

correctly estimated. Yao et al. added extra cube-maps

to solve this problem, however, this makes no sense s-

ince using an extra cube-maps may still fail to find the

correct intersection: notice the other blue point in Fig-

ure 3a, which denotes the center of an extra cube-map;

using this extra one we still get B′ as the result.

To solve this failure case as well as the issue of in-

accuracy mentioned above, we propose a new solution,

based on two observations that: 1) the intersection point

is only strongly related to the ambient objects near to

the photon-ray, and 2) the existing methods failed since

they did not obtain a reliable initial testing point. To

ensure a correct result, we first calculate a reliable ini-

tial testing point, and then use the map closest to this

point in the refinement. In our experiment, this scheme

can efficiently solve the unstable situation mentioned

above and increase performance for several times (see

Figure 4). We detailed our method into two stages:

1) use a cascaded partition scheme to find an in-

tersection close to be accurate, as the initial testing

point. The cube-map closest to the photon is chosen for

intersection (Figure 3). This stage is detailed in subsec-

tion 3.1 and 3.2.

2) refine the initial testing point to an exact solu-

tion following the work proposed by Szirmay-Kalos et

al.[32], using the cube-map closest to the initial testing

point.

Our solution is stable since the initial testing point

achieved from the first stage is very close to the ex-

act solution. Furthermore, as the initial testing point

need not to be numerically accurate, the partition can

be accelerated with using down-level mip-maps of the

cube-map.

3.1 Find Initial Testing Point using Angle Partition

Our hierarchical partition scheme for the initial test-

ing point (ITP) is similar to a hierarchical ray-casting

4 Paper 12

Fig. 3 a) The failure occasion of the existing method. b) The angle-partition scheme to choose an reliable initial testing point.
c) The line of sight from the center of the map (nearest to the photon) to the correct result is blocked by some objects, but
the correct one can still be found using the map whose center is nearest to the initial testing point in refinement.

a) Yao et al. b) Our method c) V-ray off-line reference

Fig. 4 The comparison of distribution of photons traced with 27 cube-maps. a) 33Hz ; b) 201Hz ; c) geometric method. Please
notice the photon distribution in the red box. In (a), lots of photons that should attach elsewhere erroneously pass through
the objects (the sofa) and pile up, while our method in (b) can trace photons correctly. This scene is in Figure 1a.

process but operating on cube-maps. Below we denote

the photon-ray with a position vector t pointing from

a cube-map centered at V, and a direction vector r.

The fan-shaped 3D-planar region folded by t and r is

denoted by A.

Our scheme is simple. Firstly we uniformly subdi-

vide the 3D plane A into Q intervals. Then for each

interval Ai∈[0,Q), calculate an energy function g(Ai)
(detailed in subsection 3.2), and choose a section that

has the minimal energy, since the minimal energy repre-

sents the minimal difference between our estimated ITP

and the correct intersection. Then we check whether the

changing from the ITP in a previous loop to the cur-

rent one is sufficiently small. If it is not, we uniformly

subdivide the newly computed 3D fan-shape and cal-

culate the energy in this fan-shape; otherwise, we exit

the loop.

For all the scenes in this paper, this iteration can be

terminated before taking the fourth loop (with Q = 8).

Notice that after just two passes of calculation (Fig-

ure 3b), the estimated ITP comes very close to the cor-

rect solution. We denote I = dqq + V as the initial

testing point, where q is the geometric bisector of the

fan-shaped area A, and dq is the distance value fetched

from the cube-map in the direction q. Then we calcu-

late the projected length of IV′ in the r direction for

further refinement (denoted by dp below, see [32] for

detail). V′ is the center of the cube-map nearest to the

initial testing point.

dp = (I−V′, r), (1)

where the (,) is the dot product.

Fast Multi-image-based Photon Tracing with Grid-based Gathering 5

3.2 The Energy Function used in Angle Partition

To compute the energy function g(Ai), we firstly fetch

two distance imposters from the cube-map, in the di-

rections of the two boundaries of i, denoted as pi and

pi+1. Then we individually compute f(pi) and f(pi+1)

(f is defined below). With adding them up, we get the

energy function: g(Ai) = f(pi) + f(pi+1).

The function f(p) is defined as a difference volume

that represents the difference between a testing point

p and the correct intersection. It is designed based on

the two key observations below:

Fig. 5 The difference volume showed with translucent blue
boxes.

1) the length of the vector from the position of pho-

ton t to a distance impostor p should be as close as to

the length of its projection on the ray direction, specif-

ically:

d(p) = ||p− t| − (p− t, r)| ≈ 0 (2)

2) both of the comparers should be small. Therefore,

an addition of these two value is computed as a(p) =

|p − t| + (p − t, r). Then f(p) is weighted from these

two values d(p) and a(p), as f = d2a. This is exactly

the frame of a difference triangle between p− t and its

projection on r, with a thickness of d (Figure 5).

f(p) = d2a =


(|p− t| − (p− t, r))2×
(|p− t|+ (p− t, r)), if (p− t, r) > 0,

∞ otherwise.

(3)

When the |p − t| gets smaller, f is determined on

the square of difference between p−t and its projection

on r, which is also the thickness of the triangle frame.

This follows the first observation. When the difference

between p−t and its projection on r gets smaller, which

means that d gets smaller, f is determined on |p−t|, the

distance between the photon and its distance impostor,

following the second observation.

4 The Light-gathering Volume (LGV)

In this section, we introduce our novel strategy for pho-

ton gathering. Our approach can be detailed into three

phases: 1) photon injection (Figure 6a), 2) light-gathering

(Figure 6b, c), and 3) scene illumination. In this sec-

tion, we initially describe the photon injection method,

which is our main contribution (subsection 4.1); after-

wards for completeness we shortly review the light gath-

ering and scene illumination method that we are follow-

ing [17] (subsection 4.2); and then we describe how to

extend our solution into screen-space for high-frequency

light-gathering (subsection 4.3).

4.1 Photon Injection

The LGV is a 3D texture covering all objects in the

scene. After ray-traced, photons are injected into the

LGV in two stages: 1) we transform the position that

a photon-ray intersects with objects into the coordi-

nate of texel in the 3D texture, and 2) we accumulate

the SH-approximation of intensity into the texel. Each

texel stores the SH-approximations of the intensity con-

tributed by injected photons. For each photon j, the in-

tensity Ij is calculated with the following formula (the

deduction is proposed in Appendix A):

Ij =
AC2

0

4N
Φp(Θj ,n)+fr(x) (4)

A: the total area of the scene; N : the amount of pho-

tons cast; C0: a variant bandwidth factor [11]; Θj : the

normalized incident direction of the photon. Φp: the

power of the photon injected; fr(x): the BRDF around

point x; n: the normal of surface hit by the photon. The

derivation of this equation is proposed in Appendix A.

The intensity of photons is approximated by spheri-

cal harmonics (SH) vectors (Figure 6a). Multiple SH-

vectors each of which corresponds to one photon are

accumulated with additive blending. The accumulated

SH-vector ci in the cell i is denoted as:

ci =

n∑
j=1

Ijy(−Θj), (5)

n: the number of photons located in this cell; y(−Θj):
the SH-basis vector rotated [28] into direction −Θj . S-

ince we use SH-approximation only up to two orders,

ci can be written as a vector of four scalars.

6 Paper 12

destination cell D source cell S

Δω

 b) gathering along
axial directions

V(ω)

Face f

Inew (ω)

c) flux is reprojected
into a point light

cell centers
of geometry volume [KD10]

i
j

The interpolated
blocking between cells

Flux before
gathering

Towards the
gathering faceS→fi j

a) inject Photons
into cells

Fig. 6 The light-gathering process. a) The intensity of photons is accumulated into SH-approximations. b) Cells of LGV
store the intensity of light. The cell in the center is to gather light from its neighbors. Flux is computed onto faces fj of the
destination cell D from a source cell Si with fuzzy occlusion of geometries between the cells. c) The accumulated new intensity
in the gathered cell. A part of this figure is adapted from the work proposed by Kaplanyan et al.[17]

4.2 Light-gathering and Scene Illumination

After injection, the intensity in each texel represents

the local illumination around the position of the cell

(in world space). Then for each cell, we gather intensity

from its six neighborhoods adjacent to it:

1) compute the flux from the texels adjacent in axi-

al, orthogonal directions. For a destination cell D, and

for each adjacent cell Si around it, we compute the flux

ISi projected onto each faces fj of cell D by estimat-

ing the integral on different orientations that ΦSi→fj ≈
∆ωSi→fjISiGSi→D, where ∆ωSi→fj =

∫
Ωfj

VSi(ω)dω.

The visibility function, is defined as VSi(ω) = 1, if a

ray starting at the center of Si in direction ω intersects

the face fj directly, otherwise VSi(ω) = 0. In addition,

the GSi→D is a transmittance value given the blocking

of geometry between Si and D.

2) accumulate the intensity from adjacent texels, the

new intensity of the current texel is computed with:

Inew =
1

π

6∑
j=1

6∑
i=1

ΦSi→fj (6)

The gathering scheme is iterated for several times (e-

quivalent to 1/4 of the grid size in one dimension, em-

pirically) to gather in larger radius. Light are propagat-

ed from texel to texel. As a result, the light from the rest

of the scene is received by each texel and accumulated.

This maps the light propagation to final-gathering: s-

ince the total light energy in the LGV never changes,

and will never be artificially increased after gathering,

the energy in the gathering process can be conserved,

just as final-gathering does [33,29].

After gathered, the intensity at each pixel p on the

screen, denoted by Lp, is computed by:

Lp = 4(cp,y(−np))+/l2 (7)

where cp is interpolated from the values read from the

texels in LGV. These texels are located around the po-

sition (in world-space) of pixel p. The position for in-

dexing the LGV is read from the G-buffer rendered in

the view of camera. y(−np) is SH-basis vector rotated

into direction opposite to the surface normal np, and l

is the length of a cell in LGV.

4.3 The Screen-space Light-gathering Volume

(SSLGV)

High frequency details such as caustics need higher or-

der of SH-vectors. When using a lattice filled with SH-

approximation in low-order, the resolution of the grid

has to be increased. This is unacceptable for both spa-

tial and temporal considerations. Moreover, the hierar-

chical solution in Kaplanyan’s work [17] can only solve

detailed light around camera, which makes no sense for

caustics since they may appear anywhere in the sight.

Fortunately, the high-resolution computation is much

less costly to be taken in screen-space. Therefore, we

propose a screen-space grid to assist the light-gathering

process.

Injection Photons are transformed into eye-space and

filtered, according to whether they are caustics pho-

tons or not. Then they are injected into a 2D texture

in the manner similar to LGV. To gather the photons

within the gathering radius, we measure the depth d-

ifference between the photon and the pixel position, in

eye-space, denoted as dx↔xp = ||x| − |xp||, where xp is

the position of photons, and x is the pixel position read

from G-buffer. If dx↔xp < h for some gathering radius

h, the photon is accepted and otherwise rejected. In-

spired from the work of Yao et al.[36], this radius h is

defined as the variant photon splatting radius, specifi-

cally h = C0

√
A/pN where C0 is a global parameter,

A is the total area of the scene, N is the number of

emitted photons and p is the probability density factor

clamped to some boundary [Pmin, Pmax]. Afterwards,

Fast Multi-image-based Photon Tracing with Grid-based Gathering 7

the intensity of each accepted photon is estimated by a

SH-vector and blended into the pixel.

Gathering For each pixel located in p in the eye-space,

the SH-approximation is extracted from its 4-connected

neighbor pixels located at ui and is projected to the di-

rections of uip. When |uip| < h for some gathering

radius h calculated same as in the injection stage, the

neighboring SH-approximation is accumulated to p.

Illumination After several times of iteration (about

twelve, empirically, for a SSLGV at a resolution of 5122),

the SSLGV-texture is rendered with projection that es-

timates the intensity along the surface normal. The cov-

erage area of a pixel p is calculated using a formula from

the work of Yao et al.[36]:

A(p) = |
4tan2 α2 ((xp − v) · r)3

N2(v − xp) · np
|

v: the position of the camera; xp and np: the position

and surface normal in p; N : the size of the SSLGV-

texture in one dimension; r: the forward direction of

the camera; α: the field of view of the camera.

Our approach of SSLGV is illustrated in Figure 7:

1) during the injection of the photons, the light con-

tributed by each photon is accumulated in the Z-axis

that is perpendicular to the clipping plane of the cam-

era (the lower left cell in Figure 7), and only the pho-

tons in some given radius around the actual position of

the surface are accepted; 2) in the process of gather-

ing, SH-approximations in the yellow cells (pixels) are

accumulated into the current grey cell (pixel), and the

one in the red cell (pixel) is declined for its distance to

the current pixel is larger than some given radius for

gathering.

Accepted

Declined

Fig. 7 Illustration of the SSLGV used in our technique.

5 Comparisons

Our experiments are performed on DirectX 11 with an

GTX 480 with 1.5GB video memory. Statistics are p-

resented in Table 1. Compared with off-line render us-

ing classical photon mapping, our real-time method p-

resented a more similar look than other real-time ap-

proaches (Figure 8) with a much higher efficiency. Our

result is comparable to the referenced results rendered

in two hours with V-Ray(Figure 8g), as well as the re-

sult rendered in 24 minutes with PBRT (Figure 8j).

Complex lighting effects such as indirect caustics is well

handled (Figure 2e). Glossy reflections with indirect

lighting (Figure 2c) are rendered with minor cost (only

a texture fetching is necessary). When integrated with

some existing algorithms [12], volume light (Figure 1b,

Figure 2c), or volumetric caustics (Figure 2b and d)

are also plausibly rendered in real-time, which demon-

strates the generality of our method.

Image-space Photon Mapping: Compared with

image-space photon mapping building KD-Trees on CPU

[21], our solution has no pre-computations and can free

CPU for other crucial features in games (AI, scene man-

agement, etc.). Compared with existing multi-image-

based photon mapping [36], our method traces photon-

rays much more rapidly and accurately in average of

5 ∼ 6× in a complex scene (Figure 4), and provides

more accurate results.

Geometry-based Ray-tracing: Compared with ap-

proaches using advanced accelerating data structures

[35,10], our algorithm operates on much simpler da-

ta structures textures. This provides much convenience

during practical game development. Some knotty ob-

jects with extremely tortuous surfaces such as the hair-

balls(Figure 2a) are also plausibly rendered. Besides,

using no complex hierarchy structures makes our im-

plementation simpler and more easily followed.

Discrete Ordinate Methods: Compared with ex-

isting lattice-based methods such as light propagation

volume (LPV)[8,23,16,17], our solution can handle gen-

eral global light transport instead of the near-field one

(which means only the objects close to the light re-

flecting surfaces are affected by global illumination): in

their LPV, the distance of light transport is limited by

the number of iterations and grid resolutions [18,4]. In

the contrary, our method benefit from photon-tracing

is free from this problem.

Virtual Point Lights (VPL): Compared with VPL-

based approaches [27,22,26,1], or voxel-based approach-

es [5,34], our approach can handle detailed lighting such

as caustics (Figure 1c, d, Figure 2c), especially the indi-

rect caustics (Figure 2e), naturally without additional

techniques. Besides, we produce a higher performance

8 Paper 12

Our method, 62Hz Our method, 48Hz

V-Ray, 2 hours PBRT, 24 minutes

Fig. 8 Comparisons of the results. The top row is the rendering result from our method, and the bottom row is the rendering
results generated by off-line renders using classical photon mapping.).

on average than the existing VPL-based approaches

dedicated on large scenes[26].

6 Limitations

a) b) c)

Fig. 9 a) 163 @ 41Hz, b) 323 @ 40Hz, and c) 483 @ 33Hz
show the balance between quality and performance with dif-
ferent size of LGV used.

The artifacts pervasive in existing lattice-based meth-

ods are temporal discontinuity and light bleeding. One

solution is to increase the resolution of LGV. Figure 9

shows the dilemma of performance and quality while

changing the resolution of LGV. Indirect shadow am-

biguous in the image rendered from most coarse LGV

(Figure 9a) gradually becomes detailed (Figure 9c) a-

long with the increasing of LGV size, which brings high-

er temporal and spatial cost. Using some cascaded L-

GV would partially decrease the temporal cost but not

essentially. Besides, the rendering quality of some flat-

tened “middle”-frequency caustics is still very depen-

dent on the amount of emitted photons. Tracing tens

of millions of photons is still overwhelming both spa-

tially and temporally to real-time applications.

7 Conclusions

In this paper, an image-space ray-tracing scheme and a

gathering technique are proposed, providing with greater

efficiency and results comparable to the ones from off-

line renders. In the future, we would like to investigate

some more accurate light-gathering techniques, for in-

stance, the ones considering detailed occlusions between

objects.

References

1. Airieau, B., Bridault, F., Meneveaux, D., and Blasi,
P. Photon Streaming for Interactive Global Illumination
in Dynamic Scenes. Vis. Comput. 27, 3 (2011), 229–240.

Fast Multi-image-based Photon Tracing with Grid-based Gathering 9

Figure Features Triangles Photons LGV Size Ours Yao et al.
1a Color bleeding, glossy reflections 477.9k

0.6M
46x37x24 56Hz 23Hz

1b Complex occlusions, volume light 267.4k 41x42x24 22Hz -*
1c Caustics in a large scene 163.9k 0.81M 39x49x25 19Hz 7Hz
1d Caustics, refractions 33.0k 2.5M 31x29x24 11Hz 5Hz
8a Complex objects and light 372.6k

0.6M
40x33x24 62Hz 3Hz

8b Large scene 77.5k 54x24x39 48Hz 14Hz
2a Very involved objects 671.2k 29x29x24 31Hz -*
2b Volume caustics for water 31.2k 2.5M 25x24x31 11Hz -*
2c glossy and specular reflections 53.8k 0.6M 43x40x24 38Hz 3Hz
2d Volume light and volume caustics, glossy reflections 69.0k 0.81M 52x43x24 16Hz -*

Table 1 Performance Statistics. Resolutions: Results in 1, 8top-right and 2 are the same 800x800; 8top-left is in 1280x800;
All SSLGVs are 5122. All maps are 642. *: No volume light or caustics, or no effect of specular reflections. The LGV sizes are
different in each dimension since the sizes of the geometry are different in each dimension.

2. Brouillat, J., Gautron, P., and Bouatouch, K.
Photon-driven irradiance cache. Comput. Graph. Forum
27, 7 (2008), 1971–1978.

3. Chen, H., and Tatarchuk, N. Lighting research at
bungie. In Courses of Advances in Real-Time Rendering
in 3D Graphics and Games - SIGGRAPH ’09 (2009).

4. Corporation, N. Diffuse global illumination, 2011. from
NVIDIA Direct3D 11 SDK.

5. Crassin, C., Neyret, F., Sainz, M., Green, S., and
Eisemann, E. Interactive indirect illumination using vox-
el cone tracing: An insight. In Talks of the SIGGRAPH
’11 (2011).

6. Durand, F., Holzschuch, N., Soler, C., Chan, E.,
and Sillion, F. X. A frequency analysis of light trans-
port. ACM Trans. Graph. 24 (2005), 1115–1126.

7. Fabianowski, B., and Dingliana, J. Interactive global
photon mapping. Comput. Graph. Forum 28, 4 (2009),
1151–1159.

8. Greger, G., Shirley, P., Hubbard, P. M., and Green-
berg, D. P. The irradiance volume. IEEE Comput.
Graph. Appl. 18 (1998), 32–43.

9. Hachisuka, T. Final gathering on gpu. In Proceedings
of the GPGPU ’04 (2004).

10. Havran, V., Herzog, R., and Seidel, H.-P. Fast final
gathering via reverse photon mapping. Comput. Graph.
Forum 24, 3 (2005), 323–332.

11. Herzog, R., Havran, V., Kinuwaki, S., Myszkowski,
K., and Seidel, H.-P. Global illumination using photon
ray splatting. Comput. Graph. Forum 26, 3 (2007), 503–
513.

12. Hu, W., Dong, Z., Ihrke, I., Grosch, T., Yuan, G.,
and Seidel, H.-P. Interactive volume caustics in single-
scattering media. In Proceedings of the I3D ’10 (2010),
pp. 109–117.

13. Jensen, H. W. Global illumination using photon maps.
In Proceedings of the EGSR ’96 (1996), pp. 21–30.

14. Jensen, H. W. Realistic image synthesis using photon
mapping. 2001.

15. Kajiya, J. T. The rendering equation. In Proceedings of
the SIGGRAPH ’86 (1986), pp. 143–150.

16. Kaplanyan, A. Light propagation volumes in cryengine
3. In Courses of Advances in Real-Time Rendering in 3D
Graphics and Games - SIGGRAPH ’09 (2009), pp. 1–45.

17. Kaplanyan, A., and Dachsbacher, C. Cascaded light
propagation volumes for real-time indirect illumination.
In Proceedings of the I3D ’10 (2010), pp. 99–107.

18. Kirsch, A., and Chajdas, M. G. Light
propagation volumes, 2010. Lab course at
http://blog.blackhc.net/tag/light-propagation-volume/.

19. Knauer, E., Bärz, J., and Müller, S. A hybrid ap-
proach to interactive global illumination and soft shad-
ows. Vis. Comput. 26 (2010), 565–574.

20. Krüger, J., Bürger, K., and Westermann, R. Inter-
active screen-space accurate photon tracing on gpus. In
Proceedings of the EGSR ’06 (2006), pp. 319–330.

21. McGuire, M., and Luebke, D. Hardware-accelerated
global illumination by image space photon mapping. In
Proceedings of the HPG ’09 (2009), pp. 77–89.

22. Novák, J., Engelhardt, T., and Dachsbacher, C.
Screen-space bias compensation for interactive high-
quality global illumination with virtual point lights. In
Proceedings of the I3D ’11 (2011), pp. 119–124.

23. Oat, C. Irradiance volumes for real-time rendering. In
ShaderX5: Advanced Rendering Techniques. 2006.

24. Overbeck, R. S., Donner, C., and Ramamoorthi, R.
Adaptive wavelet rendering. ACM Trans. Graph. 28
(2009), 140:1–140:12.

25. Ramamoorthi, R. A signal-processing framework for
forward and inverse rendering. PhD thesis, 2002.

26. Ritschel, T., Elmar, E., Han, I., D. K. Kim, J., and
Seidel, H.-P. Making imperfect shadow maps view-
adaptive: High-quality global illumination in large dy-
namic scenes. Comput. Graph. Forum 30, 4 (2011), 2258–
2269.

27. Ritschel, T., Grosch, T., Kim, M. H., Seidel, H.-P.,
Dachsbacher, C., and Kautz, J. Imperfect shadow
maps for efficient computation of indirect illumination.
ACM Trans. Graph. 27 (2008), 129:1–129:8.

28. Sloan, P.-P. Stupid spherical harmonics (sh) tricks. In
Lectures of the GDC ’08 (2008), pp. 1–41.

29. Spencer, B., and Jones, M. W. Hierarchical photon
mapping. IEEE Trans. Vis. Comput. Graph. 15 (2009),
49–61.

30. Stürzlinger, W., and Bastos, R. Interactive rendering
of globally illuminated glossy scenes. In Proceedings of
the EGSR ’97 (1997), pp. 93–102.

31. Sun, X., Zhou, K., Stollnitz, E., Shi, J., and Guo,
B. Interactive relighting of dynamic refractive objects.
ACM Trans. Graph. 27 (2008), 35:1–35:9.

32. Szirmay-Kalos, L., Aszódi, B., Lazányi, I., and Pre-
mecz, M. Approximate ray-tracing on the gpu with dis-
tance impostors. Comput. Graph. Forum 24, 3 (2005),
695–704.

33. Tawara, T. Efficient Global Illumination for Dynamic
Scenes. PhD thesis, 2006.

34. Thiedemann, S., Henrich, N., Grosch, T., and
Müller, S. Voxel-based global illumination. In Pro-
ceedings of the I3D ’11 (2011), pp. 103–110.

10 Paper 12

35. Wang, R., Wang, R., Zhou, K., Pan, M., and Bao,
H. An efficient gpu-based approach for interactive global
illumination. ACM Trans. Graph. 28 (2009), 91:1–91:8.

36. Yao, C., Wang, B., Chan, B., Yong, J., and Paul,
J.-C. Multi-image based photon tracing for interactive
global illumination of dynamic scenes. Comput. Graph.
Forum 29, 4 (2010), 1315–1324.

A The math behind photon injection

Consider the intensity over a hemisphere along some normal
at pixel x visible from the camera, denoted as I below[15]:

I =

∫
Ω+

fr(x)L(x← Θ)cosθdωθ, (8)

Where Ωx is the surface angle visible from any point of a
hemisphere at a given point x; fr(x) is the BRDF; Θ is the
incident direction; dωθ is the solid angle of incident direction,
where attaches the incoming light. Using the terms of SH-
approximation [28], this integral can be rewritten into:

I =
n2∑
i=0

ciyi (9)

where yi is the SH-basis. Moreover, we have:

ci =

∫
Ω
fr(x)L(x← Θ)cosθyi(−Θ)dωθ (10)

represents the re-projection of SH-approximation. This inte-
gral can be estimated by:

ci ≈
n2∑
j=1

fr(x)L(x← Θj)∆ωj(Θj ,n)+yi(−Θj), (11)

where Θj is the incident direction of the j-th photon, and is
just used as the sample angle (so the θ in Equation 10 is sub-
stituted). n is the surface normal, while ∆ωj is the subtended
solid angle respectively. The flux emitted from the photon is
necessary to be converted into radiance. The emitted inten-
sity of a photon j is:

Ipj (ω) =
Φp

π
(Θj ,n)+ = A(Θj ,n)+

∫
Ω
L(p→ Θj)cosθdωΘj

(12)

= Φp(Θj ,n)+
∆ωpj→x

4π2
. (13)

Therefore, the light (or radiance) contributed by a photon
L(x← Θj) = dIp/dω ≈ Φp/4π. Inject this into Equation 11:

ci ≈
n2∑
j=1

Φp

4π
fr(x)∆ωj(Θj ,n)+yi(−Θj). (14)

Moreover, the subtended solid angle can be evaluated as∆ωj =
∆Aj((Θj , Υj)+)/r2 where Υj is the vector from the centroid
position of the injected cell pointing to the photon position.
∆Aj is the differential area of surface where the photon is
located before the last tracing, and r is the transportation

distance of photon. A density estimation formula[36] is used
to aid the computation of the differential area:

h = dC0

√
A

N
cosθ, (15)

where h is the radius of influence of a splatted photon com-
puted in the same way as previous works [11], A, the to-
tal area of the scene; N , the amount of photons cast; C0, a
variant bandwidth factor and d, the traveled distance from
where the photon is located before to current position. With
cosθ = (Θj , Υj)+, ∆Aj is computed as: ∆Aj = πh2 =
d2AC2

0/(N(Θj , Υj)+), with d = r + (Θj , Υj):

∆ωj =
π(r + (Θj , Υj))2AC2

0 (Θj , Υj)+

r2N(Θj , Υj)+
(16)

With canceling some terms:∆ωj = (π(r+(Θj , Υj))2AC2
0)/r2N ,

and because (Θj , Υj) << r when we use a finer grid, we have
the formula Equation 4 and Equation 5:

ci ≈
n∑
j=1

AC2
0

4N
Φp(Θj ,n)+fr(x)yi(−Θj) (17)

	Introduction
	Previous Work
	Multi-image-based Ray-tracing
	The Light-gathering Volume (LGV)
	Comparisons
	Limitations
	Conclusions
	The math behind photon injection

