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Figure 1: Analogous to bilateral filtering [Tomasi and Manduchi 1998], our bilateral sampling method considers both spatial-domain and non-spatial-
domain properties. Our method can generate distributions with sample attributes that are not direct functions of the underlying domains, such as more natural
biological distribution with domain-independent tree type and size (a), less noisy photon density estimation with arbitrary flux and incoming direction (b), and
more accurate (hidden) surface reconstruction from point cloud sampling (c).

Abstract

Blue noise sampling is an important component in many graph-
ics applications, but existing techniques consider mainly the spatial
positions of samples, making them less effective when handling
problems with non-spatial features. Examples include biological
distribution in which plant spacing is influenced by non-positional
factors such as tree type and size, photon mapping in which photon
flux and direction are not a direct function of the attached surface,
and point cloud sampling in which the underlying surface is un-
known a priori. These scenarios can benefit from blue noise sample
distributions, but cannot be adequately handled by prior art.

Inspired by bilateral filtering, we propose a bilateral blue noise sam-
pling strategy. Our key idea is a general formulation to modulate
the traditional sample distance measures, which are determined by
sample position in spatial domain, with a similarity measure that
considers arbitrary per sample attributes. This modulation leads to
the notion of bilateral blue noise whose properties are influenced
by not only the uniformity of the sample positions but also the sim-
ilarity of the sample attributes. We describe how to incorporate
our modulation into various sample analysis and synthesis methods,
and demonstrate applications in object distribution, photon density
estimation, and point cloud sub-sampling.
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1 Introduction

Blue noise refers to sample sets

(a) samples (b) spectrum

that have random and yet uni-
form distributions. Due to
the spatial uniformity and ab-
sence of spectral bias, blue
noise has found use in a vari-
ety of graphics applications such
as rendering [Cook 1986; Sun
et al. 2013], halftoning [Ulich-

ney 1987; Chang et al. 2009], stippling [Kopf et al. 2006; Balzer
et al. 2009; Fattal 2011], animation [Schechter and Bridson 2012],
modeling [Lipman et al. 2007; Bowers et al. 2010], and visualiza-
tion [Li et al. 2010].

The majority of these methods produce samples whose properties
are entirely dependent upon the underlying spatial domain. In par-
ticular, the position of each sample determines its spacing with
other samples, such as stippling an image. However, many com-
mon scenarios do not obey this presumption, such as:

Biological distribution [Pommerening 2002; Illian et al. 2008;
Pirk et al. 2012], in which plants often exhibit noise-like ar-
rangements and the pair-wise spacing depends on not only
plants’ positions but also their own attributes that are not di-
rectly dependent on positions, such as heights, trunk diame-
ters, and branch spreads.

Photon mapping [Jensen 1996], in which rendering quality de-
pends on the uniformity of photons with similar attributes
(such as flux and incoming direction) that are function of the
entire scene instead of just photon spatial locations over the
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attached surface.

Point cloud sampling [Öztireli et al. 2010], in which the goal is
to subsample a large collection of initial points so that the re-
maining points follow geometry features and yet remain uni-
form and random in smooth regions in order to accurately re-
construct the underlying surface, which is unknown a priori.

These scenarios can also benefit from blue noise sample distribu-
tions, e.g., more natural biological distributions, less noisy photon
density estimation, or more accurate surface reconstruction. Unfor-
tunately, they cannot be handled by prior sampling methods that are
limited to spatial domains.

We propose a generalized form of blue noise whose samples can
possess both spatial and non-spatial attributes and consequently
whose distributions may not entirely depend upon the underlying
domain. Our key idea is a general formulation to modulate tradi-
tional distance measures, which are determined by domain posi-
tions, with similarity of sample attributes that can be domain in-
dependent or unknown a priori. This allows our method to produce
bilateral blue noise distributions whose quality depends on not only
uniformity of sample positions (as in traditional blue noise quality
measures [Lagae and Dutré 2008; Wei and Wang 2011]) but also
similarity of sample attributes. In particular, unlike traditional blue
noise which strives for spatial uniformity, the optimized degree of
uniformity of our approach is proportional to the similarity of sam-
ple attributes. This is exemplified in Figure 2 and Figure 3, for
which the relevant attributes are surface normal directions for point
cloud sampling and flux colors for photon density estimation. We
propose two forms of modulation, augmentative and multiplicative,
with different properties and suitability for different scenarios. We
propose how to analyze bilateral blue noise, and how to synthesize
them to not only exhibit blue noise characteristics but also observe
the underlying sample properties. We demonstrate potential appli-
cations of our approach in object distribution, photon density esti-
mation, and point cloud sub-sampling (as summarized in Figure 1).

(c) position only (d) position + normal

Figure 2: Bilateral blue noise with augmentative similarity measure based
on normal direction. The goal is to reconstruct the unknown surface (right
within each group) from the sub-sampled point cloud (left within each
group). Sample point colors indicate whether the normal directions are
pointing forward or backward (and thus the corresponding samples lie on
the front or back surface). Traditional blue noise methods that consider only
position information will uniformly sample the embedded 3D space but not
the underlying 2D manifold (c) leading to poor surface reconstruction. Our
method, by considering both positions and normal directions, will produce a
uniform distribution in the 2D manifold (d) leading to better reconstruction.

2 Previous Work

Blue noise sampling Coined by Ulichney [1987], blue noise
refers to sample distributions that are random and uniform. This
is a desirable combination, as its randomness avoids aliasing issues

(a) original (b) our result

Figure 3: Bilateral blue noise with multiplicative similarity measure based
on photon flux. The input scene (a) is illuminated by two directional light
sources, one gradually varying from green to gray to dark and another
from dark to gray to red, with our bilateral kernel-based optimization re-
sult shown in (b). Notice the better quality of (b) versus (a) under the same
number of samples. The bottom rows visualize the detailed photon distri-
butions for each case: top for (a) and bottom for (b). The original input
has clearly less uniform distribution, causing noisy output in (a). Our result
demonstrates a continuously varying degree of bilateral uniformity, ranging
from the sides where the two groups of photons have very different attributes
and the middle where all photons have similar attributes.

commonly seen in more structured sample patterns, while its uni-
formity reduces noise compared to other stochastic sampling meth-
ods. Consequently, blue noise has found widespread applications
in graphics. Most of the prior blue noise methods derive sample
properties from their spatial positions. In other words, the distri-
butions are determined by sample attributes which are functions of
the domain positions, such as importance for adaptive sampling (see
e.g., [Balzer et al. 2009; Li et al. 2010; Fattal 2011; de Goes et al.
2012]). Thus, these methods cannot directly consider non-spatial-
domain properties, some of which might be domain independent or
unknown a priori.

Multi-class sampling Multi-class blue noise sampling [Wei
2010; Schmaltz et al. 2012] provides an exceptional group of meth-
ods that consider domain independent attributes. However, these
methods are designed for a discrete number of classes, enforcing
blue noise properties for each individual class and their total union
via an interaction matrix which encodes the spacing between pairs
of class samples. However, it remains an open problem on how
to extend the notion of discrete classes to handle continuous sam-
ple properties, in which an arbitrary collection of samples should
maintain a degree of blue noise proportional to their mutual sim-
ilarity in attributes. (Figure 3 is an example.) Furthermore, these
methods assume otherwise known domain properties, such as den-
sity for adaptive sampling.

Our method can be considered as a generalization of multi-class
sampling [Wei 2010; Schmaltz et al. 2012] in two major aspects:
handling general non-spatial sample attributes beyond just sample
classes, and enforcing blue noise properties for continuous instead
of just discrete combinations of sample groups.

3 Core Ideas

Our core idea is to compute the bilateral differential ξ(si, sj) be-
tween pairs of samples si and sj as a modulation ◦ of the traditional



positional differential d(pi,pj) = pi − pj [Wei and Wang 2011]
and a (dis)similarity measure f(vi,vj) of non-spatial sample at-
tributes vi and vj :

ξ(si, sj) = d(pi,pj) ◦ f(vi,vj). (1)

In a nutshell, the d part can be handled by existing methods (e.g.,
importance sampling), while the f part will be handled by our
method together with d. Effect-wise, two samples with more differ-
ent attributes will have larger f value, allowing them to have closer
positions pi and pj than the spacing criterion r (e.g., Poisson disk
conflict radius) would allow under traditional settings. Thus, our
method can maintain spatial uniformity for samples with similar
attributes while placing more samples in areas with more attribute
variation.

Throughout this paper we will use s to represent a sample, and p
and v to represent a sample’s spatial position and non-spatial at-
tribute/feature, respectively. Depending on the circumstances, we
indicate the association between p/v and s in either the function
form (e.g., p(s) is the position of s) or through subscripts (e.g., pi
is the position of si). We also use p to indicate a point in the do-
main Ω which might or might not be a sample. We indicate vector
quantities in boldface (such as differential d and ξ) and their corre-
sponding scalar quantities (such as distance d = |d| and ξ = |ξ|)
in non-boldface.

We will next present our options for ◦ and f .

3.1 Spacing

We present two specific forms of Equation 1, based on augmenta-
tive and multiplicative modulations.

σv = 5.0 σv = 10.0 σv = 25.0 σv →∞
Figure 4: The effect of σv for augmentative modulation in Equation 2.
Under the same σp = 1, a smaller σv can cause more samples to be placed
near surface features, such as geometry contours and corners. Setting σv =

∞ reduces our method to traditional blue noise sampling. In this example,
we use point cloud sampling with normal direction as v.

Augmentative In this form, we append v as additional dimen-
sions of the positional vector:

ξ(si, sj) =

(
d(pi,pj)

σp
,
d(vi,vj)

σv

)
, (2)

in which σp and σv are the relative weights between p and v dif-
ferentials. They provide a balance between blue noise and feature
preservation. When σv → ∞, our method is reduced to conven-
tional blue noise sampling, and when σv gets smaller, our method
puts more emphasis on features than blue noise, as shown in Fig-
ure 4. In our experiments, we set σp = 1 and σv ∈ [15, 25].

Multiplicative In this form, we divide d(pi,pj) with a scalar
similarity measure τ(vi,vj) ∈ (0, 1] as follows:

ξ(si, sj) =
1

τ(vi,vj)
d(pi,pj). (3)

By default we use Gaussian for τ , even though other math forms are
possible as exemplified in later examples. For notational simplicity,
we use τ(si, sj) interchangeably with τ(vi,vj).

Discussion Our augmentative formulation in Equation 2 bears
resemblance to bilateral filtering [Tomasi and Manduchi 1998]. In
particular, our p and v correspond to their domain position and
range information, respectively. (This is also the reason why we
name our method bilateral.) The main difference is that our method
is about sampling while theirs is about filtering.

Our multiplicative formulation in Equation 3 bears resemblance to
electrostatic halftoning [Schmaltz et al. 2010; Schmaltz et al. 2012].
In particular, their methods use electric charges to directly scale the
desired sample spacing, whereas our method uses a scalar similarity
τ for analogous purpose.

Our two formulations have similarities as well as differences. Given
the same sample positions pi and pj , they both have larger dis-
tance values ξ(si, sj) for less similar attributes vi and vj . Their
main difference, as evident, is the augmentative and multiplicative
formulation. This provides different trade-offs. The former allows
a metric while the latter allows more precise control: two samples
with very dissimilar properties can get arbitrarily close. The exact
choice can depend on both the algorithms and applications.

We focus on these two formulations due to their simplicity, relation-
ships to prior methods, and adequacy for a variety of applications
we have explored. Other forms of formulations are certainly possi-
ble but they would be beyond this paper; we leave these as potential
future work.

3.2 Formulation

A common method to formulate the uniformity of a sample set S
with N samples, S = {s1, s2, ..., sN}, is to use a variational or
energy function (see e.g., [Wei 2010; Schmaltz et al. 2010; Fattal
2011]) with the following general form:

Eu(s, S) =
1

N

N∑
k=1

κ(s, sk), (4)

where s is a query sample and κ is a kernel function with compact
support (exactly or at least approximately, such as Gaussian kernel,

κ(s, sk) = e
− d2(p,pk)

σ2 ). We include all domain information, such
as adaptivity and anisotropy, into d, therefore σ remains a global
constant for kernel support size.

Following Equation 3, the key modification is to use our bilateral
distance instead of the original measure:

Eu(s, S) =
1

N

N∑
k=1

e
− ξ

2(s,sk)

σ2 , (5)

where ξ can come from either the augmentative (Equation 2) or
multiplicative (Equation 3) forms. Intuitively, the influence of
κ(s, sk) is modulated by the similarity of sample attributes; the less
the similarity is, the narrower the kernels are and thus the weaker
the influence is.

Besides spatial uniformity, another important criterion for blue
noise is randomness, in particular the lack of any structures in the
spatial distributions. This can often be best measured in the spectral
domain, as discussed in Section 4.

4 Analysis

Here we describe how to extend the differential domain analysis
(DDA) method in [Wei and Wang 2011] for bilateral blue noise dis-
tribution. Similar procedures can be applied to extending other spa-
tial analysis methods such as the one based on the pair correlation
function (PCF) [Öztireli and Gross 2012].
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(a) uniform, w = 0.5
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(b) discrete, w ∈ {0, 1/3, 2/3, 1}
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(c) continuous, w ∈ [0, 1]

Figure 5: Differential domain analysis of bilateral blue noise sampling. Each sample has a weight attribute w (represented by its color). The similarity
between any two samples si and sj is defined as τ(si, sj) = max(0, 1 − 2|wi − wj |). Both the synthesized results with discrete (b) and continuous (c)
weights exhibit the similar spectral characteristics as that of the typical blue noise distribution (a). Within each group are the spatial samples colored with
their weights, the DDA [Wei and Wang 2011] spectrum, and the radial mean and anisotropy. The results are produced by our bilateral dart throwing method.

Given a set of N samples {sk} with positions {pk}, its Fourier
power spectrum P (f) [Ulichney 1987; Lagae and Dutré 2008; Wei
and Wang 2011] can be represented as follows:

P (f) =
1

N

N∑
i=1

N∑
j=1

cos[2πf · (pi − pj)] (6)

≈
∫

Ωd

cos(2πf · d) p(d) δd, (7)

where f is the frequency vector, and p(d) is called the differential
distribution function. It describes the probability distribution of the
difference (pi − pj) between every pair of samples si and sj :

p(d) =
1

N

N∑
i=1

N∑
j=1

κ(d, (pi − pj)) (8)

≈
∫

Ωd

κ(d,d′ = pi − pj)δd
′, (9)

where κ is a density estimation kernel, usually a Gaussian kernel
(with center d′ and standard deviation σ) for robust estimation,

κ(d,d′) = e
− ‖d−d′‖2

σ2 . We extend Equation 9 for bilateral blue
noise by introducing the bilateral distance measure:

p(d) ≈
∫

Ωd

κ
(
d,d′ = ξ(si, sj)

)
δd′. (10)

See Figure 5 for example results.

For non-uniform sampling, we only need to perform proper trans-
formation of d′ depending on its two end points pi and pj . The
transformation may incur changes in length (for adaptive sampling)
and/or direction (for anisotropic sampling) that are orthogonal to
our ξ; details can be found in [Wei and Wang 2011].

5 Synthesis

Various algorithms have been proposed to synthesize blue noise
sample sets, such as dart throwing [Cook 1986] and particle/kernel-
based optimization [Schmaltz et al. 2010; Fattal 2011]. Our method
can be easily incorporated into these methods by replacing the tra-
ditional distance measure d by our bilateral one ξ as in Equation 2
or Equation 3. The net effect is that samples with less similarity
will have more wiggle rooms to be spatially closer together under
the same original spacing conditions.

5.1 Dart Throwing

The classical dart throwing algorithm [Cook 1986] generates sam-
ples one by one. Each time a trial sample s is drawn randomly from
the domain. This trial sample is accepted if it is at least a user-
specified distance r away from all existing samples, and is rejected
otherwise. This process ends when meeting some termination cri-
teria, e.g., a target number of samples or a maximum number of
trials.

Our bilateral dart throwing algorithm follows a similar process, but
uses bilateral distance ξ instead of the original distance d for con-
flict check. Note that since we only change the distance measure
ξ but not the conflict measure r, our method can be orthogonally
combined with not only uniform (r is a constant) but also adaptive
(r(p) depends on spatial sample position) and anisotropic sampling
(r(pi,pj) depends on the relative distance and direction of two
sample positions pi and pj).

Since the sample properties might be unknown a priori and can be
independent from the underlying domain, in general it is not possi-
ble to pre-compute an importance function to guide the generation
of trial samples through an adaptive or anisotropic white noise [Li
et al. 2010]. We therefore follow the importance sampling strategy
for Monte Carlo methods: use known importance/guidance func-
tions if available (e.g., spatial adaptivity or anisotropy), and resort
to uniform white noise by default.

5.2 Kernel-based Optimization with Known ρ

Point relaxation such as Lloyds method [Lloyd 1982] and kernel
formulation [Fattal 2011] has been used to optimize noise distri-
butions, and here we describe how to combine the latter with our
bilateral method. Given a sample set S, the energy Eu(p, S) in
Equation 4 can be used to approximate a given density function
ρ(p) at any point p in the domain Ω. The energy function that de-
scribes the error of this approximation is defined by

E(S) =

∫
Ω

|Eu(p, S)− ρ(p)|2δp. (11)

The goal is to optimize S with low E(S) while maintaining blue
noise properties. To apply our bilateral method for non-uniform
sampling in an n-dimensional Euclidean space Ω, we factor the
density ρ into the distance measure on a Riemannian manifold
based on the Nash embedding theorems [Nash 1954], where the
density can be treated as a constant. That is, the distance measure
d(pi, pj) on the manifold is integrated along the geodesic from pi



to pj :

d(pi, pj) =

∫ pj

pi

n
√
ρ(p)δp. (12)

A similar methodology can also be performed for anisotropic sam-
pling [Li et al. 2010].

Having a constant density facilitates our derivations; in Ap-
pendix A, we derive that the energy function (Equation 11) with
a constant target density function is domain independent,

E(S) =

N∑
i=1

N∑
j=1,j 6=i

Ei,j =

N∑
i=1

N∑
j=1,j 6=i

e
−

d2(pi,pj)

2σ2 , (13)

where Ei,j = e
−

d2(pi,pj)

2σ2 can be considered as an energy between
samples si and sj , and the energy E(S) is the sum of the energies
between arbitrary two samples in the sample set. When extending
for our bilateral formulation, we simply introduce the bilateral dis-

tance measure in each energy term Ei,j = e
−
ξ2(si,sj)

2σ2 .

We use a gradient descent method to iteratively minimize the en-
ergy function E(S), and produce a sample distribution with bilat-
eral blue noise properties. The gradient of E(S) with respect to sk
can be computed by

∂E(S)

∂sk
=

N∑
i=1,i 6=k

∂Ei,k
∂sk

=

N∑
i=1,i 6=k

ξ(si, sk)

σ2
e
− ξ

2(si,sk)

2σ2 . (14)

At each iteration, we move sample sk locally towards the direction
that reduces E(S) fastest by a small step size ∆t,

pt+1
k = ptk −∆t

∂E(S)

∂sk
. (15)

Too large step size ∆t will cause unstable relaxation, while too
small ∆twill result in slow convergence. We set the step size ∆t =
0.45σ2 and found that the algorithm converges fast (usually with
10∼20 iterations from an initial white noise over ρ).

5.3 Optimization with Unknown ρ

The method introduced above assumes a given target density ρ in
a certain form. However, in some scenarios such as photon den-
sity estimation, the given sample set was randomly sampled from
a target density function ρ, which is unknown to our algorithm.
For such cases, using the distance measure in the gradient-descent
solver (Equation 15) would introduce diffusion bias, thus breaking
the intrinsic density variation. Even if the initial distributions are
available for estimating ρ, it is often too noisy for direct use. Here,
we describe an extension of our kernel-based optimization method
(Section 5.2) to handle unknown target densities. Note that the goal
here is to preserve the density underlying a given initial distribution
instead of trying to estimate an unknown density from scratch.

To preserve density variation, our basic idea is a robust constraint
based on the flow of samples caused by our gradient-descent solver.
Specifically, during gradient-descent, the local average flow of sam-
ples at sk, which describes the diffusion bias, can be estimated as

F̄(sk) =

N∑
i=1

$(sk, si)(p
t
i − p0

i ) (16)

=

N∑
i=1

$(sk, si)p
t
i −

N∑
i=1

$(sk, si)p
0
i , (17)

where p0
i is the original position of si, and $(sk, si) is a weight

function (e.g., Gaussian: $(sk, si) = e
− ξ

2(sk,si)

2σ2 ). The first and
second terms in Equation 17 are respectively the weighted barycen-
ters of the relaxed and original samples with respect to sk. In
the uniform areas, these two barycenters tend to remain nearby re-
gardless of relaxation. However in the non-uniform areas, the two
barycenters may drift apart; we need to prevent this from happening
in order to preserve features of the underlying sample distribution.
Our constraint strategy takes advantage of the feedback from the
existing flow of samples. The movement of sk in each iteration
considers both the uniformity and the reduction of diffusion bias:

pt+1
k = ptk −∆t

(
∂E(S)

∂sk
+ αF̄(sk)

)
. (18)

Here α is a user-defined parameter for achieving a trade-off be-
tween uniformity and density preservation. Through our experi-
ments, we found that α = 0.25/σ2 works well.

5.4 Performance

Our synthesis methods inherit the simplicity of the traditional blue
noise sampling approaches, and are ripe for GPU implementation
and acceleration. For our dart throwing algorithm, we extend the
grid data structure in Wei [2008] for conflict check, and perform
parallelization on GPU. Our dart throwing method can produce
∼8M samples/sec for 2D synthesis. For the kernel-based optimiza-
tion running on a GPU (3D synthesis followed by projection onto
surfaces for photon mapping), our method can handle∼250K sam-
ples/sec using 10 iterations. All the performance data above were
measured on a PC with an Intel Core i7 3770 CPU at 3.4GHz, 16GB
RAM, and an NVIDIA GeForce GTX580 GPU.

6 Applications

We present applications of bilateral blue noise sampling in object
distribution (Section 6.1), photon density estimation (Section 6.2),
and point cloud sampling (Section 6.3). They share the common
trait of involving both spatial and non-spatial sample properties.
They also have different characteristics and thus are suitable for
different ξ formulations and synthesis methods: multiplicative ξ
+ dart throwing for object distribution, multiplicative ξ + kernel-
based optimization with unknown ρ for photon density estimation,
and augmentative ξ + both dart throwing and kernel optimization
for point cloud sampling. We choose the multiplicative ξ for objects
and photons to have more direct control of sample spacing, and
the augmentative ξ for point clouds since arbitrarily close samples
would cause troubles for surface reconstruction.

6.1 Object Distribution

Real world objects are often distributed with particular character-
istics. For example, biological individuals tend to be randomly
located but remain uniformly separated apart [Illian et al. 2008],
which can be characterized by blue noise distributions. Below, we
demonstrate cell and tree distributions that can be well modeled by
bilateral blue noise, potentially involving both discrete and continu-
ous properties that can be independent of the underlying spatial do-
mains. These are naturally generated by our dart throwing method.

Discrete properties Cells have been found to follow the blue
noise distributions [Yellott 1983]. Figure 6a shows the distribution
of rabbit retina amacrine cells of two different types: on and off
[Diggle et al. 2006]. There is a pronounced inhibitory effect be-
tween cells of the same type to make their distributions more regu-
lar, meaning that no two on (or off) cells can be located arbitrarily
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(b) our result

Figure 6: The distribution of amacrine cells with desired spacing depend-
ing on cell types. (a) shows the original cell data reported in Diggle et
al. [2006] while (b) is our synthesized result. Within each group are the
spatial cell distributions (with 152 on (◦) and 142 off (•) cells), DDA radial
mean [Wei and Wang 2011], and PCF curves [Öztireli and Gross 2012] (the
red/green/blue curves are the PCFs of off/on/all cells).

close - the reported minimum distances are 21.4µm and 15.8µm
for the on and off cells respectively; while the inhibitory effect is
much less pronounced between cells of different types - the reported
minimum distance is 5µm.

This 2-cell type distribution can be simulated by our method. We
use a unified minimum spacing r(si, sj) = 21.4µm between any
two cells si and sj , and synthesize cell distributions based on the
dart throwing criterion ‖ξ(si, sj)‖ > r(si, sj). We modulate the
similarity τ as follows to match the reported statistics above:

τ(si, sj) =


1 if si and sj are both of on type,
15.8
21.4

if si and sj are both of off type,
5

21.4
if si and sj are of different types.

(19)

Our synthesized result, shown in Figure 6b, is able to match the
original distribution (in Figure 6a) quite well, given that the latter
is a measured instead of analytical distribution.

Note that even though this discrete setting can also be produced by
the method in [Wei 2010], the paper has shown only applications
with automatically computed sample spacing. We demonstrated the
possibility of user-specified spacing. Next application is of contin-
uous properties, which is beyond Wei [2010].

Continuous properties Figure 7 provides a simulation of a for-
est consisting of two discrete types of trees, oak and beech, with
continuously varying properties in heights and crown sizes [Pom-
merening 2002; Illian et al. 2008]. These trees form an interesting
mixed pattern: the oaks, which need light, keep segregated char-
acteristics; while the beeches, which can tolerate shade, have min-
gling characteristics.

To model this competition in terms of sunlight, we use the distance-
dependent indices, which assume each tree had a circular area of
influence expressed as a function of its crown size [Burkhart and
Tomé 2012]. For simplicity we also assume the height of a tree is
proportional to its crown size. We adopt a simple linear function to
define the radius of influence area Rs = βγs, where β is a global
control parameter proportional to tree spacing, for which we set as
2.0 in our Figure 7 result, and γs ∈ [0.5m, 1.5m], a uniform ran-
dom variable independent of the underlying domain, is the crown
size of tree s. Thus, the unified minimum distance between sam-
ples/trees si and sj is defined as r(si, sj) = Rsi + Rsj . Inspired
by Pirk et al. [2012], we design the similarity τ between any two

Oak tree Beech tree

(a) rendering

(b) distribution

Figure 7: Simulation of a forest of oak and
beech trees with continuously varying crown
sizes. (b): the synthesized distribution of two
types of trees (• for oak and • for beech, with
symbol sizes indicating the crown sizes). (a):
the image rendered using the approach [Bao
et al. 2012]. Notice the segregation/mingling
patterns for the oak/beech trees.

trees to incorporate the light/shade properties of oak and beech:

τ(si, sj) =


1 if si sj both oak,
1
β

if si sj both beech,

min
(

1,max( 1
β
,
γsbeech
γsoak

)
)

if si sj mixed types.

(20)

Intuitively, we leave sufficient spacing between oaks as they need
sunlight, and just enough spacing between beechs so that their
crowns will not overlap - the beech-beech condition above trans-
lates to ‖d(pi,pj)‖ > γsi + γsj . The oak-beech case is between
those two; notice τ(soak, sbeech) is capped above by τ(soak, soak)
and below by τ(sbeech, sbeech), and its exact value depends on the
relative crown sizes (and thus heights based on our height ∝ crown
size assumption). When the beech is taller than the oak, we set
τ(soak, sbeech) = 1, the same as τ(soak, soak), so that the oak
will receive enough sunlight. Otherwise, the beech is shorter than
the oak, and we set their minimal spacing to be proportional to the
beech height to cap the maximal amount of shadow it can cast on
the oak trunk, subject to the non-overlapping condition as in the
beech-beech case. The final synthesized distribution is able to well
exhibit the segregation and mingling properties of the two types of
trees, as shown in Figure 7.

6.2 Photon Density Estimation

High-quality density estimation is critical for global illumination,
especially in the widely used photon mapping approaches [Jensen
1996; Jensen and Christensen 1998]. Using a smooth kernel can
help reduce rendering noise caused by the non-uniformity of pho-
ton distributions. However, it also introduces bias; as the number of
samples increases, the estimated result converges to the convolution
of the kernel with the true density function, rather than the function
itself. Hence, there is a trade-off between sampling noise and esti-
mation bias, which is determined by the kernel size. To minimize
noise and bias, most existing approaches focus on improving the
kernel estimators, such as adaptive bandwidth selection [Schregle
2003] and anisotropic kernel shape [Schjøth et al. 2008].
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Figure 8: Comparison of photon relaxation by different methods via sample distribution (top), rendering result (bottom), and mean squared error (MSE)
relative to the ground truth. (a): The input distribution is generated by randomly placing photons in a unit square light source and tracing their formation
into a planar folded sheet, which consists of a variety of structures including mixed uniform region (B), thin interior feature (C), and sharp corner (A). Each
photon is colored by its (u, v) coordinate within the light source: (r, g, b) = (u, v,max(0, 1 − u − v)). (b): Spencer and Jones [2009] improves quality
over the original input in (a) but may not preserve some features well, such as smeared region A, diluted region C, and less uniform region B for samples of
similar colors. (c): Spencer and Jones [2013a] is able to maintain some features better than their prior method in [2009] such as regions B and C, but still has
problem at sharp corners (see region A) and can also introduce discontinuity (see the gap in region C between green and orange samples). (d): Our method
can robustly handle all these scenarios. Notice well preserved thin features in regions A and C and more uniform distributions of similarly colored photons in
region B.

By observing that rendering noise is mainly caused by the non-
uniformity of photon distribution, Spencer and Jones [2009; 2013a]
provided state-of-art photon relaxation methods for improving
caustics rendering. Due to the improved uniformity in photon dis-
tribution, more compact kernel sizes can be used for reducing noise
and bias. Figure 8 illustrates a didactic case consisting of a variety
of photon distributions including both sharp features and smooth ar-
eas. Their [2009] method relaxes all photons equally without con-
sidering their individual properties; this can improve global uni-
formity compared to original photon distributions (Figure 8a ver-
sus Figure 8b) but might not be enough for some features (e.g.,
sharp regions A and C and smooth region B with mixed photon
colors). Their [2013a] method handles features better by consider-
ing sample parameterization (e.g., (u, v) coordinates over an area
light) analogous to multi-class sampling [Wei 2010; Schmaltz et al.
2012], but still has difficulty handing sharp corners (region A) since
it only constrains relaxation in the direction orthogonal to, but not
the one parallel to, feature anisotropy. It can also introduce dis-
continuity (see the gap in region C between green and orange sam-
ples) when switching the relaxation from high-dimensional param-
eter domain to low-dimensional spatial domain.

Our bilateral method directly considers photon properties during
relaxation and thus can preserve both smooth regions (e.g., region
B) and sharp features (e.g., regions A and C) better than Spencer
and Jones [2009; 2013a] as shown in Figure 8. In particular, we
use the bilateral kernel relaxation with unknown ρ method (Sec-
tion 5.3) since we are given the initial photon set but not the un-
derlying density. Figure 9 consists of scenes with complex effects
of reflection and refraction. As shown, our bilateral formulation is
more general and consistently produces more visually smooth as
well as more accurate rendering results than alternative methods.
In addition to surface photon mapping, our method can also be eas-
ily applied for volumetric photon mapping [Jensen and Christensen
1998], as shown in Figure 10.

Implementation There are two main parameters we need to con-
sider here. The first is the Gaussian kernel size σk for each sam-
ple sk (used in Equation 14). In our implementation, we take
n = 40 nearest neighbors into consideration using our bilateral
distance measure. Assuming Rk is the radius of the disc center at
sk and enclosing exactly its n nearest neighbors, we set the ker-
nel size σk = Rk/3. (The evaluations of local samples beyond
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Figure 9: Surface photon density estimation. Top row: A complex pattern of dispersion caused by the candle light through a glass bowl. Photons exhibit
different fluxes due to spectral sampling, and light of different wavelengths is refracted differently. The similarity of each sample pair depends on the photon
flux. Bottom row: A scene containing a metal ring illuminated by three directional light sources with hybrid caustics on a glossy floor. The similarity relates to
both photon flux and incoming direction. Our bilateral method produces more visually smooth as well as more accurate rendering results compared with the
state-of-the-art photon relaxation method in Spencer and Jones [2009; 2013a]. We use [2009] for the refraction case since it is not clear how to apply or even
extend [2013a] for different wavelengths. The reference images are rendered with 40× photons without any relaxation.

(a) unrelaxed (b) our result

Figure 10: Seabed rendered by volumetric photon mapping. (a): Images
rendered without sample relaxation using a compact (left part) and a larger
kernel size (right part). (b): Image rendered with our method using the same
compact kernel size. Our method is able to smooth out the rendering noise
while preserving the sharpness of volumetric caustics.

3σk can be ignored.) Since all photons will not move far from
their original positions in our method, we use the same local sam-
ple set for each sample during relaxation in an approximate manner
for efficiency considerations. The second parameter is the simi-
larity τ(si, sj) of photons si and sj , which represents the simi-
larity of photon attributes involved in radiance estimation. Usu-

ally, the photon flux Φ is involved, and τ(si, sj) = κΦ(Φsi ,Φsj ).
When the radiance estimation is performed on non-Lambertian sur-
faces, the incoming direction of photon ω is also involved, and
τ(si, sj) = κΦ(Φsi ,Φsj )κω(ωsi , ωsj ). The functions κ(., .) can
be Gaussian kernels, whose values reduce from 1 to 0 as the differ-
ence between these two photon attributes increases. The standard
deviation σω of Gaussian kernel κω for incoming direction is set
to be 0.3 (σω ∈ [0.15, 0.45]), while σΦ for κΦ is set to be 0.15
(σΦ ∈ [0.05, 0.3]). Here we normalized the photon flux Φ by the
area of radiance estimation for the computation of similarity.

6.3 Point Cloud Sub-sampling

Geometry sampling is important for a variety of applications and
can benefit from sample distributions that preserve both features
and blue noise properties. In particular, allocating samples at fea-
tures area such as tips and creases are critical in preserving the orig-
inal geometry proprieties[Lévy and Liu 2010], while distributing
samples with blue noise properties can avoid undesirable aliasing
or bias in computations involving geometry samples [Turk 1992;
Bolander and Saito 1998].

These prior methods mainly deal with known surfaces. Scenarios
involving unknown surfaces are less explored but can have impor-
tant applications. Here, we use point cloud sub-sampling [Öztireli
et al. 2010] as a specific example. Given an input point cloud set
that is often over dense and redundant, the goal is to select a sub-
set of samples while maintaining quality of the reconstructed sur-
face. The main challenge is to place enough samples around fea-
tures while having blue noise distributions at smooth regions with-
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Figure 11: Point cloud resampling results. Here, we compare traditional dart-throwing/kernel-optimization, [Öztireli et al. 2010] sub-sampling/gradient-
ascent, and our bilateral dart-throwing/kernel-optimization. Each kernel-optimization/gradient-ascent result is produced from the corresponding dart-
throwing/sub-sampling result. Within each bowl/moose case are the point clouds (top row) and reconstructed surfaces (bottom row), except for the first
column which shows the original models in full (top) or in the demonstrated subset (bottom). As shown, bilateral sampling methods achieve a more uniform
sample distributions in smooth areas and more accurate feature preservation in sharp areas, translating to better surface reconstruction. For the bowl/moose
case, the input point cloud has∼400K/800K samples and each output result has∼6K/30K samples. All optimization results are generated via 15 iterations.

out explicitly knowing the underlying surface.

Similar to [Öztireli et al. 2010], we assume the input consists of a
point cloud with per vertex position and normal direction informa-
tion, the later one can be estimated through various methods as dis-
cussed in [Öztireli et al. 2010; Huang et al. 2013]. Our method can
use geometry measures other than surface normal n (which tends to
be noisy and unstable) as the feature v, but we will focus on n for
easy presentation and comparison with [Öztireli et al. 2010]. Both
[Öztireli et al. 2010] and our method involve a 2-step process. The
initial selection step: sub-sampling in [Öztireli et al. 2010] and bi-
lateral dart-throwing in our method; and the subsequent refinement
step: gradient-ascent in [Öztireli et al. 2010] and bilateral kernel-
optimization in our method.

Without knowing the underlying surface, traditional blue noise
methods, which consider only sample positions, only can promise
a uniform sample distribution in the 3D Euclidean space. Thus,
they might incorrectly handle samples that have close spatial prox-
imity but differ sufficiently in normal directions, such as samples
lying on the opposite sides of a thin feature (as shown in Figure 2
and 11). The spectrum method in [Öztireli et al. 2010] considers
both position and normal and thus improves the result quality. Our
method, using n as v in Equation 2, is much simpler and produces
better results. As shown in Figures 11 and 12, our methods can pro-
duce more effective distributions, in terms of both feature preser-
vation and blue noise properties, than the corresponding methods
in [Öztireli et al. 2010], resulting in better surface reconstruction
quality. Notice that we need both blue noise uniformity in smooth

regions and feature preservation in sharp regions; the holes on the
bowl are caused by lacking of the former while the jagged bow lip,
moose horn, and ear are caused by lacking of the latter.

Analysis The sub-sampling method in Öztireli et al. [2010] ac-
cepts a sample if it brings enough improvement to the current sub-
set. Thus, it behaves similarly to the soft disk sampling algorithm
in Wei [2010] and tends to produce less uniform distributions than
bilateral hard disk sampling. Our bilateral kernel-optimization can
outperform gradient-ascent in Öztireli et al. [2010] mainly due to
our robust diffusion constraint for feature preservation.

Implementation Since the underlying surface is unknown, we
use Euclidean instead of geodesic distance for d(pi,pj) in Equa-
tion 2. This is usually adequate with sufficiently dense input sam-
ples [Lipman et al. 2007; Huang et al. 2013; Öztireli et al. 2010].
We restrict all samples to lie on the tangent planes of the points in
the input point cloud. Thus, after moving each sample (via Equa-
tion 18), we project it back to the tangent plane of the nearest point
in the input point cloud. We set σv to be 25 for Figure 1c, 2 and 11.
Note we rescaled all input point cloud into a unit bounding box.

7 Limitations and Future Work

Since our bilateral distance measure allows closer sample pairs with
less similarity, our dart throwing method can no longer take ad-
vantage of the gap processing techniques for accelerating maximal
sampling [Ebeida et al. 2011; Yan and Wonka 2013]. A potential
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Figure 12: Differential domain analysis for surface sampling. Here we
show the DDA [Wei and Wang 2011] spectrum, radial mean, and radial
anisotropy for the point sets in Figure 11. Compared to the methods in
Öztireli et al. [2010] (left), our methods (right) have better blue noise
properties, such as more uniform distributions in dart throwing versus sub-
sampling (upper group) and the lower amount of anisotropy in general.

future direction is to explore data structures suitable for tracking
such gaps for maximal sampling.

Our bilateral distance measure is designed for sample pairs. This is
sufficient for dart throwing and kernel-based optimization, but not
methods such as Lloyd relaxation which also need to compute the
distance between a sample and an arbitrary non-sample point in the
domain. Our formulation can be directly applied if all attributes
are derived from the domain so that points and samples share the
same set of attributes. Otherwise, alternative schemes have to be
considered and we leave them as potential future work.

Currently we empirically determine the parameters σp and σv in
Equation 2, and would like to pursue more rigorous analytical meth-
ods. In addition, our current results are produced with uniform σp
and σv , and we believe varying them spatially may benefit certain
applications.

The current similarity measure τ in Equation 3 is a scalar. We
would like to explore anisotropic τ (e.g., tensor) that would allow
not only length but also direction change for positional difference.

To clearly demonstrate sample distributions, we use a relatively
sparse spacing for the forest example in Figure 7. It is straight-
forward to tune our similarity function for producing denser forests
or considering alternative biological attributes. As shown in [Zhou
et al. 2012] biological phenomena can be characterized by other
noise distributions such as pink noise for clustered bushes. Our
bilateral formulation can be easily combined with the approach in
[Zhou et al. 2012] for general (non-blue) bilateral noises.

Regarding photon mapping, our current implementation does not
re-sample the fluxes and incoming directions of photons while op-
timizing their spatial positions. We have found this adequate since
our method constrains the movements of photons around their orig-
inal positions, but better accuracy could be obtained through di-
rect high dimensional sampling as described above. Analogous to
Spencer and Jones [2013b], we would also like to extend our bilat-
eral method to progressive photon mapping [Hachisuka et al. 2008]

for further quality and performance enhancement.

We have applied our method to 2D surfaces and 3D volumes; ad-
ditional applications, such as nonlinear filtering as well as stip-
pling videos and dynamic 3D objects, are described in [Ge et al.
2013]. We would also like to explore synthesis in higher dimen-
sional spaces, such as treating light-paths instead of just photons as
samples.
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BURKHART, H., AND TOMÉ, M. 2012. Indices of individual-
tree competition. In Modeling Forest Trees and Stands. Springer
Netherlands, 201–232.

CHANG, J., ALAIN, B., AND OSTROMOUKHOV, V. 2009.
Structure-aware error diffusion. ACM Trans. Graph. 28, 5,
162:1–162:8.

COOK, R. L. 1986. Stochastic sampling in computer graphics.
ACM Trans. Graph. 5, 1, 51–72.

DE GOES, F., BREEDEN, K., OSTROMOUKHOV, V., AND DES-
BRUN, M. 2012. Blue noise through optimal transport. ACM
Trans. Graph. 31, 6, 171:1–171:11.

DIGGLE, P., EGLEN, S., AND TROY, J. 2006. Modelling the
bivariate spatial distribution of amacrine cells. In Case Studies
in Spatial Point Process Modeling, Lecture Notes in Statistics
185. Springer New York, 215–233.

EBEIDA, M. S., DAVIDSON, A. A., PATNEY, A., KNUPP, P. M.,
MITCHELL, S. A., AND OWENS, J. D. 2011. Efficient maximal
Poisson-disk sampling. ACM Trans. Graph. 30, 4, 49:1–49:12.

FATTAL, R. 2011. Blue-noise point sampling using kernel density
model. ACM Trans. Graph. 30, 4, 48:1–48:12.

GE, X., WEI, L.-Y., WANG, Y., AND WANG, H. 2013. Bi-
lateral blue noise sampling: Additional algorithms and appli-
cations. Tech. Rep. OSU-CISRC-8/13-TR17, The Ohio State
University - Department of Computer Science and Engineering.
ftp://ftp.cse.ohio-state.edu/pub/tech-report/2013/TR17.pdf.

HACHISUKA, T., OGAKI, S., AND JENSEN, H. W. 2008. Progres-
sive photon mapping. ACM Trans. Graph. 27, 5, 130:1–130:8.

HUANG, H., WU, S., GONG, M., COHEN-OR, D., ASCHER, U.,
AND ZHANG, H. R. 2013. Edge-aware point set resampling.



ACM Trans. Graph. 32, 1, 9:1–9:12.
ILLIAN, J., PENTTINEN, A., STOYAN, H., AND STOYAN, D.

2008. Statistical Analysis and Modelling of Spatial Point Pat-
terns. John Wiley & Sons, Ltd.

JENSEN, H. W., AND CHRISTENSEN, P. H. 1998. Efficient simu-
lation of light transport in scenes with participating media using
photon maps. In SIGGRAPH ’98, 311–320.

JENSEN, H. W. 1996. Global illumination using photon maps. In
Proceedings of the Eurographics Workshop on Rendering Tech-
niques ’96, 21–30.

KOPF, J., COHEN-OR, D., DEUSSEN, O., AND LISCHINSKI, D.
2006. Recursive Wang tiles for real-time blue noise. ACM Trans.
Graph. 25, 3, 509–518.
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A Kernel-based Optimization

Under a constant ρ(p) ≡ C, the energy function in Equation 11 is
minimized by finding an optimal (uniform) sample set S∗,

S∗ = arg min
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Suppose the domain Ω has no boundary, we can see that the first two
terms are constant, and only the third term depends on the sample
set. Thus, the above equation can be simplified as
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It shows that the energy function is domain independent,

E(S) = C′ +
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e
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where Ei,j = e
−

d2(pi,pj)

2σ2 can be considered as an energy between
samples si and sj , and the energy E(S) is the sum of the energies
between arbitrary two samples in the sample set (let the constant
C′ = 0).


