
Point-Tessellated Voxelization
Yun Fei∗

Tsinghua National Laboratory
for Information Science and

Technology, P. R. China

Bin Wang†

School of Software, Tsinghua
University, P. R. China

Jiating Chen‡

Department of Computer
Science and Technology,

Tsinghua University, P. R. China

a

hull/domain
shader/fixed-
func tessellator

b
geometry
shader

c

geometry/pixel
shader

Original Mesh Subdivided Mesh Point Primitives Voxelization Result

Figure 1: Different stages in our GPU-based framework for real-time multi-valued surface voxelization (which costs 0.46ms for resolution at 1283,
and 9.10ms for resolution at 5123, with 22.1k triangles divided in 5 subsets). Only one rendering pass is required.

ABSTRACT

Applications such as shape matching, visibility processing, rapid
manufacturing, and 360 degree display usually require the gener-
ation of a voxel representation from a triangle mesh interactively
or in real-time. In this paper, we describe a novel framework that
uses the hardware tessellation support on the graphics processing
unit (GPU) for surface voxelization. To generate gap-free voxeliza-
tion results with superior performance, our framework uses three
stages: triangle subdivision, point generation, and point injection.
For even higher temporal efficiency we introduce PN-triangles and
displacement mapping to voxelize meshes with rugged surfaces in
high resolution.

Our framework can be implemented with simple shader pro-
gramming, making it readily applicable to a number of real-time
applications where both development and runtime efficiencies are
of concern.

Keywords: voxelization, tessellation, surface subdivision, PN-
triangles, point-based rendering, real-time rendering.

Index Terms: Computer Graphics [I.3.5]: Computational Geom-
etry and Object Modeling—Curve, surface, solid and object repre-
sentations

∗e-mail: fyun@acm.org
†e-mail: wangbins@tsinghua.edu.cn
‡e-mail: chenjt04@gmail.com

1 INTRODUCTION

Applications such as shape matching (e.g., collision detection [15]),
visibility processing (e.g., ambient occlusion [20] and global illu-
mination [23]), rapid prototyping design (for 3D printing or laser
sintering) [25], and 360 degree display [12] often require real-time
computation of voxel representations from meshes via a technique
called voxelization. Conservative voxelization, the most popular
variant, uses all the voxels that overlap with one or more surfaces
of the mesh.

State-of-the-art methods for conservative voxelization [19, 21]
use the triangle-voxel overlapping test to decide whether a voxel
is covered by a triangle. These methods provide fast and accurate
results but may introduce computational overheads when the mesh
is of high resolution and the voxel grid is of relatively low resolu-
tion. This situation would happen, for instance, when voxelizing the
Asian Dragon mesh into a 1283 grid (see the statistical data about
Figure 10b). In a mesh whose triangles are all much smaller than
the size of a voxel, usually only a tiny number of triangles straddle
a voxel border, to cover more than one voxel. In this context, we
should notice two facts. Firstly, for most triangles that do not strad-
dle voxel borders, the voxels containing them can be determined
from the centroids of those triangles. Secondly, in the case of bi-
nary voxelization, a voxel can be marked as “covered” as long as
there is one triangle covering the voxel, but in the case mentioned
above, hundreds of triangles contained in a single voxel are tested
to determine whether the voxel is “covered”.

Naive pipeline-based voxelization would only consider whether
the center of a triangle is in a voxel. This method is suitable for the
special case mentioned above, but cannot be generalized since, typ-
ically, there are always some triangles that occupy several voxels.
Therefore, sampling more points on a triangle is necessary.

In recent years, graphics processing units (GPUs) have come to

support real-time tessellation; the latest model takes four clock cy-
cles to tessellate one triangle [24]. Tessellation is a simple and effi-
cient way to sample a large number of points on a triangle (and with
a carefully selected tessellation factor, the sampled points can be
uniformly distributed [14]) currently used for subdividing a patch
into smaller shapes. Specifically, our tessellation algorithm imple-
mented in Direct3D 11 or OpenGL 4.0 uses three hardware stages:
the hull shader, which generates control points, the fixed-function
tessellator, which generates barycentric coordinates for the tiled tri-
angles, and the domain shader, which generates new vertices ac-
cording to the barycentric coordinates and the control points.

In this paper, we propose a simple algorithm for real-time surface
voxelization. The size of the resulting voxel grid is only limited by
the size of the video memory. We target systems where accuracy is
not a stringent requirement, such as video games or virtual reality
applications. Hence, we relax the requirement from conservative to
watertight (or gap-free) voxelization. With this relaxation, we can
dramatically improve the efficiency by avoiding the triangle-voxel
overlapping test. Gap-free voxelization is ensured when each tri-
angle is smaller than its destination voxel. As shown in Figure 1,
we achieve this feature by subdividing the mesh with a GPU hard-
ware tessellator (a), placing a point primitive on the centroid of each
subdivided triangle (b), and rasterizing these points into a volume
texture (c). In our framework, the voxelization can be recomputed
over the entire grid in each frame; thus, arbitrary deformation is
supported.

While higher performance can be achieved by voxelizing a low-
resolution version of the triangle mesh, this would introduce visible
artifacts. To maintain the quality of voxelization while achieving
higher performance, we develop an extension called displacement
voxelization. Displacement mapping [3] is introduced after the tri-
angle subdivision process, and the positions and normals of PN-
triangles are used to reconstruct the details of the mesh. The result
of displacement voxelization on a low-resolution mesh is visually
comparable to the result of conventional voxelization on a high-
resolution mesh, and has superior performance.

We summarize the key features of our framework as follows:
Efficiency: As shown in Figure 10, our approximated approach

is demonstrated to have low computational overheads in most cases.
We compared it with the state-of-the-art approaches including the
pipeline-based technique [27] and methods using customized ras-
terizers based on Compute Unified Device Architecture (CUDA)
[19, 21].

Parsimony: This is the most prominent feature of our frame-
work, making it easily integrable into a general system using com-
mon graphics APIs, such as Direct3D or OpenGL. Moreover, our
technique can be implemented with only a few modifications from
basic tutorials/documentations on hardware tessellation [6, 22],
which makes our technique easier for developers who are not
knowledgeable in CUDA, or who are working on a rapid prototype
that needs real-time voxelization.

Generality: Existing applications of voxelization need to store
either one bit or multiple values in a voxel. Our method supports
both requirements, providing flexibility for different applications.

2 RELATED WORK

Numerous solutions have been developed for real-time voxeliza-
tion. A multi-pass method proposed by Fang et al. [11] renders
the geometries once for each slice of the volume while limiting the
depth of view to the boundary of the slice. In modern hardware, this
can be done in one pass by slicing the instanced objects in a geom-
etry shader [4]. However, these slice-based techniques are limited
to simple meshes (since for 1024 layers/slices, the mesh can be in-
stanced 1024 times, which means culling and rasterizing the mesh
1024 times). Moreover, the number of instances is limited by cur-
rent hardware. Similar to our work, Li et al. [16] propose scattering

point primitives into a voxel grid but employ depth peeling to sam-
ple points from geometries, a process that is costly for scenes with
complex surfaces, and suffers from missing thin features.

Another branch of real-time solutions [8, 9, 10] encodes binary
voxels in separate bits of multiple render targets, and voxelizes the
scene with bitwise blending. The common issue with these meth-
ods is that one axis of the grid is restricted to a bit-length of 1024,
which means that only 1 bit can be generated per voxel for a 10243

grid. Furthermore, bitwise blending is not supported in Direct3D
11, which is extensively used in current game development. Con-
versely, in our framework the bit-length and the number of layers
in the grid are only limited by the number of render targets (1024
bits per voxel for the current eight render targets) and the size of
the video memory. Additionally, our method can be implemented
in either Direct3D or OpenGL. A recent work [23] uses a texture at-
las for voxelization, achieving high performance but requiring that
a model be appropriately mapped onto a 2D texture. This mapping
needs pre-computation, and is not feasible for dynamic deformable
objects.

Some recent methods use customized 3D rasterizers imple-
mented on CUDA [19, 21, 27]. A per-pixel depth range for a trian-
gle is derived, and an optimized overlapping computation is taken
between each triangle-voxel pair. These methods generate accurate
results, and we use these results as ground truth for reference and
demonstrate that we can achieve a well-approximated result.

Another branch of recent works [5, 13] introduces the use of oc-
tree data structures to store massive voxelization results. Since our
work focuses on how to convert the mesh into the voxel representa-
tion, storage and rendering the voxel are beyond our scope. How-
ever, our technique can be easily integrated into an octree-based
storage framework. The voxelization results (either the point or the
voxel data) can be copied into a piece of mapped-pinned host mem-
ory and used for building the octree.

3 POINT-TESSELLATED VOXELIZATION

3.1 Choosing a Tessellation Factor

In the context of hardware tessellation, the three vertices of a tri-
angle are used directly as three control points in the hull shader
[6, 22]. New vertices are generated in the domain shader and their
positions are interpolated from the barycentric coordinates gener-
ated by the tessellator. To control the level of subdivision, we need
to set the hardware tessellation factor. For each triangular patch,
this factor is a vector containing four scalars: three edge scalars
(denoted by Ti, i = 1,2,3 below) and one central scalar (denoted by
TC below). The hardware tessellator is designed similar to the work
proposed by Gong et al. [14]. Each input triangle is recursively sub-
divided into one or more concentric rings, which are later used to
determine the positions of newly generated vertices. According to
Gong’s work, the newly generated vertices are linearly distributed
on each edge of a ring according to the scalar of that edge, and
the rings are uniformly distributed from the centroid to the edges in
each input triangle. Since we want to ensure that each cell occupied
by the triangle edge contains at least one tessellated vertex from that
edge, we use an adaptive tessellation factor per tessellated edge and
relate it to the number of cells that an edge may occupy. Given the
positions Pi ∈ R3, i = 1,2,3 of the three vertices of a triangle, and
the side length of a cell lcell in the volumetric grid, the tessellation
factor is calculated as below:

Ei j = γ|Pi−Pj|/lcell , i, j ∈ {1,2,3}, i 6= j
T1 = maxx,y,zE12,T2 = maxx,y,zE23,T3 = maxx,y,zE13,

TC = (T1 +T2 +T3)/3.
(1)

The γ in the equation above is a constant global safety factor. Sec-
tion 4.1 discusses this equation and the coefficient γ in detail.

3.2 Point Cloud: from Triangles to Voxels
The triangle soup from the tessellator is poured into its next stage
in the pipeline, the geometry shader. For voxelization, we could
rasterize these triangles directly into a volume texture; neverthe-
less, there is a better strategy. Since point-based rendering (PBR)
is cheap for the hardware rasterizer, we replace each subdivided
triangle with a point primitive placed at its center. These points
are called surfels in terms of PBR. Each surfel represents a micro-
triangle in the original model. Its position is simply computed in
world space as:

Pcentroid = (Pvert1 +Pvert2 +Pvert3)/3. (2)

This Pcentroid was empirically chosen. Prior to this, we also try other
possible locations, such as the incenter (center of the incircle), the
vertices, or both vertices and center of mass, and find that the center
of mass provides balance between performance and accuracy. The
results of experiment are shown in Figure 2.

The points are generated in the geometry shader. We also trans-
form the point cloud into the space of a 3D texture in this stage.
For one surfel, we directly calculate the position of the texel corre-
sponding to it in the 3D texture, and output a value into the texel in
the pixel shader. Since each triangle has been modeled as a point,
it is unnecessary to compute the exact size and orientation of each
surfel.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

a) Center of
mass

b) Only vertices c) Center of the
 incircle

d) a + b

Performance
Accuracy

Figure 2: Comparisons between different choices of locations for
point-shooting, regarding (a) as the reference. Although using both
vertices and face centroids improves accuracy (about 10%), large
performance losses (about 40%) are introduced.

In the case of binary voxelization, we simply output a constant
value for each point in the pixel shader to indicate occupancy.
Nonetheless, many applications may store the scalars or vectors
contained in the triangles (colors, normals, etc.) into the voxels
(called Multi-valued Voxelization). If only the average values across
multiple triangles are required, additive blending can work well. If
some applications require that the values from the point clouds all
remain accessible in a voxel, we can compress them using spherical
harmonics, similar to the method proposed by Makadia et al. [18].

3.3 Displacement Voxelization
A pervasive dilemma in voxelization is that higher accuracy de-
mands a finer mesh, which leads to high storage requirements and
low performance (Figure 3a); a low-detail mesh leads to unaccept-
able voxelization (Figure 3c). In this section, we extend our frame-
work to displacement voxelization which is suitable for meshes
with rugged surfaces. The voxelization can be even faster if using
displacement mapping to add details of the geometry on the fly. Our

a) low-detailed mesh,
576 Triangles (0.2%)

b) voxelization without the PN-
triangles from the low-detailed
mesh, 1.3ms

c) voxelization from (a)
using the PN-triangles,
1.3ms

d) voxelization without the PN-
triangles from a fine mesh
(262,144 tris), 6.2ms

Figure 4: Voxelization on a Utah Teapot. The size of the grid is 2563.

method is based on curved point-normal triangles (or PN-triangles
for short) [26]. PN-triangles provide a simple and efficient tech-
nique for subdivision with normal and position interpolation, offer-
ing a general solution to give any mesh a smoother aspect [2]. The
fact that using the PN-triangles without a displacement map can
produce a smoother voxelization result is shown in Figure 4. Nev-
ertheless, a very smooth object can often be defined effectively with
non-uniform rational basis splines (NURBs) or Bezier functions,
and voxelizing these parametric surfaces is more efficient and ac-
curate [17]. Therefore, in this paper we are mainly concerned with
offering a more detailed voxelization from a low-detailed mesh and
its displacement map.

When using PN-triangles, only the position and normal (and tex-
ture coordinates for displacement mapping) of each vertex are used.
This property maintains the parsimony and efficiency of our frame-
work. For PN-triangles-based displacement mapping, we follow
the work proposed by Doggett et al. [7]. The GPU implementa-
tions of this method can be found in several commonly accessible
SDKs [6, 22]. Since only the final points are affected by the dis-
placement mapping, we sample the displacement texture in the ge-
ometry shader, just before the points are output into the volumetric
grid.

The displacement voxelization result of a simplified mesh is vi-
sually similar to the result of its high-resolution version. Figure 3
shows that few differences can be noticed between our result (Fig-
ure 3d) and the reference (Figure 3e). The displacement map is gen-
erated using ZBrush at the resolution of 10242. The performance is
improved four-fold over the straightforward method. A point that
needs to be noted is that after the subdivision, the original displace-
ment map will not be perpendicular to the new triangles, which may
introduce artifacts. However, in our experiments, this fact hardly
affected the results.

4 RESULTS AND DISCUSSION

All the results in this paper were generated with a Core-i7 920 pro-
cessor and a GTX480 display card. We implemented our approach
with Direct3D 11.

The models are intended to demonstrate a wide range of appli-
cations. The soldier model in Figure 1 is a skinned mesh used to
show the process of our method, and to highlight the low overhead

a) high-detailed mesh, 2,823,424 Triangles. b) low-detailed mesh, 10,522 Triangles
 (0.37%).

c) voxelization without displacement mapping
 from (b), 11.7ms.

d) voxelization with displacement mapping from (b),
 11.7 ms (8.6% bias).

e) voxelization without displacement mapping from (a),
 45.5 ms.

Figure 3: Comparisons between straightforward and displacement voxelizations on a monster from Metro 2033 (with grid size: 10243). Compared
with the voxelization from the straightforward method, displacement voxelization accurately reconstructs thin features, such as the flesh, the spurs
and the ribs (notice the parts in the black box), with almost no performance loss, and is four times faster than directly voxelizing a high-detailed
mesh. Please zoom-in for a detailed look.

when voxelizing animated triangles.
The models in Figure 10 are used to compare our method with

the state-of-the-art approaches [19, 21, 27] for various levels of ge-
ometric complexity. As shown in the table of Figure 10, in most
cases, our method demonstrates higher performance than those
methods and is significantly superior to the rasterization method
[27].

We also notice that in some rare cases, our method can be slower
than the latest method [19]. Therefore, we evaluate our technique
for different stages of the pipeline, and find that the cost on the
tessellation stage sharply increased as we change the grid from 1283

to 10243. This fact illustrates that the hardware tessellator in the
GTX480 is not very efficient at a high tessellation factor. To ensure
that our technique can perform better on future hardware, we also
try the up-to-date GTX560Ti, and find that the tessellation is never
the most costly stage (Figure 6).

The leafy olive model in the top row of Figure 5 highlights the
necessity of using tessellation. Compared to the result without tes-
sellation (Figure 5a), the geometric continuity and stability of our
method is shown in Figure 5b. As our method is not conservative
but merely watertight, there may be some voxels missing. Nonethe-
less, these artifacts are usually acceptable in applications where
complete accuracy is required, such as collision or shading in video
games. We evaluate these artifacts in the bottom row of Figure 5
using a color-coded voxelization result of Stanford Buddha. We
note that 1) all results are visually similar, despite the presence of
artifacts, and 2) the artifacts can be eliminated when the mesh is
over-tessellated.

To show that our solution can handle very detailed parts of a

complex mesh, we also show a voxelization result of the Sibenik
Cathedral at a resolution of 17923 (Figure 11e). Note that the strips
on the wall and vault are well captured.

4.1 Balance between Performance and Accuracy
Safety Factor: We use γ = 1 in all the instances in this paper, pro-
ducing a watertight result. However, if higher accuracy is required,
a higher γ can be used. The safety factor γ affects the performance
as well as the accuracy. The relationship between γ , accuracy and
performance can be seen from the chart in Figure 5. Empirically,
given a bias proportion value p, the required γ can be computed
from a fitted logarithmic function:

γ =−B× ln(Ap). (3)

The parameter A = 1/p1 is determined from the bias p1 computed
with γ = 1. This bias is the ratio of the number of missing voxels
and the number of all occupied voxels in the ground truth. Another
parameter B is computed in a similar way using various γ . With the
corresponding p obtained from computing the bias proportion, we
estimate: B = −E(γ/ln(p/p1)), where E is the expectation value.
Theoretically, the two parameters A and B should be mesh-specific;
practically, however, the bias is stable under deformations that hap-
pened in all the meshes that we have tested, so we use constant
parameters.

It is difficult to prove that Equation 1 can theoretically guarantee
the watertight property. However, by using the ray-marching test
we can show that this property holds for all the meshes used in this
paper. We shoot rays from six directions (orthogonal to the x-y, y-
z and x-z planes, respectively) towards the grid, checking whether

b) with tessellation, γ = 1a) w/o tessellation

γ = 1, 2.3ms γ = 7, 14.2ms

Original mesh:

γ = 5, 6.1msγ = 3, 4.7ms
1

255

127

192

64

γ=1γ=2γ=3γ=4γ=5γ=6γ=7

0

2

4

6

8

10

12

14

16

0 0.005 0.01 0.015 0.02

Time (ms)

Proportion of Bias

Stanford Buddha

Stanford Dragon

(Conservative)number of points
in a voxel

c) point density in the grid with various safety factors d) relationship between time consumed and inaccuracy

Figure 5: Top row: Comparisons between voxelization with and without tessellation. Bottom row: A Stanford Buddha is voxelized with different
safety factors, from 1 to 7 (over-tessellated). The number of points falling into one voxel is visualized in a color-coded style in (c). In (d), the
relationship between performance and bias is demonstrated. With higher safety factors, our gap-free results (on both Stanford Buddha and
Stanford Dragon) rapidly converge to the conservative ground truth.

the intersected voxels (or the grid boundary if no voxel is hit by the
rays) are close to the mesh surface. If the distance from the centroid
of a voxel to the original triangle plane is less than the side length
of a voxel, we deem the voxel to be “close” to the surface. We per-
form this test for each mesh used in this paper, and the results show
that all of the intersected voxels are close to their original triangle
planes, which demonstrates that the watertight property holds.
User Study: To further investigate the efficiency of our method,
we conduct a user study. For each mesh in this paper, the ground-
truth voxelization result and our approximated voxelization result
(with γ = 1) were simultaneously shown to 20 users (at a size of
2563, randomly positioned on the left or right of the screen. The
visualized figures could be freely zoomed or rotated in three di-
mensions). The users (who were all graduated students of graphics
and well-versed in conservative voxelization) were asked to choose
which one was more likely to be the ground truth. We recom-
mended that they take less than two minutes to make their decision.
The users showed no obvious preference for the ground truth (on
average the users chose our result as the ground truth half of the
time, as shown in Figure 7). This study demonstrated that the bias
in our approximation was visually unnoticeable.

4.2 Handling Multi-Pass Subdivision

Some special applications may need to voxelize a mesh containing
just a few triangles into a large grid (e.g., voxelizing a tetrahedron
that has only 4 triangles into a grid of 10243). In that case, we
have to tessellate the mesh into a very fine level with additional

subdivision passes since the tessellation factor is limited (up to 63
in current hardware, generating 5000 ∼ 6000 triangles for one tri-
angle). This makes our method less convenient. Fortunately, the
necessary number of passes can be empirically estimated as:

n = logN63 Ne, (4)

where N63 is the number of newly generated triangles when set-
ting the tessellation factor for each triangle as 63, which could be
achieved using the pipeline statistics query after a rendering pass
for testing. Ne is the expected number of surfels generated, empiri-
cally, estimated as:

Ne =
3Ntril2

avg

2l2
cell

. (5)

This equation is abstracted from our observation of the tessellation
pattern [14, 1]. An accurate equation determined from the recursive
mechanism of the hardware tessellator [14] is unnecessary. Ntri
is the number of triangles in the mesh, lavg is the average length
of edges of all triangles, and lcell is the side length of a grid cell.
During our experiment, we find the average of N63 for any triangle
achieves more than 5000, especially when the size of a triangle is
large. This makes the number of passes n always very small: it
never goes beyond 3 in practice (if it did, the number of triangles
generated from one triangle would be over 232). Some samples of
voxelization of simple meshes are proposed in Figure 8.

37.7%

27.4%
34.0%

0.8%

42.7%

30.6% 26.5%

0.2%

97.1%

<0.1% 2.3% 0.6%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Input
Assembler &

Vertex Shader

Tessellation Geometry
Shader

Rasterization,
Pixel Shader &
Output Merger

1024^3 on GTX560Ti

1024^3 on GTX480

128^3 on GTX480

Figure 6: The proportion of time spent on various stages in different
situations. The data was obtained using the Stanford Dragon mesh.

Vertex Shader O utput Merger

100%

Blade Asia
Dragon

Dragon Buddha Soldier Hairball Average

Probability that the ground-truth is preferred

90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

Figure 7: The user study result.

4.3 Application: Real-time Voxel-based Ambient Occlu-
sion

Ambient occlusion (AO) is an approximation to the indirect lighting
produced by skylight, and can be straightforwardly implemented by
sampling the geometry near a pixel that is assumed to be blocked
from the skylight. Many AO algorithms have been developed in re-
cent decades. We harness the power of our method to render Hybrid
Ambient Occlusion (HAO), initially proposed by Reinbothe et al.
[20]. Instead of sampling the geometry directly, the HAO method
samples the geometry by marching rays through a voxelization re-
sult of the scene and treating each non-void voxel as a 3D proxy
of the nearby geometries. We integrate our method with HAO by
directly substituting our voxelization process for their method. The
result is shown in Figure 11.

5 COMPARISONS

Compared with slice-based methods [4, 8], our one-pass method
is much more convenient and efficient. Compared with methods
that use bitwise operations [8, 9, 10], our method can handle voxel
grids that are only limited by the video memory, with multiple val-
ues stored in each voxel, making our method applicable to a broader
range of applications. Compared with methods that use customized
rasterization [19, 21, 27], our technique is more usable for pro-

a) Windmill b) Chamfer Box

c) Star d) Pyramid

Scene Grid Time (ms) Bias

a) Windmill (8 tris,
1 level)

1283 0.2 1.0%
5123 5.2 0.1%

10243 40.0 0.3%

b) Pyramid (6 tris,
2 levels)

1283 0.2 0.1%
5123 3.2 0.0%

10243 10.9 0.0%

c) Chamfer Box
(204 tris, 2 levels)

1283 0.4 0.7%
5123 2.7 0.1%

10243 7.0 0.1%

d) Star (96 tris, 2
levels)

1283 0.4 3.1%
5123 6.5 1.1%

10243 31.3 0.0%

Figure 8: The voxelization results on some simple meshes, “level(s)”
means the number of pass(es) used for the subdivision. The pictures
are rendered using a grid with a resolution at 2563.

grammers who require a working voxelization method with high
efficiency. Compared with atlas voxelization [23], our method can
handle more general and complicated scenes.

6 LIMITATIONS AND FUTURE WORKS

Currently, our method does not focus on volumetric voxelization
(or solid voxelization), which is reserved for future work. Like-
wise, our method does not aim for accurate voxelization with no
missing voxels (Figure 9), which may be required in some specific
applications. Moreover, the bias can be increased when the size
of grid is increased, or when applying displacement voxelization to
coarse meshes. Additionally, our technique has no overwhelming
advantage in performance when the number of triangles is very low
while the grid resolution is high. Combining the existing accurate
approaches into our framework without violating the parsimony is
also a promising direction for the future.

7 CONCLUSIONS

In this paper, we described the integration of hardware-based trian-
gle subdivision and point-based rendering into an easily approach-
able framework for surface voxelization. The results are well ap-
proximated to the ground truth, making our technique especially
suitable for applications that do not have a stringent requirement
for accuracy but do require development and runtime efficiency.

ACKNOWLEDGEMENTS

The research was supported by National Basic Research Pro-
gram of China (2010CB328001), National Science Foundation

Triangle A

Triangle B

Figure 9: The 2D illustration of the possible bias in our method.
Equation 1 is insufficient for a completely accurate result. For ex-
ample, triangle A is smaller than a voxel, but from its center only the
green voxel can be detected. Moreover, the voxel detected in a lower
subdivision may become lost in a higher subdivision. For example,
we can detect the red voxel through triangle B; by subdividing the
triangle B into two triangles, however, we can detect the green and
the blue voxels, but will miss the red voxel.

of China (61003096), and National High-tech R&D Program
(2012AA040902).

REFERENCES

[1] Tessellation pattern viewer. In NVIDIA Direct3D 11 SDK. NVIDIA
Corporation, 2010.

[2] T. Boubekeur and C. Schlick. Generic mesh refinement on gpu. In
Proceedings of HWWS ’05, pages 99–104, 2005.

[3] R. L. Cook. Shade trees. In Proceedings of SIGGRAPH ’84, pages
223–231, 1984.

[4] K. Crane, I. Llamas, and S. Tariq. Real-time simulation and ren-
dering of 3d fluids. In GPU Gems 3: Programming Techniques
for High-Performance Graphics and General-Purpose Computation,
pages 633–675. Addison-Wesley Professional, 2007.

[5] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. Gigavoxels:
ray-guided streaming for efficient and detailed voxel rendering. In
Proceedings of I3D ’09, pages 15–22, 2009.

[6] K. Dmitriev. Pn-patches. In NVIDIA Direct3D 11 SDK. NVIDIA
Corporation, 2010.

[7] M. Doggett. Displacement mapping. ATI Research, 2003.
[8] Z. Dong, W. Chen, H. Bao, H. Zhang, and Q. Peng. Real-time vox-

elization for complex polygonal models. In Proceedings of PG ’04,
pages 43–50, 2004.

[9] E. Eisemann and X. Décoret. Fast scene voxelization and applications.
In Proceedings of I3D ’06, pages 71–78, 2006.

[10] E. Eisemann and X. Décoret. Single-pass gpu solid voxelization for
real-time applications. In Proceedings of GI ’08, pages 73–80, 2008.

[11] S. Fang and H. Chen. Hardware accelerated voxelization. Computers
& Graphics, 24(3):433–442, 2000.

[12] G. Favalora, J. Napoli, D. Hall, R. Dorval, M. Giovinco, M. Rich-
mond, and W. Chun. 100 million-voxel volumetric display. In Pro-
ceedings of SPIE ’02, volume 4712, pages 300–312, 2002.

[13] E. Gobbetti, F. Marton, and J. A. Iglesias Guitián. A single-pass gpu
ray casting framework for interactive out-of-core rendering of massive
volumetric datasets. The Visual Computer, 24:797–806, 2008.

[14] M. Gong. Parallel triangle tessellation. In US Patent App. 12/629,623,
pages 1–22, 2009.

[15] O. S. Lawlor and L. V. Kalée. A voxel-based parallel collision detec-
tion algorithm. In Proceedings of ICS ’02, pages 285–293, 2002.

[16] W. Li, Z. Fan, X. Wei, and A. Kaufman. Gpu-based flow simulation
with complex boundaries. In GPU Gems 2: Programming Techniques
for High-Performance Graphics and General-Purpose Computation,
pages 747–764. Addison-Wesley Professional, 2005.

[17] F. Lin, H. Seah, Z. Wu, and D. Ma. Voxelization and fabrication of
freeform models. Virtual and Physical Prototyping, 2(2):65–73, 2007.

[18] A. Makadia, A. Patterson, and K. Daniilidis. Fully automatic regis-
tration of 3d point clouds. In Proceedings of CVPR ’06, pages 1297–
1304, 2006.

[19] J. Pantaleoni. Voxelpipe: A programmable pipeline for 3d voxeliza-
tion. In Proceedings of HPG ’11, pages 1–8, 2011.

[20] C. Reinbothe, T. Boubekeur, and M. Alexa. Hybrid ambient occlusion.
Computer Graphics Forum, pages 51–57, 2009.

[21] M. Schwarz and H.-P. Seidel. Fast parallel surface and solid vox-
elization on gpus. ACM Transactions on Graphics, 29:179:1–179:10,
2010.

[22] J. Story. Pn-triangles 11. In ATI RadeonTMSDK. AMD Graphics Prod-
ucts Group, 2010.

[23] S. Thiedemann, N. Henrich, T. Grosch, and S. Müller. Voxel-based
global illumination. In Proceedings of I3D ’11, pages 103–110, 2011.

[24] D. Triolet. Report: Nvidia geforce gtx 580 & sli, 2010.
[25] P. K. Venuvinod and W. Ma. Rapid prototyping: laser-based and other

technologies. Springer, 2001.
[26] A. Vlachos, J. Peters, C. Boyd, and J. L. Mitchell. Curved pn triangles.

In Proceedings of I3D ’01, pages 159–166, 2001.
[27] L. Zhang, W. Chen, D. S. Ebert, and Q. Peng. Conservative voxeliza-

tion. The Visual Computer, 23:783–792, 2007.

a) b)

c) d)

Scene Grid Zhang et al.[27] Schwarz et al.[21] Pantaleoni[19] Ours
Time (ms) Time (ms) Time (ms) Time (ms) Ratio Bias

a) Stanford dragon
(871,414 Tris)

1283 44.9 3.5 4.8 0.4 112.3x 8.8x 12.0x 2.4%
5123 54.9 4.8 5.0 2.3 23.9x 2.1x 2.2x 4.1%

10243 73.7 13.7 5.9 12.8 5.8x 1.1x 0.46x 3.7%

b) Asian dragon
(7,218,906 Tris)

1283 257.6 16.7 21.2 0.4 644.0x 41.8x 53.0x 1.7%
5123 365.2 24.5 22.0 2.7 135.3x 9.1x 8.1x 3.8%

10243 508.3 24.6 23.6 9.7 52.4x 2.5x 2.4x 3.3%

c) Hairball
(2,880,000 Tris)

1283 - 22.8 12.8 5.9 - 3.9x 2.2x 2.8%
5123 - 95.0 18.3 7.5 - 12.7x 2.4x 4.4%

10243 - 266.8 33.7 56.8 - 4.7x 0.6x 3.7%

d) Turbine Blade
(1,765,388 Tris)

1283 - 3.6 7.3 0.5 - 7.2x 14.6x 3.3%
5123 - 7.6 6.9 5.3 - 1.4x 1.3x 3.4%

10243 - 16.6 8.4 7.3 - 2.3x 1.2x 2.3%

Figure 10: The voxelization results (10243) of: a) the Stanford dragon, b) the XYZ RGB Asian dragon, c) the Hairball, and d) the Turbine blade.
The results are visualized with one box representing a voxel. Please zoom in for more details. The table compares the performance and bias
with other methods. “Bias” means the proportion of voxels missing from the ground truth. The timings for other methods are directly taken from
their publications, which also used a GTX480. A “-” means that the scene is not evaluated in the original publication.

a) b)

c)

d)

e)

Figure 11: Applying our method for real-time hybrid ambient occlusion (HAO): a) our HAO result, 16.2ms, b) the voxelized Sibenik Cathedral, c)
the result without HAO, d) Sibenik Cathedral with tessellated points, and e) voxelization with resolution at 17923.

