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Abstract

Due to the rapid advance of general-purpose graphics processing unit (GPU), it is an active research topic to study performance
improvement of non-linear optimization with parallel implementation on GPU, as attested by the much research on parallel im-
plementation of relatively simple optimization methods, such as the conjugate gradient method. We study in this context the
L-BFGS-B method, or the limited memory Broyden-Fletcher-Goldfarb-Shanno with boundaries, which is a sophisticated yet effi-
cient optimization method widely used in computer graphics as well as general scientific computation. By analyzing and resolving
the inherent dependencies of some of its search steps, we propose an efficient GPU-based parallel implementation of L-BFGS-B
on the GPU. We justify our design decisions and demonstrate significant speed-up by our parallel implementation in solving the
centroidal Voronoi tessellation (CVT) problem as well as some typical computing problems.
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1. Introduction1

Nonlinear energy minimization is at the core of many algo-2

rithms in graphics, engineering and scientific computing. Due3

to their features of rapid convergence and moderate memory4

requirement for large-scale problems [1], the limited-memory5

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm and its6

variant, the L-BFGS-B algorithm [2, 3, 4], are efficient alterna-7

tives to other frequently-used energy minimization algorithms8

such as the conjugate gradient (CG) [5] and Levenberg-Marquardt9

(LM) [6] algorithm. Furthermore, L-BFGS-B is favored as the10

core of many state-of-the-art algorithms in graphics, such as11

the computation of centroidal Voronoi tessellation (CVT) [7],12

the mean-shift image segmentation [8], the medical image reg-13

istration [9], the face tracking for animation [10], and the com-14

position of vector textures [11]. Among these applications, the15

computation of CVT is the basis of numerous applications in16

graphics including flow visualization [12], image compression17

or segmentation [13, 14, 15], surface remeshing [16, 17, 18],18

object distribution [19], and stylized rendering [20, 21, 22].19

Hence, an L-BFGS-B solver of high performance is desired by20

the graphics community for its wide applications.21

L-BFGS-B is an iterative algorithm. After initialized with a22

starting point and boundary constraints, it iterates through five23

phases: (1) gradient projection; (2) generalized Cauchy point24

calculation; (3) subspace minimization; (4) line searching; and25

(5) limited-memory Hessian approximation. Recently, there26

has been a trend towards the usage of parallel hardware such27

as the GPU for acceleration of energy minimization algorithms.28

Successful examples including the GPU-based CG [23, 24] and29

GPU-based LM [25] have demonstrated the clear advantages of30

parallelization. However, such parallelization for L-BFGS-B is31

challenging since there is strong dependency in some key steps,32

such as (2) generalized Cauchy point calculation, (3) subspace33

minimization, and (4) line searching. In this paper, we tackle34

this problem and make the following contributions:35

• We approximate the generalized Cauchy point with much36

less calculation while maintaining a similar rate of con-37

vergence. By doing so, we remove the dependency in the38

computation to make the algorithm suitable for parallel39

implementation on the GPU.40

• We propose several new GPU-friendly expressions to com-41

pute the maximal possible step-length for backtracking42

and line searching, making it possible to be calculated43

with parallel reduction.44

• We demonstrate the speedup of L-BFGS-B enabled by45

our parallel implementation with extensive testings and46

present example applications to solve some typical non-47

linear optimization problems in both graphics and scien-48

tific computing.49

In the remainder of this paper, we first briefly review the50

BFGS family and optimization algorithms on the GPU in Sec-51

tion 2. Next, we review the L-BFGS-B algorithm in Section 3,52

and introduce our adaptation on the GPU in Section 4. Ex-53

perimental results are given in Section 5, comparing our im-54

plementation with the latest L-BFGS-B implementation on the55

CPU [26] using two examples from different fields: the cen-56

troidal Voronoi tessellation (CVT) problem [7, 27] in graphics,57

as well as the Elastic-Plastic Torsion problem in the classical58

MINPACK-2 test problem set [28] in scientific computing for59

generality. Finally, Section 6 discusses the limitation of our60

GPU implementation and Section 7 concludes the paper with61

possible future work. Our prototype is open source and can be62

free downloaded from Google Code (http://code.google.63

com/p/lbfgsb-on-gpu/).64
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2. Related Work65

We briefly review the previous work on Broyden-Fletcher-66

Goldfarb-Shanno (BFGS) algorithm and its extensions, as well67

as previous work on GPU-based nonlinear optimization.68

2.1. BFGS Optimization69

The BFGS algorithm [29] approximates the Newton method70

for solving several nonlinear optimization problems. Since the71

memory requirement quadratically increases with the problem72

size, the BFGS algorithm is not suitable for large scale prob-73

lems. The seminal work by Liu and Nocedal [2] approximates74

the Hessian matrix with reduced memory requirement which is75

linear in the size of the input variables. Their method is called76

the L-BFGS algorithm, where “L” stands limited memory. In77

addition, a bound constrained version of the L-BFGS algorithm,78

namely the L-BFGS-B algorithm, is proposed by Byrd et al. [3],79

and its implementation in Fortran is given by Zhu et al. [4].80

Furthermore, there are some variants [30, 31, 32, 33] that81

propose improvements by combining the L-BFGS algorithm82

with other optimization methods. Recently, Morales et al. [34,83

26] improve (currently in version 3.0) the step of subspace min-84

imization through a numerical study. We build our prototype85

based on their code, using the techniques detailed in the next86

section to parallelize it on the GPU.87

2.2. Nonlinear Optimization on GPU88

The work proposed by Bolz et al. [24] for the first time89

mapped two computational kernels of nonlinear optimization90

on the GPU, specifically, a sparse matrix conjugate gradient91

solver and a regular grid multi-grid solver. Since then, the topic92

on how to map the conjugate gradient solver efficiently on the93

GPU has been extensively studied. Hillesland et al. [35] de-94

scribed a framework with conjugate gradient method for solv-95

ing many large nonlinear optimizations concurrently on the graph-96

ics hardware, which was applied to image-based modeling. Good-97

night et al. [36] introduced a multi-grid solver for boundary98

value problems on the GPU. Krüger and Westermann [37] also99

proposed some basic operations of linear algebra on the GPU100

and used them to construct a congruent gradient solver and a101

Gauss-Seidel solver. Later, Feng and Li [38] implemented a102

multi-grid solver on the GPU for power grid analysis and Bua-103

tois et al. [39] presented a sparse linear solver on the GPU. Re-104

cently, in the community of parallel computing the conjugate105

gradient method has been proposed on multi-GPU [23, 40, 41]106

or even multi-GPU clusters [42]. A complete survey on this107

topic is beyond the scope of this paper. Please refer to Ver-108

schoor’s paper [43] for more details.109

Besides the conjugate gradient method, Li et al. [25] de-110

scribed a GPU accelerated Levenberg-Marquardt optimization.111

There are also some previous attempts on parallelizing L-BFGS112

method and its variants (e.g. L-BFGS-B method) on the GPU.113

Yatawatta et al. [44] implemented GPU-accelerated Levenberg-114

Marquardt and L-BFGS optimization routines. They used a115

hybrid approach where only the evaluation of the target func-116

tion and its gradients are implemented on the GPU, and the rest117

of the optimization work is still on the CPU. They used a hy-118

brid approach where only the evaluation of the target function119

and its gradients are implemented on the GPU, and the rest of120

the optimization work is still on the CPU. There are also some121

other works [27, 46] followed a similar style. None of them122

implemented the core parts of the optimization (line searching,123

subspace minimization, etc.) on the GPU. Wetzl et al. [45] in-124

troduced a straightforward implementation of the L-BFGS al-125

gorithm on the GPU where the boundaries are ignored, which126

made their implementation unavailable for problems with con-127

straints. As far as we know, our method presented in this pa-128

per will be the first method running all the core parts of the L-129

BFGS-B optimization on the GPU, except for some high-level130

branching logic control.131

3. Algorithm132

The L-BFGS-B algorithm is introduced by Byrd et al. [3].133

We follow the notation in their paper to briefly introduce the134

algorithm in this section.135

The L-BFGS-B algorithm is an iterative algorithm that min-
imizes an objective function x in Rn subject to some boundary
constraints l ≤ x ≤ u, where l, x,u ∈ Rn. In the k-th iteration,
the objective function is approximated by a quadratic model at
a point xk:

mk(x) = f (xk) + gT
k (x − xk) +

1
2

(x − xk)T Bk(x − xk), (1)

where gk is the gradient at point xk and Bk is the limited memory136

BFGS matrix which approximates the Hessian matrix at point137

xk. In each iteration, the most crucial phases are: (1) the com-138

putation for the generalized Cauchy point; and (2) the subspace139

minimization.140

3.1. Generalized Cauchy Point141

To simplify notation, following [3], we shall drop the index142

k of the outer iteration in the rest of this section. Thus, B, g, x,143

and m̂ correspond to Bk, gk, xk, and m̂k used above. Subscripts144

will be used to denote the components of a vector, and super-145

scripts to denote iteration during the search for the generalized146

Cauchy point. To minimize mk(x) in Eqn. 1, the generalized147

Cauchy point xc = x(t∗) is computed as the first local mini-148

mizer t∗ along a piece-wise linear path P(t) = (x0 − tg; l,u) that149

is to be described below.150

Each coordinate xi(t) of the piecewise linear path x(t) is de-
fined as

x0
i − tgi, t ∈ [0, ti] (2)

where the breakpoint ti in each dimension, which is the bound
induced by the rectangular bounding region (l,u), is given by

ti =


(x0

i − ui)/gi if gi < 0
(x0

i − li)/gi if gi > 0
∞ otherwise

. (3)

The breakpoints {ti : i = 1, . . . , n} are sorted into an or-
dered set {t j : t j−1 < t j, j = 2, . . . , n}. To find the minimizer

2
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Figure 1: Example of the L-BFGS-B Optimization on 2D domain. The surface
represents an energy function constrained by box boundaries.

t∗, the intervals [t j−1, t j] are sequentially examined until a local
minimizer t∗ of the objective function x within the interval is
found (i.e. t∗ is the first of the ordered set of local minimiz-
ers {t j∗ : t j∗ ∈ [t j−1, t j]}). In each interval, the curve for the
quadratic model m(x(t)) can be written in ∆t = t − t j−1 as:

m̂ j(∆t) = f j + f j′∆t +
1
2

f j′′∆t2, (4)

where f j = f (x0)+gT (x j−x0)+ 1
2 (x j−x0)T B(x j−x0), and f j′ =151

gT d j+d jT B(x j−x0) (d j
i = −gi if t j < ti or d j

i = 0 otherwise) and152

f j′′ = d jT B(x j − x0) are the first and second order directional153

derivatives of the one dimensional quadratic at point x(t j). Then154

the minimizer is computed as t j∗ = t j−1 − f j′/ f j′′.155

To be concrete, we propose Figure 1 for an illustration in a156

2D domain. In this example, the generalized Cauchy point xc is157

acquired after searching two intervals, where the minimizer t1∗
158

is discarded due to it is not within [0, t1], and the minimizer t2∗
159

is accepted since it is in the field [t1, t2] marked by the bound-160

ary constraints. (m̂ j(∆t) is the curve for the quadratic model161

m(x(t)) in interval [t j−1, t j]. Dotted line means out of the feasi-162

ble region.)163

3.2. Subspace Minimization164

After the generalized Cauchy point is obtained, the quadratic
function mk(x) is minimized for the free variables in xc, i.e. vari-
ables whose values are not at lower bound or upper bound. To
solve this minimizing problem, a direct primal method based
on the Sherman-Morrison-Woodbury formula is used to find a
solution vector d̂u in the subspace, which gives the minimizer
x̄k+1. To backtrack the solution into the feasible region defined
by the boundary constraints, a positive scalar α∗ is found by a
line search as the maximal possible distance of movement along
the search direction dk = x̄k+1 − xk:

α∗ = max(α : α ≤ 1, li ≤ xc
i + αd̂u

i ≤ ui, i ∈ F ) (5)

where F is a set composed of indices corresponding to the free165

variables in xc. The backtracked solution d̂∗ = α∗d̂u gives the166

new point xk+1 for next iteration. This procedure is repeated167

until certain convergence condition is satisfied. Figure 1 shows168

a 2D example of this procedure: after xc is obtained, variable x0169

is fixed due to xc
0 is at the upper boundary u0, and the only free170

variable is x1. So the maximal possible step-length α∗ makes171

xc + α∗du exactly at the upper boundary u1.172

4. Our modifications173

In the following, we explain our modifications for finding174

the generalized Cauchy point and subspace minimization, which175

make the L-BFGS-B algorithm suitable for current GPU archi-176

tecture.177

4.1. Approximate Generalized Cauchy Point178

The inherently sequential searching for the first local min-179

imizer in the original method is quite hostile to the GPU, es-180

pecially for problems with high dimensions. We observe that181

in many practical applications, the first local minimizer is ei-182

ther maintained at the value obtained for the first interval t1∗ =183

− f ′1/ f ′′1 , or very close to the upper bound t1 of the first inter-184

val [0, t1]. So we simplify the choice of the first minimizer185

by approximate the generalized Cauchy point xc = x + tcg by186

tc = max(0,min(t1, t1∗)). That is, if the first local minimizer187

is located in the first interval [0, t1], we find the exact general-188

ized Cauchy point; otherwise, the generalized Cauchy point is189

approximated by t1 in the subsequent computation.190

We examine the differences made by the above approxima-191

tion we introduced with the eight minimization problems in the192

MINPACK-2 problem set [28], list the results in Table 1. Here193

we compare the difference between our approximated mini-194

mizer tc and the minimizer computed in the original L-BFGS-B195

program t∗. The differences in all iterations are categorized and196

listed as percentages. As we can see, tc and t∗ are the same in197

more than 85% iterations for problems except the Journal Bear-198

ing, and |tc − t∗|/t∗ is less than 5% for more than 90% iterations199

for all problems. In addition, even if there are some differences200

for the generalized Cauchy point, there is no significant differ-201

ence in the final energy values. This demonstrates the efficacy202

of our approximation scheme.203

Since t1 = min
i

(ti), it can be computed by a minimal par-204

allel reduction [47]. The directional derivatives f ′ and f ′′ are205

computed in a similar way to the implementation on the CPU,206

where the dot products and matrix-vector multiplications are207

calculated using parallel reductions (see Section 4.3 for details).208

4.2. Backtracking and Line Search209

The original L-BFGS-B implementation uses a sequential
searching to find the positive scalar α∗ for backtracking, which
cannot easily be adapted to the GPU. Here we observe that ex-
pression 5 can be evaluated first by computing the maximal
possible value individually in each dimension (denoted as αi

below) and then using the minimal value among them as the in-
tersect of the boundary constraints. That is, we first compute αi

as follows,

αi =

{
(li − xc

i )/d̂u
i d̂u

i < 0,
(xc

i − ui)/d̂u
i d̂u

i > 0.
(6)
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Elastic-Plastic Journal Minimal Optimal 1-D Ginzburg- Lennard-Jones Stead-State 2-D Ginzburg-|tc−t∗ |
t∗ × 100% Torsion Bearing Surfaces Design Landau Clusters Combustion Landau

0 85.23% 55.14% 100.00% 86.41% 100.00% 100.00% 100.00% 98.70%
0∼5% 12.19% 35.26% 0.00% 8.99% 0.00% 0.00% 0.00% 1.30%

5%∼10% 1.41% 3.40% 0.00% 1.10% 0.00% 0.00% 0.00% 0.00%
10%∼15% 0.35% 1.00% 0.00% 0.80% 0.00% 0.00% 0.00% 0.00%
15%∼20% 0.00% 0.70% 0.00% 0.30% 0.00% 0.00% 0.00% 0.00%
20%∼25% 0.35% 0.60% 0.00% 0.40% 0.00% 0.00% 0.00% 0.00%
25%∼30% 0.12% 0.30% 0.00% 0.20% 0.00% 0.00% 0.00% 0.00%
30%∼35% 0.00% 0.50% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
≥40% 0.35% 3.10% 0.00% 1.80% 0.00% 0.00% 0.00% 0.00%

Energy Diff 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 1: Comparison of our approximated tc and real t∗ in L-BFGS-B algorithm for all the eight minimization problems in MINPACK-2. The size of all problems
is 40,000, and the boundary is [−1, 1] for all dimensions. “Energy Diff” means the difference of final energy between using the original generalized Cauchy point
and our approximated one.

Then a minimal parallel reduction [47] is performed,

α∗ = min(1,min
i

(αi)) (7)

The last step in each iteration of the L-BFGS-B algorithm210

utilizes a line search to find a new point for next iteration, which211

can similarly be computed with a minimal parallel reduction.212

4.3. Implementation Details213

We implement our GPU-based L-BFGS-B algorithm using214

NVIDIA CUDA language [48]. The first problem to be han-215

dled is how to operate between the matrices and vectors, which216

is pervasive in the algorithm, especially when calculating the217

infinity normal of the projected gradient, the inverse L-BFGS218

matrix and its pre-conditioners.219

For large-scale problems, the number of columns of inverse220

L-BFGS matrix and its pre-conditioners can be much larger221

than their number of rows (normally m is between 3 and 8),222

where m is the maximum dimension of the Hessian approxima-223

tion). This kind of matrices are often called “panels” or “multi-224

vectors” in the literatures [49, 50], and it is common to solve225

the “panel-panel” multiplication [49, 50] using dot-products,226

which is implemented using the latest parallel reduction tech-227

nique [47] in our implementation. Take the matrices in Fig. 2228

for an example. To calculate this value, in each thread we sam-229

ple the values from both the left and the right matrix, multi-230

ply them (and other calculations if necessary, such as scaling,231

adding or dividing by an extra value, etc.) and store the result232

in the shared memory. Then a parallel reduction is performed233

across the shared memory and the value from the thread whose234

index is zero is stored in the resulting matrix.235

We have also tested NVIDIA CUBLAS Library [51] for this236

“panel-panel” multiplication, and it proved less efficient than237

our method (Fig. 3), since it has not been optimized for the ma-238

trices of such special dimensions. The dimension of the two239

matrices in this test are 8 × M and M × 8, where M varies from240

10 to over 1, 000, 000. The initial values of elements in these241

two matrices are random numbers in [0, 1]. All the computa-242

tions are in the double precision and the difference between the243

...............

.........

... *

...

...

...

expand

result matrix

left matrix: right matrix:

multiply & store into  shared memory

Figure 2: Matrix-matrix multiplication using parallel reduction.
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results of our method and of CUBLAS is less than 1E − 9. Al-244

though cublasDgemm is faster than our implementation when245

M = 10 (when the matrices are almost square), our implemen-246

tation outperforms it for several times as soon as M ≥ 20.

Figure 3: Comparison of throughput for matrix multiplication using CUBLAS
Library (the cublasDgemm function call) and our method.

247

According to the literature from Volkov and Demmel [52],248

in the CUBLAS Library, a matrix is generally treated, and di-249

vided into blocks, whose result is accumulated by cycling 16×250

between the rows internally, resulting in a lower parallelism;251

also for more synchronization they needs more updates across252

multiple blocks. This fact may contribute to the result that our253

implementation can be 16× faster when the number of variables254

becomes larger than 5,000, which is shown in Fig. 3. We have255

also experimented the CUSPARSE Library and found that it256

performed similar as CUBLAS. The reason is that all the matri-257

ces in L-BFGS-B are dense. Hence a sparse matrix solver can258

hardly demonstrate its power.

N E L N L L E N N N N E L L L N

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0

0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3
0 0 0 1 1 2 3 3 3 3 3 3 3 4 5 6

variables from 
bounded to free variables from free to bounded

exclusive scan

E=variables entered the feasible region
L=variables left the feasible region
N=not changed

Figure 4: Managing the status of variables using parallel scan.

259

In the L-BFGS-B algorithm, the steepest descent direction260

is projected onto a feasible region defined by the boundary con-261

straints. Variables whose value at the lower or upper bound-262

aries of this region are held fixed. The set of these variables263

is called “active set” [3] indicating the corresponding boundary264

constraints are active. Before the Hessian approximation, the265

status of variables have to be traced to see whether they entered266

or left the active set. Instead of searching sequentially for all the267

variables, we first mark variables that entered or left the active268

set into two arrays, and then perform a parallel scan [53] across269

each array to transform the boolean marks into sequential in-270

dices. Finally, we select the variable as it is marked and put271

them in positions determined by their indices (this operation is272

often called “compact” [53]). We use the implementation from273

the Thrust Library [54] for the parallel scan. This process is274

illustrated in Fig. 4.275

The L-BFGS-B algorithm needs Cholesky factorization to276

compute d̂u for subspace minimization [26]. We use Henry’s277

code [55] to compute Cholesky factorization. Other linear alge-278

bra operations such as solving triangular system are performed279

using the CUBLAS Library [51].280

5. Applications281

We compare the efficacy and robustness of our GPU-based282

L-BFGS-B algorithm and the original CPU-based L-BFGS-B283

algorithm using two applications described below. All experi-284

ments were performed with an Intel Xeon W5590 @ 3.33GHz285

and an NVIDIA GTX 580 in double precision. The CUBLAS286

Library and the Thrust Library used are included in CUDA287

Toolkit version 4.2.288

5.1. GPU-based Centroidal Voronoi Tessellation289

To explore the power of our GPU implementation in graph-290

ics, we experimented our L-BFGS-B method on the centroidal291

Voronoi tessellation (CVT) problem. For the CVT, it is already292

shown in [27] how to evaluate CVT energy function and com-293

pute its gradient on the GPU. However, the L-BFGS-B itera-294

tions are still performed on the CPU in [27]. In the following,295

we will show how to perform L-BFGS-B iterations on the GPU296

as well, and observe resulting the performance gain.297

Centroidal Voronoi tessellation requires minimizing the fol-
lowing CVT function [7]:

F(X) =

n∑
i=1

∫
Ωi

ρ(x)‖x − xi‖
2 dσ, (8)

where X = (x1, x2, . . . , xn) is an ordered set of n point sites, Ωi298

is the Voronoi cell of site xi, and ρ(x) is a density function at x.299

We use the code from [27] for Voronoi tessellation on the300

GPU (VTGPU for short in the following) with both CPU L-301

BFGS-B and our GPU L-BFGS-B implementations. We also302

transplant all the new “tweaks” to L-BFGS-B we made on the303

GPU to its implementation on the CPU, such as using an ap-304

proximate generalized Cauchy point, maximizing the dimen-305

sion of Hessian approximation, and maximizing the step length306

in each iteration. This is fair treatment because it has been ob-307

served that these “tweaks” make L-BFGS-B faster and simpler308
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Qmin = 0.6342
Qavg = 0.9164
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(a) CPU L-BFGS-B
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(b) GPU L-BFGS-B

Figure 5: Delaunay triangulations of 20, 000 vertices. In the bottom figure only a part of them are demonstrated. The results are generated from CVT using VTGPU
with either CPU and GPU L-BFGS-B iterations. θ is the smallest angle in a triangle; “min”=the minimal value of all triangles in the mesh; “avg”=the average value
of all triangles in the mesh.
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CPU L-BFGS-B GPU L-BFGS-B Energy
Size Resolution Evaluation itr L-BFGS-B (I/O) itr L-BFGS-B spd/itr Difference

60,000

2,048

44.97 28 112.07 (12.81) 28 4.06 27.60× 0
40,000 43.96 34 74.18 (9.19) 34 3.18 23.33× 0
20,000 42.43 45 30.09 (4.05) 55 2.19 13.74× -2.31E-08
10,000 41.92 69 15.48 (2.27) 69 1.71 9.05× 0
8,000 41.87 76 12.61 (1.92) 72 1.60 7.88× -3.38E-08
6,000 41.84 89 11.2 (1.53) 71 1.53 7.32× 3.79E-07
4,000 41.38 106 6.51 (1.18) 106 1.40 4.65× 0
4,000

1,024
8.85 48 6.21 (1.12) 48 1.33 4.67× 0

2,000 8.76 61 3.37 (0.74) 61 1.24 2.72× 0
1,000 8.70 74 1.81 (0.51) 74 1.16 1.56× 0
500 512 2.38 56 1.02 (0.38) 56 1.13 0.90× 0
200 2.39 53 0.65 (0.38) 59 1.09 0.60× -4.79E-05

Table 2: Statistics of VTGPU with the original CPU L-BFGS-B implementation and our GPU L-BFGS-B implementation. All the timings are for each iteration and
in milliseconds. “itr” is the number of iterations; “Evaluation” is the time spent on function and gradient evaluation using the VTGPU algorithm; “L-BFGS-B” is the
time spent on each L-BFGS-B iteration, including the time spent on data exchanging (denoted by “I/O”); “spd/itr” is the speed-up of L-BFGS-B in each iteration.

without compromising its convergence rate. In both implemen-309

tations, we stop the iteration when the decrement of energy is310

less than 1E − 64. Our experimental results are summarized in311

Table 2. We record the final CVT energy, iterations required,312

and timing data for different parts of both methods, to be de-313

tailed in the following. A comparison of the total costs per iter-314

ation between [27] and ours is shown in Fig. 8.315

5.1.1. Jump Flooding Algorithm316

The VTGPU uses the jump flooding algorithm (JFA) [56,317

57, 58] to compute the Voronoi diagram on the GPU. The tim-318

ing of this stage is labeled as “Evaluation” in Table 2. Be-319

cause both competitors use the same code for this stage, their320

iteration-wise timings are generally the same.321

5.1.2. Data Exchange322

Using VTGPU with the CPU L-BFGS-B also requires data323

exchanging between the device and host memory because the324

computation of CVT energy and its gradient is on the GPU. We325

mark the time spent on this communication as “I/O” in Table 2.326

It increases linearly with both the number of sites and the num-327

ber of iterations. The data exchange costs may occupy more328

than 20% of the L-BFGS-B time on average, which is totally329

saved in the GPU implementation.330

5.1.3. L-BFGS-B Optimization331

The time spent on the optimization is the main part that332

made the difference in the comparison. We break down this part333

into the different columns. The number of iterations is recorded334

in the “itr” column of Table 2. The GPU version generally re-335

quires similar iterations to the CPU version. Some exceptions336

are due to the different definitions of double precision between337

the CPU and the GPU.338

The time per iteration of the L-BFGS-B algorithm is recorded339

in the “L-BFGS-B” column of Table 2, with the speed-up recorded340

in the “L-BFGS-B” of the “Speed-up” column. Time of the two341

implementations increases linearly with the number of sites,342

however, the CPU version grows much faster — about 20×343

more than the GPU implementation. Fig. 6 compares the two344

implementations, where the slope of CPU L-BFGS-B is 1.61E−345

3 and the slope of GPU L-BFGS-B is 8.03E − 5.

Figure 6: Performance comparison for L-BFGS-B iterations in CVT problem.

346

We also compare our generalized Cauchy point approxima-347

tion with the CPU implementation without the approximation.348

The results are listed in Table 3. It is clear that our approxima-349

tion is satisfying for the CVT problem.350

5.1.4. Convergence351

We compute the difference between final energies from both352

methods, and record the FGPU − FCPU in the “Energy Differ-353

ence” column of Table 2. The result of the GPU version is354

mostly the same as the result of the CPU version. Occasion-355

ally the two implementations generate different final energies,356

which indicates that different local minimum points are reached.357

To visually demonstrate this statement, we compare in Fig. 5358

the two Delaunay triangulations, which are dual to the CVTs,359

with 20, 000 sites, as well as their quality measurements. Here360

the quality of a triangle is measured by Q = 2
√

3S/ph [59],361
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resolution 512 resolution 1,024 resolution 2,048
|tc−t∗|

t∗ × 100% 200 500 1000 2000 4000 4000 6000 8000 10000 20000 40000 60000

0 100.00% 98.39% 100.00% 100.00% 98.41% 99.07% 99.14% 98.72% 98.61% 96.43% 97.37% 97.06%
0∼5% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

5%∼10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.28% 0.00% 1.79% 2.63% 0.00%
10%∼15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
15%∼20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.39% 0.00% 0.00% 0.00%
20%∼25% 0.00% 1.61% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
25%∼30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
30%∼35% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.86% 0.00% 0.00% 0.00% 0.00% 0.00%
≥40% 0.00% 0.00% 0.00% 0.00% 1.59% 0.93% 0.00% 0.00% 0.00% 1.79% 0.00% 2.94%

Table 3: Comparison of our approximated tc and real t∗ in L-BFGS-B algorithm for VTGPU with different sites and different resolutions. The first row in the head
shows resolutions and the second row shows site numbers.
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Figure 7: During the optimization, the CVT energy changes likewise by using
CPU and GPU. The figure is generated in the same setting as Fig. 5.

where S is the area, p is the half-perimeter, and h is the length362

of the longest edge. It is clear that the two implementations363

generate final results of similar quality. Our GPU implementa-364

tion can also guarantee a stable convergence, as shown in Fig. 7,365

where the energies from both methods will finally decrease to366

the same level, and only slightly differ during the optimization367

process.
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Figure 8: Performance comparison (total time in each iteration) between [27]
and ours.

368

5.2. Elastic-Plastic Torsion in MINPACK-2369

For generality, we also evaluate our implementation by solv-
ing the Elastic-Plastic Torsion problem in the classical MINPACK-
2 problem set [28], which is a representative optimization prob-
lem in scientific computing. In this problem the elastic-plastic
stress potential in an infinitely long cylinder is determined when
torsion is applied, which is equivalent to that of minimizing a
complementary energy q on a square feasible region D [60]:

q(v) =

∫
D

(
1
2
‖∇v(x)‖2 − cv(x))dx. (9)

We use the same Fortran code on the CPU for evaluating q and370

gradient ∇v(x), but use two versions, specifically, our GPU im-371

plementation and the original CPU implementation [26] for the372

L-BFGS-B iterations. Comparisons are presented in Table 4.373

We solve the 2D problem where the two dimensions are set374

equivalent and their multiplication is the “Size” of the problem.375

We evaluate from four hundred to four million variables, using376

c = 5.0 (recommended by [60]) for the constant c in (9).377

The number of iterations required by our implementation378

on the GPU (“itr” columns) is similar to that of the CPU imple-379

mentation. Besides, the effectiveness of our implementation has380

outperformed the CPU implementation in each iteration (“L-381

BFGS-B” columns), beginning at size=6, 400. While yielding382

nearly the same final energy value, our implementation requires383

much less time. Fig. 9 compares the time per iteration of differ-384

ent problem sizes for GPU and CPU implementations. We can385

see that the curve for CPU implementation increases roughly386

29× faster than the GPU implementation with the increase of387

the problem size; here we treat the curvature as linear depen-388

dence, the slope of the CPU implementation is 8.75E − 4 while389

the slope of the GPU implementation is 3.03E−5. The speedup390

per iteration is recorded in the “spd/itr” column.391

From the statistical data, we observe again the efficacy of392

our approximation to the generalized Cauchy point. The aver-393

age step length for computing the generalized Cauchy point is394

listed in the “t∗” and “tc” columns. Clearly, the values for both395

methods are quite similar but our approximation brings about396

considerable performance gain. Furthermore, our new strategy397

may even reduce the number of iterations (c.f. “itr” column)398

with an equivalent final energy in some cases. Due to the dif-399

ferent definitions of double precision between CPU and GPU,400

there may be some energy differences. Nevertheless, they are401
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CPU GPU Energy
Size Evaluation t∗ itr L-BFGS-B tc itr L-BFGS-B (I/O) spd/itr Difference

4,000,000 141.09 0.09 4197 3351.68 0.10 3971 137.16 (17.92) 24.44× 5.88E-11
2,250,000 79.62 0.09 2917 2200.41 0.10 3213 78.58 (9.97) 28.00× -4.52E-12
1,440,000 51.29 0.07 2915 1473.86 0.09 2636 51.50 (6.45) 28.62× 8.78E-12
1,000,000 36.07 0.08 2310 782.62 0.08 1907 36.61 (4.30) 21.38× 7.86E-12
640,000 23.12 0.07 1685 427.75 0.08 1793 24.23 (2.70) 17.65× 3.98E-12
360,000 13.11 0.08 1272 220.40 0.09 1315 15.27 (1.57) 14.43× 2.44E-12
160,000 5.91 0.17 921 117.74 0.18 1035 8.17 (0.63) 14.41× -1.85E-12
40,000 1.53 0.24 549 15.09 0.24 464 3.27 (0.20) 4.61× -1.91E-13
10,000 0.39 0.26 241 3.59 0.26 237 1.92 (0.19) 1.87× 3.00E-14
6,400 0.25 0.26 193 2.29 0.26 199 1.60 (0.08) 1.43× -6.90E-14
3,600 0.14 0.26 144 1.34 0.27 155 1.50 (0.08) 0.89× 1.20E-14
1,600 0.06 0.26 133 0.93 0.26 105 1.41 (0.05) 0.66× -9.99E-16
400 0.02 0.26 52 0.20 0.25 49 1.17 (0.04) 0.17× -9.99E-15

Table 4: Statistics for the Elastic-Plastic Torsion problem. All timing data are in milliseconds. “Evaluation” is the time spent on function and gradient evaluation;
t∗ and tc are average step lengths for computing the generalized Cauchy point; “itr” is the number of iterations; “L-BFGS-B” is the time spent on each L-BFGS-B
iteration, including the time spent on data exchanging (denoted by “I/O”); “spd/itr” is the speed-up of L-BFGS-B in each iteration.

no more than 5.88E − 11, and sometimes the energy computed402

by our implementation is lower than that produced by the orig-403

inal implementation (c.f. negative terms in the “Energy Differ-404

ence” column)405

In both experiments, we use a stop criterion less than 1E −406

64, that is, we run the experiment until the amount of energy407

decreased is less than 1E − 64. Note that in this experiment,408

since the computation of the energy function value and its gra-409

dients are still on the CPU, we need to transfer data between the410

CPU and the GPU in each iteration. Even with this overhead,411

the GPU implementation is still faster than the CPU one.

Figure 9: Performance comparison for L-BFGS-B iterations in Elastic-Plastic
Torsion problem.

412

6. Limitations413

Currently, the performance of our method is limited by the414

memory bandwidth between the global video memory and the415

on-chip memory (shared memory, registers, etc.). We have416

also tested our implementation on a Tesla C2050. Although417

the Tesla C2050 has a much higher peak performance on the418

calculation in double precision (515GFlops) than the GTX580419

(193GFlops), its performance on running our GPU L-BFGS-420

B algorithm is lower. More specifically, the ratio of the per-421

formance of the two cards is exactly the ratio of their mem-422

ory bandwidth (144GB/sec. vs. 192.4GB/sec.), indicating the423

memory bandwidth is the bottleneck. Besides, our method still424

needs to read a few scalars from the GPU to the CPU in some425

stages, to control the high-level branching logic in the L-BFGS-426

B algorithm. A solution to these problems is to divide the vari-427

ables into segments, calculate for each, and then combine. With428

this strategy, instead of cycling between stages, one can pack all429

the iterations into a single kernel where the global memory is430

accessed only at the beginning and at the end of the algorithm.431

However, this solution requires the evaluation of the function,432

as well as the calculation of the gradient vector, is divisible,433

which is obviously not available to many optimization prob-434

lems.435

7. Conclusion and Future Work436

In this paper, we presented the first parallel implementa-437

tion of the L-BFGS-B algorithm on the GPU. Our experiments438

show that our approach makes the L-BFGS-B algorithm GPU-439

friendly and easily parallelized, so the time spent on solving440

large-scale optimizations is radically reduced. Future work in-441

cludes breaking the bottleneck of memory bandwidth and ex-442

ploring the parallelism of L-BFGS-B on multiple GPUs or even443

clusters for problems of larger scales.444
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