
Multi-Scale Models to Simulate Interactions between Liquid and Thin Structures

Yun (Raymond) Fei

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2019



©2019
Yun Fei

All rights reserved



ABSTRACT

Multi-Scale Models to Simulate Interactions between Liquid and Thin Structures

Yun (Raymond) Fei

In this dissertation, we introduce a framework for simulating the dynamics be-

tween liquid and thin structures, including the effects of buoyancy, drag, capillary

cohesion, dripping, and diffusion. After introducing related works, Part I begins

with a discussion on the interactions between Newtonian fluid and fabrics. In this

discussion, we treat both the fluid and the fabrics as continuum media; thus, the

physical model is built from mixture theory. In Part II, we discuss the interactions

between Newtonian fluid and hairs. To have more detailed dynamics, we no longer

treat the hairs as continuum media. Instead, we treat them as discrete Kirchhoff

rods. To deal with the thin layer of liquid that clings to the hairs, we augment

each hair strand with a height field representation, through which we introduce a

new reduced-dimensional flow model to solve the motion of liquid along the longitu-

dinal direction of each hair. In addition, we develop a faithful model for the hairs’

cohesion induced by surface tension, where a penalty force is applied to simulate

the collision and cohesion between hairs. To enable the discrete strands interact

with continuum-based, shear-dependent liquid, in Part III, we develop models that

account for the volume change of the liquid as it passes through strands and the

momentum exchange between the strands and the liquid. Accordingly, we extend the

reduced-dimensional flow model to simulate liquid with elastoviscoplastic behavior.



Furthermore, we adopt a constraint-based model to replace the penalty-force model

to handle contact, which enables an accurate simulation of the frictional and adhe-

sive effects between wet strands. We also present a principled method to preserve the

total momentum of a strand and its surface flow, as well as an analytic plastic flow

approach for Herschel-Bulkley fluid that enables stable semi-implicit integration at

larger time steps.

We demonstrate a wide range of effects, including the challenging animation sce-

narios involving splashing, wringing, and colliding of wet clothes, as well as flipping

of hair, animals shaking, spinning roller brushes from car washes being dunked in

water, and intricate hair coalescence effects. For complex liquids, we explore a series

of challenging scenarios, including strands interacting with oil paint, mud, cream,

melted chocolate, and pasta sauce.
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Chapter 1

Introduction

1.1 Overview

A beach vacation offers many opportunities to discover the unique aspects of the

interactions between liquid and thin structures. In the water, submerged hairs and

board shorts drag along with the ocean waves and are lifted buoyantly by the surf.

When a swimmer surfaces, the water flows along with the hair and gathers into

streams that coalesce the strands into bundles. While the swimmer returns to dry

land, the water drips distinctively from the hair strands and shorts. Somewhere on

the beach, a glass of piña colada is tipped, and the liquid splashes onto the beachwear,

diffusing its wetness to dampen a larger area.

Thin structures such as cloth and hair have long been a focus of computer graphics

because of their critical role in the appearance of humans and animals. Likewise,

the ubiquity of fluid phenomena in the physical world has led to extensive research

into the simulation of gases and liquids. Recently, the pursuit of realism has given

birth to many algorithms for hairs, clothes, and liquids. Physics theories invented

hundreds years ago are rediscovered to model the dynamics of these thin structures.
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These theories include the Kirchhoff Rod theory [133] for describing the dynamics of

strands, the Kirchhoff-Love plate theory [155] for modeling the motions of clothes,

and Cauchy’s momentum equation [49] for modeling the movement of general fluids.

Correspondingly, researchers propose some discretized models. For example, they

develop Discrete Elastic Rod (DER) [27, 28, 126] to simulate hair strands, the Discrete

Shell [92] for simulating clothes, and the Material Point Method (MPM) [228] for

simulating complex liquids.

Due to their effectiveness, these methods have been extensively adopted in the

visual effects (VFX) industry, and have dramatically pumped up the verisimilitude of

visual effects in recent films. For example, in the movie Alita: Battle Angel (2019) 1,

more than 200K individual hairs are simulated with detailed collisions and frictions.

In Pixar’s animation, Coco (2017) 2, multi-layered shirts and cloaks are simulated

along with complex body movements. In Disney’s Moana (2016) 3, artists simulate

liquid containing millions of cubic meters with intricated details. All of these fantastic

effects attest to the growing computational power and the recent development of novel

simulation algorithms.

Nevertheless, in real life, we are not dealing with just a single phenomenon or a

single kind of material. Instead, multiple types of materials or phenomena are usually

co-present in a scenario, whose dynamics couple together. Methods to capture the

1Twentieth Century Fox, producers: James Cameron, Robert Rodriguez, and Jon Landau. Vi-
sual effects done by Weta Digital.

2Walt Disney Pictures, directors: Lee Unkrich, Adrian Molina.
3Walt Disney Pictures, directors: Ron Clements, John Musker.
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array of complex interactions between these ubiquitous phenomena have received

less attention in the literature, and for coupling with thin structures such as hairs

or clothes, no model compatible with a standard grid-based fluid solver has been

proposed.

1.2 Challenges

The interaction between thin structures and liquid is inherently a challenging topic,

even for a single strand or a single piece of cloth coupled with liquid, because mul-

tiphysics phenomena span multiple spatial scales. When fully submerged in a body

of liquid, thin underwater structures collectively behave as a kind of porous medium

and introduce a drag effect on the surrounding flow. When removed from the liquid,

each inevitably retains a certain amount of liquid on its surface or within. Meanwhile,

each strand or cloth also interacts with another, not only through dry collisions but

also through surface tension effects of liquid bridges that connect structures nearby —

the latter denoting the physics that causes them to cohere and coalesce into clumps.

An examination of the consequences of these multi-scale physics is critical to

the design of an appropriate model. One tiny length scale — the thickness of thin

structures — contrasts with a much larger length scale, such as the length of hairs or

the expansion of cloth. The very thin layer of liquid flow immediately surrounding

these thin structures contrasts with the bulk volumes of liquid with which these

structures may also interact. Finally, the drag forces that affect fully submerged

thin structures differ dramatically from the out-of-liquid surface tension forces that
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rearrange them significantly.

Standard approaches to fluid simulation make use of volumetric representations

that divide up space into a grid [43]. When sufficient computational power is avail-

able, practitioners perform fine-scale simulations of the interaction between structures

(such as hair) and fluid, often using the methods referred to as embedded or immersed

boundary methods [165]; or they apply conceptually analogous solid-fluid coupling

schemes to animation problems involving rigid bodies, deformable, or cloth (e.g., [22,

200]). For thin structures, it is necessary to simulate fluid on a grid that is exceed-

ingly fine to capture interactions with a strand having a radius that spans at least

several cells.

Consider the scenario where a person with long hairs drills out from the water

and flip his/her hairs for example — the scenario is typically 1m ∼ 3m wide or high,

while the liquid flowing over a single hair can be as thin as 0.001cm. In this case, a

standard grid-based simulator would require a grid with at least 1000003 cells to cover

the entire scene while capturing the detailed motion of liquid flowing on a strand. A

usual simulation using a 1003 ∼ 3003 grid would typically take several hours or a day

on a modern workstation for an animation with several seconds (e.g., [122]). The

simulation on a grid with 1000003 cells, even with an oracle machine that can linearly

scale, would take millions of years, which in practice is impossible.

In summary, existing methods cannot capture the multiscale multiphysics of liquid-

strand or liquid-fabric interactions with a reasonable computational cost, and prac-
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tical high-fidelity simulation of liquid-strand or liquid-fabric interactions remains an

open problem.

1.3 Necessity of a Multi-Scale Model

In this thesis, we develop a multi-scale method for strands or fabrics interacting

with liquids, whether they are fully submerged or coated with just a thin layer of

liquid. The crucial observation to sidestep the computational cost in the standard

approach is to view strands/fabric as a porous medium when they are submerged in

liquid, and as structures enhanced with height fields when they are exposed in the air.

This strategy works because we only care about the macroscale interactions between

submerged thin structures and liquid (e.g., drag and pressure), and only care about

the longitudinal (for strands) or tangential (for fabrics) motion of liquid on or inside

the exposed thin structures.

With this general strategy in mind, we propose a series of new methods to simulate

a variety of interaction effects between the liquid and the clothes/hairs.

1.4 Liquid-Fabric Interactions

Our exploration begins in Part I from the liquid-fabric interactions (Figure 1.1),

where we develop a macroscopic model built on a modern mixture theory [8] (§3): We

model fabric as a continuous porous media through which fluid may flow. The model

accounts for the material’s anisotropic structure, and the evolution of its saturation,
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Figure 1.1: Simulated results of wet clothes. Left: A piece of mesh-based cloth
draped over a solid obstacle is splashed with water. Middle: Water flows through a
piece of yarn-based handwoven fabric. Right: After being vigorously wrung out, a
thick-textured towel continues to drip.

to capture buoyancy, drag, small-scale capillary (surface tension) effects, and fluid

convection. Our numerical treatment (§4) integrates a piecewise linear Lagrangian

cloth or rod model [28, 92] with a hybrid Eulerian-Lagrangian (APIC) fluid simulator

[43, 122].

We apply this model to several scenarios (§5) involving mesh-based cloth, yarn-

based fabric, and thick-textured fabric in contact with water. We also examine the

qualitative comparisons against simple real-world experiments, including a test on

liquid spreading and suctioning (Figure 3.2).

1.5 Water-Strand Interactions

In Part II, we explore the liquid-hair interactions (Figure 1.2). Differing from wet

fabrics, wet hairs may have dispersive or collectively-nonlinear motions, which cannot

be captured with a continuum model. Hence we solve the hairs’ motion individually

as discrete rods. Besides, the liquid usually flows unsteadily over the hair surface

instead of creeping inside the hair strands [20].
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Figure 1.2: Hair is submerged in water and then rapidly flipped, resulting
in wet locks and dripping.

This observation motivates our addition of a surface fluid model to represent and

track liquid directly on the surface of hair (§8.2). Specifically, we introduce a height-

field representation for the smaller volume of liquid along and around each individual

hair strand. Given this set of physical representations for the hairs and the liquid, we

can further derive a penalty-based cohesion force (§8.1) that is required to faithfully

reproduce wet hairs’ coalescence effect.

We evaluate our models quantitatively against physical laboratory experiments

(Figure 7.1), as well as perceptually in artistic contexts. For the latter, we show

complex effects including hair flipping, animal shaking, and rapid rotation of a car

wash roller in water (§10).
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Figure 1.3: Simulated results of strands coupled with shear-dependent liq-
uids. Left: A rotating brush splashing through thick oil paint. The inset shows
a zoomed view of paint on the bristles. Middle: Melted chocolate poured onto a
hair-covered cylinder that rotates to mimic the shaking behavior of mammals. Right:
Soba noodles covered with oyster sauce pulled upwards by a fork.

1.6 Interactions between Strands and

Shear-Dependent Liquids

In Part III, we generalize the models developed in prior sections and propose models

and algorithms to capture the rich dynamic interactions between the shear-dependent

liquids and strands (Figure 1.3), which is useful for simulating, for example, a brush

stirring and spreading oil paint, shaving cream patted onto a beard, or spaghetti

tossed in tomato sauce. These scenarios are challenging to simulate due to the com-

plex rheology of the liquid and the intricate interactions between the liquid and the

strands.

A key element of what makes these situations unique is that shear-dependent

liquids have strain- and time-dependent viscosity. For example, the macroscopic be-

havior of shaving cream derives from the microscopic bubbles that it comprises. The

stochastic rearrangement of the bubbles causes the liquid to exhibit shear-thinning ef-
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fects, in which the continuum begins to flow more easily under high stress. In addition,

shaving cream can undergo rate-dependent permanent deformations, a characteristic

behavior of viscoplastic flows. These properties contrast starkly with Newtonian

fluids in which viscous forces have a simple linear dependence on velocity.

Therefore, we need to extend the liquid-hair interaction model proposed in the

previous two chapters. We first derive a set of 1D equations that simulates the

shear-dependent liquid [102] on the hair surface §13.2). We then derive a princi-

pled coupling scheme (§13.5) between the compressible, non-Newtonian liquid, sim-

ulated as a continuum, and strands, simulated as DERs. Finally, we specialized a

shifted cone model [2, 65, 87, 119, 125, 195, 230] implemented in ADONIS [129, 130]

and So-Bogus [30, 66, 69] to deal with the adhesive-frictional contact between wet

strands (§13.6), which provides better stability and a non-tunneling guarantee over

the penalty method used in the prior chapters. More importantly, the non-smooth

mechanics behind this model delivers a realistic frictional effect between wet strands.

To evaluate, we explore a series of challenging scenarios (§15), involving splashing,

shaking, and agitating the liquid which causes the strands to stick together and

become entangled.

1.7 Contributions to Computer Graphics

Here we summarize the contributions of this thesis. In Part I, for the first time, a

piece of wet fabric is treated as a continuous mixture, with an on-manifold equation
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derived from the mixture theory to describe the convection and diffusion of liquid

within fabrics. In Part II, for the first time, a shallow water equation is solved on

a strand, and the cohesion force between strands is computed analytically. In Part

III, we develop the first 1D reduced model for elastoviscoplastic and shear-dependent

liquids. In the same section, for the first time, the coupling between complex liquid

and discrete elastic rods is rigorously derived and analyzed.

In addition to these novel contributions on physical models, in each part of this

thesis, we also develop efficient numerical methods to solve the equations. In Part

I, we introduce a splitting scheme that approximates an extensive, ill-conditioned,

asymmetric system with three symmetric positive definite systems, making the equa-

tions from mixture theory effectively solved. In Part II, for hairs with penalty-based

collision, we introduced a local-global solver that is 120× faster than a diagonally-

preconditioned conjugate gradient (PCG) solver and 14383× faster than a direct

LDLT solver. Also, in Part III, we derive an analytic plastic flow model that en-

ables a semi-implicit integration of the liquid, which allows a time step 24× of an

explicit solver for shear stress, and 45× of a full explicit solver.

We have published most of the results of this thesis in leading academic confer-

ences in the field of computer graphics. More specifically, we have published three

papers in SIGGRAPH 2018, SIGGRAPH 2017, and SIGGRAPH Asia 2019, respec-

tively, for Parts I, II, and III. Major media have reported exclusively about our

work, including Deutschlandfunk4, a nationwide radio station in Germany, and 80

4https://www.deutschlandfunk.de/computergrafik-digitales-auswringen-von-nassen-
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Level5, a top tier media in the gaming industry.

Our research also has wide applications in the film, architecture, and cosmetic

industries. Several industry-leading companies have adopted or shown interest in our

research work. Particularly, the author of this thesis received credit for the movie

Alita: Battle Angel (2019) where his name appears under “IT, technology & research,

and supporting departments” for the adoption of the wet hair simulation algorithm

in Weta Digital. The approval and utilization of the research achievements can also

be reflected by the popularity of the affiliated open-source code libraries released

on GitHub, namely, the libWetCloth6, libWetHair7, and CreamyStrand8, which cor-

respond to the techniques introduced in Parts I, II and III, respectively. In total,

hundreds of developers worldwide have followed these research projects and kept track

of their latest updates.

handtuechern.684.de.html?dram:article_id=433457
5https://80.lv/articles/a-multi-scale-model-for-simulating-liquid-hair-

interactions/
6https://github.com/nepluno/libwetcloth
7https://github.com/nepluno/libWetHair
8https://github.com/nepluno/creamystrand
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Chapter 2

Related Work

2.1 Cloth and Yarn Simulation

Cloth simulation has a long history in computer animation; we refer to the survey of

Thomaszewki et al. [233] for a thorough review. Two of the key aspects of a cloth

simulation system are the numerical model for the cloth dynamics and the approach

used for contact- and collision-handling. In Part I, we adopt the discrete shell

model [44, 92] to treat the bending and stretching of cloth, based on its simplicity

and effectiveness. To handle the contacts and collisions between clothes, we make

use of Jiang et al.’s [121] recently proposed method, which exploits a background

volumetric grid to efficiently treat contact forces among complex colliding materials.

Nevertheless, our approach presented in Part I is not intrinsically dependent on these

choices, and should be compatible with other cloth simulation frameworks.

Because real cloth is composed of many individual threads, a more costly but

potentially much more faithful strategy is to simulate every strand of yarn or thread.

This was first suggested by Kaldor et al. [127], and further explored by Kaldor et

al. [126] and Cirio et al. [57] with more efficient treatments of inter-yarn contact. As
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noted above, in Part I, we instead make use of Jiang et al.’s [121] work that models

yarns as Lagrangian rods, but handles complicated collisions on a grid.

2.2 Strand Simulation

Decades of effort have gone toward simulating hair strands. A survey of earlier hair

simulation work can be found in the reviews of Ward et al. [247] and Hadap et

al. [97]. Popular models for single-strand dynamics include mass-spring models [183,

210], various Cosserat rod models [91, 223], the Super-Helix model [31], and the

discrete elastic rod (DER) model [26, 28, 126]. Given that some strands (e.g., human

hairs) are stiff and often do not exhibit significant stretching, a number of efficient

constraint-based models have also recently been developed [72, 98, 136, 169, 221].

Additionally, Iben et al. [107] proposed an artistic way to animate curly hairs. As for

collision between hair strands, Kaufman et al. [129] combined a nonlinear integrator

with a Gauss-Seidel collision solver, whereas Gornowicz and Borac [90] proposed a

hybrid algorithm for higher performance and better stability. In Parts II and III,

to simulate the underlying dynamics of hair, we adopt the DER framework, which

has also been exploited in mechanics and robotics research [117], for its efficiency and

accuracy.

A complex step of using DER is computing the gradient and Hessian of the discrete

curvatures (which are then used to compute f t
int and Hs). Prior works have provided

the formulas of some terms [26, 28, 126], however, without details on their derivation.

Jawed et al. [117] have provided a derivation in their book, which, however, inherits
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a problematic setting of the bending energy and discrete curvatures from Bergou’s

work [28]. To eliminate any future confusion and difficulty on the reproduction, we

begin with the correct settings of the bending energy and discrete curvatures proposed

by Kaldor et al. [126], and present a rigorous derivation in Appendix I.

2.3 Cohesion between Wet Strands

At small scales, surface tension forces on liquid-air interfaces exhibit elastocapillarity,

in which liquid ”bridges” [163] arise that can deform elastic solids, as Bico et al. [34]

surveyed recently. In other words, a continuous body of liquid combines the two

solids together, often taking on a minimal surface-like shape. A liquid bridge induces

attractive forces between the solids that it joins together because surface tension acts

to minimize the total exposed liquid surface area.

This effect is responsible for the cohesion of wet hair and wet cloth, leading to

the familiar effect of hair clumping (or fiber coalescence) [33, 76, 191, 218]. Brute-

force volumetric simulation has been used to study the behavior of liquid bridges and

the resulting forces [240]. The cohesive behavior of liquid bridges is an instance of a

broader set of phenomena driven by elastocapillarity, or the interplay between surface

tension in liquids and elasticity in solids [201].

In Part I, we adopt a simple cohesive model for wet cloth to approximate the

perimeter of the wetted area and calculate the corresponding cohesion force. Although

the cohesion between two planar objects has been extensively researched [244], this
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effect was not methodically studied on textiles until recent work by Lou et al. [152–

154]. The authors considered liquid bridges with a circular area, and showed that

the coalescence force between a textile and water increases monotonically with the

perimeter of the circular wetted area.

Princen has systematically discussed the capillary phenomena in assemblies of

parallel cylinders [187–189]. More recently, Liu et al. [150] generalized Princen’s

analytical formulas to two cylinders with an arbitrary radius. Following their work,

together with the empirical criterion of liquid bridge-breaking [147], we develop in

Part II an analytical formula for the cohesion force between two strands, which is

computationally cheaper than a full simulation of the liquid bridge.

In computer animation, the cohesion is usually modeled as a penalty-like

force [148, 149]. However, the penalty model is known to have multiple issues. First,

it requires a finely-tuned stiffness parameter to balance collision and cohesion effects,

and thereby avoid both instability and tunneling. Second, wet strands also tend to

have a higher friction coefficient than dry strands [32]; handling friction accurately

tends to be difficult for penalty models.

Prior work on rod-contact using constraints [30, 69] can avoid tunneling as long

as the detection phase captures all the contacts and the solver converges. More re-

cent approaches [90, 129] have improved stability using nonlinear Newton solvers.

To solve the difficulties brought by the penalty model, Gascón et al. [87] adopted

non-smooth constraints from prior work in computational mechanics [195] to solve
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cohesion and collision altogether. In their method, the constraints modeled with

second-order Coulomb cones were shifted in their normal directions to produce the

adhesive effects [195], which can be applied to simulating Jell-O and wet cloth. Be-

sides discrete elements, a similar idea has been also adopted for simulating continuous

media. For example, Daviet [65]1 and Tempubolon et al. [230] adopted a shifted cone

to produce the cohesive effect in granular flows.

In computational mechanics, the use of non-smooth contact dynamics to handle

adhesion has been widely adopted [195], usually for simulating cracks [119, 125].

Especially, the adhesive effect in Coulomb’s law has been extensively discussed in the

book by Acary and Brogliato [2]2. In these works, the second-order Coulomb cone is

also displaced in its normal direction to achieve the adhesion effects.

In Part III, we adopt and extend the shifted cone model [2, 65, 66, 87, 119, 125,

130, 195, 230] to simulate wet hairs covered with cohesive elastoplastic liquid. To

prevent the re-cohesion of cracked parts, the work by Jean et al. [119] used different

cohesion coefficients based on whether two colliders are separating. Inspired by their

work, in particular, we introduce contact hysteresis on both distance and relative

velocity between two colliders. In addition, we introduce a cohesive force designed for

viscoplastic materials.

Also, a few authors have treated strands or thin shells as a fluid-like material

and hence adopted continuum-based collision handling [95, 96, 121, 143, 162], where

1Page 120
2Page 158, chapter 3.9.4.4.
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contact and friction are solved globally on a uniform grid. These methods either need

an extra pass of the traditional penalty-based collision handling or can be numeri-

cally difficult for simulating stiff strands. With a constraint-based solver, however,

the contacts are solved iteratively, then the impulses are integrated on each strand

individually, which can be much more efficient, especially when each strand has a

limited number of vertices and collisions. In all examples presented in this disser-

tation, we have at most 80 vertices on a single strand, which is typical in a strand

simulation [129].

2.4 Liquid Simulation

Recently, hybrid grid/particle-based methods [82, 104, 122, 267] for simulating liquids

have become popular due to their visual plausibility and efficacy for pressure compu-

tation. Bridson’s [43] book includes a complete review of the basics of these methods

for fluid simulation via computer graphics. A common alternative also frequently used

for liquid-cloth and liquid-strand interactions is the family of the pure Lagrangian

smoothed particle hydrodynamics (SPH) methods [108, 166, 168]. Although SPH can

also be used to simulate liquids with complex rheology [257], throughout this disser-

tation we adopt a hybrid method in which our use of a grid simplifies the momentum

exchange between the liquid and the thin structures, especially when both phases

need to be integrated (semi-)implicitly for a better stability.

The particle-in-cell method for fluid dynamics was extended to handle general

elastoviscoplastic materials, leading to the material point method (MPM) [123, 228].
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Models based on MPM have been extensively used in computer animation to simulate

various materials and phenomena [67, 88, 104, 135, 172, 194, 225, 226, 254]. More

recently, some variants of the MPM have been proposed to increase computational

efficiency [78, 84, 86, 104]. One recent approach coupled the MPM-simulated granu-

lar material with the granular material simulated with the discrete element method

(DEM) to deliver more detailed dynamics [262] at modest cost. In Part III, we adopt

the moving-least-squares MPM (MLS-MPM) [104] as our discretization scheme for

its efficiency, and couple this MPM with DERs. To avoid nullspace issues when solv-

ing for pressure, we adapt MLS-MPM to a staggered grid, similar to the work of

Stomakhin et al. [226].

To handle shear-dependent fluids, we need a constitutive model that is both accu-

rate and efficient. In Part III, we adopt the constitutive model from Yue et al. [261],

which adopts the Herschel-Bulkley model [102] and von Mises yield condition [164],

as well as employing a J2 -flow model for plasticity [215]. The Herschel-Bulkley model

covers a wide range of materials such as mud, cream, chocolate, and pasta sauce. In

Yue et al.’s [261] work, the stress computed from this model was integrated explicitly.

However, this leads to tiny time steps that are at odds with the larger time steps that

are possible with DER. Therefore, we develop an analytical formulation of plastic

flow for Herschel-Bulkley fluids, which enables semi-implicit integration of the stress

and dramatically increases the size of a stable time step.
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2.5 Depth-Averaged Flows

Depth-averaged models for fluid flows have been an active topic of research for cen-

turies. For example, the original shallow water equations [205] describe flow on

planar boundaries where the vertical velocity is negligible; the Hele-Shaw flow [100]

describes non-inertial flow between two thin plates; and lubrication theory [176] is

used to model the dynamics of thin liquid whose viscosity dominates over inertia.

Ockendon’s [175] book includes a thorough introduction to such reduced flows. In

computer animation, Wang et al. [242] generalized the shallow water equations to

mesh surfaces. Segall et al. [209] proposed an efficient model for the Hele-Shaw flow

using generalized barycentric coordinates.

Another alternative assumption in the literature is that of thin film or coating

flow, which is similar to the creeping regime, but with convection considered. In this

case, the Navier-Stokes equations can be reduced to a fourth-order partial differential

equation (PDE) in which viscosity dominates and inertia is negligible [59]. Azencot

and Vantzos [239] proposed a numerical scheme to efficiently evolve thin film flow on

arbitrary meshes. More recently, they proposed a fractional step scheme to accelerate

the computation for real-time applications [238].

Research in textile engineering has studied how the pores in cloth and yarn af-

fect the behavior of liquid propagation, or wicking [134]. Cloth and yarn are usually

modeled as capillary tubes and the classic Lucas-Washburn equation [156, 249] has

been widely applied to the prediction of the position of the hydraulic head in one-
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dimensional scenarios. Masoodi and Pillai’s [159] book includes a detailed discussion

on this topic. Modern research focuses on the experimental estimation of the capillary

radius [61, 160], which is the effective radius of pores, and on modeling the suction

tensor that describes the stress due to surface tension [207]. Chwastiak [56], Am-

ico and Lekakou [7], and Williams et al. [252] studied wicking along fibers, whereas

Senoguz et al. [211], Ahn et al. [4], Lekakou and Bader [144], and Pillai and Ad-

vani [184] studied wicking across fibers. Further work has studied the suction tensor

in woven and non-woven fabrics [4, 132].

Inspired by these previous works, in Part I we introduce a generalized variant of

the Richards equation [198] on cloth, yarn, and junctions between them. In addition,

we adopt a general model for textiles from Masoodi and Pillai [158] and propose to

construct the anisotropic suction tensor by aligning to specific axes. Several of our

examples show the effect of wicking in cloth or yarn.

In Part II, we adopt the shallow water flow for liquid on wet hairs, Indeed,

according to Q. Wang et al. [243], who studied the behavior of paint brushes, liquid

flows mostly on the hair surface or between hairs, rather than inside the hair itself.

Barba et al.’s [20] experimental studies likewise indicate that flow inside hair cuticles is

very slow (on the order of hours) and contributes only to secondary effects. Although

interpreting hair as a porous material is a reasonable approximation, inertial effects

must still be considered for porous media at moderate to large Reynolds numbers, as

discussed by Hellström and Lundström [101]. This is certainly the case for the wet

hair flipping or spinning car wash brushes we consider, for example. We therefore
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choose to treat flow along individual hair strands with a shallow water model that

includes inertia. Our shallow water model is adapted from H. Wang et al. [242], who

considered generalized shallow water on triangle mesh surfaces rather than on rods.

Research on depth-averaged models for non-Newtonian liquid is relatively

sparse [99, 206]. Recently, Ionescu et al. extended the shallow water model to handle

general viscoplastic liquids [109–113]. Prior work, however, did not consider the elas-

tic deformation of the liquid. In Part III, we draw inspiration from these approaches

to derive a depth-averaged model for elastoviscoplastic liquid on strands, where the

liquid deforms purely elastically before yielding and deforms plastically afterward.

2.6 Theory of Mixtures

The history of modeling porous media can be traced back to the late 18th century,

when empirical models for fluid and porous solids were adopted to solve hydraulics

problems for architectural designs [255]. A review of works in this field’s earlier era

can be found in Bedford and Drumheller’s [25] survey and de Boer [70]’s book. Some

physical models developed during this era are still widely used today in numerical

simulations. For example, Fick’s second law [79] can be used to describe moisture

transmission through homogeneous fabric material [64]. Darcy’s law [62], which can

be used to calculate the velocity of liquid through porous media for a given pressure

drop, viscosity coefficient, and permeability, is a popular choice for the calculation of

viscous drag in a numerical simulation [18].
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Early soil mechanics researchers studied the effect of water pressure on soil. Fil-

lunger [80] and Terzaghi [231] found that the total stress applied on a mixture is

the combination of the effective stress (compression and shear resistance) and the

pore water pressure, an effect which is now known as Terzaghi’s principle. Later

Biot [35] combined Terzaghi’s principle with linear elasticity and fluid dynamics to

develop the theory of dynamic poroelasticity (sometimes called Biot’s theory), which

became the foundation of mixture theory [8]. Mixture theory was initially developed

for saturated porous media with incompressible solids, where the interaction forces

between porous solids and liquid include two parts: drag and pore pressure. Pore

pressure is usually formulated as the pressure gradient applied to the solid and fluid

with their respective volume fractions [186]. Recently, Borja [39] generalized mixture

theory for unsaturated porous media with compressible solids, and formalized it in

a mathematical framework [222]. Borja’s formulation has been used in several pa-

pers simulating two-way coupled porous media. For example, Abe et al. [1] used the

MPM to solve the generalized Darcy equation to simulate creeping flow in porous soil.

Bandara and Soga [18] later extended this method to include the inertial effects of

liquid to address porous media undergoing large deformations. Daviet and Bertails-

Descoubes [68] combined mixture theory with an implicit non-smooth treatment of

the Drucker-Prager rheology to simulate immersed granular flows.

Traditional mixture theory treats both the liquid and solid as continuous phases [8].

A more recent method, called CFD–DEM, instead integrates over the solid simulated

as discrete elements and coupled with the liquid simulated as a continuous phase [264,
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265]. This method is evolved from the mixture theory. Due to its wide applicability to

fluidization and pneumatic conveying, CFD–DEM has become increasingly popular

for the simulation of particles immersed in flowing fluids.

In Part I, we introduce a method coupling wet cloth with a liquid built on

mixture theory. We derive a two-scale mixture model targeting bulk fluid and diffusive

porous flow, respectively, to simulate thin, unsaturated porous media undergoing large

deformations. For the fluid inside cloth/yarn, instead of combining another model,

we show that the diffusive flow is a specific case of the equations for bulk liquids and

solids, and can be derived from mixture theory.

In Part III, we introduce a framework coupling wet strands with liquid built

on CFD–DEM, where strands simulated as DERs are coupled with liquid through

homogenization.

Fluid Structure Interactions in Animation

When sufficient computational power is available, fine-scale simulations of the in-

teractions between structures (such as hair or fabrics) and grid-based fluids can be

performed, often using embedded or immersed boundary methods [165]; conceptu-

ally analogous solid-fluid coupling schemes have been applied to animation problems

involving rigid bodies, deformables, or cloth (e.g., [22, 200]). However, to properly

handle fine structures, the fluid would have to be simulated on a grid that is suffi-

ciently fine and in a context where the fine structure spans at least a few cells. While

such brute-force methods have the potential to be extremely accurate, and potentially
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useful for deriving coarse-scale models, this strategy is far too costly to be directly

applied to scenarios with hundreds or thousands of hairs.

Another branch of research has focused on carefully handling of boundary con-

ditions for water interacting with impermeable thin shells, for both Eulerian and

Lagrangian fluids. In the context of Eulerian methods, Guendelman et al. [93] used

a variable-density pressure solver to account for weakly coupled interaction forces,

whereas Robinson et al. [200] proposed a strong coupling approach by temporarily

lumping together the momentum of thin shells and fluid. Azevedo et al. [16] used

conforming interpolation and exact cut cells to prevent fluid from crossing over imper-

meable thin boundaries. Among the SPH methods, Akinci et al. [6] carefully sampled

thin deformable objects with SPH particles to improve the accuracy of pressure forces

and ensure that the cloth remains impermeable to liquid, assuming appropriate time

step sizes. In contrast, Huber et al. [105] used the cloth triangle mesh itself directly,

combining repulsion forces and continuous collision detection to strictly enforce im-

permeability. Throughout this dissertation, we look at fabrics and strands whose

thickness (or diameter) is much less than the cell size and therefore requires a weak

coupling approach that uses drag and buoyancy forces to transfer momentum between

liquid and thin structures.

Diffusion Flow in Animation

In computer animation, the earliest explorations of wetting effects addressed painting

techniques or the simulation of flows on static planar objects. Curtis et al. [60]
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simulated shallow water on paper textiles for watercolor painting effects and solved a

diffusion equation to treat capillary effects that capture the spreading of fluid through

pores in paper. Later, Chu and Tai [55] proposed a sophisticated system to simulate

the ink percolation process. In their work, they designed permeability and boundary

conditions based on artistic considerations. Instead of solving a simple diffusion flow,

Huber et al. [106] solved Fick’s second law on cloth with an additional gravitational

term, and also demonstrated liquid absorption.

Fluid-solid interaction is a many-faceted phenomenon, and some previous works

have therefore sought to address one or two of those facets in isolation. With an ap-

proach relying on fractional derivatives, Ozgen et al. [177] simulated the deformation

of a completely submerged cloth without simulating water at all. Chen et al. [52]

proposed modified saturation, wrinkling, and friction models to better approximate

the look of wet clothing. Um et al. [236] combined a shallow water model and the

diffusion equation to address fluid flow on and within dynamic cloth.

Darcy-Type Porous Flow in Animation

Lenaerts et al. [145] proposed the simulation of more general deformable wet materials.

They used an SPH method to solve porous (Darcy) flow inside a solid object. Similarly,

Rungjiratananon et al. [203] considered fluid interactions with dynamic porous media

in the context of wet sand, simulating sand, water, and their mutual interactions using

SPH. Rungjiratananon et al. [202] also proposed two-way interactions between SPH-

based water and a shape-matching hair model using a porous flow approach for the
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propagation of liquid inside hair. They discretized the porous flow model on a regular

Cartesian grid in a bounding box surrounding the hair, adapting earlier SPH-based

porous flow techniques [145]. Subsequent research focused on various simplifications

intended to achieve higher performance. Saket and Parag [179] presented an SPH

method for the simulation of wet cloth, using a geometric diffusion method to simulate

interior flow for increased efficiency. Lin et al. [148, 149] proposed a similar porous

flow model with SPH but further incorporated two-way fluid-hair interactions.

Mixtures in Animation

Mixture theory was first introduced for animation by Nielsen and Østerby [173], who

simulated fluid spray and air as continua. Later, Ren et al. [196] and Yang et al. [258]

proposed an SPH-based framework to handle a wide range of multi-fluid flow phe-

nomena including extraction and partial dissolution. Yan et al. [256] generalized the

multi-fluid SPH framework to incorporate solids, adopting a diffusion model for the

relative motion between a solid and liquid. More recently, Yang et al. [257] extended

their previous SPH framework with a phase-field method to simulate phase-changing

phenomena for multi-materials. Their method exchanged the momentum between

different phases by incorporating a viscous term between particles, and inside each

particle, different materials shared the same momentum. In Part I, we adopted

a similar physical model, but solved the equations on both polygonal meshes and

an Eulerian grid to capture the diffusion and pressure forces more accurately, and

incorporate stiff elastoplastic materials with large drag forces more effectively.
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The authors of recent works on simulating porous sand mixed with water [85, 230]

adopted a formulation by Bandara and Soga [18] to compute buoyancy forces, but

concluded that buoyancy is largely negligible in their problem. For the phenomena

considered in this dissertation, the buoyancy force significantly affects the motion of

both fabrics and hairs.

Drag Force for Two-Phase Continuum Media

Drag models between two continuous phases have a long history. Some were even

developed before mixture theory. Forchheimer [81] extended Darcy’s (linear) drag

model with a quadratic model for high Reynolds number flows. Ergun [77] extended

the empirical Kozeny-Carman equation [48] (another extension of Darcy’s law for

modeling linear permeability) and proposed a non-linear version that is a function of

the Reynolds number. The Ergun equation can also be reformulated to discover the

relationship between linear and non-linear drag forces, which can be applied to various

materials [5, 174]. In Part I, we adopt a modern, unified drag formulation [259], and

use the Ergun equation to relate the linear and non-linear terms. In addition, we

calculate the permeability of fibers following Stylianopoulos et al.’s [227] empirically

determined equations. This scheme is appropriate for liquid at both low and high

Reynolds numbers, and confirms with dimensional analysis that our drag force is

physically consistent.
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Drag Force between Continuum and Discrete Elements

Drag forces used for CFD–DEM are most often formulated for a single discrete ele-

ment. These drag forces, however, also differ widely in terms of the particular drag

models and drag coefficients. Among various drag models, Di Felice’s is widespread

and reasonably general [73]; it also suits our needs because it is compatible with differ-

ent drag coefficients and fits experimental data for both spherical and non-spherical

particles [103], as well as for either Newtonian or non-Newtonian fluids [146]. In Part

III, we demonstrate how to use Di Felice’s formula to compute drag between strands

and liquid.

The accuracy of the drag force, finally, depends on choosing the drag coefficient.

Among the abundant literatures [264], we focus on the drag coefficients applicable to

complex fluid and irregular particles. Chhabra’s [54] book presents an extensive sur-

vey of these studies. In Part III, we show our adoption of Mauret and Renaud’s [161,

197] proposed model, which has been extensively validated against physical experi-

ments [15, 24, 29, 193, 229].
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Part I

Multi-Scale Model for Simulating

Liquid-Fabric Interactions
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Chapter 3

Mixture Model for Wet Fabrics

In this section, we develop a multi-scale framework capturing the interactions between

fabric and fluid. To develop a computational model of these varied liquid-fabric in-

teractions, we must understand the composition of the fabric. Fabric is composed of

individual strands (“threads” or “yarn”) packed into thin oriented fibers (e.g., Fig-

ure 3.1a). Tiny pockets within and between these fibers collect fluid and are largely

responsible for the wetting behavior we observe at the coarse scale. Because these

pockets are numerous and individually imperceptible to the naked eye, it can be

wasteful or intractable to represent them as discrete elements for animation applica-

tions.

Therefore, for the first time, we model the fabric as a continuum mixture of water,

air, and fabric material (Figure 3.1). The governing equations for such a continuum

are provided by mixture theory [192], where we describe the fabric geometry through

two scalar fields: the field of fabric volume fraction, and the field of saturation. With

such a continuous representation, the calculation is much simpler than simulating

liquid interacting with individual fibers.

In the following sections, we begin with a background introduction on mixture
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theory and discuss how we adopt mixture theory for simulating cloth fabrics. To

model the diffusion of liquid inside the fabrics, we simplify the equations from mixture

theory, where we derive a set of reduced-dimensional (2D or 1D) convection-diffusion

equations. Finally, we introduce some numeric techniques to solve these equations.

Our contributions include

• the adaptation of mixture theory and porous flow to partially saturated fabrics

with buoyancy in a particle-in-cell framework,

• the development of an approximate anisotropic fabric microstructure model to

support nonlinear drag and pore pressure forces,

• treatments for liquid capture, and dripping,

• a quasi-static model of fluid flow within the fabric based on convection-diffusion,

• an efficient numerical solver for the resulting complex systems.

3.1 Mixture Theory

Mixture theory models multiphase systems consisting of several interpenetrable con-

tinua. The theory assumes that all three phases are present, in some ratio, at every

point of the material. The theory develops the momentum and mass balance equa-

tions for such a mixture.

As water penetrates, fabric saturates from dry to damp to soaked (Figure 3.1).

Saturation is the measure that determines volume fractions, the relative occupancy

of the water, air, and solid fabric.
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(a) (b) (c) (d)
Figure 3.1: Fabric as porous material. (a) Micro-CT image of plain woven fabric,
adapted from [213]. (b) Barely-saturated fabric (Sr ≈ 0.1). (c) Half-saturated fabric
(Sr ≈ 0.5). (d) Fully-saturated fabric (Sr = 1.0).

Saturated continuity equations In the (maximally) saturated state, fabric pores

are entirely filled with liquid [8, 68]. The motion of both the porous medium and the

liquid are described by the equations for incompressible mixture, where

ρsϕs
Dusus

Dust
−∇ · σs − ρsϕsg − ff→s = 0, (3.1a)

ρf(1− ϕs)
Dufuf

Duft
−∇ · σf − ρf(1− ϕs)g + ff→s = 0, (3.1b)

∂ϕs

∂t
+∇ · (ϕsus) = 0, (3.1c)

∂(1− ϕs)

∂t
+∇ · [(1− ϕs)uf] = 0. (3.1d)

Here the fields u (velocity), ρ (density), and σ (Cauchy stress tensor) have values for

both the porous medium and the liquid, indicated by their respective subscripts: “s”

for the (solid) porous media and “f” for the fluid. The volume fraction of the solid

in the porous material is given by ϕs (so 1 − ϕs gives the complementary non-solid

fraction), and g represents any external forces, such as gravity. The operator Du

Dut
is

the Eulerian material derivative under the flow velocity u, defined as Du

Dut
= ∂

∂t
+u ·∇.

Lastly, ff→s is the interaction force between the liquid and the solid porous medium.

It is this force that we must derive to properly model wet cloth and yarn.
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Equations (3.1a) and (3.1b) are the momentum equations of incompressible solid

and fluid, respectively, while equations (3.1c) and (3.1d) are the corresponding laws

of mass conservation (or continuity equations). We will elaborate below on the solid

stress and interaction forces, including buoyancy and drag. But first, we must drop

an assumption that we have made.

The continuity equations (3.1c) and (3.1d) assume that pores are fully filled with

liquid, and thus the liquid volume in a unit material volume is given by 1− ϕs. How

do we model a porous medium partially filled with liquid? One way to approach this

is to (fully) saturate our porous medium with a fluid that represents both liquid and

air components [39].

Consider a fluid mixture of liquid and air. Since the air density is orders of

magnitude smaller than the liquid density, we ignore the mass of the air. We assume

that the fluid velocity field is shared by the liquid and air components moving in

unison. We use the saturation variable Sr to indicate the volume fraction of liquid

in the fluid (thus 1 − Sr indicates the volume fraction of air in the fluid). In such a

mixture, the fluid density ρf (recall (3.1b)) becomes a fraction of the water density

ρw (i.e., ρf = Srρw). We can substitute this liquid-air fluid mixture, in place of only

liquid, to obtain continuity equations that do not assume liquid saturation.

Unsaturated continuity equation Consider a porous medium that is not nec-

essarily (fully) saturated with liquid. Such a medium is (fully) saturated with our

liquid-air fluid mixture. A unit volume of the porous fabric medium is the sum of

33



three parts,

ϕs + (1− ϕs)Sr + (1− ϕs)(1− Sr) = 1, (3.2)

where the three terms correspond to the volume fraction of solid, liquid, and air,

respectively. The continuity equation (3.1d) of liquid can be modified to account for

partial saturation using a slightly different form,

∂(1− ϕs)Sr

∂t
+∇ · [(1− ϕs)Sruf] = 0. (3.3)

Lastly, subtracting (3.1d) from (3.1c) yields the incompressibility condition for the

solid-fluid mixture,

∇ · [ϕsus + (1− ϕs)uf] = 0. (3.4)

In summary, equations (3.1a-3.1c) together with (3.3-3.4) form the mixture theory

model for unsaturated porous media.

Solid Stress. The effect of porosity on solid stresses is that, under the same de-

formation, the effective stress σs of a porous solid material is smaller than the corre-

sponding stress σc exhibited by a densely packed or non-porous material (i.e., with

zero porosity). Given an applied deformation (or strain), σc can be evaluated us-

ing a particular constitutive model, the choice of which depends on whether we are

simulating wet cloth or yarn (see §4). The relationship between σc and σs has been

experimentally and numerically established by Makse et al. [157], namely, σs = ϕλ
s σc,

where the parameter λ is material-dependent, usually taking values from 1 ∼ 3. In
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pf pa

pc

Figure 3.2: Pore pressure example. Consider a piece of fabric lying on a table.
The fabric is wet initially in a circular region. Near the boundary of the circle, the
saturation Sr changes from zero to one, along the directions indicated by the arrows.
On the left is a real photograph, and in the middle is our simulated result. To
better match the laboratory result, we experimented with using a manually specified
volume fraction field on the textile (visualized as an inset figure). In the right, Pc
is the pore pressure introduced by the water-air surface between the textile fibers.
Because of the change of Sr along the radial directions, the gradient ∇(1 − Sr)Pc
in (3.8) generates interaction forces between the textile fibers and the water between.
Macroscopically, these forces point along the directions of the arrows. Since the forces
are mostly uniform in all directions, the fabric remains static, but the water spreads
outwards.

all our examples, we use the value λ = 2.

Interaction Forces. There are two relevant types of interaction forces between

solid and liquid [8]: the pressure gradient force fp
f→s and the drag force fd

f→s. The

total interaction force is

ff→s = fp
f→s + fd

f→s. (3.5)

The pressure gradient acts when cloth and yarn are submerged (Figure 3.3). The drag

force, on the other hand, is due to liquid-solid friction and wake turbulence. The next

two subsections are dedicated to our derivation of the specific forms of these forces

for wet cloth and yarn.
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Figure 3.3: Comparison with and without the liquid pressure gradient ap-
plied to clothes. A simulation with the liquid pressure gradient applied to cloth
yields correct buoyancy (left), where cloth lighter than water floats and cloth heav-
ier than water sinks. Without the pressure gradient, all the cloth erroneously sinks
(right).

3.2 Pressure Gradient

In a saturated solid-liquid mixture, the pressure gradient is

fp
f→s = −ϕs∇p. (3.6)

Here we neglect the liquid stress induced by the porous solid, a standard assumption

for open pores [186]. The liquid pressure p is smoothly varying except for a jump at

the liquid free surface induced by surface tension.

An unsaturated porous medium has tiny air pockets, for which the surface tension

force exactly balances the liquid-air pressure jump. The myriad air pockets make for a

markedly more complex liquid surface, since air and liquid are present “everywhere;”

the jumps due to surface tension are densely distributed and more appropriately

captured in a homogenized force balance, pf−pa = pc, referring to the liquid, air, and
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pore pressure, respectively [39].

From mixture theory, the effective pressure p of an unsaturated porous medium

is given by weighting the component pressures by the saturation Sr [39],

p = Srpf + (1− Sr)pa. (3.7)

Substituting the force balance pf − pc = pa into (13.72), then into (3.6),

fp
f→s = −ϕs∇p = −ϕs∇pf︸ ︷︷ ︸

buoyancy

+ϕs∇((1− Sr)pc)︸ ︷︷ ︸
pore pressure

. (3.8)

The first term of the pressure gradient governs buoyancy, the force that pushes lighter

objects up toward the fluid surface. As we can see, the second term is present only

for an unsaturated porous medium (Sr < 1). We now explore this pore pressure term.

Suction Tensor. It has been confirmed [207] that pore pressure depends on the

porous solid microstructure. Here, we develop a pore pressure model suited to our

application.

The void space between textile fibers, which is oriented along individual yarns,

yields an anisotropic microstructure. Consequently, our pore pressure is also

anisotropic, and must therefore be described by a second-order tensor rather than

a scalar. This tensor is called the suction tensor in the mechanics literature.

Drawing on the literature on porous flow through fibers, we propose a model for
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Figure 3.4: Fiber pack, cloth and yarn orientation. In our derivation of the
pressure gradient and drag forces, we use a canonical frame of reference to orient the
fiber pack, cloth, and yarn. Cloth and yarn in arbitrary orientations are first rotated
into this frame of reference to compute the force tensors, and then rotated back to
their original frame.

the suction tensor specialized to the case of cloth, yarn, and combinations of the two.

Consider a pack of fibers along a yarn segment (Figure 3.4-a). When mixed with

water the void spaces between individual fibers effectively form capillary tubes that

act to transport water. The pore (or suction) pressures along the fiber direction and

the perpendicular direction are, respectively,

pα =
2ϕsγcosθ
(1− ϕs)rb

and pβ =
pα
2
, (3.9)

as Masoodi and Pillai [158] introduced and experimentally verified. Here ϕs is again

the volume fraction of the capillary tubes (in our case the textile fibers), γ is the

surface tension coefficient of liquid (i.e., γ = 72.0dyn/cm for water), θ is the equilib-

rium contact angle between liquid and the fibers, and rb is the radius of the capillary

tubes.

Adapting this concept to our setting, we note that if a yarn segment is aligned

along the Z-direction, we can write its suction tensor as a diagonal matrix whose
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diagonal elements are [pβ pβ pα]. Similarly, in a small piece of cloth with its normal

aligned along the Z-direction (Figure 3.4-b), the textile fibers are instead oriented

along the X- and Y -directions. Then, the suction tensor is another diagonal matrix

with diagonal elements [pα pα pβ]. When individual yarn strands extend perpen-

dicularly from the cloth surface (Figure 3.4-c) — for example, when simulating a

thick-textured fabric such as terrycloth — we express the suction tensor as a weighed

combination of both diagonal matrices,

P̂c = sf


pα 0 0

0 pα 0

0 0 pβ

+ (1− sf)


pβ 0 0

0 pβ 0

0 0 pα

 , (3.10)

where we call sf the “shape fraction”: when we consider the suction tensor in an

infinitesimal region of cloth or yarn, sf = 0 if this region is occupied entirely by a

yarn strand, sf = 1 if it is entirely occupied by cloth, and sf lies between 0 and 1 if the

region is near the root of a yarn strand extending from a piece of cloth (Figure 3.4-c).

With the suction tensor P̂c defined for cloth and yarn in the canonical orientation

above, the suction tensor Pc in an arbitrary orientation will be a rotated version of

P̂c, namely

Pc = RT P̂cR. (3.11)

In cloth, R is the rotation matrix that rotates the cloth normal to the Z-direction,

and in yarn, R rotates the yarn tangent to the Z-direction. (In the mixtures we

described above, these directions are mutually aligned.)
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Finally, having developed our new application-specific definition of the suction

tensor, the pressure gradient force in (3.8) can be re-written as

fp
f→s = −ϕs∇pf + ϕs∇ · ((1− Sr)Pc), (3.12)

where the divergence of our anisotropic suction (stress) tensor has taken the place of

the gradient of the scalar pore pressure.

Remark. The total stress, a frequently used quantity when modeling porous ma-

terials such as sand and soil [222], is the sum of the solid stress σs and fluid stress

σf. The equation above effectively states that σf = −pfI3 + (1 − Sr)Pc, where I3

is a 3×3 identity. In §3.1, we saw that σs = ϕλ
s σc. Our total stress is therefore

ϕλ
s σc − pfI3 + (1− Sr)Pc. For saturated and densely packed porous material (λ→ 0

and Sr → 1), our definition of total stress becomes σc − pfI3, which is precisely

consistent with the classic Terzaghi’s total stress [232].

3.3 Drag between Two Continuous Phases

Force. Liquid flow through a porous solid is resisted by a drag force proportional

to the relative velocity, fd
f→s = C̃(uf − us), where C̃ is a diagonal matrix of drag

coefficients, Ĉi.

For a pack of fibers oriented along the Z axis (Figure 3.4), the drag coefficients

along the transversal (1 ≤ i ≤ 2) and lateral (i = 3) directions can be expressed in
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Figure 3.5: Comparison between nonlinear and linear drag models. Nonlinear
drag (left) exhibits a sharp ”kink” (red dashed curve) around the liquid-solid interface
due to fast-moving cloth having pulled water with it. Since linear drag is not suitable
for high Reynolds number flows, this effect is not seen for linear drag (middle). This
effect can, however, be readily observed in physical experiments (right, with red
dashed curve).

terms of anisotropic permeability.

Permeability is a measure of the ability of a porous material to allow liquids to

pass through it [23]. The permeabilities of flows lateral and transverse to a pack of

fibers are [227]

kα =
−lnϕs − 1.476 + 2ϕs − 0.5ϕ2

s
16ϕs

d2 and

kβ =
−lnϕs − 1.476 + 2ϕs − 1.774ϕ2

s + 4.078ϕ3
s

32ϕs
d2,

(3.13)

respectively, in terms of the volume fraction ϕs and fiber diameter d.

Drag Coefficient. Yazdchi and Luding [259] relate the drag coefficient to the per-

meability of a fibrous material. The drag coefficient Ĉi is normalized by the liquid

viscosity η and fiber diameter d to define a dimensionless drag, or modified friction

factor, fi = −d2Ĉi/η. Similarly, the permeability is normalized as Ki = kid
2. The
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dimensionless drag and permability are related via

−fi =
1

Ki

+ χiReci , (3.14)

where the exponent c = 1.6 is a constant; Rei = ρf(uf,i − us,i)d/η is the Reynolds

number, where the subscript i of uf and us indicates the X-, Y -, or Z-component of

the velocity.

The coefficient χi weights the nonlinear second term relative to the linear first

term. Many models exist for computing χi, and we choose to use the classic Er-

gun equation [77], as validated by Yazdchi and Luding [259]. Replacing the various

quantities in (3.14), we obtain our final formula for the drag coefficient,

Ĉi =
η

ki
+

1.75√
150

ρcfd
c−1η1−c

(1− ϕs)
3
2

√
ki
∥uf − us∥c2. (3.15)

These coefficients allow us to compute the drag force when a pack of fibers are

oriented along the Z-direction. Given cloth or yarn with an arbitrary orientation, we

construct a rotated drag tensor C in a similar manner to the suction tensor in (3.11):

namely, C = RT ĈR, where Ĉ is a diagonal matrix. For cloth, Ĉ has the diagonal

elements [Ĉβ Ĉβ Ĉα], while in yarn Ĉ has the diagonal elements [Ĉα Ĉα Ĉβ]. Here

Ĉα and Ĉβ are determined by substituting kα and kβ of (3.13) into the ki of (3.15),

respectively. In general, Ĉ is a combination of the two cases, defined in the same way

as in (3.10). R is a rotational matrix that aligns the cloth’s normal direction or the
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yarn’s tangential direction with the Z-direction, as in (3.11).

Finally, the drag force between two continual phases is computed as

fd
f→s = C(uf − us) = RT ĈR(uf − us). (3.16)

Remark I. Dimensional analysis provides a useful sanity check on our derivation.

The value Ĉi in (3.15) has units of g·cm−3·s−1 for any positive c value. Therefore,

fd
f→s/ρs always has units of cm·s−2, which are precisely the units of acceleration.

Remark II. Drag force models have been used in many computer graphics simula-

tions, yet almost all such models have been linear with respect to the relative velocity.

For example, recent work on simulating sand and water mixtures [230] adopts a linear

model. Meanwhile, studies in porous mechanics have shown that the drag force is

nonlinear, especially when the Reynolds number is not small [158]. In Figure 3.5, we

compare our nonlinear drag model in (3.15) with the linear drag model that ignores

the second term of (3.15), to demonstrate their very distinct visual difference.

3.4 Dynamic and Quasi-Static Model

Dynamic Model. Putting together all the forces derived above, our mixture model

for cloth and yarn is comprised of five equations: namely, the momentum equa-

tions (3.1a) and (3.1b); the continuity equation (3.1c) for solid material; the conti-

nuity equation (3.3) for the liquid, which also advects the porous saturation Sr; and
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the incompressibility condition (3.4). To complete (3.1a) and (3.1b), the interaction

force ff→s is the sum of the pressure gradient force (3.12) and the drag force (3.16).

We refer to these equations as the dynamic equations of wet cloth and yarn. In the

next section, we will numerically solve them by discretizing the entire domain of the

liquid, wet cloth, and wet yarn using Eulerian grids.

Quasi-Static Model. To capture liquid diffusion and convecting within the thin

volume of cloth and yarn, direct discretization of the dynamic equations in 3D ne-

cessitates the use of very fine grids, resulting in prohibitive simulation costs. We

therefore treat this case specially. We observe that water travels along the cloth and

yarn volume slowly even while the cloth and yarn might undergo large deformation.

This suggests that we can model the liquid motion in the frame of reference attached

to the cloth or yarn. In this frame of reference, the Reynolds number is relatively

low, so we choose to model the liquid motion quasi-statically as diffusion on the codi-

mensional objects (i.e., 2D surface for cloth and 1D curve for yarn). In particular, we

ignore the inertia term in (3.1b). We further note that the cloth and yarn material

is isotropic in the codimensional space, and hence so is the pressure tensor. Then,

Equation (3.1b) after substituting (3.12) and (3.16) can be simplified into

1

ρf
∇ [(1− Sr)pα − pf]−

Ĉα

ρf(1− ϕs)
(uf − us) + g̃ = 0. (3.17)

Because the frame of reference is non-inertial, the force g̃ must now include not only

the external force g but also additional fictitious forces, such as the centrifugal and
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Coriolis forces (to be discussed further in §4).

Equation (3.17) allows us to express uf with respect to us, pf, and pα, by isolating

uf on one side of the equation. Substituting it in (3.3) yields the equation to be

solved in the codimensional space:

∂ϵL
∂t

+∇ ·
[
(1− ϕs)ϵL (∇(p̃α − pf) + ρfg̃)

Ĉα

+ ϵLus

]
= 0. (3.18)

where p̃α = (1−Sr)pα, and we define ϵL = (1− ϕs)Sr as the volume fraction of liquid

in the unsaturated mixture. This is a convection-diffusion equation describing how

ϵL is transported quasi-statically along cloth surfaces and yarn strands.

Remark. If we ignore external forces and the pressure from the bulk fluid, and

assume the porous solid is static, then pf, g̃, and us in (3.18) all vanish, while ϕs

remains constant. Then this equation reduces to the famous Richards equation in

soil mechanics [198], that describes the movement of water in unsaturated soils:

∂Sr

∂t
= ∇ ·

[
D̃(Sr)∇Sr

]
, (3.19)

where D̃(Sr) is called the diffusivity, and is usually some function of Sr and the

permeability. In our model, D̃(Sr) = (1−ϕs)pαSr
Ĉα

, which has a linear dependence on

Sr and corresponds to a linear water retention curve. Other popular models, such

as Brooks-Corey [46], van Genutchen [237], or models from experimental data fit-

ting [141], usually assume an infinite suction pressure when Sr approaches zero. We
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adopt a linear model since it is effective and numerically stable, and can be derived

from a standard modification of mixture theory for unsaturated porous media.
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Chapter 4

Numerical Simulation of Wet Fabrics

Having laid down the governing equations, we turn our attention to the numerics.

Lagrangian Particles Marker-And-Cell Grid

Solid Mesh
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 MAC Grid
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Figure 4.1: Overview of our numerical method for the mixture of two con-
tinuum phases.

Method Overview. We discretize the quasi-static equation (3.18) over Lagrangian

fabric “solid” meshes, and the remaining dynamic equations over a “background” Eule-

rian marker-and-cell (MAC) grid augmented with Lagrangian particles for advection.

Bulk liquid is simulated using the affine particle-in-cell (APIC) method [122].

Each Lagrangian liquid particle carries a scalar volume and two set of velocities: the

liquid velocity uf and the solid porous material’s velocity us.

The porous fabric solid is simulated using a Lagrangian mesh, with each vertex
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carrying the solid velocity us, a porous volume fraction ϕ, and a liquid saturation

fraction Sr. We use the APIC method to distribute data from Lagrangian points

(liquid particles and solid mesh vertices) to the Eulerian grid faces, and vice versa.

The elastic forces of the fabric are computed using discrete shells [92] for woven

cloth, and discrete elastic rods [28, 127] for knitted garments. These elastic forces are

coupled with the background grid using the method of Jiang et al. [121] to resolve

collision and frictional forces.

At each time step, our method performs the following steps (see Figure 4.1 for a

visual overview of our algorithm):

1. Build the MAC grid (§4.2)

2. Compute solid internal forces and apply the flow-rule for solid plasticity (§4.2),

3. Map liquid and solid particles onto the Eulerian grid (§4.2),

4. Solve the pressure projection (§4.2),

5. Solve the solid velocity (§4.2),

6. Update the liquid velocity (§4.2),

7. Map the liquid and solid velocity back to particles, update solid deformation

gradient, advect particles (§4.2),

8. Handle liquid capture and dripping for cloth and yarn (§4.1),

9. Solve the quasi-static equation on solid meshes (§4.1).
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4.1 Codimensional Quasi-Static Simulation

Because fabric strand features are ∼4-8× smaller than a grid cell, we solve (3.18) on

the Lagrangian meshes directly without relying on the MAC grid. We must consider

three types of mesh configurations: (woven) cloth triangles, (individual or knitted)

yarn segments, and the junctions between them (see Figure 4.2). Junctions are useful

not only for modeling cloth-knit assemblies, but also other non-manifold structures,

such as the cloth-yarn connection in a piece of terrycloth (see Figure 5.1c).

(a) (b) (c)
Figure 4.2: Codimensional objects. (a) Cloth modeled as a triangle mesh. (b)
Yarn modeled as a sequence of cylinders. (c) A cloth-yarn joint. The volume of the
shaded region is used to compute vertex weights. Each triangle is uniformly divided
according to its barycenter and edge bisectors.

Notation. The subscript e indicates that a field is discretized over mesh elements,

triangle faces and yarn segments, for example, us,e represents solid velocity defined

on elements. By contrast, the subscript v indicates that a field is discretized over

vertices. Individual time steps are indicated by a superscript t (e.g., ptv for pressure

stored on vertices at time step t), and h always denotes the time step size.
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Codimensional Solve

To solve (3.18) on irregular meshes, we first define the necessary mesh-based discrete

differential operators [40].

Each mesh element (cloth triangle or rod segment) is associated with a time-

invariant finite volume (for all the elements, their volumes are put together into a

vector Ve) in the physical space. For a cloth triangle, this is computed from its

undeformed area and fabric thickness. For a rod segment, this is computed from its

undeformed length and yarn thickness.

Each vertex is also associated with a time-invariant finite volume (put together

into a vector Vv for the volumes of all vertices) (Figure 4.2), computed in a typical

barycentric style: incident cloth triangles contribute a third of their volume to each

vertex, and incident rod segments contribute half of their volume to each vertex.

The liquid volume discretized on vertices is given by the vector Vf,v = (1v−ϕv) ∗

Sr,v∗Vv, where ∗ is the element-wise product, ϕv and Sr,v are the solid volume fraction

and liquid saturation per vertex (recall §3.1), and 1 ∈ RNv is the vector filled with one

whose length is the total number of vertices. Similarly, Vf,e is a vector describing the

liquid volume per element. With these expressions, we can discretize the convection-

diffusion equation (3.18) for the liquid fraction using implicit integration as

V t+1
f,v = V t

f,v − hGT
ev

[
Ĉ−1

α,e
(
[1− ϕe][V ]t+1

f,e (Gev[p̃α − pf]
t+1
v + ρfge)

)
+ [V ]t+1

f,e ut+1
s,e

]
,

(4.1)
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where the notation [·] denotes the operator that converts a vector into a diagonal

matrix.

On triangle meshes, we use the standard gradient and divergence operators de-

scribed in detail by Botsch et al. [40]. The gradient operator Gev ∈ R3Ne×Nv maps

the vector form of a quantity defined on vertices to its gradient on elements, and its

adjoint, the divergence operator GT
ev ∈ RNv×3Ne , maps a vector quantity on elements

to its divergence on vertices. Nv and Ne indicate the total number of vertices and

elements, respectively. Construction of Gev relies on the same weight contributions

used to compute Vv.

This is a system of equations with respect to V t+1
f,v that is nonlinear, and, in the

general case, very difficult to solve [178]. In our case, the Reynolds number of liquids

flowing through cloth and yarn is low, so V t+1
f,v remains fairly close to V t

f,v over a

time step. Thus, we solve (4.1) using fixed-point iterations [47]: in each iteration,

we update V t+1
f,e by interpolating V t+1

f,v from the previous iteration, and then update

V t+1
f,v using (4.1). In practice, this method converged within four iterations for the

scenes we tested.

Liquid Capturing and Dripping

When cloth and yarn come in contact with water they begin to absorb it, and become

wet. On the other hand, if cloth or yarn becomes locally oversaturated, water starts

to drip off. Therefore, our codimensional simulation must also exchange liquid with

the background fluid grid.
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(a) (b) (c)
Figure 4.3: Liquid capturing. • liquid particles; • solid vertices; • grid faces.
Opacity indicates kernel weight. For legibility, only the faces in the x-axis are shown;
similar operations are done for the y− and z-axis. (a) Liquid volume from particles
is distributed onto grid faces. (b) Solid vertices absorb volume from grid faces whose
volume is reduced correspondingly. (c) The retained volume is stored back onto
particles.

Water absorption is performed with the following steps (see figure 4.3):

1. For the i-th grid face, we update its liquid volume by summing contributions

from liquid particles in the grid, V t
f,g,i =

∑
j V

t
f,p,jwi,j, where V t

f,p,j is the volume

of the j-th liquid particle, wi,j is the kernel function between the particle j and

grid face i, as defined by Jiang et al. [122].

2. The j-th solid vertex (cloth or yarn) captures liquid by taking liquid volume

contributions from the background grid: V t
f,v,j =

∑
i V

t
f,g,iwi,j, where wi,j is the

kernel function between grid face i and solid vertex j.

3. For the i-th grid face, we compute the amount of liquid removed by the cloth

or yarn: V −
f,g,i = V t

f,g,i
∑

j wi,j, which totals the i-th face’s liquid contribution to

all solid vertices.

4. Lastly, we update the j-th liquid particle’s volume by computing the

weighted sum of the updated liquid volume on grid faces: V t+1
f,p,j =(∑

i(V
t

f,g,i − V −
f,g,i)wi,j

) /
(
∑

i

∑
k wi,jwi,k).
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The updated volume of liquid particles will be used in the next time step of the grid

simulation (see §4.2).

Liquid drips off of cloth or yarn when the i-th solid vertex is oversaturated. This is

indicated by the condition (for the i-th vertex) Vf,v,i > Vv,i(1− ϕv,i). If it is satisfied,

we inject liquid particles back into the grid. Each generated liquid particle has a

fixed volume Vr
1. The number of liquid particles that the i-th (oversaturated) vertex

can generate is Ndp,i ≡
⌊
Vf,v,i−Vv,i(1−ϕv,i)

Vr

⌋
. We then uniformly sample Ndp,i positions

on the elements (triangles and yarn segments) incident to the i-th vertex, placing

a liquid particle at each. Since liquid flow on the cloth and yarn is assumed to be

quasi-static, the velocity of a new particle is set to the solid velocity at its position.

Afterward, the liquid volume at the i-th solid vertex (that is oversaturated) is updated

to Vf,v,i −Ndp,iVr.

4.2 Grid Simulation

We solve the dynamic equations of wet cloth and yarn on the MAC grid. First, we

discretize the incompressibility condition (3.4) and obtain

hGT
cg[ϕs]u

t+1
s + hGT

cg[1− ϕs]u
t+1
f = 0. (4.2)

1We follow a standard rule of thumb to set Vr. As discussed by Um et al. [235], a common
practice is to have eight particles in a grid cell, each having sufficient volume to cover half of the
cell size in each dimension. This means that Vr ≡ π

√
3∆x3

16 where ∆x is the size of a grid cell.
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Here we use Gcg and GT
cg to denote the (finite-volume) gradient and divergence oper-

ators, analogous to those in (4.1), but on the grid.

When discretizing the momentum equations (3.1a) and (3.1b), we ignore the ad-

vection terms (i.e., the u · ∇ term in the material derivative), because we advect the

liquid and solid materials in a separate substep via background particles with the

APIC method (to be discussed in §4.2). Moreover, since cloth and yarn can often be

highly stiff, they demand an implicit discretization of (3.1a). Otherwise, very small

time step sizes are needed, which would dramatically slow down the simulation. Thus,

discretizing the momentum equations (3.1a) and (3.1b) yields

[
(Ms + h[C]Vc) + h2Hs

]
ut+1

s − h[C]Vcu
t+1
f + hVsGcgp

t+1 = hfs + Msu
t
s, (4.3)

and

(Mf + h[C]Vc)u
t+1
f − h[C]Vcu

t+1
s + hVfGcgp

t+1 = hff + Mfu
t
f, (4.4)

where Ms, Mf, Vc, Vs, and Vf are all diagonal matrices. We obtain Ms by distribut-

ing the mass of cloth and yarn vertices to the face centers of grid cells (see §4.2). We

obtain Vc similarly by distributing vertex volumes Vv to the face centers of grid cells.

Since a vertex volume is occupied by solid, liquid, and air, Vs = [ϕs]Vc is the solid

portion of Vc, while Vf = [1− ϕs][Sr]Vc is the liquid portion of Vc. Mf is the mass

matrix of liquid. [C] is a tridiagonal matrix whose 3×3 diagonal subblocks are the

drag tensors (as defined in (3.16)) evaluated at grid face centers. Lastly, fs includes

forces on solid vertices and are distributed to the grid’s face centers, ff are forces
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applied on the liquid, and Hs is the Jacobian matrix of solid force fs with respect to

the solid vertex positions. Their specific forms will be given in §4.2.

Assembling the discrete equations (4.2-4.4), we obtain a system of linear equations

with respect to the unknowns ut+1
s , ut+1

f , and pt+1. However, solving this linear

system is rather challenging since it is large and unsymmetric. It couples ut+1
s , ut+1

f ,

and pt+1 together, and its size is about seven times the number of grid faces, which

makes direct solvers impractical. To make matters worse, the linear system can be

stiff due to the large stretching stiffness of cloth and yarn or large pressure gradient

applied, thus requiring many iterations for iterative solvers to converge to the solution.

We initially attempted to use BiCGSTAB, but it successfully converged only under

impractically small time step sizes (Courant number less than 10−5). We therefore

propose an efficient alternative solution strategy.

Solver overview. We begin by summarizing the three main steps of our solver.

First, by discretizing (3.1a) explicitly, we reduce the linear system to a smaller one

involving pt+1 alone. After obtaining pt+1, we return to an implicit discretization

of (3.1a), and solve another system of linear equations with respect to ut+1
s alone.

Lastly, we construct a linear system to solve for ut+1
f . This final system will be

diagonal and hence trivially inverted. In this process, ut+1
s for the solid porous

materials is obtained with an implicit solve, ensuring that the time step size is not

restricted by explicit integration. We now elaborate on each of these three steps.
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Pressure Solve

We start with the explicit discretization of (3.1a), for which the h2H term in front

of ut+1
s in (4.3) vanishes. Then, the linear system consisting of (4.2), (4.4), and the

explicit counterpart of (3.1a) can be written as


Ds 0 h(Vs + VfP)Gcg

0 Df h(Vf + VsQ)Gcg

hGT
cg[ϕ] hGT

cg[1− ϕ] 0




ut+1

s

ut+1
f

pt+1

 =


hfs + Msu

t
s + P(Mfu

t
f + hff)

hff + Mfu
t
f + Q(Msu

t
s + hfs)

0

 ,

(4.5)

where the matrices P, Q, Ds, and Df are

P ≡ (Mf + h[C]Vc)
−1h[C]Vc,

Q ≡ (Ms + h[C]Vc)
−1h[C]Vc,

Ds ≡Ms + PMf, and Df ≡Mf + QMs.

(4.6)

Derivation of Equation 4.5. Explicit integration of the solid and liquid dynamics

yields the following equations:

(Ms + h[C]Vc)u
t+1
s − h[C]Vcu

t+1
f + hVsGcgp

t+1 = hfs + Msu
t
s, (4.7)

and

(Mf + h[C]Vc)u
t+1
f − h[C]Vcu

t+1
s + hVfGcgp

t+1 = hff + Mfu
t
f. (4.8)
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To simplify the derivation, we first add these two equations together, which produces

the equation of momentum conservation of the mixture:

Msu
t+1
s + Mfu

t+1
f + h (Vs + Vf)Gcgp

t+1 = hfs + hff + Msu
t
s + Mfu

t
f. (4.9)

Substituting ut+1
s in equation (4.8) with equation (4.9), and combining the terms

yields

(
(I + h[C]VcM−1

s )Mf + h[C]Vc

)
ut+1

f + h
(
h[C]VcM−1

s (Vs + Vf) + Vf
)

Gcgp
t+1

= (I + h[C]VcM−1
s )(Mfu

t
f + hff) + h[C]Vc(u

t
s + hM−1

s fs). (4.10)

From this point on ut+1
f has been decoupled from ut+1

s . Multiplying both sides of

equation (4.10) with (Ms + h[C]Vc)
−1Ms yields

(Mf + QMs)u
t+1
f + h(Vf + VsQ)Gcgp

t+1 = Mfu
t
f + hff + Q(Msu

t
s + hfs), (4.11)

where

Q ≡ (Ms + h[C]Vc)
−1h[C]Vc. (4.12)

Similarly, substituting ut+1
f in equation (4.7) with equation (4.9), and multiplying

both sides with (Mf + h[C]Vc)
−1Mf yields

(Ms + PMf)u
t+1
s + h(Vs + VfP)Gcgp

t+1 = Msu
t
s + hfs + P(Mfu

t
f + hff), (4.13)
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where

P ≡ (Mf + h[C]Vc)
−1h[C]Vc. (4.14)

Combining equations (4.11) and (4.13) with equation (4.2), and introducing notations

Ds ≡Ms+PMf and Df ≡Mf +QMs, we have the form given by equation (4.5). ■

Recall that [C] is a tridiagonal matrix. Let C̃ denote one of its 3×3 diagonal

subblocks defined by (3.16). Its off-diagonal element C̃ij depicts the drag force along

the axis i induced by the liquid-solid velocity difference along a different axis j. The

cross-axis terms in the drag tensor are responsible for rotational and shear effects,

which can be assumed negligible under moderate Reynolds number [17]. We therefore

lump the off-diagonal elements of [C] into its diagonal elements, turning [C] into a

fully diagonal matrix. This approximation can also be justified from a numerical

point of view. When the drag force is large (e.g., for fast liquid flows wherein the

Reynolds number is high), [C], without lumping, dominates over Mf and Ms. Thus,

P and Q in (4.6) are both nearly identity matrices, and Ds and Df are nearly diagonal;

lumping simply [C] approximates Ds and Df as fully diagonal. On the other hand,

when the drag force is very small, [C] approaches zero. Then, P and Q are close to

zero, and Ds and Df remain almost diagonal, so lumping [C] to be diagonal matrix

is again a reasonable approximation.

With Ds and Df being diagonal, the first two equations of (4.5) allow us to easily

express ut+1
s and ut+1

f with respect to pt+1. After substituting this expression into
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the third equation of (4.5), we obtain a system of equations with respect to pt+1,

hGT
cg
[
[1− ϕs]D−1

f (Vf + VsQ) + [ϕs]D−1
s (Vs + VfP)

]
Gcgp

t+1

= GT
cg
[
Φfs(u

t
f + hM−1

f ff) +Φsf(u
t
s + hM−1

s fs)
]
, (4.15)

where the matrices Φfs and Φsf have the following forms,

Φfs ≡ [1− ϕs]D−1
f Mf + [ϕs]D−1

s MfP,

Φsf ≡ [ϕs]D−1
s Ms + [1− ϕs]D−1

f MsQ.

(4.16)

Equation (4.15) is analogous to the pressure projection step in standard fluid simula-

tion, but for solid-liquid mixtures.

Solid Velocity Solve

After obtaining pt+1, we are ready to solve for ut+1
s . Because of the high stretch

stiffness of cloth and yarn, we adopt the implicit discretization in (4.3). Then, the

h2Hs term multiplying ut+1
s in (4.3) will appear in the first row of equations in (4.5):

the first subblock Ds becomes Ds + h2Hs. We obtain a system of equations with

respect to ut+1
s :

(Ds + h2Hs)u
t+1
s = −h(Vs + VfP)Gcgp

t+1 + hfs + Msu
t
s + P(Mfu

t
f + hff), (4.17)

where the pressure pt+1 is already known at this point. On the left-hand side, Ds +

h2Hs is a symmetric positive definite matrix. We then solve this system with a
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matrix-free conjugate-residual solver preconditioned with D−1
s .

Fluid Velocity Solve

Lastly, we substitute pt+1 and ut+1
s into the second line of (4.5) to solve for ut+1

f . As

the matrix Ds multiplying ut+1
f is diagonal, this equation is trivially solved, where

ut+1
f = D−1

f
[
−h(Vf + VsQ)Gcgp

t+1 + hff + Mfu
t
f + Q(Msu

t
s + hfs)

]
. (4.18)

Remark: While we require implicit integration for stability of the fabric, we ob-

served that within a single time step, the explicit and implicit methods produce

similar fabric motion, especially when the time step is not too large. Therefore, we

choose a semi-implicit approach in exchange for computational performance: by ex-

plicitly integrating velocity for the pressure solve, and implicitly integrating the fabric

velocity after the pressure solve, we reduce the large, unsymmetric linear system to

three smaller symmetric and positive definite systems which are much easier to solve.

When solving for the liquid velocity, we may either insert the pressure and solid

velocity into (4.4) or only insert the pressure into the second line of (4.5). We tested

both options. For the first, we observed an average of ∼ 3% difference in the diver-

gence in all of our examples using the time step given in Table 5.1, while for the latter,

we observed an average difference in the divergence an order of magnitude smaller.

The intuition is that in the first an additional Jacobian matrix h2Hs is added to the

divisor when solving for the matrix Q in (4.6), which further increases the mismatch
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between the solved pressure and the divergence of liquid velocity. Hence we choose

the latter solution.

We also found that the difference has approximately linear growth with respect

to time step and the viscosity of the liquid. In practice, for liquid up to a moderate

viscosity coefficient (e.g., olive oil), we did not observe any visual artifacts due to the

difference. Nevertheless for high viscosity liquid (e.g., honey) there is indeed some

instability due to the mismatch between the explicitly integrated solid velocity used

by the drag force, and the actual implicitly integrated solid velocity. A method with

a strict guarantee of incompressibility and which can handle high viscosity liquid

requires future investigation.

Implementation Details

In the aforementioned three steps, we need to construct Ms, Vc, Vs, Vf, and Mf for

the face centers of the MAC grid. For Ms, Vc, Vs, and Vf, we first compute the

corresponding quantities on cloth and yarn vertices. For example, the liquid volume

Vf,i at a vertex i is computed with Vv,i(1 − ϕv,i)Sr,i, where ϕv,i is the solid volume

fraction at vertex i, and Sr,i is its saturation. We then distribute the quantities

from the vertices to face centers, using the kernel functions defined in the APIC

method [122]. Similarly, for constructing Mf, we compute the liquid mass ρfVf,p,i on

the i-th liquid particle, and distribute it to its nearby face centers.
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Force Computation. In the discretized equations (4.3) and (4.4), the forces are

computed as

fs = VsGcg : ((1− Sr) ∗Pc) + fF and ff = VfGcg : ((1− Sr) ∗Pc) + Mfg, (4.19)

where Pc, as defined in (3.11), is the suction tensor computed using the quantities

stored on grid cell centers, and Sr is the solid vertex saturation distributed on the

grid cell centers. We use A : B to denote the tensor product between two tensors

where one has dimensions Ng ×Nc × 3 (we reshape Gcg into this form) and another

has dimensions Nc × 3 × 3. Also we use ∗ to denote the element-wise product that

modulates the suction tensor on each cell center with the saturation on each cell center.

Then the first terms of both fs and ff are initially evaluated on grid cell centers and

then computed on face centers through the tensor product with the gradient operator;

Mfg is the liquid’s gravity force evaluated on the grid as well. On the other hand,

fF are forces firstly evaluated on solid vertices, including the internal elastic forces,

collision and frictional forces, and gravity forces, and then distributed to grid faces

using the APIC method. We adopt existing models to compute these forces. In

particular, the cloth internal forces are computed using the discrete shell model [92],

the internal forces of yarn follow the discrete elastic rod model [28], and the collision

and frictional forces are computed following Jiang et al. [121].

We highlight one detail related to the distribution of yarn torques using APIC. The

discrete viscous thread model uses a scalar ςj at the j-th yarn segment to indicate the
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strength of torque with respect to the tangential direction tj of the j-th yarn segment.

In order to distribute the j-th torque to a background grid face i, we convert the scalar

into a vector ςjtj × ∇wi,j (see derivation below) before adding it to the grid face i.

Here wi,j is the kernel function between grid face i and yarn segment j.

Distribution of Torque from Vertex to Grid. For simplicity of

presentation, consider a yarn segment j along the Y-direction (see the

adjacent figure). If there is a torque ς ≡ ςvtv applied with respect to the

centerline of the yarn to twist the yarn, then, when we distribute the torque ς to a

grid node i, this node receives a twisting force produced by the torque weighted by

the (scalar) kernel function,

wi,jD−1
j [tj × (xi − xj)] = [tj × wi,jD−1

j (xi − xj)], (4.20)

where xi is the position of grid face i, xj is the position of yarn segment j, wi,j is the

kernel function for the contribution of yarn segment j at the grid node i, and Dj is

analogous to an inertia tensor defined as

Dj =
∑
i

wi,j(xi − xj)
∗(xi − xj)

∗T

where x∗ is the cross-product matrix associated with vector x. When wi,j is a trilinear

function, the relationship wi,jD−1
v (xi − xj) = ∇wi,j holds, as noted in [122]. Then,
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the right-hand side of (4.20) can be simplified into

tj ×∇wi,j.

This is the formula that we use to distribute the torque of yarn vertices on the grid.

■

Jacobian matrix computation. The matrix Hs in (4.3) and (4.4) is the Jacobian

of fs distributed on the grid. This matrix emerges when we integrate the force terms

implicitly. Because the stiffest force terms in fs are the internal elastic forces, we

compute their contributions to the Jacobian matrix, and ignore the contributions

from collision and frictional forces, instead integrating them explicitly. We compute

the Jacobian matrix Hs,j of the elastic forces at the j-th solid vertex, and add its

contribution to the grid face i using

Hi,j = WT
i→jHs,jWi→j, (4.21)

where Wi→j is the weight that distributes a force vector from grid face i to solid

vertex j in the augmented MPM method, as defined by Stomakhin et al. [226].

Cohesion force between pieces of cloth. When two pieces of wet cloth are in

close proximity, the surface tension of the liquid between introduces cohesion forces.

Accurately computing surface tension requires the reconstruction of detailed liquid

surface shapes between the cloth pieces, which in turn demands an extremely high

64



grid resolution. Even for a moderate size piece of cloth, computing this effect through

brute force is intractable. In this work, we use a simple model to approximate cohesion

forces at cloth vertices, and use the APIC method again to distribute the forces to grid

nodes. We describe our model below, while leaving a full investigation of this surface

tension-induced effect to future research. We will discuss the cohesion between yarns

in Part II.

We assume that the surface tension appears when the distance between two pieces

of wet cloth is less than a small constant. Also the water-air surface is assumed

perpendicular to the cloth surface. Under these simplifications, the surface tension

energy becomes ET =
∫
Ω
γddl, where Ω is the boundary of the wet cloth regions

that are connected by water, d is the distance between two cloth pieces, and γ is the

surface tension coefficient.

Then, the surface tension force generated at each small segment of the water

boundary Ω is

dfT = γdl. (4.22)

In the discrete setting, we need to compute the surface tension force at every

vertex. We perform the following steps:

1. For each triangle element i, find the closest non-neighboring element j within

a distance threshold in the cone of θ degrees around the normal direction.

2. For each pair (i, j) of elements identified in step (1), connect a line segment s
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between the two centers of the elements. We iterate through all background

cells that s passes by, and compute their average liquid volume fraction ϕ̄c. The

liquid volume fraction in each cell is computed using the method of Batty et

al. [22].

3. If the averaged threshold ϕ̄c is within the range [0.5− φ, 0.5 + φ] where φ is a

user-controlled threshold, then we add a surface tension force γ
√

Si+Sj

2
to both

elements along their respective normal directions. The square root term is to

approximate dl in (4.22) using the effective length of the average triangle area.

The force is then distributed evenly to the triangle element vertices.
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Chapter 5

Simulated Results of Wet Fabrics

We divide our results into two classes: i) a group of didactic cases designed to validate

individual components of our framework, and ii) a set of more general scenarios of

liquid interaction with cloth and yarn that demonstrate the diversity of practical

effects that can be achieved by our system. Details of our surface reconstruction,

the rendering method, and a summary and discussion of the physics parameters used

throughout this part can be found in the end of this section.

5.1 Didactic Examples

Ring Test. A classic experiment in the textiles industry is a ring test [180], where

a controlled volume of liquid is released onto the center of a piece of cloth. We

compare our simulation with a physical experiment in Figure 3.2. When the liquid

touches the cloth, wicking can be observed in both the physical experiment and our

simulation. Although our numerical experiment does not quite reproduce the noisy

details of the real-world surface, the liquid in both the experiment and our simulation

yielded visually and qualitatively consistent wicking behaviors.
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a)

b)

c)

d)

Figure 5.1: Large examples of wet fabrics. (a) A ball of water splashes on a
mesh-based cloth. (b) A ball of water splashes on a yarn-based fabric. (c) A ball of
water splashes on a piece of terrycloth. (d) A towel is pulled rapidly out of water and
wrung out.

Drag Forces. The nonlinearity of drag forces has a significant impact on the look

of real liquid-cloth interactions. Figure 3.5 presents a comparison between nonlinear

and linear drag force models. The most obviously distinct visual phenomenon that

can be seen in the nonlinear case is the formation of “kinks” around regions where

the relative velocity between the cloth and liquid is large; the cloth has dragged the

liquid along with it to create this characteristic shape. This phenomenon cannot be

readily observed with the linear drag force. The same figure illustrates this “kink”

effect in a real experiment in which large relative velocities are induced by pulling a
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cloth rapidly out of liquid.

Buoyancy Forces. In Figure 3.3, we highlight the importance of the pressure

gradient, using fabrics with differing mass densities. The leftmost has density ρs =

0.25g/cm3, which is lower than water’s; the middle fabric has the same density ρs =

1.0g/cm3 as water (i.e., neutrally buoyant); and the rightmost has density ρs =

4.0g/cm3, which is higher than water’s. With the correct pressure gradient applied

to the fabrics, as expected, the left one rises to the water surface; the middle one

drifts along with the fluid water; and the right one sinks quickly to the bottom. By

contrast, if the pressure gradient is neglected, the fabrics sink and come to rest at

the bottom, regardless of their mass densities.

Various Parameters. Different fabric and liquid parameters can also drastically

alter the look of cloth-liquid interaction [63]: permeability decreases quadratically

with fiber diameter and nonlinearly with volume fraction through (3.13); while

the pore pressure increases with volume fraction and decreases with contact angle

through (3.9). In Figure 5.2 we compare simulation with different sets of parameters

varied from reference (Figure 5.2a). All the simulations are done with the same ini-

tial geometries, and the screenshots are captured at 4.0 seconds. The expected effects

are recovered in our numerical experiments. In Figure 5.2b and 5.2c, as we adjust

the fiber diameter d, we simultaneously hold the rest solid fraction ϕ0 constant by

appropriately adjusting the thread count nt and capillary radius rb to compensate;

the cloth with smaller d is less readily penetrated by the liquid, the liquid attaches
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reference
volume fraction & 

liquid viscosity �xed

zero pore pressure
�ber diameter &

liquid viscosity �xed varying liquid viscosity

(a)
φ 0 = 0.4
d = 100 µm
rb = 61 µm
nt = 465.7
µ  = 0.89 cP
θ = 40.8° 

(b)
φ 0 = 0.40
d = 25 µm
rb = 15 µm
nt = 7451.2
µ  = 0.89 cP
θ = 40.8°  

(c)
φ 0 = 0.40
d = 200 µm
rb = 122 µm
nt = 116.4
µ  = 0.89 cP
θ = 40.8°  

thread count &
liquid viscosity �xed

(d)
φ0 = 0.098
d = 50 µm
rb = 76 µm
nt = 465.7
µ  = 0.89 cP
θ = 40.8°  

(e)
φ0 = 0.88
d = 150 µm
rb = 27 µm
nt = 465.7
µ  = 0.89 cP
θ = 40.8°  

(j)
φ 0 = 0.4
d = 100 µm
rb = 61 µm
nt = 465.7
µ  = 0.89 cP
θ = 90°  

(f)
φ0 = 0.17
d = 100 µm
rb = 110 µm
nt = 203.2
µ  = 0.89 cP
θ = 40.8°  

(g)
φ0 = 0.87
d = 100 µm
rb = 19 µm
nt = 1016.0
µ  = 0.89 cP
θ = 40.8°  

(h)
φ 0 = 0.40
d = 100 µm
rb = 61 µm
nt = 465.7
µ = 0.22 cP
θ = 40.8° 

(i)
φ 0 = 0.40
d = 100 µm
rb = 61 µm
nt = 465.7
µ = 81 cP
θ = 40.8° 
 

acetaldehyde olive oil 

thinner & more �bers thicker & fewer �bers 
thinner �bers &
larger pores 

thicker �bers &
smaller pores 

fewer �bers &
larger pores 

more �bers &
smaller pores 

Figure 5.2: Comparison for different sets of fabric and liquid parameters.
Parameters different from the reference’s are highlighted with bold text. The fabric
parameters include rest solid fraction ϕ0 (unitless), fiber diameter d (micrometers),
capillary radius rb (micrometers), and thread count per inch nt (unitless), where any
two of them can be determined by the other two. The liquid parameters include
viscosity η (centipoise) and contact angle ϕ (degrees).

more readily to the cloth surface, and a shorter wicking distance is observed. In

Figure 5.2d and 5.2e, as we adjust the fiber diameter d, we simultaneously hold the

thread count nt constant; as d and the rest solid fraction ϕ0 increased, the cloth is

less easily penetrated by the liquid, also with less liquid retention inside the cloth. In

Figure 5.2f and 5.2g, we change the thread count nt, while holding the fiber diameter

d constant; as nt and the rest solid fraction ϕ0 increased, the cloth shows a simi-

lar behavior. We also compare between different liquid parameters. In Figure 5.2h

and 5.2i, we demonstrate the different behavior of acetaldehyde and olive oil, where

the former is less viscous and the latter is much more viscous than water: the cloth
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Figure 5.3: Volume conservation is demonstrated by plotting the deviation of
fluid volume in bulk form (orange), on the cloth (blue), and their total (green). Left:
Tighten the Towel example. Right: Drag Forces example.

is less easily penetrated by olive oil, which also has a much shorter wicking distance.

In Figure 5.2j, we demonstrate the effect where zero pore pressure is applied when

the contact angle is exactly 90 degrees: there is then no wicking effect and the liquid

is less attracted to the cloth surface.

Impermeable Cloth. We show that our method can also

simulate liquid coupled with a pinned impermeable (non-

porous) cloth, which corresponds to an infinitely small pore size and infinitely large

drag force in our model. Since the drag force is implicitly integrated with (4.5), (4.17)

and (4.18), our simulation is valid even when the drag tensor approaches infinity.

Around the overlapped region, the liquid and solid share the same velocity, corre-

sponding to a no-slip boundary condition.
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5.2 General Examples

Splash on Cloth. Figure 5.1a demonstrates wetting, dragging, dripping, and wick-

ing effects of liquid-cloth interaction. When the liquid has high velocity, it can pene-

trate through the cloth from one side to another, but as it is slowed down by viscous

drag, it will attach to the cloth surface and start to slip. As more liquid attaches to

the cloth, the cloth also starts drooping due to the added mass.

Splash on Yarns. Similarly, in Figure 5.1b we show that our model can handle

yarn-based fabrics by dropping a ball of water on a piece of pinned handwoven fabric.

Some of the liquid is captured by the fibers, while the majority of it flows through the

pores and forms a liquid jet on the other side. The fabric is also noticeably tightened

by the initial impact of the water ball.

Splash on Terrycloth. Beyond cloth and yarn, we show that our model can handle

a scenario involving both kinds of structure: in Figure 5.1c we splash a ball of water

onto a piece of terrycloth that has many short strands protruding from its surface.

This cloth has a stiffer visual look than regular cloth, it absorbs more water, and the

drag force is also stronger.

Tighten the Towel. Lastly, we show an example with more complicated dynamics

in which the motion of a piece of terrycloth actively affects the flow of a liquid.

Specifically, in Figure 5.1d we simulate the tightening of a towel. The towel is rapidly

yanked out of water and tightened. As the towel twists, a sudden rush of liquid
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Examples s/step # particle # element h (s) Mem.
(Avg.) (Max) (Peak GB)

Drag Forces 5.93 570K 8.54K 2× 10−4 5.41
Buoyancy Forces 6.02 742K 105K 2× 10−4 6.06

Various Parameters 1.88 199K 64.1K 2× 10−4 4.39
Impermeable Cloth 3.20 112K 71.8K 2× 10−4 2.44

Splash on Cloth 18.73 729K 336K 2× 10−4 18.35
Splash on Yarns 2.72 277K 79.6K 2× 10−4 6.19

Splash on Terrycloth 9.31 282K 123K 2× 10−4 5.27
Tighten the Towel 8.97 390K 71.2K 2× 10−4 4.90

Table 5.1: Timings and storage statistics.

flows out of the towel. As time goes on, the flow of liquid leaving the towel steadily

decreases to a trickle.

For both Tighten the Towel and Drag Forces we measured the total volume of

liquid on the towel and in bulk form over the course of the simulation. The volume of

the bulk liquid is calculated as the sum of the spherical volumes of liquid associated

with each APIC particle, according to each particle’s radius. The volume of the

liquid on the towel is calculated as the sum of the liquid stored on the vertices. For

each solid vertex the liquid volume is simply the saturation multiplied by the empty

pore space. Figure 5.3, left, shows that the net increase of water on the mesh (blue

curve) was always offset by the net decrease in bulk liquid (orange curve), yielding

remarkably good conservation of total liquid volume (green curve).

5.3 Performance Numbers

In Table 5.1 we collected timing data to evaluate the computational cost of our method

and its various components on our examples, using a workstation with two Intel Xeon

E5-2687W CPUs with eight cores each running at 3.10GHz. For the towel example we
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Figure 5.4: Performance breakdown for Tighten the Towel (Figure 5.1d).

also provide a detailed breakdown in Figure 5.4. The most time consuming part is for

the calculation of the forces, plasticity and interpolation kernel weights. Throughout

this part, we use a cell size of δx = 0.288cm, with an average distance between mesh

vertices of 0.144cm. Since our grid is built only in a neighborhood around the solid

vertices and liquid particles, its size is temporally variant. The number of cells varies

between 50 and 250 in the largest dimension for all of our examples.

5.4 Surface Reconstruction and Rendering

We performed surface reconstruction in SideFX’s Houdini [214], which uses Open-

VDB [171]. We adopted a VDB from fluid particles surface operator (SOP) to con-

vert the liquid particles into a VDB grid, using a particle separation equal to the

length of a simulation grid cell. To avoid flickering, we used a high-resolution VDB

grid, where particles in a simulation cell are reconstructed with 83 VDB cells. We

converted yarn strands into cylindrical tubes using the PolyWire SOP, with widths

depending on the saturation of the yarns. These liquid tubes are then converted into

a VDB using a VDB from polygons SOP. We combine the two VDB grids and use
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Symbol Physical quantity Value Unit
ϕ0 rest volume fraction 0.098 ∼ 0.88 n/a
d fiber diameter 25.0 ∼ 200.0 µm
rb capillary tube radius 15.0 ∼ 122.0 µm
nt fabric thread count / square inch 0.1K ∼ 7.4K n/a
rc cloth half thickness or yarn radius 165.0 ∼ 480.0 µm
λ power of ϕ in effective stress 2.0 n/a
γ surface tension coefficient 20.6 ∼ 72.0 dyn/cm
η liquid viscosity 0.22 ∼ 81.0 centipoise (cP)
c nonlinearity of drag coefficient 1.6 n/a
ρs solid intrinsic density 0.25 ∼ 4.0 g/cm3

ρf liquid intrinsic density 0.78 ∼ 1.0 g/cm3

θ contact angle 40.8 ∼ 90.0 degree

Table 5.2: Range of physical parameters adopted throughout all examples.
Unless specified, we use fiber diameter and fabric thread count as input, and compute
other parameters through their relationships given in table 5.3.

a dilate-smooth-erode operator [170] to create the smooth transition between them.

Besides affecting the bulk and surface liquid geometry, wet fabrics are usually darker

and more specular [120]. We adopted a simple, customized shader to incorporate this

effect, where the diffuse color, reflection, sheen, subsurface scattering, and roughness

are modulated using linear functions of saturation Sr.

5.5 Fabric Parameters

In table 5.2 we list all the physics parameters used throughout this work, as well as

their approximate ranges and units.

The rest volume fraction and capillary tube radius are computed through a simple

geometric model: consider a piece of woven cloth or a piece of yarn in a knitted fabric

composed of uniformly packed cylindrical fibers. The effective radius of the capillary

tubes are computed from the empty volume between these fibers. By geometric
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(rb, ϕ0) 2rb

√
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1−ϕ0
- 2rcs

πr2b
(1− ϕ0) -

(rb, nt)
√

8rcs
πnt
− 4r2b - - 1− πr2bnt

2rcs

(nt, ϕ0)
√

8rcsϕ0

πnt

√
2rcs
πnt

(1− ϕ0) - -

(d, nt) -
√

2rcs
πnt
− d2

4
- πd2nt

8rcs

(d, ϕ0) - d
2

√
1−ϕ0

ϕ0

8rcsϕ0

πd2
-

(d, rb) - - 8rcs
π(4r2b+d2)

d2

d2+4r2b

Table 5.3: Conversion between fabric parameters. From any given pair of
two paramters, the other two can be computed. We take s = 2.54cm/in since the
fabric thread count habitually taken in per square inch needs to be converted to the
centimetergramsecond (CGS) system used throughout this part.

calculations, the relationship between different fabric parameters (fiber diameter d,

radius of capillary tubes rb, fabric thread count per square inch nt, rest volume

fraction ϕ0, and yarn radius or cloth half thickness rc that is always given as user

input) used throughout this part are presented in table 5.3.
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Chapter 6

Limitations of the Wet Fabrics Simulator

We have presented a numerical model to animate liquid interactions with permeable

cloth and yarn that is able to capture many key phenomena. We highlight below a few

limitations imposed by our chosen assumptions, numerical methods, or experiments.

In Figure 3.2 we compared the diffusion simulated by our method with a labora-

tory experiment. While we have acquired a result close to the laboratory experiment

through the manual specification of a volume fraction field, we found very difficult to

match perfectly. This is because there are other factors that would affect the diffu-

sion, such as the spatially varying fiber radii that changes the pore pressure and the

abrasion of the textile sample that produces irregular bumps on the surface. In fu-

ture work it would be worth investigating how to model and incorporate these textile

“defects” for more realistic simulation.

Our fiber model makes assumptions about the dominant axes of the pore structure,

which places limitations on the fidelity of our pore pressure and drag forces for general

microstructures; for example, the yarn strands in a piece of terrycloth are assumed

to attach perpendicularly to the cloth. For numerical efficiency, our drag model also

relied on a lumping strategy that assumes shear and rotational effects are relatively
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unimportant.

Since the liquid bridge geometry that causes wet cloth sticking is difficult to model,

we adopted a fairly simple cohesion approach. Of course, there are situations in which

cohesion has a very meaningful influence on the dynamics: consider the manner in

which wet clothes adhere to one’s body. Relatedly, we did not include surface tension

in the bulk fluid flow, though adding an explicitly integrated approach would likely

be straightforward.

More fundamentally, our system relies on mixture and porous flow theories, which

themselves entail a variety of both limitations along with benefits. Principally, they

assume continuum models of the phenomena and their interactions, for example ab-

stracting away real fine-scale geometry of individual droplets and pores. In both

engineering and animation this extreme level of detail is often superfluous, though

not universally. For example, in the ring test, it is likely that we might recover some of

the differences from the physical experiment with a more faithful coarse-scale model

of the specific fabric geometry we used; however, certain small-scale heterogeneities,

wrinkles, etc. seem likely to remain beyond the reach of our scheme.

We adopted weak coupling through the drag force and do not enforce an exact

matching of velocity at the interface. The liquid and solid are treated as a continuum

mixture, and the drag force acts to pull the liquid velocity closer to that of the solid.

The scale of the drag force depends on the solid permeability. As such, the solid

velocity will only exactly match the liquid velocity in the limit of infinitely large drag
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force (corresponding to the scenario of an impermeable cloth). We indeed observed

artifacts when the discretization is too coarse, which is a limitation of continuum

modeling.

At present, our method relies on a relatively fine grid resolution to achieve realistic

results: the fabric thickness is not even a full order of magnitude smaller than a

grid cell. Ideally, one would prefer a large gap to reduce the significant cost of the

volumetric solve, although ensuring seamless interactions under such coarse conditions

appears non-trivial. In a related vein, strictly speaking our model is semi-implicit

which implies a time step restriction that could slow our results; a fully implicit

solution remains an open question. However, in practice, the primary factor driving

time step selection was collision-handling, rather than internal dynamics. For the

sake of efficiency, we also adopted a free surface model that avoids simulating the

bulk air volume; this offers a faster simulation but sacrifices air-dependent effects

such as (grid-scale) bubbles.

1 10 100 1000

Continuum

Individually

Avg. Computational Time for 4K Hairs
(secs / timestep, no collision)

Finally, although this framework

works well for fabrics, we find it inef-

ficient for stiff materials, such as hair

strands. This issue is caused by the con-

tinuum assumption, which means all the

hair strands, as a continuum, have to be

solved as a whole system. Due to the scale of the system, one has to use an iterative

solver. For stiff materials, however, an iterative solver usually needs thousands of
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iterations to converge. As shown in the figure, simulating 4K hairs as a continuum,

on average, is more than 100× slower than solving the dynamics of each hair indi-

vidually. In the next two chapters, we will introduce a new framework to couple the

strands with liquid, where the strands are no longer simulated as a continuum but

as discrete elements. In Part II, we will introduce the cohesion between strands,

and a simple Newtonian surface flow on the surface of strand; in Part III, we will

generalize the surface flow to shear-dependent fluid, and more importantly, we will

derive a principled coupling strategy between wet discrete elements and a continuum

phase.
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Part II

Multi-Scale Model for Simulating

Liquid-Hair Interactions
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Chapter 7

From Wet Fabrics to Wet Hairs

In Part I, we have developed a multi-scale model simulating the liquid-fabric in-

teractions, where we treat the liquid and fabric both as a continuum. Nevertheless,

generalizing that model for hair strands may incur numerical difficulties, as explained

in §6: it is more practical and efficient to simulate the hair strands individually.

Furthermore, coupling hairs with liquid requires that we develop a new model.

For example, when removed from the liquid, hair inevitably retains a certain amount

of liquid on its surface, which then flows along the hair strands and eventually drips

off. The flow on hairs suffered from drastic movements can be fast and has the inertial

effect, which cannot be captured by a Darcy-like diffusion model — where the inertia

of flow is neglected — proposed in Part I. Meanwhile, the liquid on the surface of

one hair also interacts with the liquid on the surface of another hair by forming a

liquid bridge, whose surface energy would cause the cohesion of hair strands.

To effectively capture the phenomena for wet hairs simulated individually, in this

part, we develop a framework with the following novel components:

• A surface liquid model for flow along an individual hair strand, which reduces
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a b

Figure 7.1: Recursive structures in wet hair
coalescence. (a) A picture of physical labora-
tory experiment of Bico et al. [2004]. (b) Our
simulated result with a similar setup.

by one dimension the shallow-water equations by invoking rotational symmetry

and introduces inertial forces due to acceleration of the hair centerline;

• A model for surface tension-induced cohesion forces between wet hairs;

• A model for dripping of reduced liquid off the hair strands;

• A model for capturing volumetric liquid onto the hair strands.

We will demonstrate that, collectively, these features enable a higher fidelity simu-

lation (e.g., Figure 7.1) of the compelling dynamics of wet hairs than achieved by

existing techniques.
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Chapter 8

Wet Hair Physics

We begin by describing our physical models in the continuous setting, which are

specifically tailored to capture hair-liquid dynamics at different scales and in different

configurations. We derive a new surface tension model to compute forces between

hairs that are bridged by liquid (§8.1); we derive a dimensionally-reduced model of

liquid flow on the hair surface, in a manner analogous to shallow water equation [205],

to simulate liquid flows along and between hair strands (§8.2).

8.1 Force between Hairs

We derive a new force model that computes the surface tension force between two

wet hairs in proximity. This force tends to pull the hairs together, but is balanced

by collision forces when two hairs contact each other. We also extend our surface

tension model to compute adhesive forces between wet hairs and objects.

Cohesion due to Surface Tension

When two wet hairs are in proximity, a liquid bridge is formed (Figure 8.2). Mi-

croscopically, liquid molecules attract each other due to their cohesive forces, which
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Figure 8.1: Water flowing over and through a sloped mat of fur. Straight
hair initially clump and then become flattened by the weight of water captured by
the strands.

creates a pressure imbalance at the surface causing the liquid to contract towards a

minimal area configuration, subject to conservation of volume. Our surface tension

model uses a formulation based on the surface potential energy, the energy needed to

form liquid surface area. The surface tension force is the differential of this surface

potential. Consider a 2D cross section of two hairs connected by a small drop of

liquid, as depicted in Figure 8.2. With the notation introduced therein, the surface

potential over an infinitesimal volume near the cross section is proportional to its

surface area, expressed as

dEs = σ [lA(s) + cos θlS(s)] ds, (8.1)

where σ is the surface tension coefficient of the liquid-air interface (i.e., 71.97dyn/cm

for water at a room temperature of 298.15K). The equilibrium contact angle, θ, at

which the liquid-air interface meets the liquid-hair interface is a constant that depends

on the material properties of liquid, air, and hair. The arc lengths of the liquid-air

and hair-air boundary are given by lA and lS, respectively (Figure 8.2-c), and ds is
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a) b) c)

d)

liquid

hair
Figure 8.2: A liquid bridge.
(a) Labeled microscopic photo
of liquid held by hairs, courtesy
of Wang et al. [243]; (b) ren-
dered figure of the geometry; (c)
cross section of a slice of the
geometry; (d) another possible
cross section with less liquid.

an infinitesimal length along the centerline of the hairs. Since dEs can vary along

the hair’s centerline, the total surface potential is an integral over the length Γ of the

hairs (i.e.,
∫
Γ

dEs). The expression (8.1) can be derived using Young’s equation [260]

as below.

Surface Potential of Wet Hair We can derive the surface potential energy used

for the cohesion force as follows. Given the surface tension coefficient between the

liquid-air interface σ, the solid-air interface σSA, and the liquid-solid interface σLS,

the surface tension energy is the surface area times the corresponding coefficients

dEs = [σlA(s) + σSAlS(s) + σLSlLS(s)] ds, (8.2)

Applying the Young’s equation [260],

σSA − σLS − σcosθ = 0 (8.3)

where θ is the equilibrium contact angle, we have

dEs = [σ (lA(s) + lS(s)cosθ) + σLS (lS(s) + lLS(s))] ds. (8.4)

86



hair

ha
ir

liquid

ha
ir

rigid body

liquid

a) b)

α₁ α₂
θ₂θ₁

θ₂θ₁α₁ α₂

Figure 8.3: Notation for a liquid bridge cross section.

The sum of the length of the solid-air and liquid-solid interfaces is exactly the length

of the solid interface, which is a constant value and does not affect the potential

gradient. For our purpose we can simply set σLS = 0. Hence we have the form given

in (8.1). ■

Our cohesion model builds on the investigation of Liu et al. [150]. We summarize

their argument and then indicate our point of departure. First, when two hairs are

close, surface tension dominates over gravity. If we ignore gravity, we notice that the

top and bottom liquid-air interfaces must be symmetric, consisting of two circular

arcs. This is because the surface energy contributed by molecular cohesive forces is

uniformly distributed over the interfaces. Following the notation in Figure 8.3, the

cross-sectional surface potential is expressed as

dEs = σ [lA(s) + cos θ1lS1(s) + cos θ2lS2(s)] ds, (8.5)

where lS1 and lS2 are the arc lengths of the two hair-air boundaries, and θ1 and θ2

are the contact angles. (In this case, they are a known constant, θ1 = θ2 = θ, as
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discussed earlier.) Let r1 and r2 be the radii of the two hairs, and R be the radius

of the circle corresponding to the liquid surface arcs. Since the liquid is bounded by

circular arcs, the length of the liquid-air interface is given simply by

lA(s) = R [π − (θ1 + α1 + θ2 + α2)] (8.6)

and the length of the hair-air interface by

lSi(s) = 2ri(π − αi), i = 1, 2. (8.7)

However, what we would ultimately like to know is the dependence of the energy on

the distance d between hairs. Therefore, we next need to find the dependence on d

of R and αi above.

Geometric arguments can be used to show that the distance d can be expressed

as

d = R
∑
i=1,2

cos(θi + αi) +
∑
i=1,2

ri cosαi, (8.8)

and the cross-sectional area of the liquid region of the bridge, AL, as

AL = −πR2 +
∑
i=1,2

[
1

2
r2i sin 2αi + 2riR sinαi cos(θi + αi)

]
+

∑
i=1,2

[
R2

(
θi + αi +

1

2
sin(2θi + 2αi)

)
− αir

2
i

]
.

(8.9)

Liu et al. [150] apply a variation of these equations to an analysis of capillary rise
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between cylinders, subject to fixed boundary conditions (hair positions).

In a point of departure, we assume that the hair positions are variable, and employ

these equations to determine the dependence of the surface energy on the distance d

between hair centerlines, thereby yielding the inter-hair surface tension forces as the

gradient of this energy.

Liu et al. [150] also showed that the arc lengths of the solid-liquid interfaces are

equal, i.e., r1α1 = r2α2. Substituting this relationship into (8.8) and (8.9) above and

differentiating both sides yields (dropping the subscript on α and using α ≡ α1 for

brevity) ∂AL

∂R
∂AL

∂α

∂d
∂R

∂d
∂α


∂R

∂d

∂α
∂d

 =

dAL

dd

dd
dd

 =

0
1

 , (8.10)

where dAL

dd vanishes in the second equivalence. Since the longitudinal dimension is

much larger than the transverse dimensions for hairs, we approximate the area of

the liquid region to be constant as d changes. In turn, the fluid incompressibility is

respectively enforced in the longitudinal and transverse dimensions. The left-hand-

side Jacobian matrix can be analytically computed from (8.8) and (8.9). We then

solve this 2 × 2 system for ∂R
∂d

and ∂α
∂d

. At last, we can evaluate the (magnitude of)

cross-sectional surface tension force using

fs =
d
dd

dEs =
∂dEs

∂R

∂R

∂d
+

∂dEs

∂α

∂α

∂d
, (8.11)

where both derivatives ∂dEs

∂R
and ∂dEs

∂α
will be computed by plugging (8.6) and (8.7)
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Figure 8.4: Two wet hairs held close and
then pulled apart. Left: Hair strands freely
separate without cohesion. Right: Cohesion
forces cause hair strands to adhere. Note:
for better visibility of small-scale illus-
trative examples in paper images (only),
the radius of hair and surface liquid have
both been scaled up.

into (8.5) and differentiating analytically. Details of the method of evaluating fs are

deferred to §9.1.

As depicted in Figure 7.1, our liquid-bridge based model of cohesion is able to re-

produce the tree structures observed in the laboratory experiments of Bico et al. [33].

Adhesive Forces between Hairs and Solids. We can straightforwardly extend

our surface tension model to determine the adhesive force between a hair and a

solid object resulting from liquid bridges. The local geometry of a solid object can be

approximated by a sphere whose curvature agrees with the local mean curvature of the

solid object (Figure 8.3b). This approximation allows us to apply the surface tension

model developed above, with two modifications: 1) using different contact angles to

account for the solid object’s material being different from the hair, and 2) using the

radius of the local sphere that approximates the solid during the computation of the

hair-body force (i.e., the reciprocal of the body’s local curvature replaces r in the
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Figure 8.5: Plot of the potential energy of the combined cohesion/repulsion
force vs. distance between two hairs with unit length. Curves are cut off at
dmax.

equations above).

Collision Forces

We adopt a simple penalty model to treat collisions and contact. Consider two hairs,

each with radius r, having a distance d between their centerlines. Both surface

tension and contact forces between the hairs depend solely on the distance d, but

each dominates at a different d: penalty forces dominate when hairs overlap one

another (d < 2r, where r is the hair radius), while surface tension dominates when

hairs are separated but at a distance smaller than dmax, a critical value at which the

liquid bridge between the hairs breaks. Physical experiments have shown that dmax

depends on the equilibrium contact angle θ and the cross-sectional liquid area AL
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(defined in (8.9)) through an empirical relationship [147],

dmax ≡ (1 + 0.5θ)
√

AL. (8.12)

At some distance d0 between 2r and dmax, the penalty force balances surface tension,

and the net force vanishes.

Surface tension and collision penalty forces by nature conflict with each other.

Later, in our numerical simulation, if we compute them separately in each simulation

step, we need either many iterations or tiny time steps until both forces reach a

balance. To avoid this difficulty, we reconcile them in a single force model described

as a piecewise function,

f(d) ≡



k(d− d0), if d < 2r,

d−d0
B−d0

f̃s(d), if 2r ≤ d < d0,

d−d0
B−d0

fs(B), if d0 ≤ d < B,

fs(d), if B ≤ d < dmax.

(8.13)

Here k is the stiffness of the penalty force. The distance value B is chosen to allow a

smooth (linear) transition from f(d0) = 0 to the surface tension force f(B) = fs(B).

In practice, we use B ≡ 2d0 − 2r. The function f̃s(d) interpolates values between

f(2r) and f(d0) = 0, expressed as

f̃s(d) ≡
(d− dmin)fs(B) + k[(d+B − d0)d0 − dB]

d0 − dmin
. (8.14)
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Figure 8.5 plots a typical force profile with respect to d. We use d0 ≡ 3r through-

out our implementation. Note that in (8.12), if the hair is dry, AL = 0 and thus

dmax = 0; we therefore simply ignore the two formulas in the bottom of (8.13) and

thus naturally handle the case of dry hair.

This combined model for contact and hair adhesion forces is straightforward to

implement, reasonably efficient, and may avoid the stability issues that arise for

staggered/decoupled treatments under moderate cohesion.

8.2 Liquid Flows over the Hair Surface

liq
ui

d

st
ra

nd

Flow along hair Wet hairs are covered by a thin layer of liquid flow-

ing on the hair surface. Simulating the surface flows using the standard

Eulerian approach is intractable, because the thin liquid layer and the

long hair length relative to the tiny hair radius would demand an ex-

cessively fine Eulerian grid. However, we can exploit this disparity in

length scales to approximate the liquid flow using a dimension-reduced

model as in the shallow liquid equations [128, 241, 242]. In this way, the liquid’s

motion can be described in the reference frame of the hair; however, we must also

consider the effects of the motion of this non-inertial reference frame itself. Thus the

surface liquid’s velocity has two components: the intrinsic hair-surface liquid veloc-

ity, i.e., velocity of shallow liquid-like flow with respect to the hair; and the extrinsic

hair-surface liquid velocity, i.e., the velocity of the liquid due to the motion of the

hair that carries it.
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Figure 8.6: Inertial force. When a hair rotates about a central point, centrifugal
forces cause the liquid to flow towards and off the tip. We compare our simulation
without (left) and with (right) the inertial force. Time-slices are shown in order
proceeding counter-clockwise from the bottom.

Additionally, because of the small hair radius, the transversal liquid flow around

a hair strand occurs on a much smaller time scale in comparison to longitudinal flows.

Thus, we assume a quasi-static liquid layer thickness that distributes uniformly at a

transversal cross section of the hair, while the thickness along the hair can vary. We

apply this approximation to all hairs, even in the presence of close contact between

different hairs. This choice allow us to derive a 1D reduced-dimensional model in a

manner analogous to the shallow water equations (see below for the derivation details),

and strikes a balance between strict physical validity and practical computational

expense. We model the 1D longitudinal intrinsic reduced velocity uτ and liquid layer

cross sectional area Aτ with the governing equations

∂uτ

∂t
= −uτ

∂uτ

∂x
− 1

ρf

∂p

∂x
+ a, (8.15)

∂Aτ

∂t
+

∂

∂x
(Aτuτ ) = 0, (8.16)
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Figure 8.7: A droplet sliding down a
single vertical hair as it moves un-
der uniform horizontal velocity. Un-
der (only) downward gravitational accelera-
tion, the hair should remain vertical, in the
absence of external horizontal forces. We
compare ná’ive local momentum rescaling
(left) versus our momentum update trans-
port (right).

where uτ , Aτ , and p are all 1D functions along the hair, parameterized by the coordi-

nate x. The variable p is the hydrostatic pressure value over a cross section, ρf is the

liquid density, a is the acceleration introduced by external forces (such as gravity and

inertial forces). The cross sectional area is computed as Aτ ≡ (hτ + r)2 − r2 where

r is the hair radius, and hτ is the liquid layer thickness. Physically, (8.15) is derived

from conservation of momentum; (8.16) is derived from conservation of mass, and

describes the advection of liquid as the temporal evolution of the cross sectional area

(and correspondingly, layer thickness h). We defer the computation of the inertial

force (Figure 8.6) to the discrete setting, in §9.2.

Derivation of the Surface Liquid Model on Hair The derivation for our 1D

surface liquid model generally follows the strategy used for the classical shallow water

equation [205], with differences that account for the cylindrical geometry. We first

parameterize the variables on the tangential direction of a hair segment.

uτ = uτ (x), hτ = hτ (x), Aτ = Aτ (x) (8.17)
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Figure 8.8: A droplet sliding down
a single hair, causing it to swing.
Left: Ná’ive rescaling leads to severe
spurious bending. Right: Our mo-
mentum transports gives a natural mo-
tion.

where uτ is the velocity in the frame of a hair segment, and Aτ is the area of the cross

section.

Consider the mass flux passing through a point on the hair segment. For a point x

the mass flux is ρfAτ (x)u(x)dt, and the flux passing through its neighbor coordinate

x + dx is ρfAτ (x + dx)uτ (x + dx)dt. Hence we have the equations about the flow’s

mass mτ where

dmτ = ρfAτ (x)uτ (x)dt− ρfAτ (x+ dx)uτ (x+ dx)dt

dmτ

dt
= −ρf

Aτ (x+ dx)uτ (x+ dx)− Aτ (x)uτ (x)

dx
dx

(8.18)

Since dm = ρfdAτdx, the factors of ρfdx cancel on both sides leaving us with

dAτ

dt
= −Aτ (x+ dx)uτ (x+ dx)− Aτ (x)uτ (x)

dx
(8.19)

Taking the limit of dx→ 0 and dt→ 0, we have

∂Aτ

∂t
= −∂(Aτuτ )

∂x
(8.20)

■
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Momentum Transport along Hair The thin layer of liquid weighs down the

hair by an additional mass density of π(h2+2hr). Consequently, the evolution of h—

transport of liquid along the hair—alters the effective mass distribution of the hair.

This is critical to consider because the Lagrangian hair is itself a dynamic system;

redistributions of mass along the hair, without redistributions of velocity, would lead

to sudden changes in the hair momentum, and corresponding artifacts in motion.

To properly account for evolution of the hair state due to surface liquid, we there-

fore transport hair momentum according to the same surface liquid equations. Af-

ter updating the (intrinsic) surface liquid velocity with (8.15) and the height field

with (8.16), we also solve the additional transport equations,

∂

∂t
(usAτ ) +

∂

∂x
(usAτuτ ) = 0, (8.21)

∂

∂t
(ωsAτ ) +

∂

∂x
(ωsAτuτ ) = 0, (8.22)

where i ∈ {x, y, z} are the labels for three components of the Lagrangian hair velocity,

us, and ωs is the angular velocity in the degree of freedom for hair twisting. The

momentum transport only happens on the surface liquid. Hence, after the new us

and ωs are computed (denoted as ũs and ω̃s) with these equations, we combine them

with the velocity before momentum transport (denoted as ûs and ω̂s) using

us ← (ρsπr
2 + ρfAτ )

−1(ρsπr
2ûs + ρfAτ ũs), (8.23)

ωs ← (ρsπr
2 + ρfAτ )

−1(ρsπr
2ω̂s + ρfAτ ω̃s). (8.24)

97



Figure 8.9: Surface liquid flow and dripping on a single strand. Left: No
surface liquid flow. Center: Surface liquid flow without dripping; the liquid flows
towards the tip and disappears. Right: Surface liquid with dripping enabled.

This approach is more costly than evolving mass alone, but it avoids the artifacts

of ignoring momentum conservation. For example, a ná’ive alternative might be to

locally preserve momentum by rescaling the local hair velocity based on its updated

mass; however, this ignores the momentum of the liquid flowing along the hair.

In Figures 8.7 and 8.8, we show two scenarios of a droplet sliding on a single

hair, illustrating that our method produces physically meaningful results, while ná’ive

rescaling produces severe motion artifacts in the hair.

Remark: In this part we just simply agree with the statement above, and explic-

itly modify the strand’s velocity after solving (8.21) and (8.22). A more rigoreous

justification will be presented in Part III, where we also discover that solving these

transport equations is equivalent to adding an additional inertial term to the momen-

tum equation of strands, and implicitly solving the latter provides better stability

than the method presented in this part.
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Figure 8.10: Left-Top: Nei-
ther surface liquid flow nor drip-
ping enabled. Left-Bottom:
With surface liquid flow enabled
the liquid accumulates in the
center and the hair sags. Right:
Enabling dripping lets the liq-
uid flow off the hair.

Dripping from hairs For liquid on the tip of a hair, the amount dripping off

is simply determined by the flux of velocity off the tip (or zero, if the velocity is

directed away from the tip). However, since an individual hair also cannot support

an arbitrary amount of liquid at any given point along its length, we must determine

a threshold for the local liquid volume allowed, and a mechanism to treat the excess

liquid that drips off at that point (see Figure 8.9 and Figure 8.10).

We use a threshold determined from theory of capturing droplets with thin

fibers [151]: given a region filled with N fibers, the averaged intensity of accelera-

tion an̂ applied on the normal directions of flows (perpendicular to the tangential

direction of the hair), the surface tension coefficient σ, the radii of a thin fiber r, and

the density of liquid ρL, the surface tension force applied is 4πr
√
Nσ. To capture

the liquid we need the surface tension force to balance the other forces applied on

the liquid, which is ρLan̂V , where V is the volume of liquid attached to the small

segments of hairs. Hence the maximal radius of droplet that can be held by the hair

segments is computed as

rmax =

(
3rσ
√
N

ρLan̂

)1/3

. (8.25)

N is computed by counting how many hairs intersect with a given grid voxel. After
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determining the maximum radius of liquid droplet that can be held by these N

hairs, we remove the extra volume of liquid from the hairs and release them as APIC

particles in accordance with Equ. 8.25, where any liquid outside the extent of rmax is

free to drip away from the hairs.
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Chapter 9

Numerical Simulation of Wet Hairs

Having described our physical models, we now present the numerical methods we

use to discretize and couple these models together, and thereby simulate hair-liquid

interactions.

Method Overview. The simulation consists of three interacting components: hair

strands simulated using the discrete elastic rods (DER) method [26, 28]; bulk liquid

simulated using the affine particle-in-cell (APIC) method [122]; and hair surface liquid

modeled using a novel formulation.

At the beginning of each time step, the hair, bulk- and surface liquid are advected

separately. We then transfer the bulk- and surface liquid velocities onto a shared

staggered background grid, which unifies the liquid momentum associated to the

two representations, and serves to exchange momentum, drag and pressure forces in

APIC style. Each grid face stores a (normal) velocity flux and density, sufficient to

reconstruct the momentum flux across the face.

Figure 9.1 provides a visual overview of our algorithm and the flow of data through

it for a single time step. The individual steps are:
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Figure 9.1: Algorithm overview and data flow for simulating wet hairs.

1. Advect the APIC particles.

2. Solve the hair dynamics, incorporating the drag force using velocities sampled from

the grid, adhesive/repulsive forces between hairs, and the pressure impulse from

the liquid stored from the previous step.

3. Advect and apply forces to the surface liquid on the hair.

4. Transfer the velocity of the APIC particles onto the grid.

5. Apply the Lagrangian drag force from the hair onto the grid in an Eulerian style.

6. Transfer the velocity of the reduced liquid onto the grid.

7. Solve the Poisson equation and perform pressure projection (standard incompress-

ible fluid solver).

8. Transfer the grid velocity back to the particles with APIC.

9. Update the velocity of the reduced liquid due to surrounding pressure.

10. Exchange liquid volume between APIC and surface liquid domains through capture

and dripping, accounting for conservation of mass.
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9.1 Hair Simulation

We discretize a hair as a sequence of vertex masses endowed with the viscoelastic

stretching, bending, and twisting forces of the discrete elastic rod model based on

Kirchhoff rod theory [26, 28].

Discretization of Cohesion and Contact Model

When wet, proximate hairs adhere due to a strong cohesive force (8.13). Because this

force is strongly nonlinear in the inter-hair distance, and vanishes at distance dmax,

a naive evaluation strategy is prone to spatiotemporal discontinuities with attendant

instabilities and “popping” artifacts.

To enforce spatiotemporal continuity of the force we employ the adaptive quadra-

ture method depicted in Figure 9.2, which employs a single-point quadrature at the

centroid of the adapted subdomain consisting of distances closer than dmax; the cru-

cial aspect is that the boundary (and therefore centroid) of the adapted subdomain

varies smoothly with vertex positions, ensuring that the force is first-order continu-

ous. To simplify the computation, we make the gross approximation that inter-hair

closest-point distances vary linearly along an edge (in actuality, they are piecewise

linear/quadratic). Therefore, our closest-point distances are only accurate at the

vertices, but since the approximation still guarantees smoothly varying adapted sub-

domains, our central concern is heeded.

We build a graph between the hair segments in two phases, as depicted in Fig-
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Figure 9.2: An adaptive quadrature to evaluate the cohesion forces. From
left to right: potentially-connected vertex-hair pairs, connected edge-hair pairs, and
quadrature pairs.

ure 9.2. In the following, recall that the cohesion cut-off distance dmax is a function

(8.12) of the cross-sectional liquid area.

Phase 1: Identify potentially-connected vertex-hair pairs For each hair

(source) vertex, we consider all other hairs as candidate receivers. If the closest

point on a candidate receiver is within distance 3
2
dmax(Amax), we say that the source

vertex is potentially connected to the receiving hair. To be conservative in finding all

potential pairs, we assume the maximum area Amax that can be stored at the vertex,

from (8.25). For each source vertex, we thus accumulate all those receivers that are

proximate. This phase is accelerated by broad-phase culling that accounts for the

threshold 3
2
dmax(Amax).

Phase 2: Identify connected edge-hair pairs For each vertex-hair pair, we inde-

pendently examine the (one or two) edges incident on the source vertex to determine

if this source edge is connected to the receiving hair.

Consider one such source edge. By definition, at least one of its endpoints is a
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source vertex. We compute a threshold distance dmax using the sum of the liquid areas

at the source vertex and receiving point. If the source-receiver distance computed

in Phase 1 is below dmax, the source vertex is a subdomain delimiter. We likewise

determine if the other endpoint is a delimiter.

If neither edge endpoint is a subdomain delimiter, we discard the edge; otherwise,

we have identified a source edge that is connected to a receiving hair.

To establish a quadrature rule for this connected edge-hair pair, we first identify

the quadrature subdomain on the source edge: if both edge endpoints are delimiters,

the subdomain covers the entire edge, or barycentric interval [0, 1]; if one source vertex

is a delimiter, it remains to find the other boundary of the subdomain. Suppose that

the first vertex is a delimiter with distance d1 < dmax1 and the second vertex is a

non-delimiter with distance d2 > dmax2 . We set the barycentric coordinate of the

second boundary at d = dmax by linearly interpolating from the edge endpoints via

α = (dmax1 − d1)/(dmax1 − d1 − dmax2 + d2), yielding the subdomain with barycentric

interval [0, α].

While the quadrature subdomain on the source edge covers at most one edge,

the corresponding receiving subdomain in general covers some contiguous region of

the centerline, not contained within an edge. To identify this region, we first map

each source edge endpoint to its receiving endpoint, which lies on the centerline but

generally not at a vertex. Treating the two receiving endpoints as the delimiters

of the real interval [0, 1], we map the barycentric interval [0, α] into corresponding
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positions on the receiving centerline.

Once the source and receiving subdomains are identified, their corresponding mid-

points are chosen as the evaluation points for our single-point quadrature method.

Force Computation. The quadrature subdomain established above allows us to

discretize the cohesion force (8.5). Given a matched pair of subdomain midpoints

indexed i and j, the adhesive force is computed as

f s,ij = −wFF
∂dEs,ij

∂dij
n̂ij (9.1)

where n̂ij is a unit vector pointing from point i to j. The factor wFF ∈ [0, 1] acts

to smoothly disable the cohesion force if the quadrature pair lies beneath the bulk

liquid surface; it is computed as wFF = 1− clamp(m̃f/m̂f, 0, 1) where m̃f is the liquid

particle mass interpolated from the background grid (refer to §9.3 for the computation

of liquid particle mass distributed on background grid), and m̂f is a small positive

threshold corresponding to average particle mass just beneath the free surface, e.g.,

m̂f =
√
2π/6 ∗ ρf(∆x)3, so that clamp(m̃f/m̂f, 0, 1) is a mollified submersion indicator

function.

Let lij be the length of the source subdomain (see Figure 9.2). Discretizing (8.5),
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the surface energy associated to the subdomain is given by

dEs,ij(dij, ALij
)

= ωijlijσ

[
lA(dij, ALij

) +
∑
k=1,2

cos θklSk(dij, ALij
)

]
,

(9.2)

for the i-th point connected with neighbor point j. Since we often find a connection

from one hair to another in both directions, we halve the force in such cases to avoid

double-counting; this is expressed in the factor ωij which is set to 0.5 if a connection

exists in the opposite direction and 1 otherwise. Thus we ensure the symmetry of

forces by taking the average.

The length of the liquid-air interface is computed as

lA(dij, ALij
) = R(dij, ALij

)

[
π −

∑
k=1,2

(
θk + αk(dij, ALij

)
)]

(9.3)

and the length of the hair-air interface is

lSk(dij, ALij
) = 2rk

[
π − αk(dij, ALij

)
]
, k = 1, 2. (9.4)

Precomputation for Cohesion Model Since R(dij, ALij
) and αk(dij, ALij

) are

implicitly defined by dij and ALij
, we precompute ∂dEs,ij/∂d and store its values into

a table for efficiency. At run-time we can interpolate from the table to get ∂dEs,ij/∂d.

The first step of precomputation is building the table of ALij
(dij, αk) for all com-

binations of a uniformly sampled set of values of dij and αk, following (8.9). Since
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dij < dmax, where the latter is computed with (8.12), the range of possible dij values

is bounded.

After we have the table of AL, we uniformly discretize the range of resulting AL

values to compute a mesh grid for α1 and α2: for each sample (d,AL) on the mesh grid,

we search for the closest AL in the table with binary search and linearly interpolate

to get the inverse mapping α(AL, d). Then we solve (8.10) for each sample of (d,AL)

to get ∂R(d,AL)/∂d and ∂α(d,AL)/∂d.

Finally, using the derivatives of (9.3) and (9.4), we can find the gradient of (9.2)

as

∇dET (d,AL) = σ

[
∂lA(d,AL)

∂d
+
∑
k=1,2

cos θk
∂lSk(d,AL)

∂d

]
, (9.5)

which gives us the table of ∇dET (d,AL) for each sample of (d,AL). ■

Time Integration

We integrate the elastic rods in time using the stable constraint-based solver of

Tournier et al. [234]. This accounts for the internal forces (stretching, bending, twist-

ing) and external forces of cohesion/repulsion, drag, and bulk pressure. (The details

of bulk pressure force are presented in §9.3). During integration, the effective mass

of hair above liquid is calculated as the actual mass of hair plus the mass of reduced

liquid; while the effective mass of the hair underwater is just the actual mass of the

hair. For stable integration, we modulate the surface liquid mass with wFF (see Force

computation above) to enable a smooth transition for the effective hair mass around
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the liquid-air interface.

Preconditioning via Local Solves. We accelerate our solver using a novel pre-

conditioner. When many hairs adhere to one another, a large number of constraints

are created between individual hairs, and the resulting global interactions give rise to

linear systems that are difficult to solve efficiently. Furthermore, even the construc-

tion of the stiffness matrix (jacobian matrix of the forces) Hs can have a substantial

performance overhead.

Observing that the adhesive force between hairs is the only type of constraint

that causes off-diagonal blocks to appear in the stiffness matrix, we developed a

preconditioning strategy for the conjugate gradient method that exploits this fact.

Before solving the large globally coupled system, we first build and solve the

linear system corresponding to each hair strand independently of other strands, and

ignoring adhesion. Observe that the stiffness matrix can be decomposed into a sum

of individual hair stiffness matrices and a cohesion stiffness matrix, such that for any

vector x,

Hsx =
N∑
i

Hs,iSix+ Hs,Gx, (9.6)

where N is the number of hairs, and Si is a diagonal selection matrix whose j-th term

is one if the j-th degree of freedom belongs to the i-th hair and zero otherwise. This

effectively pulls out the entries of x for a single hair into a shorter vector matching

the dimensions of the stiffness matrix Hs,i corresponding to the i-th hair. The matrix

Hs,G encodes inter-hair coupling components. Therefore in Hs,i only a few degree of
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freedoms are involved, and these smaller systems can be solved in parallel for all the

hairs.

Using the locally-solved velocity as an initial guess, we begin the preconditioned

conjugate gradient method (PCG), using the local matrices for preconditioning. Each

local matrix is small, banded, and remains fixed between PCG iterations; it can

therefore be easily factored at the beginning of the PCG loop, and solved in parallel

with a fast banded solver. To describe in detail the full algorithm for this process

requires also to summarize the method and notation of Tournier et al. [234], as below.

Preconditioned Time Integration of Hair. For the dynamics of elastic rods, we

extend the work of Tournier et al. [234] who proposed a stable and efficient constrained

solver. We employ this solver since it is linear, stable at moderate time step, and is

effective for constraints with a large range of stiffnesses.

In the following we first present our extended version of their method, which

supports viscous drag and damping forces, and a novel preconditioner to boost the

solver’s efficiency for large systems with many inter-hair constraints.

We use φ to denote the constraints on positions (for example φij = ∥qi−qj∥− l0

for a spring with rest-length l0), where q refers to the configuration (position). φ̇

for viscous constraints on velocity, for example φv = q̇ − q̇0 for the drag force whose

target velocity is q̇0; C for the diagonal positional compliance matrix, which is the

inverted stiffness matrix for positional constraints; and Cv for the diagonal viscous

compliance matrix, which stores the inverted viscous drag coefficients.
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The energy of positional constraints is

E =
1

2
φTC−1φ, (9.7)

and of viscous constraints is

Ev =
1

2
φT

v C−1
v φv. (9.8)

We denote the states at the next time step with a subscript “+”. By linearization

we have

φ+ ≈ φ+ hJq̇ (9.9)

where h is the time step and J ≡ ∂φ
∂q

, and

φv,+ ≈ φv + hJxvq̇+ + Jv(q̇+ − q̇) (9.10)

where Jxv := ∂φv
∂q

and Jv ≡ ∂φv
∂q̇

.

Since the constraint forces are conservative, they arise as the negative gradient of

the corresponding potentials, giving the form

f c = −
∂E

∂q

T

= −∂φ

∂q

T ∂E

∂φ

T

= JTλ

f cv = −∂E

∂q̇

T

= −∂φv
∂q̇

T ∂Ev

∂φv

T

= JT
v λv

(9.11)

where λ and λv are the Lagrange multipliers of the positional and viscous constraints.

By the elastic constitutive law of the constraint forces [138, 212], Cλ = −φ, we
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have

λ+ = −C−1(φ+ hJq̇+) (9.12)

and

λv,+ = −C−1
v
[
φv + h(Jxv + h−1Jv)q̇+

]
+ C−1

v Jvq̇. (9.13)

Then with linearized implicit Euler [19] we have

(Ms − h2Hs)q̇+ = Mq̇ + h
[
f e − JTC−1φ− JT

v C−1
v (φv − Jvq̇)

]
(9.14)

where f e contains the constant external forces (gravity, etc.) and velocity impulses

from fluid pressure ( §9.3), and Hs =
∂(fc+fcv)

∂q
+ ∂fcv

∂q̇
is the stiffness matrix. Hs can

be re-formulated by substitution into the form

Hs = −
[
JTC−1J + JT

v C−1
v (Jxv + h−1Jv)

]
material stiffness

+
∂JT

∂q
: λ+

(
∂JT

v
∂q

+ h−1∂JT
v

∂q̇

)
: λv

geometric stiffness
(9.15)

where the notation “:” denotes the tensor product in the dimension of the number

of constraints. The material stiffness terms represent the change of magnitude of

constraint forces, while the geometric stiffness terms encode the transverse variation

in force direction.

During each time step, we first compute Hs with (9.15) using λ and λv computed

from previous steps. We then solve (9.14). After q̇+ is obtained, we update the

Lagrange multipliers with (9.12) and (9.13).
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Remark: For the adhesive/repulsive force of (9.1), we divide its intensity by the

distance of the point-point pair to get the inverse compliance, where the material

stiffness is then computed as

JT
ijC−1

ij Jij = n̂ij

∥f s,ij(dij)∥
dij − ri − rj

n̂T
ij, (9.16)

and similarly for the geometric stiffness.

In (9.6), we partition the stiffness matrix into individual hairs and a cohesive

term. Since each Hs,i only a few degree of freedoms are involved, and these smaller

systems can be solved in parallel for all the hairs. Using the locally-solved velocity

as an initial guess, we begin the preconditioned conjugate gradient method (PCG),

using the local matrices Mi − h2Hs,i for preconditioning. Each local matrix is small,

banded, and remains fixed between PCG iterations; it can therefore be easily factored

at the beginning of the PCG loop, and solved in parallel with a fast banded solver

(see Pseudocode 1).

In the pseudocode, we have denoted the left hand side of (9.14) as A, the left

hand side of (9.14) considering only the constraints inside the i-th hair as A∗
i , the

right hand side of (9.14) as b, and the right hand side of (9.14) considering only the

constraints inside the i-th hair as b∗i . We use the notation [·] for the assembly of the

local vectors into a global vector. Finally, we have defined the updated generalized

velocities for a particular hair i via q̇+,i := Siq̇+.

We compare our PCG with other techniques (refer to §10 and Figure 10.6), namely,
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Algorithm 1 Locally-Preconditioned Solve
1: for all i do in parallel
2: Solve A∗

i q̇+,i = b∗i .
3: end for
4: r ← b−A[q̇+,i]
5: for all i do in parallel
6: Solve A∗

izi = Sir.
7: end for
8: z ← [zi]
9: p← z

10: while rTr > ϵ do
11: w ←Mq̇+ − h2(

∑N
i Hs,iSiq̇+ + Hs,Gq̇+)

12: γ ← rTz
13: α← rT z

pTw

14: q̇+ ← q̇+ + αp
15: r ← r − αw
16: for all i do in parallel
17: Solve A∗

izi = Sir.
18: end for
19: z ← [zi]

20: β ← zT r
γ

21: p← z + βp
22: end while

a conjugate gradient solver preconditioned with the inversed diagonal terms of matrix

K and initialized with the locally-solved velocity (denoted as Initialized DPCG), a

regular conjugate gradient solver with the last velocity as an initial guess (denoted

as CG), and the sparse LDLT solver in the Eigen library [94] (denoted as LDLT ).

We show that our method is more efficient than the others in terms of both iteration

counts and timing.

9.2 Surface Liquid Simulation on Strands

We compute the flow of liquid clinging to the hair surface using the surface liquid

model developed in §8.2. By assuming that the thin liquid is always rotationally-
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symmetric about the hair centerline, the state is captured by two scalar fields, liquid

depth hτ (x) and velocity uτ (x), as a function of hair centerline arclength parameter

x.

Since the hair centerline accelerates over time, these local surface liquid coordi-

nates live on a non-inertial reference frame, giving rise to inertial forces acting on the

surface liquid system.

The inertial force at a position x of the hair appears as an additional acceleration,

−tT (x)a(x), on the right hand side of (8.15). The force opposes the acceleration of

the hair a(x) as projected onto the centerline unit tangent t(x).

Figure 9.3: Discretized surface
flow along hair.

Discretization. Consider a single hair represented by M vertices. Adopting the no-

tation of Bergou et al. [26], we distinguish between primal quantities, associated with

vertices and decorated with lower indices, from dual quantities, associated with edges

and decorated with upper indices. We discretize uτ (x) using a piecewise constant

approximation over the centerline edges 1, . . . ,M − 1 with edge-based coefficients

{u1
τ , u

2
τ , . . . , u

M−1
τ }. We discretize hτ (x) via a piecewise linear approximation over

the centerline edges with vertex-based coefficients {hτ,1, hτ,2, . . . , hτ,M} (see Fig. 9.3).

The vertex-based length lτ,i for hair vertex i is computed as the averaged edge length
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of its neighbor edges (a.k.a. lτ,i = (li−1
τ + liτ )/2, where liτ is the length of edge i).

Velocity Update. Denoting the time step by a superscript (k), we solve the mo-

mentum equation of (8.15) with a semi-Lagrangian technique [224]. We backtrace

the velocity along the centerline, sampling the velocity upstream

ũτ,j,(k) = uτ (x
j
τ − uj,(k)

τ h), (9.17)

where xj
τ is the arclength parameter for the midpoint of edge j, and h is the time

step.

We evaluate a surface-tension induced vertex-based pressure pi = σ(Lh)i, where L

is the univariate second finite difference operator and σ(Lh)i accounts for the surface

tension energetic preference for linearly varying height fields [239].

The gravitational acceleration per edge along the tangential direction of edge i is

denoted as g · ti. The velocity is then explicitly updated as

uj,(k+1)
τ = ũj,(k)

τ − h

ρf
(grad p)j,(k) + h(g · t) (9.18)

where grad is the staggered grid gradient operator from vertex- to edge-based quan-

tities.

Evolving Liquid Depth. Next, we solve the conservation law of mass (8.16). First,

we compute the cross sectional area Aτ,j = π((hτ,j + rj)
2 − r2j ) on each hair vertex j,
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where rj is the constant hair radius at the vertex j. Then, (8.16) is discretized into

A
(k+1)
τ,j − A

(k)
τ,j

h
+ ⟨graduτ ⟩k+1

j Ak+1
τ,j + ⟨ui,(k+1)

τ (gradAτ )
i,(k+1)⟩ij = 0, (9.19)

where (graduτ )j is the staggered grid gradient of the edge-based quantity uτ , produc-

ing vertex-based gradient value. (gradAτ )
i is the staggered grid gradient of vertex-

based quantity A, producing edge-based gradient value. The operator ⟨·⟩ij converts

edge-based quantities into vertex-based quantities. In particular, if the edge i and

i + 1 shares the vertex j, then an arbitrary edge-based quantity vi is converted into

a vertex-based quantity defined at the vertex j, using a weighted average with the

edge lengths liτ and li+1
τ ,

⟨v⟩ij =
1

lτ,i + lτ,i+1

(viliτ + vi+1li+1
τ ).

We apply absorbing boundary conditions for free hair tips so that liquid flows

freely ”off” (i.e., to be converted to dripping particles). For hair that stems from a

solid object, we apply reflecting boundary conditions at the solid.

9.3 Bulk Fluid Simulation

To simulate bulk volumes of liquid not attached to the hair itself, we adopt the affine

particle-in-cell (APIC) method [122], which offers reduced velocity dissipation and

good preservation of linear and angular momentum.
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reduced-water
along hair

APIC
particles

At each step the fluid mass and momentum are trans-

ferred back and forth between a background grid and a set

of fluid particles, allowing forces to be computed on the

Eulerian grid and advection to be done in a Lagrangian

fashion. This facilitates coupling between our system’s

components (recall Fig. 9.1) for both drag and pressure.

APIC’s pervasive use of fluid particles also conveniently

enables us to treat the volume of hair surface liquid as a secondary continuous set of

particles that likewise exchange mass and momentum with the grid, when determining

the influence of pressure.

Transfer: Particles to Grid. Following the APIC scheme, we first compute mass

and momentum on grid faces in the x, y, and z directions; these quantities must be

transferred from the nearby Lagrangian representations at each step. Following the

standard APIC notation, we have

mn
g,i =

∑
j

mp,jw
n
i,j and

mn
g,iu

n
f,g,i =

∑
j

mp,jw
n
i,j

[
eT
i u

n
f,p,j + (cnp,j,i)

T (xg,i − xn
p,j)
]
,

(9.20)

where the first equation accumulates mass, and the second accumulates momentum.

The superscript n is the index of the time step, p indicates a particle-based variable,

g indicates a grid-face-based variable, un
f,p,j is the j-th liquid particle velocity, xg,i is

the position of i-th grid face center or particle depending on the subscript, and ei is
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(a unit vector) of the direction of the grid face. We use wn
i,j to denote the trilinear

interpolation weight that transfers the information on particle j to grid face i (or vice

versa), and cnp,j,i is the affine strain rate of j-th particle in the direction of i-th grid

face. These equations precisely follow Jiang et al. [122].

Drag Force. The motion of underwater hair is affected by fluid drag forces, and

applied numerically during time integration of the hair §9.1, in which we define the

effective mass of hair underwater as the actual mass of hair so that the drag force acts

on the correct amount of mass. Otherwise, if the surface liquid mass is also counted

underwater during integration, the drag force will be decreased. Besides, since the

bulk liquid velocity has been extrapolated for several layers into the air, we modulate

the drag force applied with 1 − wFF to prevent the hairs from being dragged by the

air.

Naturally, Newton’s third law dictates that an opposing force must be applied

to the liquid, whose momentum is now stored in the grid. Our approach will be

to rasterize the force that the hair exchanges with the fluid due to drag. We start

with determining the surface liquid force per grid face. Viewing the hair strands

as continuous particle sets, we compute the relevant force by integrating along the

portion of each hair strand within the given cell. We index hair segments with t,

the averaged drag force on a particular fluid grid face is found by summing over all

119



segments t using

fn
d,g,i =

[∑
j

∫
lj

wn
i,j(s)ds

]−1∑
j

[
eT
i

∫
lj

wn
i,j(s)f

n
d,e,j(s)ds

]
,

where lj indicates the integration path along the hair segment j inside the cell, and

wn
i,j(s) is the interpolation weight from a point s on the j-th hair segment to the

grid face i, and fn
d,e,j(s) is the drag force evaluated for a point s on the j-th hair

segment. Each hair segment is first clipped against the relevant (staggered) cell, and

the integration is approximated with two-point Gauss quadrature on each remaining

segment or portion thereof.

The accumulated force is applied onto the velocity of the grid face as

un+1
f,g,i = un

f,g,i + hρ−1
f (∆x)−3fn

d,g,i.

where h is the time step.

Remark. The drag force presented in this section is simple, and is similar to the

drag force used in CFD-DEM method [264], where both their and our drag force first

homogenize the drag computed from discrete elements and then is applied to the

continuum phase. However, the drag force presented above still lacks of a principled

justification, as well as a detailed form to compute fn
d,e,j. In §13.5 of Part III, we

will deliver a more principled form of the drag force applied to liquid, accompanied

with the detailed form of the drag applied on a single strand element, i.e., fn
d,e,j.
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Figure 9.4: A hair suspended by its tip moving
left to right through liquid. The drag force is
disabled (left) or enabled (right).

Transfer: Reduced Liquid to Grid. Having applied the drag force to the bulk

fluid, we now transfer the surface liquid mass and momentum onto the grid as well,

before proceeding to make the full fluid volume divergence-free. We compute the

necessary surface liquid masses per face,

mn
g,i =

∑
j

mτ,j

∫
lj

wn
i,j(s)ds.

where mτ,j is the liquid mass on hair segment j, and then we simply add them to the

appropriate per-face masses accumulated in (9.20).

With the same notation and approach, the momentum contributions from the

surface liquid are

T n
g,i =

∑
j

mτ,j

[
eT
i

∫
lj

wn
i,j(s)u

n
j (s)ds+

∫
lj

(
cnv,j,i(s)

)T (
xg,i − xn

v,j(s)
)

ds

]
, (9.21)

where cnv,j,i(s) is a vector analogous to cnp,j,i in (9.20) for preserving the affine velocity

field. The position and velocity of a point on the segment j parameterized by s are

denoted by xn
j (s) and un

j (s), respectively. To find xn
j (s) and un

j (s) at arbitrary points

along the segment we linearly interpolate from the segment’s endpoints. Note that
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un
j (s) should be understood to be as the sum of the extrinsic (hair velocity un

s,j) and

intrinsic (un
τ,j) components of the surface liquid velocity, computed as un

s,j + un
τ,jtj.

We add these surface liquid momentum contributions to the corresponding grid face

momenta accumulated in (9.20).

Pressure Projection. Given the grid velocities un+1
f,i after applying drag, we per-

form the pressure projection step of the fluid simulation which yields the divergence-

free velocity field ũn+1
f,i .

Transfer: Grid to Particles. Next, we transfer velocities from grid faces back to

particles using the standard APIC rule

un+1
p,j =

∑
i

wn
i,jũ

n+1
f,i ei.

Transfer: Grid to Intrinsic Surface Liquid Velocity on Hairs. The pressure

gradient from the grid should also be applied to the surface liquid on hairs as an

impulse. We first sample the interpolated pressure gradient ∇p from the grid at the

center of mass of the hair segment. We then use it to update the velocity of the

surface liquid, considering only the component along the direction of hair segment i,

using the simple update rule

u′
τ = uτ − hρft

T
i ∇p.
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Figure 9.5: Capture of liq-
uid (highlighted by dashed
lines) from a flowing stream.
Left: Water pours over a single
curly hair. Right: A hair with
capture turned off (above) and
on (below).

Transfer: Grid to Hair Vertices. Lastly, the pressure force should be applied to

the hair itself. We apply it on the next time integration step of the hair, so we retain

the pressure field for that purpose. While this implies a weak/staggered coupling,

the time integration of this force is nevertheless applied implicitly in the sense that

the pressure gradient in the normal direction is sampled at the unknown predicted

position of hair vertices. This is done using

fn
∇p =

ms

ρs
∇p.

where ms is the mass of a hair vertex including its surface liquid, and ρs is the hair

mass density.

9.4 Surface Liquid Capture and Dripping

Another critical element of our model is the conservative exchange of the volume and

associated momentum of liquid between the reduced and bulk fluid representations.

We carry this out using new mechanisms for capture and dripping, described below.

Our approach yields particles of varying sizes, since the amount of liquid entering and

leaving a hair strand can be quite small; we use a particle-merging scheme similar to
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Ando et al. [10] to allow such particles to coalesce into larger ones. If Np is the target

average particle number per cell, we use a default particle radius of
√
2∆x/Np, and

we delete any particles that fall below a radius of 1× 10−7cm in our implementation.

In each time step we first capture liquid from nearby particles and transform it

into appropriate surface liquid height fields on hair segments. We implement this in

the following readily parallelizable fashion:

1. For each hair segment we find its neighboring particles within the maximal

radius of attachable liquid droplets, rmax (see (8.25)), and pair the segment

with each such particle. With each pair i we store the arclength coordinate of

the point xc,i on the segment which is closest to the particle.

2. For each hair vertex we gather the liquid volume and momentum from the

particle-segment pairs associated with its two incident hair segments. The new

volume of liquid V n+1
τ,v,j on vertex j and the net fluid velocity un+1

v,j are computed

as

V n+1
τ,v,j =min

(
Vτ,max, V

n
τ,v,j +

∑
i∈pairs

V n+1
f,p,i w(∥xc,i − xj∥)

)
,

(ρfV
n+1
τ,v,j + ρsVs,v,j)u

n+1
v,j =ρsVs,v,ju

n
s,v,j + ρfV

n
τ,v,j(u

n
s,v,j + un

τ,v,jtv,j)

+ρf
∑

i∈pairs

V n+1
p,i un+1

f,p,i (9.22)

where w(∥xc,i−xj∥) is the linear interpolation kernel based on distance between

the point xc,i and the vertex xj, ρs is the density of hair, ρf is the density of
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liquid, Vs,v,j is the volume occupied by the j-th hair vertex computed from

its radius and Voronoi length, un
s,v,j is the velocity of hair vertex j (and by

association the extrinsic surface liquid velocity), un
τ,v,j is the intrinsic surface

liquid velocity of liquid on the hair, and tv,j is the average tangent vector at

hair vertex j. The corresponding amount of liquid volume transferred to the

hair is deducted from the particles in the relevant particle-segment pairs.

3. After gathering, we project the net fluid velocity un+1
v,j onto the tangent tv,j and

use it to replace the intrinsic surface liquid velocity; we also update the hair’s

total mass and the normal velocity of the hair:

mn+1
v,j = mn

v,j + ρfV
n+1
τ,v,j ,

mn+1
v,j un+1

s,v,j = mn
v,ju

n
s,v,j + ρfV

n+1
τ,v,j (I3 − tv,jt

T
v,j)u

n+1
v,j .

(9.23)

After the capture process, we allow liquid to leave the hair by carrying out a

complementary dripping process as follows:

1. For each cell of the grid we gather the hair vertices inside it, and sum up their

volume of liquid. If the hair vertex is on a hair tip, we gather the amount of

liquid flowing out of the hair.

2. We determine if the total volume is larger than the specified threshold (§8.2)

dictated by rmax.

3. We convert the volume difference between the total volume and the threshold

into liquid particles of 1/4 the default particle size, and release them into the

grid. We assign them (total) velocity of the liquid on the hair. Their position
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on the hair is chosen uniformly at random from within the (one-dimensional)

Voronoi region of the associated vertex.

4. We calculate the ratio of the new volume of liquid on the hair to its past

volume; for each hair vertex in the cell we rescale the height of the liquid and

the corresponding mass accordingly.

With this approach, the hair easily and conservatively exchanges its associated liquid

mass and momentum with the surrounding bulk flow, as seen in Figure 9.5.
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Chapter 10

Simulated Results of Wet Hairs

Our results can be roughly divided into two categories: first, a set of didactic examples

intended to validate individual components of our system in relative isolation, and

second, a set of several more general examples of water-hair interaction demonstrating

the synthesis of the complete system.

10.1 Validation Examples

Surface Water Flow. We demonstrate our hair surface liquid model by assigning

an even distribution of water to a length of curly hair in Figure 8.10, left. Upon

releasing the hair, the water flows toward the lowest point and collects, causing it to

sag more than the corresponding hair without flow.

Dripping. Taking the scenario above and enabling dripping causes the collected

liquid to pour off as APIC droplets in Figure 8.10, right. This reduces the hair

effective mass so that its internal forces more easily overcome gravity and pull the

hair upwards again. Performing a similar test on a vertically suspended straight

hair shows that water can also pour smoothly (and conservatively) off the hair tips

(Figure 8.7).
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Inertial Forces. The role of inertial forces cannot be ignored if we wish to have

plausible flows along hair. Figure 8.6 presents a straight hair swung in a circle at a

sufficient rate to cause the liquid to flow towards the tip; with inertial forces disabled

the reduced-water remains stationary despite its changing reference frame.

Momentum Transport. In Figure 8.8 we use a slanted “hair pendulum” to com-

pare the effects of rescaling momentum vs. proper momentum transport for updating

the momentum of the hair to reflect the movement of reduced-water sliding along

it. Only our approach captures the expected smooth oscillation behavior without

artifacts.

Liquid Capture. Figure 9.5 shows a stream of APIC liquid falling past and around

a hair; as it does so, water particles are captured and transformed into a thin layer

of reduced-water on the hair surface.

Cohesion and Coalescence. Our cohesion model is demonstrated in Figure 8.4,

in which two wet hairs are placed in close proximity and pulled apart from the top.

Without cohesion the hairs separate instantly; with cohesion, they remain connected

until gravity and the increasing separation distance eventually breaks the connection.

In Figure 7.1 we show this same cohesion effect in a more general scenario with many

hairs in a row pulled out of water. The structure of coalescence in the clumping hairs

provides a good qualitative match with a comparable laboratory experiment [33].

Since the cohesion force is stiff, it can be difficult to solve with a regular integrator.

In Figure 10.6 left, we compare the convergence behavior of different iterative solvers
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on the linear system. We show that even for two hairs, our preconditioner (yellow

curve) has a convergence rate that is several orders of magnitude faster than the other

schemes we tried, namely the locally-presolved diagonally-preconditioned CG (blue

curve) or the regular CG solver (green curve, mostly hidden by the blue curve).

Drag Force. Pulling a single hair through a pool of water illustrates the influence

of our drag force: the fluid bends the hair in opposition to its movement (Figure 9.4).

Without drag, the hair hangs vertically, oblivious to the presence of the liquid pool.

10.2 Large-Scale Examples

Wringing Out Hair. We can demonstrate several features of our method in action

by pouring water onto a collection of horizontally suspended hairs to wet them, and

then twisting them to effectively wring the water out (Figure 10.1). When the hairs

are twisted, they become more closely packed. The attendant reduction in carrying

capacity (8.25) leads to the release of bulk liquid from the hairs.

Hair Whipping. Figure 10.2 demonstrates cohesion between hairs and solid ob-

jects with different surface curvatures, for example, a straight wall and a ball. After

the wet hair strands are pulled away from the vertical wall, some of the strands

slide on the surface due to cohesion forces between the hair strands and the surface.

Similarly, many strands of hair adhere to the ball throughout their relative motion.

129



Figure 10.1: Wringing out water from drenched hair.

Figure 10.2: Wet hairs are whipped onto a wall and then pulled off. Cohesion
results between hairs and objects in the scene.
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Figure 10.3: Volume conservation is demonstrated by plotting the deviation of
fluid volume in particles (green), reduced-water (blue), and their total (yellow). Left:
Hair flip example. Right: Car wash example.

Shaking “Dog”. As many pet owners can attest, dogs and other mammals often

shake themselves in an alternating rotational motion to rapidly remove excess water

from their bodies (and occasionally splash their owners). We simulate this process

with a shaggy-haired cylindrical dog, which we pour water over and rotate rapidly

side to side (Figure 10.7). The initial pouring causes the hair to become heavier and

matted at the points of contact. Subsequent shaking helps to eject liquid off of the

cylinder. Despite significant acceleration provided by our preconditioning strategy,

time integration of the hair dynamics was consistently the most costly component,

due to the large number of hairs and the complexity of their interactions.

Wet Hair Flip. Another familiar wet hair effect occurs when a head of long hair

is pulled out of water and rapidly whipped forward (Figure 10.7-top).

In Figure 10.6 right, we compare among different solvers for different sizes of the

scene. We show that even as the number of hairs becomes larger, our PCG solves the

linear equations several orders of magnitude more efficiently than other schemes. For
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Age (secs.) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 ≥1.2

Figure 10.4: Color-coded visualization of the age of fluid particles as they
transition from reduced liquid flow to APIC particles.

example, when there are 8K hairs, our method (yellow bars) is two orders faster than

the locally-presolved diagonally-preconditioned CG (blue bars), three orders faster

than a regular CG solver (green bars), and four orders faster than Eigen’s sparse

LDLT solver (red bars). We only record comparisons up to 0.8 simulated seconds

since performing one linear solve with LDLT in the 8K example can exceed half a

day.

We also measure the total volume of reduced-hair liquid and bulk liquid over the

course of the simulation. The volume of the bulk liquid is calculated as the sum of

the spherical volumes of liquid associated with each APIC particle, according to each

particle’s radius. The volume of the hair-surface flow is calculated as the sum of the

volume of the annular cylinders of liquid around the hair segments. Figure 10.3, left,

shows that the net increase in hair-reduced water (blue curve) was offset by the net

132



Figure 10.5: Water is poured over four fur mats of the same hair density
but of differing hair lengths, revealing increased clumping effects. From left
to right: 2cm, 3cm, 4cm, and 5cm.

decrease in bulk liquid (green curve), yielding remarkable conservation of total liquid

volume (yellow curve).

In Figure 10.4 we visualize the age of particles for the frame in Figure 10.7-top to

give a clearer view of how fluids drip from the hairs and change their discretization

from reduced flow to particles. For a clearer view of the particles we render them

with 0.7× of their actual radius. The reduced flow on each hair segment is rendered

as a red cylinder with the actual radius.

Car Wash Roller. As a particularly grueling test of our method with regards to

capture and release of fluid by strands, we dunk a car wash-style roller brush into a

large volume of fluid and begin spinning it at a progressively faster rate. The resulting

centrifugal forces whip water out of the tips at high speed, while the spinning bristles

slap back into the bulk volume and collect yet more fluid. Nonetheless, we again

observe (Figure 10.3, right) that the net increase in reduced-water over time (blue

curve) was closely offset by the net decrease in bulk liquid (green curve).
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Figure 10.6: Comparison between different solvers for the hair dynamics.
Left: Convergence rate at 0.25 simulated seconds in Cohesion and coalescence (Fig-
ure 8.4). Right: Timing for performing one linear solve, averaged from the beginning
to 0.8 simulated seconds in Wet hair flip (Figure 10.7-top) .

Water on Mat of Fur. In the Figure 8.1 example we pour water onto and over a

sloped stationary mat of fur. The initially raised dry hair is quickly weighed down

and flattened by both the flowing and captured water, clumping effects form, and

reduced-water drips off the hair tips. Figure 10.5 demonstrates the changing clumping

behavior as we increase the hair length of the simulated fur.

10.3 Performance Numbers

We collected extensive timing data to evaluate the computational cost of our method

and its various components on our large-scale examples, for which a detailed break-

down is included in Table 11.1. For the Car Wash Roller, its statistics are collected

on a workstation with two sockets of Xeon E5-2620 v3 CPUs running at 2.4GHz each

of which has six cores and twelve threads. For the other examples, their statistics

are collected on a workstation with two sockets of Xeon E5-2687W CPUs running at

3.1GHz each of which has eight cores and sixteen threads. These examples employed

fluid grid resolutions ranging from 643 to 1283, and hair counts ranging from 4K,
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Figure 10.7: Large examples of wet hair simulation. Top: A ball is flipping
its hairs, where a substantial volume of water is carried out along with the hair and
is splashed into the air. Middle: A cylindrical pseudo-dog has water poured on its
back; it shakes rapidly side-to-side to remove the excess water at high speed. Bottom:
A car wash roller brush spins at increasing speeds through a pool, capturing water,
splashing sheets into the air, and causing the bulk volume to swirl as well.

for the wringing and fur examples, to 32K for the dog, and car wash scenarios. The

average cost per individual time step varied between 3 and 57 seconds, while the total

simulation time varied between 3.5 and 57.8 hours. The simulated time span of the

examples varied between 4 seconds for the water on mat of fur and 30 seconds for

the car wash roller.
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Chapter 11

Future Works on Wet Hairs

We have adopted or adapted a variety of physical models from prior work which are

generally well-supported by experimental or analytical evidence. However, they are

typically based on situations where competing factors have been isolated to focus on a

single effect. In our pursuit of a very general model for animation it is possible or even

likely that we have pushed these models far beyond their range of strict applicability

(e.g. from single hairs to ten of thousands, or vice versa). Our calibration of the

models in the full system has also been largely based on visual interpretation of

the observed results, rather than carefully controlled experiments. Nevertheless, we

believe our results achieve a high degree of realism.

Our capillary flow model for liquid transport between hairs is fairly ná’ive, since

we consider only the graph structure and distance between hairs, and not an accu-

rate structure/volume of channels between them. We found that it was much less

effective when adjacent hairs are discretized in a highly non-uniform fashion. While

such scenarios tend to be less common, this suggests there is room for improvement.

Moreover, this effect typically occurs over longer time scales, so it may be entirely

unimportant for many scenarios, including the large-scale ones we considered.
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We found that the capture and dripping mechanisms can lead to a dramatic range

of particles sizes spanning a few orders of magnitude, which presents a severe challenge

to the reconstruction of a smooth and temporally coherent surface. This suggests two

avenues. First, one could pursue improved surface reconstruction methods under such

conditions, which we view as beyond the scope of the current work. Secondly, it could

also be helpful to explore the development of strategies to enforce a narrower variation

in particle size. The main source of arbitrary particle sizes is our capture mechanism;

while precisely conservative in terms of the water volume the hair extracts from a

particle, no quantization is guaranteed on the potentially quite small particle volume

left behind.

While we have sought to preserve volume throughout, our (discretized) surface

liquid model is not strictly conservative and leads to a small accumulating volume

loss over time, particularly in the presence of large thickness gradients. Challenges of

this nature remain open in computational physics as well [36], where the transport

equation may have negative solutions, and direct clamping to tends to break the

divergence-free condition. Alternative options are to smooth large variations with an

artificial viscosity, or to solve a least squares system for transport under a positivity

constraint. In preliminary experiments in this direction, the former was only partially

effective while the latter struggled to converge.

Inter-hair forces dominate runtime costs, echoing the typical bottleneck in han-

dling dry inter-hair contacts. Compared with the same elastic rod model by Kaufman

et al. [129], our simple linearized solver suffers less cost per time step, although it also
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Examples s/step (avg.) # vertices grid size
hair liquid of strands dimensions ∆x (cm)

Shaking “Dog” 29.95 11.83 524.2K 128× 128× 256 1.0
Wet Hair Flip 49.65 6.91 335.8K 128× 128× 128 0.673

Car Wash Roller 4.60 23.14 462.8K 96× 144× 96 1.333
Wringing Out Hair 2.26 14.42 167.9K 192× 192× 64 0.052

Fur Mat (5cm) 2.32 1.18 65.5K 64× 64× 64 0.25

Table 11.1: Timings and storage statistics.

requires smaller time steps for the stiff repulsive/cohesive constraints between hairs.

Overall the cost of our hair dynamics are comparable with the dry contact timings

reported in prior works that handles per-strand collisions. With a larger drag force,

however, our linearized solver needs very small time step for maintaining stability.

In Part III, we would replace the strand solver with a nonlinear one, similar to the

work by Kaufman et al. [129], and demonstrate a new pipeline to couple nonlinear

hair strands with liquid with much larger drag force.

Our current model solves degrees of freedom for all hair strands, which is slow

and memory-intensive for massive numbers of hairs: for example, human heads on

average have 100k hairs at the scalp, which is three times larger than the largest ex-

ample presented in this part. This approach differs from another family of methods

for hair dynamics that use hierarchical structures, such as hair clusters and strips [50,

51, 245, 246, 248], and can achieve interactive or even real-time performance with

sophisticated collision handling. While our method focuses on the multi-scale physics

of liquid-hair coupling, these prior works are targeted at level-of-detail effects for

hair simulation. Combining multi-scale physics interactions for wet hairs with such

reduced models for high computational performance is a potentially promising direc-
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tion for future research, and we hope that our work spurs extensions to such reduced

or guide-hair settings.

Our simple, yet explicit coupling strategy between the liquid and the submerged

hairs, presented in this part, cannot correctly simulate the buoyancy effect. In Part

III, we will derive a new framework from the first principle for the coupling between

the liquid and hairs, where the liquid pressure would be more accurate, and the

buoyancy of strands can be correctly handled. Also, we will formally introduce the

source of momentum transport along the hair, and show that the transport can

be implicitly integrated by adding impulse to the strands, which provides stable

simulation. Additionally, we have not revealed the specific formula of the drag force

for the discrete elastic rods submerged in a liquid, which would be introduced in Part

III.

Finally, we have only considered non-viscous, Newtonian liquid in this part. In

Part III, however, we will generalize the methods introduced in this part for shear-

dependent liquid, where we will couple strands with oil paint, mud, hot chocolate,

and pasta sauce.
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Part III

Multi-Scale Model for Coupling

Strands with Shear-Dependent

Liquid
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Chapter 12

From a Newtonian Liquid to a Shear-Dependent Liquid

In Parts I and II, we have developed models for the cohesion between strands, the

surface liquid along a fiber or a strand, and a simple two-way coupling scheme between

the liquid and the submerged fabrics or hairs.

These models, however, only account for Newtonian and incompressible liquids.

Proper treatment of interactions with non-Newtonian and compressible liquids re-

quires a fundamental reconsideration of the underlying model components and their

interactions.

For instance, a shear-dependent liquid can deform elastically or plastically. Such

deformation is not captured by the prior surface liquid model, presented in Part

II. Therefore, a new method is necessary if we are to simulate these detailed shear-

dependent flows economically.

Another influential effect is the friction between wet strands, which is often a

more significant factor in the context of shear-dependent liquid due to the influence

of larger viscous and/or elastic forces. This fact suggests the need for an accurate,

combined cohesive-frictional contact model to achieve a realistic behavior.
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Finally, the models used for the strands, the

bulk liquid, and the reduced surface flow must

be coupled together in a principled framework so

that we can stably, and plausibly simulate the

drag and buoyancy behavior of the strands sub-

merged. We identify the following requirements

for successful coupling: 1) Since the strands act as the base geometry of the surface

flow, the surface flow should contribute extra mass and inertia to the strands. 2)

The bulk liquid should exchange momentum with the submerged strands through

drag forces and pressure gradients (buoyancy), which depend on the volume fraction

of the submerged strands. 3) The surface flow and the bulk liquid should maintain

consistent velocities and pressures where they meet, through appropriate boundary

conditions. These requirements apply to both Newtonian and non-Newtonian fluids.

However, some non-Newtonian fluids (e.g., shaving cream or pasta sauce) are com-

pressible and can, therefore, change their volume during deformation, which leads to

a more complicated calculation for pressure.

Our contribution in this part is the development of a multi-scale framework captur-

ing the interactions between strands and compressible shear-dependent fluid (where

the incompressible or Newtonian fluid serves as a special case), which includes:

• a reduced model for shear-dependent liquids flowing on the strands that ac-

counts for elastic and plastic deformation;
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• three-way coupling between discrete elastic rods, continuum bulk liquid, and

reduced surface flow in a principled framework, which accounts for a wide range

of rheologies and degrees of compressibility;

• an extension to the existing shifted second-order Coulomb cone model [2, 65,

66, 87, 119, 125, 130, 195, 230] for stable cohesive and frictional effects when

strands collide, by introducing contact hysteresis on both distance and rela-

tive velocity (extending the contact hysteresis where the cone is only shifted

when two colliders are separating for the first time [119]), and a cohesive force

designed for viscoplastic materials; and

• a stable semi-implicit solver for shear-dependent fluid, with a more efficient

semi-analytical formulation of plastic flow.
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Chapter 13

Physical Models for Coupling Strands with a

Shear-Dependent Liquid

We begin by firstly introduce the background knowledge on shear-dependent liquid,

which forms the basis of the simulation of the bulk liquid, the surface flow, their

coupling, and the cohesion between strands. Following this introduction, we present

three primary physical models to support simulating strands interacting with non-

Newtonian liquids: i) a reduced non-Newtonian surface flow model, ii) a discrete

strand model driven by strand-liquid interaction, and iii) a model for bulk liquid

mixed with submerged strands. Similar to prior chapters, in describing the three

physical models, our notation will be to use a subscript τ to indicate a quantity

related to the surface flow (e.g., uτ for surface flow velocity), a subscript s for the

strand’s quantities, and a subscript f for the bulk liquid’s quantities.

13.1 Shear-Dependent Liquid

Below we summarize the theory behind the shear-dependent liquid, namely, the J2

liquid theory developed by Simo et al. [215]. Due to its simplicity and accuracy, this

model is extensively used in prior works on simulating foams [261] or grains [262],
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and is employed here as the constitutive model.

The deformation gradient of a shear-dependent liquid is a second-order tensor

defined over the liquid domain Ω, denoted as F = ∂Ψ
∂x

: Ω → Rd×d, where Ψ is the

deformation and d is the number of dimensions, i.e., d = 2 for 2D and d = 3 for 3D.

Some shear-dependent liquids are compressible, and thus we need to consider their

volume change, denoted as J ≡ detF, and we have [38]

ρf = J−1ρf,0 (13.1)

where ρf is the liquid’s (dynamic) mass density and ρf,0 is the mass density at rest.

It is convenient to decompose the deformation gradient F into parts associated to

the elastic FE and plastic FP deformation via the decomposition [21, 116, 124, 217,

251]

F = FEFP . (13.2)

According to the experimental observations [41, 42], the volume change is often

reversible even the liquid is under a pressure up to 3× 1010dyne/cm2. In other

words, the plastic deformation is usually volume preserving (or isochoric), i.e.,

JP = detFP = 1 and JE = detFE = J . Below we ignore the difference between

J and JE, and only deal with the volume change due to elastic deformation.

The elastic energy depends on the rotation-free left Cauchy-Green tensor b ≡ FFT

and, especially, its elastic part bE ≡ FEFET . The total energy density is then
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decomposed into

W = Wv(J) +Ws(bE) (13.3)

where Wv is the energy density resisting any volumetric change, and Ws is the shear-

dependent energy density. Similar to prior work [261], we adopt a modified neo-

Hookean model [215] and Rivlin’s shear-dependent energy density [199] for Wv and

Ws, respectively. We have the following constitutive formulas

Wv(J) =
1

2
κ

(
1

2
(J2 − 1)− lnJ

)
, (13.4)

and

Ws(bE) =
1

2
µ
(
JE− 2

d trbE − d
)
. (13.5)

where κ and µ are the bulk modulus and the shear modulus.

The Kirchhoff Stress. After the energy densities are defined, the Kirchhoff stress

tensor τ ∈ Rd×d can be derived, as following

τ ≡ ∂W

∂FE
FET

=
κ

2
(J2 − 1)Id + µJE− 2

d dev[bE]. (13.6)

where Id ∈ Rd×d is the d-dimension identity matrix, dev[x] ≡ x − tr[x]
d

Id is the

deviatoric operator. In (13.6), the first part is known as the dilational Kirchhoff

stress, while the second part is the shear Kirchhoff stress. The Cauchy stress tensor

is then computed with σ ≡ τ/J .
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Pressure. We first compute the dilational Cauchy stress (which equals to the dila-

tional Kirchhoff stress divided by J), as following [38]

σv ≡
1

J

∂Wv

∂FE
FET

=
1

J

∂Wv

∂JE

∂JE

∂FE
FET

=
1

J

∂Wv

∂JE
JEFE−TFET

=
1

J

∂Wv

∂JE
JEId

=
∂Wv

∂JE
Id

(13.7)

The negative value of this scalar applied on the d-dimensional identity matrix Id is

then defined as the pressure [226], i.e.,

p ≡ −∂Wv

∂JE
(13.8)

Shear Kirchhoff Stress. The shear Kirchhoff stress is defined as the deviatoric

part of τ . Since (13.6) only contains diagonal terms in its first part, the shear

Kirchhoff stress is equivalent to the second part of (13.6), where

s ≡ dev[τ ] = µJE−2/ddev[bE]. (13.9)

Its scalar magnitude is then given as

s = ∥s∥ (13.10)

where ∥ · ∥ is the Frobenius norm, and we have also used the normalized deviatoric

stress tensor defined as ŝ ≡ s/s.
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Plasticity. Once the shear stress is larger than some threshold, the liquid will yield

to the shear stress and its elastic deformation will irreversibly convert into plastic

deformation, i.e., there will be a plastic flow. We adopt the simple and efficient

von Mises yield condition [164] as the threshold for the onset of a plastic flow. This

condition is written in the terms of the material-dependent yield stress τY , as following

Φ(s) = s−
√

2

3
τY ≤ 0. (13.11)

For simplicity, we neglect any hardening or softening effects since they are not ob-

servable for the materials we considered [58, 250].

When the yield condition is violated, we compute the plastic flow according to

the yield excess Φ(s) to estimate the excessive elastic strain that becomes the plastic

strain. The temporal derivative of bE is given as [215, 216]

dbE

dt
= ∇ufbE + bE∇uT

f −
2

d
tr[bE]γ(s)ŝ (13.12)

where uf ∈ Rd×1 is liquid velocity. The first two terms capture the change due to the

flow field itself, while the last term captures the change due to plastic flow with flow

rate denoted as γ (with physical unit s−1).

We adopt the Herschel-Bulkley model [102] since it has been validated for a wide
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range of materials. The flow rate formula for γ is therefore

γ(s) = max
(
0,

Φ(s)

η

)1/n

, (13.13)

where η is the flow consistency index with physical unit Ba · sn (or Pa · sn in SI units),

and n is the unitless flow behavior index. The liquid is pseudoplastic (shear-thinning)

when n < 1, Newtonian when n = 1, and dilatant (shear-thickening) when n > 1.

The flow consistency index η indicates how slow the liquid would “forget” its

elastic deformation. Liquid with a smaller η would become free from the elastic

deformation more quickly. In the limit of η → 0, any elastic deformation would

immediately become plastic (Bingham plastics). If the yield stress is also zero, the

liquid then becomes inviscid.

Remark: Connection with a Newtonian Liquid. By definition, a Newtonian

liquid has a negligible elastic strain. We can then rewrite the elastic Cauchy-Green

strain as bE = Id + ϵdbE

dt where ϵ ≪ 1 is a tiny positive perturbation variable. We

also have τY = 0 and n = 1. (13.12) then becomes

ϵ
d2bE

dt2
= ∇uf

(
Id + ϵ

dbE

dt

)
+

(
Id + ϵ

dbE

dt

)
∇uT

f −2
(
1 +

ϵ

d
tr
[

dbE

dt

])
sη−1 (13.14)

After some algebraic manipulation, we have a shear stress s equivalent to the viscous

tensor for the Newtonian fluid, which proves that the flow consistency index plays
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Figure 13.1: Surface flows of various materials. Different material properties
yield drastically different behaviors. The beginning and ending frames are shown
overlaid, with the curved arrows indicating the motion of strands.

the same role as the viscosity coefficient in a Newtonian liquid

s =
η

2

(
∇uf +∇uT

f
)
+O(ϵ). (13.15)

13.2 Non-Newtonian Strand Surface Flow

After the background knowledge introduced, the first component to be developed is a

model for non-Newtonian liquid flowing on the surface of a strand. While potentially

imperceptible on a single thin strand, surface flow can significantly change the collec-

tive dynamics (and thus appearance) of many strands interacting and agglomerating

together (Figure 1.3). Unfortunately, capturing the shallow depth of such a surface

flow with a grid-based fluid solver would require an excessively refined background

grid, making them a poor choice in this case. Different than Part II where we di-

rectly introduced the surface liquid model for Newtonian liquid (§8), in the following

150



sections we first justify our assumptions, so that we would have a more principled

derivation of the surface liquid model for non-Newtonian liquid.

Kinematics of the Shear-Dependent Surface Liquid on a

Strand

To present our surface liquid model, we start with the surface flow kinematics de-

scribed using the cylindrical coordinate frames. These coordinate frames are aligned

along a strand’s centerline. In these frames, the surface liquid velocity is denoted as

uτ = (uτ , vτ , ωy)
T , where uτ and vτ are liquid velocities along the centerline’s tan-

gential and radial directions, respectively, and ω is the angular velocity around the

strand (see Figure 13.2 for an illustration of these notations). Our reduced surface

flow model is established with a few assumptions on the velocity field:

1. The flow thickness hτ and strand radius r are much smaller than the length L

of the strand. Thus, we only need to consider the average longitudinal velocity

uτ across its depth and orientation, and the average velocity uτ is invariant in

y− and θ− coordinates (i.e., ∂uτ/∂y = 0 and ∂uτ/∂θ = 0).

2. The bulk modulus of a non-Newtonian fluid is often several orders of magnitude

larger than its shear modulus1. Given the surface flow layer is also thin, conse-

quently, the volumetric change of the surface flow is negligible in comparison to

its translation and shear motion. In other words, assuming the surface flow to

1For example, shaving cream has a bulk modulus 1.09e6dyne/cm2 while its shear modulus is
2.9e3dyne/cm2. Similar materials (e.g., pasta sauce) or materials that have higher bulk but lower
shear modulus (e.g., paint and mud) are used in this part. See Table 15.2 for detailed parameters.
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Figure 13.2: Coordinate system defined along the strand centerline. At each
point of the strand’s centerline, the x-axis, i.e., longitudinal axis, of the frame is
along the centerline’s tangential direction; the y-axis, i.e., radial axis, is the strand’s
radial direction; and the θ-axis is the angular direction around the strand. The
local velocity field (in the cross-section at each point) of the non-Newtonian surface
fluid is uτ = (uτ , vτ , ωy)

T , where uτ and vτ are fluid velocities along the centerline’s
tangential and radial directions, respectively, and ω is the angular velocity around
the strand.

be isochoric (incompressible) will not affect its visual appearance: ∇ · uτ = 0

and det F = 1, where F is the deformation gradient.

3. Because the strand radius is small and the surface flow layer is thin, the fluid

has relatively strong surface tension — O((hτ + r)−1) according to the Young-

Laplace equation [260] — that keeps the fluid uniform around the strand cen-

terline. Therefore, we ignore the angular motion of the surface flow (i.e., we

assume ω = 0).

Assumptions (i) and (iii) ensure that the surface liquid has no strain in the angular

direction: its 3D strain tensor is reduced to a 2D strain tensor—a 2D symmetric

matrix having three independent elements. The two diagonal elements indicate the

normal strains separately in the longitudinal and radial directions, while the off-

diagonal element involves both directions.

The 2D strain tensor can be reduced further. Since the strand’s radius r is much
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smaller than its length L, the surface flow behavior in the strand cross-section differs

from that in the longitudinal direction by a scaling factor ϵ ≡ r/L where ϵ ≪ 1.

Through a multiscale asymptotic analysis with respect to ϵ (later we will present

a detailed derivation), we find that the off-diagonal element of the strain tensor has

only a second-order (i.e., ϵ2) contribution to the deviatoric part of the strain, which is

the strain component determining the shear stress and plastic flow. This observation

suggests that we can ignore the off-diagonal element.

Moreover, due to incompressibility (i.e., assumption (ii) above), the strains in the

longitudinal and radial directions are related: compression in one direction leads to

an expansion in the other. Based on this condition, we further reduce the 2D strain

to a single scalar, which we call the reduced Cauchy-Green strain,

cEτ ≡ bxx − byy, (13.16)

where bxx and byy are the principal strains in the longitudinal and radial directions

(i.e., the two diagonal elements).

Dynamics of the Shear-Dependent Surface Liquid on a

Strand

Momentum Equation. Incorporating this reduced strain leads to a modified form

of the momentum equation for non-Newtonian fluids. As derived in a later section,

153



drilling mud acrylic paint milk cream
0.000s
0.124s
0.248s
0.500s
1.000s
2.000s
centrifugal force

Figure 13.3: Surface flows under increasing centrifugal force. Three strands
with surface flows of different materials are rotated with increasing angular velocity
over time to apply increasing centrifugal force. The camera is aligned with the strands’
tangential direction for legibility. Compared with the mud, the paint and cream only
yield and start flowing under sufficiently high stress, where the cream has especially
large yield stress (1200dyne/cm2).

the standard 3D Navier-Stokes momentum equation becomes a simpler 1D equation,

Aτρf
Duτuτ

Dt
= Aτfext,x +

∂

∂x

(
µAτ c

E
τ

)
− C uτ , (13.17)

where µ is the fluid’s shear modulus, ρf is the liquid density, A = πhτ (hτ + 2r) is

the annular cross-sectional area of the flow with a thickness hτ , and fext,x indicates

external force density in the tangential direction. Similar to (8.15) in the last part,

the external forces include gravity, inertial force due to strand motion, as well as the

coupling forces among the surface flow, strands, and bulk fluid. The last term C uτ

in (13.17) is the friction force, which we will discuss shortly.

The reduced strain cEτ is not only used to model the shear force in (13.17), but is

also time-varying and obeys a flow rule. For non-Newtonian fluids, the strain rate is

determined by both elastic deformation and plastic flow. Their specific contributions,
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emerging from a multiscale asymptotic analysis of the deviatoric strain, are given by

Duτ c
E
τ

Dt
= 2

∂uτ

∂x

√
cEτ

2 + 4︸ ︷︷ ︸
elastic deformation

−
√
2γ(sτ )

(
cEτ +

√
cEτ

2 + 4

)
sgn(cEτ )︸ ︷︷ ︸

plastic flow

, (13.18)

where sτ ≡ 2−1/2µ|cEτ | is the magnitude of the shear stress, and γ(s) is the flow rate

function (13.13).

Derivation of the 1D Surface Flow

Before walking through the friction and mass conservation, we present a detailed, prin-

cipled derivation for the momentum equation (13.17) and the strain derivative (13.18)

introduced above. We take the plane-strain conditions, where we can safely ignore

the velocity in the angular direction around the strand. Thus we can derive a 1D

surface flow model from the 2D theory of shear-dependent liquid. For legibility, in

the following discussion, we use the label of the axis to represent the corresponding

row or column in the subscript of a strain or stress tensor, i.e., x for the first row or

column, y for the second row or column.

Parameter Scaling. We denote the height of flow as h, and we have the velocity

in the y-axis, i.e., radial axis, denoted as v = ∂h/∂y. The velocity of the 2D flow is

then denoted as uf ≡ (uτ , v). From our assumptions (see §13.2), the surface flow is

thin in height, where we can define a scaling parameter 0 < ϵ ≡ r/L ≪ 1, and we

define

h ≡ ϵH, y ≡ ϵY, v ≡ ϵV, bExy ≡ ϵBE
xy, (13.19)

155



Additionally, we have ∂/∂y = ϵ−1∂/∂Y as an deduction.

To expand a scalar to a matrix, we adopt these notations below

[∗]e ≡ [∗, 0; 0, 0] ∈ R2×2, [∗]s ≡ [0, ∗; ∗, 0] ∈ R2×2. (13.20)

Reduced Cauchy-Green Strain. The 2D left Cauchy-Green elastic strain tensor

bE can be then written as

bE = [cEτ ]e + bEyyI2 + ϵ[BE
xy]s (13.21)

where cEτ ≡ bExx − bEyy is called the reduced left Cauchy-Green strain. In the following

derivation, we will discover its temporal derivative, which is used to evolve the liq-

uid’s elastic and plastic deformation, and the momentum equation, which uses cτ to

compute shear stress.

By applying the deviatoric operator to both sides of (13.21), we have

dev[bE] = dev[[cEτ ]e] + ϵ[BE
xy]s (13.22)

The definition of shear stress and its norm have been introduced in (13.9) and (13.10).

We can rewrite (13.10) using the scaled variables, as following

s = µJE−1∥dev[bE]∥ = µJE−1

√
1

2
c2 + 2ϵ2BE

xy
2. (13.23)
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The derivative of cEτ is then computed as

ċEt = ḃExx − ḃEyy

= 2

∂uτ

∂x
−

√
2cEτ γ(s)√

cEτ
2 + 4ϵ2BE

xy
2

(cEτ + bEyy
)
+ 2

(
∂uτ

∂y
− ∂v

∂x

)
ϵBE

xy − 2
∂v

∂y
bEyy

(13.24)

We only consider the average longitudinal velocity uτ across its depth, i.e., ∂uτ/∂y = 0

(assumption (1)). With the scaling proposed in (13.19), we can approximate ċE by

neglecting the terms multiplied with ϵ2, as following:

ċEt = 2

(
∂uτ

∂x
−
√
2γ(s)sgn(cEτ )

)(
cEτ + bEyy

)
− 2

∂v

∂y
bEyy +O(ϵ2) (13.25)

We then use the incompressible condition (assumption (2))

∂uτ

∂x
+

∂v

∂y
= 0, det[bE] = 1, (13.26)

to eliminate v and bEyy. For the latter we have

det[bE] = bEyy
2
+ cEτ b

E
yy +O(ϵ2) = 1. (13.27)

Since bEyy ≥ 0, we then have

bEyy =

√
cEτ

2 + 4−O(ϵ2)− cEτ

2
(13.28)
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By substitution of (13.26), (13.28) into (13.25), and with the ϵ2 terms neglected, we

have the temporal derivative of cEτ in the same form as (13.18). ■

Shear Stress. After performing a decomposition to the 2D deviatoric Kirchhoff

stress dev[τ ], we have

dev[τ ] = dev[[τxx − τyy]e] + [τxy]s (13.29)

From (13.6) we then have

dev[τ ] = µdev[[cEτ ]e] + µϵ[BE
xy]s ≈ µdev[[cEτ ]e]. (13.30)

The 2D Cauchy stress tensor is therefore computed as (using the incompressiblity

assumption J = 1)

σ2D = µdev[[cEτ ]e]− pI2. (13.31)

Since our flow is symmetric around the strand centerline, with the plane strain con-

ditions the 3D stress tensor σ can be specified with this 2D stress tensor, where we

have

σ = [σ2D,xx,σ2D,xy, 0;σ2D,xy,σ2D,yy, 0; 0, 0, (σ2D,xx + σ2D,yy)/2r]. (13.32)

which will be used in the following derivation for a 1D reduced momentum equation.
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x

y

θ

Γα

fextVariational Form of the Momentum Equation. In

the following we derive the 1D reduced momentum equa-

tion from the 3D Navier-Stokes momentum equation, which

reads

ρf
Duf

Dt
−∇ · σ = f ext + fΛ (13.33)

where fΛ is the frictional force on the bottom of the flow; f ext is the external body

force such as gravity and inertial force; and σ is the Cauchy stress tensor. We denote

the interface between the reduced surface flow and the strand as Γ, and define a trial

function Φ ≡ (Φx,Φy,Φθ) that is a vector defined in the cylindrical coordinate whose

x-axis is aligned with the longitudinal direction of the strand. The weak formulation

of (13.33) can be written as following

∫ 2π

0

∫ r+hτ

r

∫
Γ

[
ρf

(
∂uf

∂t
+ uf · ∇uf

)
·Φ+ σ : Υ(Φ)

]
ydxdydθ

+

∫ 2π

0

∫
Γ

σyyΦyrdxdydθ =

∫ 2π

0

∫ r+hτ

r

∫
Γ

(fΛ + f ext) ·Φydxdydθ
(13.34)

where σyy is the pressure applied to the flow by the strand surface Γ, Υ is the rate

of deformation tensor, i.e., Υ(Φ) ≡ (1/2)
(
∇Φ+∇TΦ

)
. In the following derivation

we will use two deductions based on the assumptions made in §13.2: 1) due to the

symmetry of the flow, we have uf = (uτ , v, 0); and 2) due to the incompressibility of

the flow, we have

∂uτ

∂x
+

∂v

∂y
= 0. (13.35)
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Integrating the above equation over the y-axis from Γ to the free surface, and using

the fact that v|Γ = 0, i.e., the flow cannot penetrate the strand surface, we have

v = −y∂uτ

∂x
. (13.36)

Pressure of the Reduced Surface Flow. To derive the pressure σyy, we first

choose a trial function by setting Φx = 0 and Φθ = 0, i.e., only allowing Φy ̸= 0.

With (13.30), (13.31), and (13.32) substituted into (13.34), and with the variables

replaced with our scaled ones proposed in (13.19), we have

ϵ3
∫ 2π

0

∫ r+ϵH

r

∫
Γ

[
−H3Y 3ρf

(
∂2uτ

∂t∂x
+ uτ

∂2uτ

∂x2
−
(
∂uτ

∂x

)2
)
Φy

+µH2Y 2BE
xy

∂Φy

∂x

]
dxdY dθ + ϵ

∫ 2π

0

∫
Γ

σyyΦyrHdxdY dθ

= ϵ2
∫ 2π

0

∫ r+hτ

r

∫
Γ

∥f ext∥sinαcosθH2Y dxdY dθ

(13.37)

where α is the angle between the direction (in Euclidian space) of x-axis of the

cylindrical coordinate and the direction of external force projected onto the xy-plane.

The right-hand side of (13.37) is zero since the external force perpendicular to

the strand cancels after being integrated over dθ. By dividing both sides with ϵ and

discarding the remaining high-order terms multiplied with ϵ2, we have

∫ 2π

0

∫
Γ

σyyΦyrHdxdY dθ = 0, (13.38)
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for arbitrary Φy, which simply indicates

σyy = 0. (13.39)

Momentum Equation of the Reduced Surface Flow. To derive the reduced

momentum equation about uτ , we choose another trial function by setting Φ =

(Φx,−y ∂Φx

∂x
, 0) — the middle term is set according to (13.36). After the variables in

(13.34) replaced with our scaled ones, and (13.39) used, we have

ϵ2
∫ 2π

0

∫ r+ϵH

r

∫
Γ

H2Y

[
ρf

(
∂uτ

∂t
+ uτ

∂uτ

∂x

)
Φx + µcEτ

∂Φx

∂x

]
+

ϵ4
∫ 2π

0

∫ r+ϵH

r

∫
Γ

[
H4Y 4ρf

(
∂2uτ

∂t∂x
+ uτ

∂2uτ

∂x2
−
(
∂uτ

∂x

)2
)

∂Φx

∂x

+µH3Y 3BE
xy

∂2Φx

∂x2

]
dxdY dθ = ϵ2

∫ 2π

0

∫ r+ϵH

r

∫
Γ

H2Y[
(∥f ext∥cosα + fΛ) Φx − ϵ∥f ext∥sinαcosθHY

∂Φx

∂x

]
dxdY dθ

(13.40)

where fΛ is the magnitude of frictional force. The last term on the right hand side of

(13.40) is again an external force perpendicular to the strand, which will be canceled

after being integrated over dθ. We then divide both sides with ϵ2 and discard the

remaining high-order terms containing ϵ2, which gives us

∫ 2π

0

∫ r+ϵH

r

∫
Γ

[
ρf

(
∂uτ

∂t
+ uτ

∂uτ

∂x

)
Φx + µcEτ

∂Φx

∂x

]
H2Y dxdY dθ

=

∫ 2π

0

∫ r+ϵH

r

∫
Γ

(∥f ext∥cosα + fΛ) ΦxH
2Y dxdY dθ.

(13.41)

Furthermore, the term
∫ 2π

0

∫ r+ϵH

r
H2Y dY dθ = πhτ (hτ + 2r) is the cross-sectional
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area of the flow, and can be integrated individually since the other terms are inde-

pendent of Y and θ. After reordering the multiple integrations in (13.41), we have

∫
Γ

[
ρf

(
∂uτ

∂t
+ uτ

∂uτ

∂x

)
Φx + µcEτ

∂Φx

∂x

] ∫ 2π

0

∫ r+ϵH

r

H2Y dY dθdx

=

∫
Γ

(∥f ext∥cosα + fΛ) Φx

∫ 2π

0

∫ r+ϵH

r

H2Y dY dθdx.
(13.42)

For brevity, we denote the cross section as Aτ . We then replace the variables in

(13.42) back with the non-scaled version, which reads

∫
Γ

ρfAτ

(
∂uτ

∂t
+ uτ

∂uτ

∂x

)
Φx + µAτc

E
τ

∂Φx

∂x
=

∫
Γ

Aτ (∥f ext∥cosα + fΛ) Φxdx. (13.43)

for arbitrary Φx. The corresponding momentum equation is then

ρfAτ

(
∂uτ

∂t
+ uτ

∂uτ

∂x

)
− µ

∂Aτc
E
τ

∂x
= Aτ (fext,x + fΛ) . (13.44)

where fext,x ≡ ∥f ext∥cosα. As fΛ substituted with the friction model proposed below,

i.e., AτfΛ ≡ −Cuτ , we have exactly the form of (13.17). ■

Friction between the Surface Flow and the Strand. Because of its viscosity,

the non-Newtonian surface flow experiences friction on the strand surface. Microscop-

ically, the friction is caused by intermolecular interactions that prevent the viscous

liquid from either separating from or slipping along the solid surface [220]. We adapt a

widely used model of this viscosity-induced friction that assumes a linear relationship

between the slip velocity and the friction on the surface— the Navier boundary condi-
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tion [140]. Concretely, the friction force can be modeled by the C uτ term in (13.17),

where, according to [89], the coefficient C is related to the surface flow thickness hτ

by

C = Aτ κ

(
hτ +

κh2
τ

3η̃

)−1

. (13.45)

Here, κ, defined as κ ≡ η̃/b, is the friction coefficient depending on the effective fluid

viscosity η̃ [11], and the Navier slip length, b. The latter is a constant depending on

the specific fluid and solid materials [45, 185]. This model, albeit simple, can closely

match experimental results for various non-Newtonian fluids [208].

When using the Herschel-Bulkley model for non-Newtonian fluid, we can derive

its effective viscosity using the generalized Newtonian fluid model [115] and obtain

η̃ =

√
2

3
τY

(
|uτ |
hτ

)−1

+ η

(
|uτ |
hτ

)n−1

, (13.46)

where τY is the yield stress, η is the flow consistency index, and n is the flow behavior

index. With the effective viscosity estimated, we use (13.45) in combination with the

strand’s annular cross-sectional area Aτ to obtain the formula for C in our surface

flow momentum equation (13.17):

C = π
hτ + 2r

b+ hτ/3
η̃. (13.47)
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Mass Conservation. Lastly, mass conservation for the surface flow follows (8.20)

in the prior chapter:

DuτAτ

Dt
+ Aτ

∂uτ

∂x
= 0. (13.48)

In summary, our non-Newtonian reduced surface flow model consists of a momen-

tum equation (13.17), a mass conservation law (13.48), a time evolution equation for

the reduced Cauchy-Green strain (13.18), as well as the Herschel-Bulkley flow rate

function, i.e., (13.13) in §13.1.

13.3 Strand Dynamics

A strand’s motion is heavily influenced by the liquid layer flowing on its surface. If

the liquid were simply fixed to the strand surface (without any relative motion), then

its only effect would be to cause the effective mass of the strand to become the sum of

the strand mass, ms, and the liquid mass, mτ . However, surface flow motion relative

to the strand will induce an additional inertial force on the strand.

This intuition can be formalized by writing out the total inertia of the strand

and its surface fluid. We model a strand as a discrete elastic rod [26], and use us to

denote the strand velocity at a discrete strand vertex. The surface fluid flows along

the strand with a velocity uτ relative to the strand. Then, the absolute velocity of

the surface flow is us + tuτ , where t is the tangential direction of the strand. The
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total inertia is

ms
Dusus

Dt
+mτ

Dus+tuτus

Dt
= (ms +mτ )

Dusus

Dt
+mτuτ∇τus. (13.49)

The right hand side expands and regroups terms on the left, revealing the extra

inertial force as the last term. With this total inertia, the momentum equation for

the strands is

m̃s
Dusus

Dt
= fint,s + fext,s + m̃sg −mτuτ∇τus, (13.50)

where the effective mass m̃s ≡ ms + mτ , g is the gravitational constant, and the

last term comes from that of (13.49). The term fint,s represents the internal forces

of the discrete elastic rod, including stretching, bending and twisting forces (see [26]

for their details). The external force, fext,s, includes strand-strand (and strand-solid)

contact forces as well as the coupling forces with the bulk fluid. These forces will be

elaborated later.

Remark. In §8.2, we have also considered the inertial force contribution by surface

water flows. However, there we explicitly transport the extra inertia along strand

through (8.21) and modify the strand’s velocity at the end of each time step. By

contrast, in this part, we derived the force term in a more principled manner and

incorporated it into the momentum equation (13.50), allowing for implicit integration

(see §14). As demonstrated in Figure 13.4, explicitly adding the extra inertial force

(as in the last part) impairs simulation stability, whereas using implicit integration

approach makes the simulation quite stable.
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Proof of the equivalence of the additional inertia To be more rigorous, we

also provide a proof to show that, when using explicit integration, the momentum

transport presented in the last part is equivalent to the (rightmost) additional inertia

term in (13.50), when both are integrated explicitly.

We begin from the momentum transfer equation (8.21), which can be re-written

through the product rule, as

Aτ

(
∂us

∂t
+ uτ

∂us

∂x

)
+ us

(
∂Aτ

∂t
+

∂

∂x
(Aτuτ )

)
= 0. (13.51)

According to the mass conservation (13.48) (or equivalently, (8.16) or (8.20)) of the

surface flow, the second term multiplied on us is zero, i.e.,

∂Aτ

∂t
+

∂

∂x
(Aτuτ ) = 0 (13.52)

Therefore, as long as the strand is wet, i.e., Aτ > 0, we have

∂us

∂t
= −uτ∇us. (13.53)

In Chapter 2, we firstly solve the momentum transfer (8.21), which, according to

the derivation above, is equivalent to solving (13.53). With an explicit integration

of (13.53), we have

ũs ← ûs − huτ∇us, (13.54)

where ûs and ũs denote the strands’ velocities before and after the momentum transfer
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implicitly integrated explicitly integrated

Figure 13.4: Comparison between different methods to integrate the addi-
tional inertia. A heavy droplet (tetrachloroethylene with mass density 1.622g/cm3)
flows on a strand. Left: With the principled momentum equation for the coupled
flow, presented in this part, the extra momentum of strand caused by the motion of
surface flow can be stably integrated. Right: The explicit modification to the strand
momentum proposed in last part causes instability.

is done, and h is the time step. We then modify the strands’ velocity through (8.23).

By substituting (13.54) into (8.23) and rearranging the terms, we have

(ms +mτ )us = (ms +mτ )ûs − hmτuτ∇us, (13.55)

which is exactly the explicit discretization of the strands’ momentum equation (13.50)

with all the other forces on its right hand side integrated into ûs. Similar derivation

can be done for the angular velocity, beginning from the angular momentum transfer

equation (8.22). ■
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13.4 Bulk Liquid in a Mixture

An effective way of modeling bulk non-Newtonian liquid is to treat it as a continuum,

as most non-Newtonian simulation methods have done [114]. In our scenarios, the

bulk liquid will inevitably interact with submerged strands, which are modeled as

discrete rod elements. Thus we are confronted with two contradictory simulation

approaches. We must somehow reconcile these disparate views if we are to enforce

mass and momentum conservation for both the liquid and the submerged strands in

a unified framework.

A natural idea is to homogenize the discrete elements (i.e., strands in our case)

and treat the combination of liquid mixed with discrete elements as a porous medium,

whose behavior can be described using classic mixture theory [8, 39]. Indeed, the

CFD-DEM method [264, 265] is based on this premise, but focuses on incompressible

Newtonian fluids [85, 230]. Here we extend this methodology to the simulation of

compressible, non-Newtonian fluids.

Volume Fraction for Mixture with Discrete Elements

We begin by homogenizing the volume of the strands. Suppose that the i-th strand

element has a volume Vi. Then, in a porous medium where strands are mixed with

liquid, the local volume fraction of the strand at any point x can be estimated using

a kernel-weighted average [85]:

ϕs(x) =
1

V ∗

∑
i

wR,i(x)Vi. (13.56)
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Here the summation is taken over a small region of the continuum; in practice we

use one grid cell. The total volume of the region is denoted V ∗, and wR,i(x) is the

kernel function centered at the i-th element with a kernel radius R. Similar to the

prior work [85], we use a quadratic B-spline as wR.

We can homogenize the velocity of the discrete strand elements in a similar fashion.

Let us,i denote the velocity of the i-th strand element. The homogenized strand

velocity ūs(x) at position x is defined as

ϕs(x)ūs(x) =
1

V ∗

∑
i

wR,i(x)Vius,i. (13.57)

The strand volume fraction evolves over time as the liquid and strand move relative

to one another. As we derive below, the material derivative of the strand volume

fraction can be expressed as

Dufϕs(x)

Dt
=

1

V ∗

∑
i

Vi∇wR,i · (uf(xi)− us,i) , (13.58)

where uf(xi) is the liquid velocity around the strand’s i-th element position, xi.

Derivation of the Derivatives of Volume Fraction We begin our derivation

from (13.56). By taking its spatial derivative, we have (with the location parameter

x dropped for brevity)

∇ϕs =
∂ϕs

∂x
=

∑
i Vi∇wR,i

V ∗ . (13.59)
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Similarly we take the divergence of (13.57), where we have

∇ · (ϕsūs) =

∑
i Vi∇ · (us,iwR,i)

V ∗ . (13.60)

Since we have assumed that each rod element is incompressible, we have ∇ ·us,i = 0,

and thus the equation above can be rewritten as

∇ · (ϕsūs) =

∑
i Vius,i · ∇wR,i

V ∗ . (13.61)

In mixture theory [8], the continuity equation for a solid with constant mass

density reads

∂ϕs

∂t
+∇ · (ϕsūs) = 0. (13.62)

Using (13.62), the material derivative of the solid volume fraction ϕs advected along

with liquid velocity uf is then derived as follows:

Dufϕs

Dt
≡ ∂ϕs

∂t
+ uf · ∇ϕs (13.63)

= uf · ∇ϕs −∇ · (ϕsūs). (13.64)

By replacing the terms defined in (13.59) and (13.61), we have

Dufϕs

Dt
= uf ·

∑
i Vi∇wR,i

V ∗ −
∑

i Vius,i · ∇wR,i

V ∗ (13.65)

=

∑
i Vi(uf − us,i) · ∇wR,i

V ∗ . (13.66)
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which matches (13.58). ■

Lastly, since the volume is a mixture of strands and liquid, the volume fraction of

the liquid is related to that of the strands via ϕf = 1− ϕs, and its material derivative is

Dufϕf(x)/Dt = −Dufϕs(x)/Dt. This material derivative is needed for the mixture’s

mass conservation law—which we will present later—because a change of volume

fraction at position x leads to a change of the mixture’s local effective density at x.

Remark. In the derivation of (13.58), we assume that each strand element is in-

compressible: it can be stretched, bent, or twisted, but always preserves its volume.

This assumption is justified by the fact that strands are often thin and stiff. We note

that Selle et al. [210] also treated strands collectively as a continuum and assumed

incompressible motion. The key difference of our approach is that we only assume

each individual strand element is incompressible. The collective volume of strands

can still disperse or contract as needed.

Momentum Equation

Using the notion of volume fraction and following classic mixture theory [190], we

now have the momentum equation for bulk liquid:

ϕfρf
Dufuf

Dt
= ϕf∇ · σ + fext,f + ϕfρfg, (13.67)
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where σ is the liquid’s internal stress due to its volumetric stress (i.e., pressure p)

and shear stress, namely,

σ = −pI3 + µJ−2/3dev[bE]. (13.68)

Here µ is the liquid’s shear modulus, I3 is the 3 × 3 identity matrix, the deviatoric

operator dev[·] is defined as dev[x] ≡ x − (tr[x]/3)I3, the left Cauchy-Green elastic

strain tensor is denoted bE, and J is the determinant of the liquid’s deformation

gradient as introduced in the opening section of this part.

The term fext,f in Eq. (13.67) represents the external forces applied on the liquid,

including the drag force produced by relative motion between the liquid and sub-

merged strands, and interaction forces between the bulk liquid and surface flow on

the strands. Both forces will be elaborated later.

Mass Conservation

According to mixture theory [137, 190], the mass conservation law for bulk liquid in

the mixture is

Dufϕfρf

Dt
+ ϕfρf∇ · uf = 0, (13.69)

where ρf is the non-Newtonian liquid’s density and ϕfρf is the liquid’s effective density

in the mixture. Both ρf and ϕf are spatially varying, though for brevity we do not

indicate their dependence on x in (13.69). Many non-Newtonian materials (such

as milk cream) are compressible, and therefore ρf(x) depends on the determinant
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J(x) of the liquid’s deformation gradient, which measures how much an infinitesimal

liquid region has compressed or expanded—that is, J(x) = ρf,0/ρf(x), where ρf,0 is

the liquid’s (rest) material density. Using J to express ρf in (13.69), we obtain the

material derivative of J ,

DufJ

Dt
= J

(
ϕ−1

f
Dufϕf

Dt
+∇ · uf

)
, (13.70)

describing how the liquid’s local volume changes over time. The local volume change

also causes a change in liquid pressure, which we will derive later by leveraging (13.70).

Remark: Consistency with non-mixture liquid. The momentum and mass

conservation laws derived from mixture theory are general enough to describe non-

mixture fluids as well. For example, when there is no strand in the mixture (i.e., ϕf = 1

everywhere), the first term on the right hand side of (13.70) vanishes, and Eq. (13.70)

becomes the standard mass conservation equation for a single-phase material.

13.5 Coupling Forces

We now focus on the coupling forces that allow bulk liquid, discrete strands, and

surface flows to interact each other. In particular, we present force models between

bulk liquid and submerged strands and between bulk liquid and the strands’ surface

flows. Note that the interaction force between strands and their surface flows has

already been discussed, emerging as the inertial force in the last term of (13.50).
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Figure 13.5: Buoyancy–left: 0.0s, right: 4.0s. With the pressure gradient com-
puted using our method, we can correctly handle the buoyancy of strands in water
(mass density 1.0g/cm3), where the light brown strands (mass density 0.5g/cm3) float,
neutrally buoyant blue strands (mass density 1.0g/cm3) drift, and heavy green strands
(mass density 2.0g/cm3) sink.

Pressure

First, we derive the pressure for a non-Newtonian mixture. An expression for pressure

is needed for two reasons: i) pressure drives the bulk liquid’s motion by contributing

to its stress in the momentum equation (13.68), and ii) the pressure gradient produces

forces on the submerged strands, contributing to the external force term in (13.50).

Pressure is caused by volume change of the liquid. Formally, as explained in

the opening section of this part, it is the negated derivative of dilational potential

energy Wv with respect to elastic volume change JE, i.e., p ≡ −∂Wv/∂J
E — akin to

how a spring force is related to the spring’s energy. There exist many models for the

dilational potential energy, and our bulk liquid and strand models presented in earlier

sections could incorporate any of them (through p). In our examples, we choose a

modified neo-Hookean model [215], following the work of Yue et al. [261].
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For the sake of numerical stability our simulation uses an implicit integration

scheme which requires, for its implicit pressure solve, the pressure’s material deriva-

tive,

Dufp

Dt
= −∂2Wv

∂JE2

DufJ
E

Dt
. (13.71)

Substituting (13.70) and the dilational potential energy (13.4) into (13.71) reveals

that the pressure’s material derivative is related to both the liquid and strand veloc-

ities in the mixture:

Dufp

Dt
= −∂2Wv

∂JE2 J
E

(
ϕ−1

f
Dufϕf

Dt
+∇ · uf −

1

JP

DufJ
P

Dt

)
(13.72a)

= −κ

2
J∗

(
1

ϕfV ∗

∑
i

Vs,i∇wR,i(x) · (us,i − uf) +∇ · uf

)
, (13.72b)

where J∗ is a shorthand for J∗ ≡
(
JE + (JE)−1

)
. The second equality utilizes the

material derivative of the liquid volume fraction, Dufϕf/Dt, estimated in (13.58) along

with the fact that plastic flow is often isochoric, i.e., JP = 1, even under very high

pressure [41, 42]. Eq. (13.72b) will be discretized in §14 to solve for the pressure.

Pressure Force on Strands. When strands are mixed with the liquid, the spatial

gradient of the pressure also induces a force fp,i on each submerged strand element

i through fp,i = Vs,i∇p(xi), where Vs,i is the volume of the discrete strand element i

centered at position xi. The force fp,i contributes in part to the external force fext,s

in (13.50). As a result, we are able to correctly capture buoyancy effects (see Fig-

ure 13.5).
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Figure 13.6: Comparison between varying and fixed volume fraction (in the
absence of drag). Liquid flows from left to right through strands fixed in place.
Top: without the volume fraction considered. The liquid flow does not change
its volume despite part of the space being occupied by strands; Bottom: with the
volume fraction considered. The liquid will expand naturally as it passes through
strands.

Remark: Comparison to Single-Phase Liquid. Our pressure equation differs

from that used in previous work (e.g., [226]) wherein only a single-phase liquid is

considered. In particular, our model captures the mixture’s effective volume change

caused by the change of liquid volume fraction (as seen from the first term on the

right hand side of (13.70)). This volume change in turn contributes to the pres-

sure’s material derivative (13.72a). In comparison to a single-phase liquid model,

our mixture-theory-based model is able to capture richer liquid-strand interactions

as illustrated in Figure 13.6.

Derivation: Comparison to Incompressible Mixture Models. In a prior

work [85] and Part I, models for incompressible mixtures have been developed. Be-

low we show that the incompressible mixture is a special case of our model when the

material stiffness κ (e.g., used in (13.72b)) approaches infinity. Therefore, our model
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is able to simulate liquids across a wider range of stiffnesses (see Figure 13.7).

Our derivation is not limited to a specific model. For an arbitrary non-zero dila-

tional potential energy whose second-order derivative is denoted as κg(JE) below, we

may rewrite (13.72a) into the following form:

Dufp

Dt
= −κg(JE)

(
ϕ−1

f
Dufϕf

Dt
+∇ · uf −

1

JP

DufJ
P

Dt

)
(13.73)

For incompressible mixture we have the liquid material stiffness κ→∞ and JP = 1.

By dividing both sides with κ and taking the infinite limit of κ, we have

limκ→∞

(
κ−1Dufp

Dt

)
= 0 = −g(JE)

(
ϕ−1

f
Dufϕf

Dt
+∇ · uf

)
(13.74)

or simply (since g is non-zero)

Dufϕf

Dt
+ ϕf∇ · uf = 0. (13.75)

which can be rewritten by expanding the material derivative Dufϕf/Dt, as following

∂ϕf

∂t
+∇ · (ϕfuf) = 0. (13.76)

This is exactly the continuity equation for liquid in mixture with constant mass

density (see, e.g., [8]). After (13.62) is added with (13.76), we obtain (3.4) for the
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t = 0.172 s

t = 0.204 s

t = 0.300 s

t = 1.000 s

Figure 13.7: Simulated cream with a wide range of bulk moduli (κ). Cream
with a lower bulk modulus κ shrinks or dilates more easily during the simulation, and
has a larger volume in the steady state.

incompressible mixture on which is focused in the prior work [85] and Part I.

∇ · (ϕfuf + ϕsus) = 0. (13.77)

where ϕf ≡ 1− ϕs. ■

Remark: Generality. We obtain (13.72a) based only on compressible mixture

theory; no specific properties of non-Newtonian fluids or the dilational potential model

are needed. In other words, Eq. (13.72a) is sufficiently general to simulate other types

of liquid materials (e.g., see [38, 219]). In the same vein, the discrete solids mixed

into the liquid in our model need not necessarily be strands; other types of solids,

such as gravel, sand, and clay, could be readily simulated as well.
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Drag Force

Next, we present a model for computing drag forces between the liquid and sub-

merged strands. The drag force contributes to the external force terms for both

strands (13.50) and the liquid (13.67).

We choose to employ a popular drag model proposed by Di Felice [73]. This is

a simple velocity-dependent model that is nevertheless flexible enough to support a

range of materials and rheologies [139, 146]. Concretely, the drag force of a discrete

strand element i centered at xi is expressed as

fdrag,s,i =
1

2
ρf(xi)CdA⊥,i∥uf(xi)− us,i∥2ϕ−χi

f (uf(xi)− us,i), (13.78)

where uf and us,i are liquid and strand element velocities (as defined previously),

A⊥,i is the area of the strand element i projected on the plane perpendicular to the

relative velocity vector uf−us, Cd is the drag coefficient, and the parameter χi takes

the empirical form

χi = 3.7− 0.65 exp
[
−1

2
(1.5− log Rep,i)

2

]
, (13.79)

in which Rep,i is i-th strand element’s particle Reynolds number, whose specific for-

mula is given in (13.82).

A key parameter in this model is the drag coefficient Cd. Experiments have shown

that Cd can be taken as a constant value if the solid elements are spherical particles
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and the liquid has a low viscosity and a high Reynolds number [264]. While recent

work on simulating wet sand [85] used this model with a constant Cd, we found that a

constant Cd in (13.78) limits the model’s generalizability to different liquid materials,

as illustrated in Figure 13.9.

We adopt a formulation for Cd developed by Renaud [197]. It has been exten-

sively verified for predicting drag forces between irregularly shaped solid elements

and liquids, both Newtonian and non-Newtonian, with a Reynolds number up to

1500 (see [3, 54, 193]). Details are provided below, and its efficacy is demonstrated

in Figure 13.9.

Drag Coefficient. The drag coefficient for rod element i has the following

form [193]:

Cd,i = Cd0,i +
Ac,i

A⊥,i

Cd∞(Cd0,i)
2βk

[
6Xb

6Xb+ Cd0,i

]β
+ Cd∞

[
6Xb

6Xb+ 128Cd0,i

]
, (13.80)

where Ac,i is the surface area of the i-th element, A⊥,i is the area of the i-th discrete

element projected in the direction of relative velocity, and

Cd0,i ≡
24X

Rep,i
, (13.81a)

Cd∞ ≡ 0.44, (13.81b)

α ≡ 3

n2 + n+ 1
, (13.81c)

X ≡ 6(n−1)/2αn+1, (13.81d)
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b ≡ exp [3(α− ln6)] , (13.81e)

k ≡ 3− α

6α
exp

(
3− α

2α
ln3
)
, (13.81f)

β ≡ 11

48

√
6

[
1− exp

[(
3− α

2α

)2

ln

(√
6− 1√
6

)]]
. (13.81g)

where Rep,i is the particle Reynolds number (see below) of i-th element, and n is the

flow behavior index.

The particle Reynolds number for a Herschel-Bulkley liquid. The drag coef-

ficient proposed in (13.80) is originally developed for a power-law liquid. Nevertheless,

Atapattu et al. [15] showed that a drag coefficient for a power-law liquid can also be

generalized to a Herschel-Bulkley liquid by adopting a modified particle Reynolds

number. Using the von Mises yield condition (13.11), the particle Reynolds number

for i-th rod element reads [15, 73]:

Rep,i ≡
ϕfρfd

n
p,i∥uf − us,i∥2

η∥uf − us,i∥n +
√

2
3
τY dnp,i

(13.82)

where dp,i is the diameter of a circle that has the area equivalent to A⊥,i, i.e., dp,i =

2
√

A⊥,i/π.

We plot the drag coefficient over its different parameters in Figure 13.8, where

we can observe that the drag coefficient increases over the flow consistency index (or

viscosity) η, the yield stress τY , the flow behavior index n, and decreases over the

relative velocity between liquid and strand element.
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Figure 13.8: Drag coefficient over its different parameters. Data is acquired
through varying one parameter and fixing the others with the parameters of shaving
cream.

Remark: Degenerated to Drag Coefficient in Newtonian liquid. In a New-

tonian liquid, the flow behavior index n = 1. Then in the equations above, X = 1,

α = 1, and k = 1, where (13.80) is precisely consistent with the drag coefficient for

the irregular particles in a Newtonian liquid [161].

We conclude by homogenizing the drag forces experienced by the discrete strand

elements to apply the corresponding force on the liquid. Homogenization is performed

by taking a kernel-weighted average of the drag on the discrete elements, which is,

fdrag,f(x) =
1

V ∗

∑
i

wR,i(x)fdrag,s,i. (13.83)

Remark: Sanity Check through Dimensional Analysis. Dimensional analysis

provides a useful sanity check for us. As mentioned in the opening section of this part,

the flow consistency index has the physical unit Ba · sn, and the yield condition τY

has the physical unit of pressure (Ba). The divisor in (13.82) then has physical unit
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cream
our drag

mud
our drag

cream
constant drag

Figure 13.9: Comparison of different drag coefficients. Streams of shaving
cream and mud are poured onto seven hanging strands. Left and middle: Our
drag model yields very different interaction behavior depending on the liquid type;
Right: A constant drag coefficient, on the other hand, produces a drag effect for
the shaving cream similar to that of mud, since the yield stress and viscosity are not
considered.

Ba·cmn, or g ·cmn−1 ·s−2, which exactly cancels with the physical unit of the dividend.

Hence Rep is indeed a unitless number. Obviously all the parameters in (13.81) are

unitless, thence Cd is unitless. Furthermore, we have χ defined in (13.79) unitless.

Therefore fdrag,s has the physical unit g · cm · s−2, or a dyne, which is precisely the

unit of a force. In (13.83), the weighted sum also has the unit of a force. With the

divisor V ∗ applied, fdrag,f has the unit of a force density, which is exactly the unit of

both sides of (13.67).
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Constraints Between Bulk Liquid and Surface Flows

Lastly, we consider the interactions at the interface between the bulk liquid and the

reduced surface flows. Mathematically, since the momentum conservation law is a

second-order partial differential equation, it needs two boundary conditions on the

interface to couple the surface flow with the bulk liquid.

tuτ

us

uf

pτ

p

Pressure Boundary Condition. The first condition re-

quires that the pressure in the surface flow and the bulk liq-

uid agree at the interface (see adjacent figure). As discussed

in the prior section (see Non-Newtonian Strand Surface

Flow), the internal stress of the surface flow depends on the reduced shear strain cE
τ .

Thus, the surface flow pressure pτ at the interface position x0 is pτ (x0) = −µcE
τ (x0),

where µ is the liquid’s shear modulus. Let pf(x0) be the bulk liquid pressure at the

same interface position. Then, the Dirichlet pressure condition is

pf(x0) = pτ (x0). (13.84)

This boundary condition will be used in our numerical pressure solve in §14.

Velocity Boundary Condition. The second condition is similar to the liquid-solid

boundary condition in a typical liquid simulation, demanding velocity agreement at

the interface, namely,

uτ (x0) = tT (uf(x0)− us,i), (13.85)
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where the left hand side is the surface flow velocity, while the right hand side indicates

the projected velocity difference (along strand direction t) between the bulk liquid

and the strand element i at x0.

We enforce this boundary condition by applying penalty forces on discrete strand

elements and the bulk liquid. This approach is similar to the classic immersed bound-

ary method for simulating liquid-solid coupling [181]. The penalty force at a strand

element i is computed as

feq,i = −
1

h
mτ,i(tiuτ,i + us,i − uf), (13.86)

where h is the time step size, mτ,i is the mass of liquid on strand element i, and uτ,i is

the flow velocity at the strand element i. In the strand’s momentum equation, (13.50),

feq,i serves as a part of the external force fext,s. The corresponding penalty force on

the liquid is the homogenization of the discrete element forces feq,i (i.e., feq,f(x) =

−
∑

i wR,i(x)feq,i). The force feq,f contributes to the external force fext,f in the liquid’s

momentum equation (13.67).

13.6 Contact Between Wet Strands

Inter-strand contacts also significantly affect strand motion. In the context of wet

strands, a straightforward approach to resolve contacts is through penalty forces. In

Part II and prior works [148, 149], the penalty force can produce both repulsive and

cohesive effects, because of the liquid bridge that forms between two strands. However,
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penalty force methods suffer from several critical disadvantages: Wet strands, such as

wet hair, are known to exhibit a strong frictional effect [32], but it remains unclear how

to incorporate a principled friction model into penalty methods. Moreover, penalty

forces on strands can become strongly cohesive due to the liquid bridge in between,

quickly causing strand penetration during the simulation (see Figure 13.10). The

nature of non-Newtonian liquids makes matters worse, as such liquids may produce

even stronger strand cohesion due to non-Newtonian elasticity.

In light of these factors, we instead seek to resolve contacts through a constraint-

based method that solves a second-order Coulomb cone (SOCC) problem for both

contact and friction forces, following the prior works [30, 69, 118, 167]. This approach

ensures contact resolution without strand penetration and ensures that the friction

forces follow Coulomb’s law of friction precisely. However, it traditionally assumes

that the contact force can be repulsive, but not cohesive, which is not an appropriate

assumption for our setting. To address this limitation, we adopt a shifted cone [2,

65, 66, 87, 119, 125, 130, 195, 230] and specialize it to simulate strands covered with

cohesive viscoplastic material.

More specifically, we augment the shifted cone in two aspects:

1. Two strands can approach until their surfaces touch each other, but won’t sepa-

rate until the liquid bridge breaks. We treated this phenomenon by introducing

contact hysteresis, where we used different distance criteria for collision detec-

tion according to the relative velocity of strands. This method is different with
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Figure 13.10: Comparison between constraint- and penalty-based collision.
Even with relatively large cohesion forces (cream), our method (Left) can correctly
handle contact with cohesion, without the tunneling problem seen in the penalty
method (Right).

the prior work [119] only use a shifted cone when two colliders are separating

for the first time.

2. The adhesion force includes two components: the capillary and the viscoplastic

part. We calculate the capillary part through reusing the equation derived in

Part I, and estimate the viscoplastic part, specifically for shear-dependent flow,

by using the flow rate function in Herschel-Bulkley model [102].

A Shifted Second-Order Cone

Before introducing our augmentation, we first show the idea behind the shifted second-

order coulomb cone following prior works [2, 65, 66, 87, 119, 125, 130, 195, 230], using

the notation in the works of Daviet and Bertails-Descoubes [30, 69]. Given a contact
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Figure 13.11: Top: Regular second-order Coulomb cone (SOCC) when the
strands are dry. An impulse r is constrained by the cone when two rods collide. For
the tangential part of r (denoted rT) we have either v∗ = 0 when rT ∈ Kµ, producing
static friction (sticking), or ∥v∗

T∥ > 0 when rT reaches the yield surface, i.e., rT ∈ ∂Kµ,
producing dynamic friction (sliding). The relative velocity in the normal direction
will be eliminated for either the sticking or sliding case. Bottom: Modified SOCC
applied when the strands are covered with liquid. The impulse r is offset and
may yield cohesion: as long as the cohesive impulse is less than hfN, i.e., rN > −hfN,
we have v∗N = 0. Due to the offset of the cone, an additional frictional effect will be
induced, which, physically, corresponds to the shear stress of the cohesive material.
Finally, when fN = 0, the modified SOCC degenerates to a standard one [2, 65, 66,
87, 119, 125, 130, 195, 230].

point where the surface normal is denoted by n, we consider the contact impulse

(rather than force) across a time step size h. The contact impulse, including both

the normal and frictional impulses, is denoted by r. We use the subscripts N and T

to denote the vector components along the normal direction and on the tangential

plane, respectively. For example, rN = nTr is the normal impulse (i.e., a scalar)

and rT = (I3 − nnT )r is the tangential (frictional) impulse (i.e., a vector). We also

express r explicitly using its two components as [rN; rT].

With this notation, the regular SOCC Kµ, defined under a friction coefficient µ,
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is the set of vectors containing all possible contact impulses satisfying Coulomb’s law

of friction,

Kµ = {[rN; rT] | µxN ≥ ∥xT∥2} , (13.87)

which is visualized in the top row of Figure 13.11.

Next, we consider the shifted SOCC [2, 65, 66, 87, 119, 125, 130, 195, 230] which

incorporates cohesive forces between wet strands. When a liquid bridge connects two

wet strands, a cohesive force arises due to the liquid’s surface tension and elasticity.

Denoted as fN(ζ), this force depends on the strand distance ζ and points along the

normal direction n, and its details will be discussed shortly. Now the total impulse

rs includes both the contact impulse r and the cohesive impulse hfN(ζ), so

rs = r + h [fN(ζ);0] . (13.88)

The normal and tangential components of the total impulse rs must satisfy Coulomb’s

law of friction, that is, rs must reside in Kµ. This means that all possible contact

impulses r form a different SOCC (denoted as K̃µ), that is like Kµ but translated

along the normal direction by −h [fN(ζ);0]. The bottom row of Figure 13.11 shows

a visualization of K̃µ.

Given K̃µ, there are several outcomes for the relative velocity v∗ of two strand

elements after their contact is resolved, depending on where the contact impulse

locates in the shifted SOCC [2, 65, 66, 87, 119, 125, 130, 195, 230]:
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1. Untouched: ζ > ζ0, rs = 0, and v∗ is not affected,

2. Contact sticking: ζ = ζ0, rs ∈ Kµ, r ∈ K̃µ, and v∗ = 0,

3. Contact sliding: ζ = ζ0, rs ∈ ∂Kµ, r ∈ ∂K̃µ, v∗N = 0, and ∃α ∈ R+,v
∗
T =

−αrs, T.

Here ∂Kµ denotes the boundary of the SOCC Kµ, and ζ0 is a critical distance between

two strand elements, indicating when the impulse rs occurs. The specific value of ζ0

deserves some careful reasoning, as will be discussed next.

Contact Hysteresis on Both Colliding Distance and Relative

Velocity

In the shifted SOCC model [2, 65, 66, 87, 119, 125, 130, 195, 230], two strand

elements stop moving towards one another when their distance reaches ζ0. In reality,

two strands can approach until their surfaces touch each other, regardless of their

surface flow thickness. This observation suggests that ζ0 should be set as 2r where r

is the strand radius. On the other hand, when two strand elements move apart, the

cohesive force persists until the liquid bridge between them breaks. This observation,

by contrast, suggests that ζ0 should be a value related to the surface flow thickness.

As for the contact hysteresis, the prior work [119] only uses shifted SOCC [2, 65,

66, 87, 119, 125, 130, 195, 230] when two colliders are separating for the first time

to prevent cracked parts from re-cohesion, which targets at different application than

ours and cannot resolve the paradox mentioned above. We resolve it by introducing
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contact hysteresis based on both distance and relative velocity between two colliders,

in which the critical distance ζ0 for approaching strands is different from that of

separating strands:

1. Approaching: when vN < 0, ζ0 = 2r,

2. Separating: when vN ≥ 0, ζ0 = 2r + (1 + 0.5θ)
√
AL, where AL is the total area

of the cross section of the liquid bridge, and θ is the contact angle determined

by the liquid and strand materials.

In case (b), ζ0 is set to be the distance at which the liquid bridge breaks. To estimate

this distance value, we follow the formula by Lian et al. [147]. The hysteretic contact

force profile is illustrated in Figure 13.12.

Solver. Similar to the standard SOCC problem, the shifted SOCC problem [2, 65,

66, 87, 119, 125, 130, 195, 230] can be reformulated as a root-finding problem and

solved by So-Bogus [30, 66, 69]. Next, we show the derivation following Kaufman et

al. [129] as well as the implementation in ADONIS [130] and So-Bogus [30, 66, 69].

After adopting the change of variables proposed by De Saxcé and Feng [71] and

Daviet et al. [69], we have following complementarity formulation of a self-dual cone

K ≡ Kµ=1:

K ∋ v̂ ⊥ r̂ ∈ K (13.89)

where

r̂ ≡ [µrs,N; rs,T], v̂ ≡ ms[ṽN;µṽT], (13.90)
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Figure 13.12: The profile of the contact-cohesion force in the normal direc-
tion. Left: the solid parts of the strands touch each other. When the two
strands tend to approach each other with negative unconstrained normal velocity,
there will be a repulsive force; when the two strands tend to depart from each other
with positive unconstrained normal velocity, there will be a cohesive force. We evalu-
ate the cohesive force fN at 2r for the case ζ < 2r to avoid singularity. Right: the
solid parts of the strands do not touch, but the liquid bridge exists. The
two strands can freely move toward each other with negative unconstrained normal
velocity, but a cohesive force will stick them together as long as they tend to separate
with positive unconstrained normal velocity. In both cases, whenever there is a cohe-
sive force, the relative normal velocity after applying constraint will be zero unless
the maximal cohesive force is reached.

and

ṽ ≡ v + µ∥vT∥n. (13.91)

In (13.90), the mass ms = (ms,1 + ms,2)/2 is the averaged mass of the elements in

contact, which scales the velocity so that msv̂ has the same physical units as r̂.

Then solving for r̂ in (13.89) can be converted into a root-finding problem [69,

83]

K ∋ x ⊥ y ∈ K ⇔ fMFB(x, y) = 0 (13.92)
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where

fMFB(x,y) ≡ x ◦ y − (x ◦ x+ y ◦ y)
1
2 (13.93)

is known as the modified Fischer-Burmeister (MFB) function, and the operator ◦ is

the Jordan product defined as

x ◦ y ≡ [x · y;xNyT + yNxT]. (13.94)

Remark. When two strands approach (i.e., vN < 0), our contact hysteresis does not

induce cohesive forces even if the liquid bridge has formed, unless the strand surfaces

touch each other. However, the cohesive forces appear when they move away from

each other. While not entirely accurate, our model nevertheless captures interesting

wet strand behaviors, such as the formation of strand bundles. This is because when

(sufficiently close) strands attempt to move apart, the cohesive force tends to prevent

them from separating. The lack of cohesion as strands approach has an advantage in

practice: the cohesion force does not act to accelerate the negative normal velocity

and thereby increase the speed of the collision. Otherwise, the cohesive force would

render the system much stiffer, making strand penetration or tunneling much harder

to avoid.

Cohesive Force

Cohesion is usually caused by the capillary surface energy of the liquid, be it Newto-

nian or non-Newtonian. In addition, the non-Newtonian liquid may introduce an ex-
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tra cohesive force: when two strands move apart and the liquid bridge gets stretched,

the non-Newtonian liquid will experience a viscoplastic deformation until the bridge

breaks. During a stretching motion, the elastic stress effectively produces an extra

cohesive force on the strands. On the other hand, the non-Newtonian liquid bridge

possesses a maximal stress, after which point the liquid begins to yield and convert

its elastic strain into plastic strain. Thus the elastic stress is limited by the maximal

stress.

Therefore, we model the cohesive force fN with two components: the capillary

part fN,c and viscoplastic part fN,v, that is,

fN = fN,v + fN,c. (13.95)

The capillary part fN,c is the cohesive force proposed in Part II, computed

through (8.11).

On the other hand, the viscoplastic part fN,v can be estimated from the flow rate

function (13.13). In particular, following the simple relationship between a stress and

a force [14], we compute fN,v by estimating the stress applied on the cross sectional

area Ac of the liquid bridge:

fN,v = Ac

[√
2

3
τY + ηγn

]
. (13.96)

where τY is the yield stress, η is the flow consistency index, and n is the flow behavior

194



Figure 13.13: Contact between strands with surface flows of different mate-
rials – Left: mud; Right: milk cream.

index.

dl
r α

Acrod
liquid
bridge

To use (13.96) in practice, we estimate the flow rate

γ = ∂(nTus)/∂n using finite differences, and Ac using the

area where the liquid contacts the strand, i.e., Ac = 2rαdl where dl is the wet length

and α is the angle between the direction toward the liquid bridge and the direction

toward the liquid/solid boundary.
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Chapter 14

Discretization of the Strands and the Shear-Dependent

Liquid

With our continuous physical models in hand, we can proceed to discretization. We

adopt four types of Lagrangian variables to discretize the simulated geometry: 1)

traditional MPM particles, or particles for brevity, are used to discretize the bulk

liquid; 2) Lagrangian rod vertices, or vertices, are used to discretize the elastic rods;

3) Lagrangian rod elements (segments), or elements, are used to set up a staggered

discretization of the surface flow on the rods. In addition, the bulk liquid is solved on

an Eulerian staggered grid with velocities stored on cell faces and pressure stored on

cell centers, similar to the augmented material point method (AMPM) [226]. Because

our discretization shares similarities with other approaches for MPM [68, 85, 121, 123,

226, 230] and discrete elastic rods [26, 28, 129], in the following we briefly cover the

common aspects while emphasizing the novel aspects of our approach in detail.

We adopt the notation Np, Nv, Ne, Nk, Ng, and Nc to indicate the number of

particles, strand vertices, strand elements, contacts, grid faces and grid centers. We

adopt the superscript t to indicate variables that are known at the beginning of the

current time step, i to indicate variables in the i-th Newton iteration, and t + 1 to
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indicate variables to be solved for at the end of the time step. The time step size is

denoted as h.

14.1 Discrete Constrained Dynamics

A naive but accurate approach would be to solve the strand, the bulk liquid, and

the surface flow simultaneously. Unfortunately, since the velocities of these three

components are tightly coupled into a stiff, non-smooth, and non-symmetric system,

it can be very difficult to solve in practice, especially as sufficient nonlinearity for

collisions is usually required for stability of the strands [129].

Therefore, in this part we adopt a staggered integrator and update the variables

of different phases in an alternating fashion. One resulting benefit is greater ease

of implementation: we can adopt existing methods for strand simulation (e.g., we

adopt the method of Kaufman et al. [129]) and non-Newtonian liquids (e.g., we adopt

the Herschel-Bulkley liquid model of Yue et al. [261]), and simply enhance them to

support the coupling between the strands and the non-Newtonian liquid.

Strand Simulation Each time step begins with surface flow and strand simulation.

We first apply semi-Lagrangian advection to the mass and velocity of the surface flow

on the strand [224]. Then we integrate the strand dynamics, temporarily assuming the

bulk liquid pressure is zero. The solved strand velocity is used for collision detection

and as a prediction for the later pressure solve and additional surface flow dynamics.

197



Discretizing (13.50) leads to the discrete strand dynamics equation,

(M∗
s +hDs)u

t+1
s = M∗

su
t
s+h

(
f t+1

int + Msg + DsWgvu
t
f
)
+M∗

τ,v(u
t
s−ut

s,−ut
τ,v
), (14.1)

where M∗
s is the combined mass of the strand and the surface flow on it (after it has

been advected for the current time step). The term M∗
τ,v

(
ut

s − ut
s,−ut

τ,v

)
is the extra

rod inertia induced by the surface flow, which is also computed with semi-Lagrangian

advection [224]: the backtraced velocity of the k-th vertex is defined as

ut
s,−ut

τ,v,k
≡ us

(
qs,τ − hut

τ,v
)

interp (14.2)

where qs,τ is the strand-space coordinate of the vertex, and the function us(x)interp

interpolates the value from us at strand coordinate x.

To solve the discrete strand equation, we adopt a nonlinear Newton-Raphson

solver [129]. For the i-th Newton iteration, the linearized equation is

Csu
i+1
s = αi

(
M∗

s (u
t
s − ui

s) + h
(
f t

int + M∗
sg
)

+hDsWgvu
t
f + M∗

τ,v(u
t
s − ut

s,−ut
τ,v
)
)
+ Csu

i
s

(14.3)

where α is the step length computed with backtracking line search [13], Cs = M∗
s +

hDs + h2Hs is the the combination of mass and force Jacobian matrix, and ut
τ,v ≡

WT
veu

t
τ is the surface flow velocity mapped to vertices.

After the pressure and surface flow have been solved, we re-integrate the dynamics
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of the strand, this time using the solved pressure gradient and updated surface flow

mass (hence the updated combined mass is denoted as Mt+1 below), where the i-th

iteration of the momentum equation’s Newton solve becomes

Csu
i+1
s = αi

(
Mt+1

s (ut
s − ui

s) + h
(
f t

int + Mt+1
s g

)
+hDsWgvu

t
f + Mt+1

τ,v (u
∗
s − u∗

s,−ut+1
τ,v

)− hVsGw,cvp
)
+ Csu

i
s.

(14.4)

Since the surface flow velocity has been updated at this point, we compute the back-

traced velocity with the updated surface flow velocity ut+1
τ,v and the (unconstrained)

predicted solid velocity u∗
s . We then use the solved velocity (denoted by u†

s below)

for contact resolution.

Finally, after the contact impulse r is solved, we update the velocity with the

impulse added to the right hand side, using

Csu
i+1
s = αi

(
Ms(u

t
s − ui

s) + h
(
f t

int + Msg
)

+hDsWgvu
t
f + Mτ,v(u

†
s − u†

s,−ut+1
τ,v

)− hVsGw,cvp+ Er
)
+ Csu

i
s.

(14.5)

Semi-Implicit Herschel-Bulkley Liquid. Explicitly integrated Herschel-Bulkley

liquid is only stable with a time step that is two orders of magnitude smaller [261] than

the implicitly integrated strands. To match the time step of the strands, the pressure

and the shear stress must be implicitly integrated. Similar to prior work [226], we

adopt a splitting scheme when integrating the shear stress and pressure for computa-

tional efficiency, which leads to a stable semi-implicit integrator. Figure 14.1 compares

our method against explicit integration; our semi-implicit method can stably handle
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1E-4 1E-3 1E-2 1E-1 1E+0 1E+1

drilling mud
shaving cream

Max Courant number

our method

implicit pressure + explicit shear

fully explicit

Figure 14.1: Comparing implicit and explicit integration. We compare the
maximal Courant number allowed for stable simulation between different integrators
for the scene in Figure 13.9. The error bars indicate standard deviation over differ-
ent grid settings. We adopt logarithmic coordinates and put the origin at 10−4 for
legibility.

much higher Courant numbers.

We first integrate the shear stress without the pressure applied by solving

Cfu
∗
f = Mfu

t
f + h

(
f t

MPM + Mfg + Dfu
∗
s
)

(14.6)

where Cf = Mf + Dτ + hDf + h2Ht
f, Df = diag(WT

gvvec(D)) ∈ Rf×f is a diagonal

matrix containing all drag coefficients interpolated on the grid, and Ht
f is the Jacobian

matrix of shear force evaluated at time step t. The operator vec(·) converts a diagonal

matrix into a vector and diag(·) converts a vector into a diagonal matrix. Similarly

Dτ = diag(WT
gvvec(Mτ )) is a diagonal matrix containing all the mass of the surface

flow interpolated onto the grid. Here fMPM is the MLS-MPM discretization of the

shear force [104] whose term on face i can be computed as

f t
MPM,i = −

∑
p

µJ−2/3
p Ni(xp)V

0
p D−1

p ET
i dev(bE,t

p )(xi − xp) (14.7)
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where µ is the shear modulus; Ni(xp) is the B-spline kernel evaluated at the position

xp of particle p; xf,i is the central position of grid face i; Ei is the normal direction

of grid face i; Dp is the inertia tensor of the kernel function; and dev(bE,t
p ) is the

deviatoric part of the left Cauchy-Green strain tensor bE,t
p . We adopt a quadratic

kernel where Dp =
1
4
∆x2I3 [123] and ∆x is the grid spacing.

Using the new velocity with the shear stress applied, we solve the pressure equation

(refer to Pressure Solve below for details). We then apply the pressure gradient

onto the right hand side of (14.8) and perform another implicit solve, where

Cfu
t+1
f = Mfu

t
f + h

(
f t

MPM + Mfg + Dfu
∗
s −VfGcgp

)
(14.8)

Remark. Directly interpolating the drag forces onto the grid can introduce poor

conditioning due to the interpolation matrix [262]. To avoid this issue, we instead

interpolate the drag coefficients onto the grid, and then use them to recompute a

grid-based drag force and apply it to the liquid. This choice makes the drag matrix

diagonal and avoids conditioning issues, without introducing apparent visual artifacts.

Yue et al. [262] took a similar approach in the context of matching granular flow

velocities solved with different models.

Semi-Analytic Plastic Flow. A Herschel-Bulkley liquid will yield and undergo

plastic flow once its shear stress exceeds its yield stress, leading to a decrease of the

shear stress. This fact must be considered when computing the Jacobian of the shear

force, which necessitates the differentiability of the equation for plastic flow. However,
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prior work on Herschel-Bulkley liquids [261] computed the plastic flow with bisection,

making the process non-differentiable. Fortunately, we found that the plastic flow for

Herschel-Bulkley liquids can in fact be computed analytically, as described below.

In the following discussion, we use a bar to denote volume-preserving variables,

e.g., the volume-preserving left Cauchy-Green strain is b̄E ≡ J−2/dbE. Similar to

prior work [261], we first compute an intermediate state for the updated normalized

left Cauchy-Green strain as b̄E,∗ = f̄b̄E f̄T that accounts for the elastic deformation

in (13.12), where f ≡ Id + h∇ut
f is the increment of the deformation gradient. The

updated shear stress is then denoted as s∗ ≡ µdevb̄E,∗ and its norm as s∗ ≡ ∥s∗∥.

Once plastic flow occurs, according to the von Mises yield condition (13.11), we

can update the norm s∗ as

st+1 =


(s∗ − σ̃Y )e

− 2µ̂
η
h + σ̃Y n = 1[

(s∗ − σ̃Y )
n−1
n − 2µ̂h

(
1− 1

n

)
η−

1
n

] n
n−1

+ σ̃Y n ̸= 1

(14.9)

where µ̂ ≡ µ
3
trb̄E,∗, σ̃Y ≡

√
2
3
σY , σY is the yield stress, η is the flow consistency

index, and n is the flow behavior index. We can then recover the volume-preserving

Cauchy-Green strain after plastic flow as b̄E,t+1 = st+1

st
dev(b̄E,∗) + µ̂I3.

Derivation of (14.9). We begin the derivation from the formulation of the temporal

derivative of left Cauchy-Green strain, which is given in (13.12). Before solving

the plastic flow, we have integrated the elastic deformation through b̄E,∗ = f̄b̄E f̄T .
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Therefore, we only need to consider the plastic part of db̄E/dt, which is denoted as

db̄E,∗/dt and has the following formulation

db̄E,∗

dt
= −2

3
tr(b̄E,∗)γ(s∗)ŝ∗. (14.10)

where s∗ ≡ ∥s∗∥ and s∗ ≡ µdevb̄E,∗ is the shear stress after the elastic deformation

being integrated. We further define the normalized shear stress ŝ∗ ≡ s∗/s∗.

With some algebraic manipulations, we can rewrite b̄E,∗ from the definition of ŝ∗,

as following

b̄E,∗ =
s∗

µ
ŝ∗ + 1

3
tr(b̄E,∗)I3 (14.11)

Taking the temperal derivative of both sides, we have

db̄E,∗

dt
= µ−1

(
ds∗

dt
ŝ∗ + s∗

dŝ∗
dt

)
+

1

3
tr
(

db̄E,∗

dt

)
I3 (14.12)

Since ŝ∗ is deviatoric, tr(ŝ∗) = 0, we then have

tr
(

db̄E,∗

dt

)
= 0. (14.13)

Besides, during the plastic flow, the shear stress s∗ would change in magnitude but

not in direction due to the principle of maximum plastic dissipation [215], i.e.,

dŝ∗
dt

= 0. (14.14)
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Therefore, we have

db̄E,∗

dt
= µ−1ds

dt
ŝ∗ (14.15)

In other words, the temporal derivative of bE,∗ can be computed directly from the

temporal derivative of the magnitude of shear stress s during the plastic flow.

Comparing (14.15) with (14.10), we discover that

ds∗

dt
= −2µ̂γ(s∗), (14.16)

where µ̂ ≡ µ
3
trb̄E,∗. Assuming Φ(s) in (13.13) will not change its sign during one time

step, we can then integrate s∗ from time step t to t+ 1 through (14.16) analytically,

which gives us the form of (14.9). ■

The key benefit of (14.9) is that plastic flow becomes differentiable over s∗ and µ̂,

making the shear stress differentiable. Hence we can compute the Jacobian matrix Hf

of the shear force and implicitly integrate the shear stress with plastic flow considered.

Jacobian of the Shear Force. In the augmented MLS-MPM method, the i-th

row and j-th column of the Jacobian matrix Hf of the shear force (defined in (14.7))

is computed as [104, 226]

Hf,ij =
∑
p

V 0
p ET

i Lp,j(FE
p )

TD−1
p Ni(xp)(xf,i − xp) (14.17)
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where

Lp,j ≡
∂2Ws

∂F∂F : D−1
p Nj(xp)Ej(xf,j − xp)

TFE
p . (14.18)

In the equations above, Ni(xp) is the B-spline kernel evaluated at the position xp of

particle p; xf,i is the central position of grid face i; Ei is the normal direction of grid

face i; Dp is the inertia tensor of the kernel function; dev(bE,t
p ) is the deviatoric part

of the left Cauchy-Green strain tensor bE,t
p (see the opening section of §13.1); and

the operator A : B denotes the tensor product between a fourth-order tensor A and

a second-order tensor B. We then need to insert our Herschel-Bulkley model into

these equations. Below we derive a general Jacobian matrix for 2D and 3D, with the

number of dimensions denoted as d, i.e., d = 2 for 2D and d = 3 for 3D.

We begin our derivation from (13.6), where we have the derivative of shear energy

over FE:

∂Ws

∂FE
ij

= µdev(b̄E)FE−T
. (14.19)

where a bar indicates normalized variables, and b̄E = J−2/dFEFET is the normalized

left Cauchy-Green strain tensor. We define a function λ to represent the plastic flow,

i.e., rewriting (14.9) as st+1 = λ(s∗, µ̂).

Below we drop the star and E superscripts for brevity. We have b̄ = λ(s,µ̂)
s

dev(b̄)+

µ̂I3 and thence dev(b̄) = λ(s,µ̂)
s

dev(b̄), and

∂Ws

∂Fij

= µλ̃J−2/d

[
Fij −

1

d
tr
(
FFT) (F−T)

ij

]
. (14.20)
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where λ̃ ≡ λ(s,µ̂)
s

. Applying matrix calculus [182], we have the following derivatives:

∂J−2/d

∂Fuv

= −2

d
J−2/d(F−T)uv, (14.21a)

∂Fij

∂Fuv

= δuiδjv, (14.21b)

∂

∂Fuv

tr
(
FFT) = Fuv, (14.21c)

∂

∂Fuv

(
F−T)

ij
=

∂

∂Fuv

(
F−1

)
ji
= −

(
F−1

)
ju

(
F−1

)
vi
. (14.21d)

where δij is the Kronecker delta, i.e., δij = 1 if and only if i = j.

By the chain rule, we can compute

∂s

∂s =
s
s
, (14.22a)

∂sij
∂Fuv

= µJ−2/d

[
−2

d
(F−T )uv[devb]ij + δiuFjv −

1

d
Fuvδij

]
, (14.22b)

∂s

∂Fuv

= −2s

d
(F−T )uv + µ

(devb̄ · F)uv − 1
d
tr(devb̄)

∥devb̄∥
, (14.22c)

∂µ̂

∂Fuv

=
1

d
µJ−2/d

[
−2

d
(F−T )uvtrb + Fuv

]
. (14.22d)

The Hessian of the shear energy then becomes

∂

∂Fuv

(
∂Ws

∂Fij

)
= −2

d
J−2/d(F−T)uv

[
Fij −

1

d
tr
(
FFT) (F−T)

ij

]
+ µJ−2/d

[
δuiδjv −

1

d

(
FuvF−T

ij − tr
(
FFT) (F−1

)
ju

(
F−1

)
vi

)]
+

[
µJ−2/d

[
Fij −

1

d
tr
(
FFT) (F−T)

ij

]]
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[
∂λ̃

∂s

(
−2s

d
(F−T )uv + µ

(devb̄ · F)uv
∥devb̄∥

)
+

∂λ̃

∂µ

µ

d
J−2/d

(
−2

d
(F−T )uvtrb + Fuv

)]
.

(14.23)

In addition, for an arbitrary matrix B ∈ Rd×d, under the Einstein notation we

have [182]

δuiδjvBuv = Bij, (14.24a)

FuvBuv = tr(FTB), (14.24b)(
F−1

)
ju

(
F−1

)
vi

Buv =
(
F−TBTF−T)

ij
, (14.24c)(

∂2Ws

∂F∂F : B
)

ij

≡ ∂

∂Fuv

(
∂Ws

∂Fij

)
Buv. (14.24d)

Using these equations and some algebra operations, we have the following formulation

for multiplying the Hessian of shear energy with an arbitrary matrix B:

∂2Ws

∂F∂F : B = µ

[
J−2/dB− 2

d
tr
(
F−1B

)
dev

(
b̄
)

F−T

−1

d
F−T (J−2/dtr

(
FTB

)
Id − tr

(
b̄
)

BTF−T)]
+ µdevb̄ · F−T

[
∂λ̃

∂s

(
−2s

d
tr(F−1B) + µ

tr(FTdevb̄ ·B)

∥devb̄∥

)

+
∂λ̃

∂µ

µ

d
J−2/d

(
−2

d
tr(F−1B)trb + tr(FTB)

)]
(14.25)

Explicitly computing (14.25) and constructing a Jacobian matrix is not economi-

cally efficient. Instead, only computing the result of multiplying the Jacobian with a
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vector is more effective, similar to prior works [104, 226] (e.g., in (14.6) that implicitly

integrates the shear stress, the vector to be multiplied with is the velocity u∗
f or some

intermediate states in a conjugate gradient solver). Noticing that the deformation

gradient F can be canceled with or combined into b̄ when substituting (14.25) into

(14.18) and (14.17), then the multiplication between the Jacobian matrix Hf and an

arbitrary vector q (whose dimension matches the number of columns of Hf) can be

computed below.

Defining

vjα,p ≡ Njα(xp)(xf,jα − xp) (14.26)

for direction α ∈ [0, d− 1], in 2D we define

Bp ≡
∑
j

[vj0,pqj0,vj1,pqj1]. (14.27)

and in 3D

Bp ≡
∑
j

[vj0,pqj0,vj1,pqj1,vj2,pqj2]. (14.28)

With all the variables defined above substituted into (14.17), and using Bp to replace

the arbitrary matrix B in (14.25), the Jacobian matrix multiplied with an arbitrary

vector q is computed as

(Hfq)iα =
∑
p

L̃p,α∗viα,p (14.29)
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uτ, k-1
uτ, k uτ, k+1

Aτ, k , cτ, k

Aτ, k-1 , cτ, k-1

Aτ, k+1 , cτ, k+1 Aτ, k+2 , cτ, k+2

Figure 14.2: A strand with staggered discrete flow variables: the cross-
sectional area A and the reduced elastic Cauchy-Green strain cτ are defined on ver-
tices, and the flow velocity uτ is defined on edges.

where L̃p,α∗ ∈ R1×d is the α-row of L̃p, and

L̃p ≡ µV 0
p D−2

p

[
st+1

(
BT

p b̄− 2

d
tr(Bp)dev(b̄)− 1

d

((
Bp ⊙ b̄

)
Id − tr(b̄)Bp

))
+dev(b̄)

(
∂λ̃

∂s

(
µtr(dev(b̄)BT

p b̄)
∥devb̄∥

− 2st+1

d

)
+

∂λ̃

∂µ

µ

d

(
tr(BT

p b̄)− 2

d
tr(Bp)tr(b̄)

))]
,

(14.30)

where ⊙ denotes the Frobenius inner product, i.e., A⊙B =
∑

i

∑
j AijBij. ■

Pressure Solve. After integrating the shear stress, we compute the pressure p

using

Cpp = K−1
c pt + hV−1

c GT
w,cvVs (u

∗
s −Wgvu

∗
f ) + hGT

cgu
∗
f , (14.31)

where

Cp = K−1
c + h2GT

cgĈ−1
f VfGcg, (14.32)

the diagonal matrix Kc has i-th entry Kc,i ≡ κ
2

(
JE
i + 1

JE
i

)
, and Ĉi

f is a diagonal

matrix to approximate Cf, i.e. Ĉi
f,kl = Ci

f,klδkl. To preserve the symmetry of the

pressure equation (14.31), we adopt explicit integration for the volume fraction change

in (13.72b). We did not observe any instabilities resulting from this choice.
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Surface Flow. Similar to the surface flow in Part II, we discretize the spatial

derivatives in (13.17) with finite differences (Figure 14.2). At each time step we first

advect both velocity uτ and cross-sectional area Aτ with backtracing [224]. We then

integrate the remaining terms in (13.17) and update the cross-sectional area Aτ by

integrating the divergence of velocity in (13.48). For the area at vertex k we have

At+1
τ,k = A∗

τ,kexp
(
−huτ,k − uτ,k−1

lk

)
(14.33)

where A∗
τ,k is the area after advection, and lk is the Voronoi length of vertex k. Finally

we update the Cauchy strain cEτ by discretizing the spatial derivatives in (13.18) with

finite differences, which produces a nonlinear equation that we solve via bisection.

Contact Handling. Similar to prior work [129], we loop over all contacts during

the collision solve, updating each contact while the remaining contacts are fixed, in

a Gauss-Seidel-like manner. By defining E as the tranformation from world space to

contact space, the equation used to update the k-th contact is

ut+1
s = u†

s + C−1
s
(
Ekrs,k + Ēkr̄s,k

)
. (14.34)

where Ēk and r̄s,k are respectively the complement matrix and vector formed by

zeroing out the columns and entries used for Ek and rs,k.

In the following we define the future relative velocity at the contact as v ≡ ETus.
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Multiplying by ET on both sides of (14.34) gives

vt+1 = ET
(
u†

s + Cs
−1E (r + rA)

)
. (14.35)

Above, following the YacFS library [75] attached with ADONIS [129, 130], we have

decomposed the total contact impulse rs into the unknown repulsive collision impulse

r and the known cohesive impulse rA ∈ R3k×1. The latter is a vector composed of

cohesive forces in the normal directions of all contacts.

We can then reformulate the equations above as a second-order Coulomb cone

problem (SOCCP) given by

Sr = v − ETu†
s − SrA, (14.36a)

∀k,(rs,k,vk) ∈ Kµ (14.36b)

where S = ETCs
−1E is the Delassus operator [30]. We solve this with So-Bogus [69].

14.2 Algorithm

We summarize our resulting nonlinear mixture solver in Algorithm 2. For advection

and mapping velocities between particles and the grid, we adopt the affine particle-

in-cell (APIC) [122] method and the moving least-squares material point method

(MLS-MPM) [104] for their simplicity and efficacy. As noted earlier, we rely on an

underlying staggered (MAC) grid, similar to augmented MPM [226].
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Algorithm 2 Algorithm solving the dynamics of the liquid-strand mixture.
u∗

τ ← Advect() for the surface flow
u∗

s ← NonlinearNewtonSolve() through (14.3) for the prediction of a new
strand velocity
K← CollisionDetection(u∗

s , q
t
s)

u∗
f ← ShearStressSolve() for liquid (14.6)

pt+1 ← PressureSolve() for liquid (14.31)
ut+1

f ← ShearStressSolve() with the pressure gradient applied (14.8) to update
liquid velocity
u†

s ← NonlinearNewtonSolve() through (14.4), for a new strand velocity with
the pressure gradient applied
u∗

τ ← VelocityIntegrate() of the surface flow with forces added
At+1

τ ← CrossSectionalUpdate() for the surface flow with equation (14.33)
j ← 0
while contact error> ϵcontact & j < jmax do

for k ∈ K do
rk ← ContactSolve() with (14.36a) s.t. (rs,k,v

t+1) ∈ Kµ

r ← r̄k + rk

end for
j ← j + 1

end while
ut+1

s ← NonlinearNewtonSolve() through (14.5) for the final strand velocity
qt+1

s ← qt+1
s + hui+1

s
return (ut+1

s , qt+1
s ,ut+1

f ,ut+1
τ ,At+1

τ )

A single step of our complete algorithm consists of the following sequence of

operations:

1. Transfer between surface and bulk liquid. Bulk liquid is captured as

surface flow for those strands crossing the interface; excess liquid from surface

flow is converted into particles.

2. Merge, split, and relax particles. Following Winchenbach et al. [253], par-

ticles that are too small are merged with neighbor particles, while ones that are

too large are split. In addition, we apply a pass of relaxation [9] to maintain

the uniformity of the particle distribution.
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3. Map liquid particles to grid. At the start of every time step we transfer

the particles’ mass, velocity, and volume change to the MAC grid, through the

APIC method [122].

4. Compute weighting matrices. The matrices for mapping are computed with

kernel weights, for both liquid and strands.

5. Detect tearing regions. Each particle’s accumulated plasticity is examined

to detect tearing [261].

6. Solve for Mixture. The velocities of the grid, surface flow, and strands

are updated, following Algorithm 2. The shear equation (14.6) is solved with a

Jacobi preconditioned conjugate gradient solver [204], and the pressure equation

(14.31) is solved with an algebraic multigrid preconditioned conjugate gradient

(AMGPCG) solver [263].

7. Update liquid particles from grid. We update each particle’s velocity from

the MAC grid via APIC [122].

8. Update particle deformation info. The deformation gradient, left Cauchy-

Green strain, and volume change are updated through MLS-MPM [104].

9. Update positions for particles and strands. Positions are updated accord-

ing to the velocities for liquid particles and strand vertices.

10. Compute plasticity for bulk liquid. The plastic flow of bulk liquid is com-

puted from the deformation gradient, where excess elastic strain is converted

to plastic strain.

11. Compute plasticity for surface flow. The strain in the surface flow is

updated by (13.18), where excess elastic strain is converted to plastic strain.
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12. Compute plastic recovery. The plasticity history is relaxed to account for

the strengthening of bonds between bulk materials [261].
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Chapter 15

Simulated Results of the Strands Coupled with

Shear-Dependent Liquids

We divide our results into two classes: i) a group of didactic cases designed to vali-

date individual components of our framework and ii) a set of more general scenarios

of Herschel-Bulkley fluid interaction with strands that demonstrate the diversity of

practical effects that can be achieved by our system.

15.1 Didactic Examples

Varying Volume Fraction. To show the importance of the volume fraction term

in the pressure equation, we compare simulations of liquid flowing through hair with

and without the volume fraction term used when solving the pressure equation (Fig-

ure 13.6). For ease of comparison drag is disabled in this scene.

Buoyancy. Our method introduced in this part can correctly handle materials with

different mass densities, which is not considered in Part II. In Figure 13.5 we demon-

strate the buoyancy behavior of hairs with different mass densities in water.
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Examples sec./step min./frame hour/anim. sec. # particles # vertices grid size
strand liquid strand liquid strand liquid (max) of strands max dimensions ∆x (cm)

Shaking a Hairball 3.0 122.4 1.7 68.0 0.8 34.0 12.3 M 46.1K 120× 128× 120 0.5
Splashing Paint 14.9 36.1 8.3 20.1 4.1 10.0 2.1 M 119.4K 328× 424× 328 0.5

Chocolate “Dog" 20.2 57.3 11.2 31.8 5.6 15.9 3.0 M 688.1K 192× 272× 680 0.75
Soba with Oyster Sauce 32.4 9.3 45 12.9 22.5 6.5 492.7 K 97.0K 128× 80× 136 0.375

Table 15.1: Timings and storage statistics. The timings are averaged over all the
steps or frames of one example. Each frame is 1/30s.

Drag Force. In Figure 13.9 we compare our material-specific drag coefficient

against a constant drag coefficient for distinct liquids falling onto strands. In Fig-

ure 14.1 we use the same scenario to compare the maximal (unitless) Courant number

(calculated with umaxh/∆x where umax is the maximal velocity across the whole do-

main, h is the time step, and ∆x is the cell size) between different integration schemes.

Compared with using an explicit integrator for the shear stress, or for both shear and

pressure, our semi-implicit integrator is stable for both compressible shaving cream

and incompressible drilling mud, and can handle more or less viscous liquids with

moderate time steps (Courant number up to approximately 1.24).

Droplet Dripping. In Figure 13.1 large droplets of various liquids flow down thin

strands, demonstrating the variety of material-dependent behavior that we capture.

In Figure 13.4, we construct a similar scenario with a large, heavy tetrachloroethene

droplet (mass density 1.622g/cm). When such a droplet flows on a thin strand, the

flow can dramatically affect the strand’s momentum. With the explicit inertia transfer

method proposed in the last part, a huge correction will cause instability. On the

other hand, our improved method can stably integrate the extra strand momentum

induced by the large droplet.
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High-Speed Rotation. To further demonstrate the behavior of surface flows for

liquids with high viscosity or yield stress, we rapidly rotate strands with droplets of

various materials on them (Figure 13.3). We observe that the mud and milk cream are

flung out quickly after the simulation starts, while the milk cream starts to move only

after the centrifugal force exceeds its yield stress. We also observed that the paint

and milk cream flow more easily as their velocities are increased, demonstrating a

shear-thinning behavior.

Cohesion and Coalescence. In Figure 13.10, two strands initially hang verti-

cally with a distance of 0.011cm between their centerlines. We then gradually sepa-

rate them. The milk cream between the two strands forms a strong cohesive force.

Comparing our constraint-based model with the penalty-based model, the latter ex-

hibits tunneling and locking artifacts when simulating the cohesion of strongly non-

Newtonian materials.

Friction with Various Materials. To demonstrate how the liquid material affects

friction between strands, we simulate two bundles of strands covered with cream and

mud, respectively (Figure 13.13). Since the cream has higher viscosity and yield

stress, the strands covered in cream move less readily compared with those covered

in mud.
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(a)

(b)

(c)

(d)

Figure 15.1: (a) Shaking a Hairball. A ball rises out of mud and shakes its
hairs to throw off the mud. (b) Splashing the Paint. A rapidly rotating paint
brush splashes oil paint everywhere. (c) Chocolate “dog”. Melted chocolate is
poured onto a fluffy cylinder, which tries to shake the chocolate off by mimicking the
mammal-shaking behavior. (d) Soba with Oyster Sauce. Oyster sauce is poured
onto a plate of soba noodles, while a fork is used to stir and pull the noodles.

15.2 Large-Scale Examples

Shaking a Hairball. To illustrate the cohesive and frictional behavior of wet hairs,

we simulate a hair-covered ball lifting out of a mud pool and shaking (Figure 15.1a).
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When the motion stops, the hairs stick and tangle as expected.

Splashing Paint. Oil paint is another familiar shear-dependent fluid. We simulate

the interaction between the brush bristles and a pool of colorful paint (Figure 15.1b).

In contrast to examples from earlier work (e.g., [53, 266]) in which a brush moves

slowly across paper and is one-way coupled with the paint, we show a brush that is

two-way coupled with the paint during violent and rapid rotation, which causes large

and dynamic splashing of the paint.

Chocolate “Dog”. In Part II, we simulated the process of pouring water over

a rotating shaggy-haired cylinder, mimicking mammal shaking behavior [74]. To

contrast water against more complex liquids, we revisit this scenario replacing the

water with molten chocolate. Before the cylinder begins rotating, the falling chocolate

forms thin sheets and tendrils; later, it separates into many chunky pieces. At the

end of the rotation, much of the chocolate has adhered to the clumped hairs, as would

be expected (Figure 15.1c).

Soba with Oyster Sauce. Moving beyond hair strands, our method can simulate

the coupling between a plate of Soba (buckwheat) noodle and thick oyster sauce. As

the fork is pulled up, due to the frictional effect induced by the strong viscosity of

the sauce, the noodles naturally stick to the liquid and each other (Figure 15.1d).
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Figure 15.2: Timing statistics for the Chocolate “Dog”.

15.3 Performance Numbers

The timing data for our large scale examples is presented in Table 15.1, measured on

a workstation with 2 sockets of Intel Xeon E5-2620 v3 CPUs running at 2.4GHz, each

of which has 6 cores. We adopt a time step size 1× 10−3s for all examples, where

the total lengths of examples vary between 0.75 ∼ 8s. We also provide a detailed

breakdown in Figure 15.2 for the Chocolate “dog” example.

15.4 Surface Reconstruction

When generating the liquid particles, we sample 64 particles in each cell occupied by

the liquid, where we pre-compute a level-set to cull the particles sampled outside the

generator. This amount of particles provides a smoother liquid surface during the

reconstruction. We use the VDB [171] surface operators (SOPs) in Houdini [214] to

perform the reconstruction. For each frame, we perform a VDB from particle liquid

SOP to convert the particles into a level-set. To avoid incorrect holes or instability,

we turn off the rebuild option and use a Primitive SOP to categorize the result VDB
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as a level-set, which is followed by a VDB renormalize SOP to make sure the gradient

of the level set is normalized. In the VDB from particle liquid SOP, we set the particle

separation to be 0.5∆x where ∆x is the cell size for simulation, and the voxel size (for

reconstruction) is set to be 0.25, which means the resolution of the reconstruction grid

is 8× higher than the simulation grid. We then perform a dilation-smooth-erosion

operation [170] to smooth the level-set and use a Convert VDB node to generate a

polygonal surface mesh, where the smoothing method is set to Mean Curvature Flow

so that the volume can be preserved during smoothing.

On the other hand, for the surface flow on strands, we first use a PolyCut SOP to

remove the strand vertices that have zero flow height on a vertex itself and its neigh-

borhood. Then we use a Polywire SOP to convert the height field on the remaining

polylines into polygonal meshes.

We merge these two sets of polygons, and use a VDB from polygons SOP to

convert the merged polygons back to a VDB with much higher resolution, with the

voxel size set to 0.03 (cm). We then again perform a series of dilation-smooth-erosion

operation [170] to smooth out the kinks around the connections between the bulk

liquid and the surface flow, which in addition, also creates the liquid bridge between

the flow on strands. Finally, we convert the level-set back into polygons for rendering

with a convert VDB SOP.
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15.5 Parameters

The physical parameters used in this part are taken from multiple pieces of the

literature [12, 37, 131, 172, 261]. These parameters are given in the following table,

where the water and tetrachloroethylene are incompressible, Newtonian liquids, the

drilling mud, acrylic paint and oyster sauce are incompressible, shear-thinning liquids,

the milk cream and shaving cream are compressible, shear-thinning liquids, and the

milk chocolate is a compressible, (almost) Bingham liquid.

Materials ρ κ µ τY η n
(g/cm3) (dyne/cm2) (dyne/cm2) (dyne/cm2) (Ba · sn) (unitless)

water 1.0 2.0e10 0 0 8.9e-3 1.0
tetrachloroethylene 1.622 3.1e10 0 0 8.9e-3 1.0
drilling mud 1.22 2.0e10 1.0e3 16.813 6.496 0.5173
acrylic paint 0.95 1.35e9 4.0e3 9.6 173.56 0.3162
milk cream 0.275 1.09e6 1.6e4 1.2e3 50.0 0.27
shaving cream 0.2 1.09e6 2.9e3 3.19e2 2.72e2 0.22
oyster sauce 1.207 2e10 4.0e3 26.5 16.1 0.62
milk chocolate 0.95 4.28e6 4.0e3 3.0e2 28.0 0.98

Table 15.2: Parameters of the materials used in this part.
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Chapter 16

Discussions and Limitations

We have presented a multi-scale framework that can couple strands with diverse shear-

dependent liquids. The results in this part cover a wide range of materials, including

incompressible or compressible, and Newtonian or non-Newtonian fluids.

Several of our developments benefit the coupling of strands to fluids in general, be

they Newtonian or non-Newtonian. The pressure equation (13.72a) accommodates

various constitutive models [123]. The momentum equation (13.50) of strands is

agnostic to the fluid model. Indeed, (13.50) applies to any solid (not just strands)

with surface flow, e.g., raindrops sliding over a glass pane. Di Felice’s drag formula

is equally applicable to both Newtonian and non-Newtonian fluid. The same is true

of the boundary condition for the consistency between surface flow and bulk liquid.

Some of our other contributions are naturally more specific to shear-dependent

fluids. The reduced Cauchy-Green strain and its dynamics are exclusive to shear-

dependent surface flow. Aspects of the cohesive force and the semi-analytical for-

mulation of the plastic flow (14.9) are only meaningful for Herschel-Bulkley fluids.

Although Di Felice’s drag formula is a comprehensive treatment, Renaud’s drag coef-

ficient is not, and is only required for coupling solids with non-Newtonian fluids [197,
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229].

16.1 Limitations

Our framework still has a few limitations imposed by our assumptions, numerical

methods, surface reconstructors, or selected experiments.

In the reduced surface flow model, surface tension in the longitudinal direction is

neglected for ease of computation, and thus we cannot maintain the correct contact

angle between the reduced surface flow and the strand. Also, large droplets that break

the cylindrical assumption cannot be faithfully captured. We have not considered the

fact that some strands may have anisotropic cross-sections. For some materials (e.g.,

milk cream), the surface liquid is slow in the absence of drastic strand motion, and

hence the computation could be further simplified for better performance. Our liquid

capturing process is purely geometric, and thus the liquid can exhibit some popping

artifacts when the simulation replays slowly.

The pressure equation can be imprecise when the strands are compressible (e.g.,

rubber bands). We have not considered coupling strands with materials whose plastic

flows are pressure-dependent, such as snow, sand, or rubber. The pressure solved in

our staggered integration approach may not be consistent with the future velocity

of the strands, although we have not observed visible artifacts caused by this fact.

Similar to prior work [226], our bulk fluid model splits the integration of pressure

from shear stress, which may affect the accuracy of the free surface [142].
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Due to the limited resolution of the fluid grid, the drag force can affect the liquid

motion over a wider region than expected if the grid resolution is insufficient. In-

creasing the resolution of the grid or using an adaptive grid [84] may alleviate this

problem.

We adopted liquid parameters and drag coefficients from sources in the physics

literature (§15.5). Nevertheless, with these measured parameters it remains difficult

to accurately reproduce some real-life scenarios. For example, the behavior of pasta

sauce will change drastically depending on variations in temperature, which is not

considered in the cited references. Similarly, real pasta sauce may contain other

ingredients (e.g., soy sauce, olive oil) that dramatically decrease its viscosity. Accu-

rately capturing the physical parameters of liquids along with temperature change

and ingredients remains for future work.

Some limitations are inherited from the sub-components adapted to build our

framework. Augmented MPM spends more time computing (staggered) kernel

weights than regular MPM. The hybrid iterative solver used for the SOCCP is not

strictly guaranteed to converge, which may cause some penetrations (e.g., in Soba with

Oyster Sauce, there are some penetrations between the noodle and the plate, which,

however, are not observable explicitly). This is caused by the non-convergence of the

SOCCP solver, which is a known problem for such a Gauss-Seidel solver. Neither is

the stability of the elastic rods guaranteed: when two consecutive rod elements are

bent to (almost) 180-degrees, the discrete curvature becomes (near-)singular, and the

bending energy would rise to infinity. This issue can occur in practice when a large
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drag force reshapes the strands into a problematic configuration.

Beyond the dynamics, it is difficult to perform an accurate surface reconstruction

for particle-based non-Newtonian bulk liquid undergoing a drastic motion. Tradi-

tional geometric reconstruction methods largely ignore the particles’ deformation his-

tory, such that thin sheets or tendrils may appear as separated droplets during recon-

struction. Moreover, developing accurate shaders for rendering such non-Newtonian

liquids can be difficult. For example, we tried using ketchup in Soba with Oyster

Sauce but did not successfully obtain a ketchup shader with a realistic visual appear-

ance. We believe many of the limitations described above can provide exciting fodder

for future research.
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Chapter 17

Conclusion

This dissertation focuses on the coupling between strands/clothes and different types

of liquid. The purpose of this dissertation is to excavate the physics behind the

amazing phenomena involved when strands and clothes interacting with liquid and,

additionally, lay out a framework that can simulate these phenomena, including liquid

dripping, capturing and dragging, as well as diffusing through fabric or flowing along

the strands.

The phenomena involved in liquid-strand or liquid-fabric interaction can be very

complicated. The main argument of this dissertation is that to plausibly recover

these phenomena, a multi-scale model is necessary, where one model focuses on the

scale of the radius of a strand or the thickness of fabrics and another model focuses

on the surrounding bulk liquid. In this dissertation, we demonstrate the efficacy of

our multi-scale models through multiple complicated examples, including tightening

a wet towel in Part I, performing a hair flip in Part II, and spreading oil paint with

a brush in Part III. Through these examples demonstrated in this dissertation, we

argue that a diffusive/surface flow model is crucial for visual plausibility.
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17.1 Summary of Contributions

To simulate the small-scale details economically, in Part I, we develop a convection-

diffusion model derived from the mixture theory [8] for the liquid propagating through

fabric; in Part II, we modify the shallow water equation [205] to simulate a Newto-

nian liquid flowing along a strand; and in Part III, we generalize the shallow water

equation to simulate an elastoviscoplastic material flowing on a strand, where a New-

tonian flow becomes a special case of our model. The capability of capturing these

small-scale details makes the methods introduced in this dissertation significantly

different from the prior works.

To simulate a complex scenario, we also need other supportive components. In

Part I, we deliver a model to approximate the anisotropic fabric microstructure. In

Part II, we deliver an analytical cohesion model, and in the same chapter, we also

propose a liquid dripping and capturing scheme. In Part III, we derive an additional

inertia term applied to the strands. These components are significant enhancements

to our surface/diffusive flow model, enabling us to exchange mass and momentum

between the surface flow and other phases (strands, fabrics, bulk liquid), as well as

to stably and plausibly simulate cohesive and frictional effects between strands.

More importantly, we develop the coupling schemes between the bulk liquid and

the strand/fabric submerged. In Part I, we treat the fabric as continuum porous

media and couple it with bulk liquid using the mixture theory. However, upon dis-

covering that it would be inefficient to simulate strands as a continuum, we turned
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our attention to CFD-DEM, where the solid phase is instead modeled as discrete

elements. In Part II, we adopt a simple coupling scheme, whereas in Part III, we

formally build our coupling scheme from CFD-DEM, for the DERs, the liquid as a

continuum, and the surface flow on strands.

Finally, to support all the physical models we presented in this dissertation, we

also develop novel numerical techniques. In Part I, we split a stiff, non-symmetric,

and nearly ill-conditioned system into three symmetric, positive and definite systems

at the cost of introducing some indiscernible divergence; in Part II, we introduce a

local-global splitting scheme making the conjugate gradient solver for hair dynamics

to be several magnitudes faster; and in Part III, we derive an analytical form of

the plastic flow in Herschel-Bulkley fluid, which, with a semi-implicit solver, enables

moderate time-stepping for the shear-dependent bulk liquid.

17.2 Our Recommendation

During our exploration through these three parts, we have learned several conclusions

about which way is better than the others for each specific phase of the simulation.

Although recently, the technique of simulating thin structures as a continuum has

been significantly advanced (e.g., [95, 121]), we still recommend simulating stiff thin

structures as discrete elements. This recommendation comes from both performance

and quality considerations. When simulating these thin structures as discrete ele-

ments, each group of connected elements can be solved individually in parallel. Since
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these groups contain only a small number of degree of freedom, a direct solver for

each group is possible. This strategy is more efficient than simulating these strands

as a continuum, where everything is solved as a whole system with an iterative solver.

Also, solving the strands as discrete elements will avoid the “linearization” artifact

raised in continuous representation, since the latter describes the motion of a group

of strands only with a linear deformation gradient.

We also conclude that using a full-implicit integrator for simulating the thin struc-

tures is necessary, mainly when the scenario contains considerable drag, collision, or

cohesive force. These external forces would quickly reshape the thin structures so

that the latter would suffer from large stretching or bending energy. An explicit

solver, or a linearized-implicit solver, does not fit for a system containing large non-

linearity, and thus, is often unstable. This consideration further blocks the use of a

continuum representation of the thin structures, because a full-implicit integrator for

stiff continuum can be very expensive.

From the modeling side, we conclude that a reduced-dimensional model (e.g., a

surface flow, or a convection-diffusion model) is crucial for producing plausible visual

appearance. First, the reduced model itself would provide rich details of liquid flowing

on the thin structures. Secondly, since the cohesion force depends on the thickness of

liquid on the thin structures, a reduced-dimensional model also helps with correctly

computing cohesion effects.

When the thin structures submerge into the liquid, most (if not all) interaction
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effects between the thin structures and the liquid are contributed by the drag force

and liquid pressure. Therefore, correctly computing these terms is crucial for plausible

motion. Especially when considering liquid beyond water, using a material-specific

drag coefficient would produce dramatically different effects than using a constant

(or less carefully considered) drag coefficient. We have shown much difference in the

Drag Force example of Part III.

Finally, we conclude that although a penalty-based contact model is simple, a

constraint-based contact model is necessary for practice. With a large cohesion force,

a penalty-based contact model would quickly produce tunneling artifact, unless the

stiffness of collision is manually tuned individually for different parts of a simulation

as well as for its different time, which seems to be a painful or even impossible task.

On the other hand, a constraint-based contact model can be used without much

tuning, where accurate frictional effect also comes natively.

Based on these considerations, we argue that at the time of the thesis’s publication,

the framework presented in Part III is so far the most principled, stable, and effective

method that delivers a plausible simulation involving the coupling between liquid and

strands. Although not been explored yet, extending the framework to clothes seems to

be trivial, where one may easily replace the surface flow with the convection-diffusion

model proposed in Part I.
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17.3 Perspectives

As mentioned in the final sections of each chapter, the models and numerical methods

in this dissertation still have many factors that need to be improved in future research:

the lack of rigorous laboratory experiment for validation, the ignorance of correct

contact angle between the liquid and strand/fabric surface, the lack of a principled

physical model (and solver) for liquid capturing and dripping, the smearing of drag

force due to limited grid resolution, and the fact that both the liquid and strands are

not guaranteed to be stable for an arbitrarily large time step.

As observed in all the examples, the most unsatisfactory element is the surface

reconstruction, but developing a stable, accurate, and efficient surface reconstructor

is beyond the scope of this dissertation. Throughout the three chapters, we adopt

Houdini’s [214] standard particle level set (PLS) method. This standard PLS method

produces a popping artifact when the liquid particles vary greatly in their radii. For

Newtonian liquids such as water, maintaining smoothness contradicts with preserving

the details in splashes. For shear-dependent liquids such as creams, the method also

cannot accurately reproduce the thin sheets or tendrils due to its ignorance to the

deformation of a single particle.

Besides the issues on quality, our reconstruction workflow also consumes over-

whelmingly large memory. Because we need to capture the liquid on strands, both

the VDB grid and the resulting mesh inevitably have very high resolutions. For sev-

eral large examples (e.g., a Shaking “dog”, the Car wash roller in Part II, and the
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Chocolate “Dog” in Part III), producing high quality reconstruction requires more

than 128 GB of physical memory during the surface reconstruction, whereas the gen-

erated mesh of one frame, even compressed, can be 1.8 GB or larger. This situation

highlights the need for a new rendering algorithm that can render the liquid around

strands or fabrics without requiring fine mesh reconstruction.

Despite these limitations, we hope this dissertation may deliver, or even deepen,

the current understanding of the complex phenomena involved in the interactions

between liquid and thin structures. We also believe many of the limitations described

above can provide exciting fodder for future research. Beyond wet hairs or clothes,

we hope the theories and methods in this dissertation can inspire studies on other

porous media, such as wet sand or a wet sponge, and the fluidization of granular

materials.
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Appendix: Gradient and Hessians of the Discrete

Curvatures in Discrete Elastic Rods

In this chapter we derive the gradient and Hessians of the discrete curvature used in

discrete elastic rod (DER). Although very lengthy, the Hessian is necessary when one

implicitly integrates the bending force of DERs.

Motivation. In the literature, there are multiple models for discrete elastic rods.

We adopt the definition of the discrete curvatures (§17.3) following the original work

of Bergou et al. [26]. In a following work, Bergou et al. [28] replaced these definition

by projecting the curvature vector κb to the neighbor material vectors mi−1 and mi

and combining the results. Although this latter form is simpler, i.e., the four cur-

vatures used in their prior work [26] are reduced to two terms, it is problematic —

mathematically, it is meaningless to combine the κb projected into different frames.

Hence, in this paper, we still follow the original definition of discrete curvatures [26],

but replaced the space-parallel transport with time-parallel transport when comput-

ing the reference vector. The formulation of the discrete curvatures is the same as the

one taken by Kaldor et al. [126]. Nevertheless, we follow the recent book by Jawed

et al. [117] to present a rigorous derivation of the gradient and the Hessians of the

discrete curvatures.
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Figure A1: Discrete elastic rods, adapted from the book by Jawed et al. [117].

Integrated Curvature Vector

We begin with the definition of the curvature vector κb at a vertex i. Similar as

prior works [26, 126], we take the tangent of the half angle at vertex i as the discrete

curvature.

(κb)i =
2ti−1 × ti

1 + ti−1 · ti
=

2ei−1 × ei

∥ei−1∥∥ei∥+ ei−1 · ei
(A1)

where ti is the normalized tangent vector at edge i, and ei is the edge vector itself

(so that ti = ei/∥ei∥).

We then derive the variation of this curvature vector, which has the following

form

δ(κb)i =
2δei−1 × ei

∥ei−1∥∥ei∥+ ei−1 · ei
+

2ei−1 × δei

∥ei−1∥∥ei∥+ ei−1 · ei

− (ei + ∥ei∥ti−1) · δei−1

∥ei−1∥∥ei∥+ ei−1 · ei
(κb)i −

(ei−1 + ∥ei−1∥ti) · δei

∥ei−1∥∥ei∥+ ei−1 · ei
(κb)i

(A2)

By dividing by the magnitude of the edge vectors we have

δ(κb)i =
2 δei−1

∥ei−1∥ × ti

1 + ti−1 · ti
+

2ti−1 × δei

∥ei∥

1 + ti−1 · ti

− ti−1 + ti

1 + ti−1 · ti
(κb)i ·

(
δei−1

∥ei−1∥
+

δei

∥ei∥

) (A3)
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Material Vectors

We compute the variation of the material vectors mi
1 and mi

2 for defined at edge i.

Following Jawed et al. [117], the temporal derivative of the material vectors are

ṁi
1(t) = γ̇i(t)mi

2(t)−
(
mi

1(t) · ṫ
i
(t)
)
ti(t), (A4a)

ṁi
2(t) = −γ̇i(t)mi

1(t)−
(
mi

2(t) · ṫ
i
(t)
)
ti(t). (A4b)

where γ is the angle between reference vector and material vector, and only depends

on the twist of rods. So the first term refects the change of twist along the complement

material vector, and the second term reflects the change of direction of the edges.

When the position of vertices are disturbed, the change of twist γ̇ is zero. Actually,

we have

δmi
1 = δγimi

2 −
(
mi

1 · δti
)
ti, (A5a)

δmi
2 = −δγimi

1 −
(
mi

2 · δti
)
ti. (A5b)

Discrete Curvatures

Our definition of discrete curvatures follows Kaldor et al. [126], where one vertex at

i generates four terms regards to its previous and next edges

κi−1
i,1 = mi−1

2 · (κb)i, (A6a)

κi
i,1 = mi

2 · (κb)i, (A6b)

κi−1
i,2 = −mi−1

1 · (κb)i, (A6c)

κi
i,2 = −mi

1 · (κb)i. (A6d)
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We compute the variation of these curvatures, where we have

δκi−1
i,1 = mi−1

2 · δ(κb)i + δmi−1
2 · (κb)i, (A7a)

δκi
i,1 = mi

2 · δ(κb)i + δmi
2 · (κb)i, (A7b)

δκi−1
i,2 = −mi−1

1 · δ(κb)i − δmi−1
1 · (κb)i, (A7c)

δκi
i,2 = −mi

1 · δ(κb)i − δmi
1 · (κb)i. (A7d)

When only the positions of vertices are changing, we know from equation A5a that

δγi = 0 and δmi is parallel with the tangential direction ti. Hence δmi is orthogonal

with (κb)i. Therefore, we have the terms δmi
1 · (κb)i = 0 and δmi

2 · (κb)i = 0.

For similar reason, δmi−1
1 · (κb)i and δmi−1

2 · (κb)i are also zero. We then have the

following variations of curvatures

δκi−1
i,1 = mi−1

2 · δ(κb)i − δγi−1mi−1
1 (κb)i, (A8a)

δκi
i,1 = mi

2 · δ(κb)i − δγimi
1(κb)i, (A8b)

δκi−1
i,2 = −mi−1

1 · δ(κb)i − δγi−1mi−1
2 (κb)i, (A8c)

δκi
i,2 = −mi

1 · δ(κb)i − δγimi
2(κb)i. (A8d)

To compute the derivatives we apply equation A3 to the variation of curvatures

and set δei−1, δei, δγi−1 and δγi to zero, respectively. We then have the following

terms while the other terms are all zero

∂κi−1
i,1

∂ei−1
· δei−1 = mi−1

2 ·

[
2 δei−1

∥ei−1∥ × ti

1 + ti−1 · ti
− ti−1 + ti

1 + ti−1 · ti
(κb)i ·

δei−1

∥ei−1∥

]
, (A9a)

∂κi−1
i,1

∂ei
· δei = mi−1

2 ·

[
2ti−1 × δei

∥ei∥

1 + ti−1 · ti
− ti−1 + ti

1 + ti−1 · ti
(κb)i ·

δei

∥ei∥

]
, (A9b)

∂κi−1
i,1

∂γi−1
· δγi−1 = −δγi−1mi−1

1 (κb)i, (A9c)

259



∂κi
i,1

∂ei−1
· δei−1 = mi

2 ·

[
2 δei−1

∥ei−1∥ × ti

1 + ti−1 · ti
− ti−1 + ti

1 + ti−1 · ti
(κb)i ·

δei−1

∥ei−1∥

]
, (A10a)

∂κi
i,1

∂ei
· δei = mi

2 ·

[
2ti−1 × δei

∥ei∥

1 + ti−1 · ti
− ti−1 + ti

1 + ti−1 · ti
(κb)i ·

δei

∥ei∥

]
, (A10b)

∂κi
i,1

∂γi
· δγi = −δγimi

1(κb)i, (A10c)

∂κi−1
i,2

∂ei−1
· δei−1 = −mi−1

1 ·

[
2 δei−1

∥ei−1∥ × ti

1 + ti−1 · ti
− ti−1 + ti

1 + ti−1 · ti
(κb)i ·

δei−1

∥ei−1∥

]
, (A11a)

∂κi−1
i,2

∂ei
· δei = −mi−1

1 ·

[
2ti−1 × δei

∥ei∥

1 + ti−1 · ti
− ti−1 + ti

1 + ti−1 · ti
(κb)i ·

δei

∥ei∥

]
, (A11b)

∂κi−1
i,2

∂γi−1
· δγi−1 = −δγi−1mi−1

2 (κb)i, (A11c)

∂κi
i,2

∂ei−1
· δei−1 = −mi

1 ·

[
2 δei−1

∥ei−1∥ × ti

1 + ti−1 · ti
− ti−1 + ti

1 + ti−1 · ti
(κb)i ·

δei−1

∥ei−1∥

]
, (A12a)

∂κi
i,2

∂ei
· δei = −mi

1 ·

[
2ti−1 × δei

∥ei∥

1 + ti−1 · ti
− ti−1 + ti

1 + ti−1 · ti
(κb)i ·

δei

∥ei∥

]
, (A12b)

∂κi
i,2

∂γi
· δγi = −δγimi

2(κb)i. (A12c)

By using the rule of triple product and other algebraic manipulations, we achieve

the following equations:

∂κi−1
i,1

∂ei−1
=

1

∥ei−1∥

(
−κi−1

i,1 t̃+
2ti ×mi−1

2

1 + ti−1 · ti

)
, (A13a)

∂κi−1
i,1

∂ei
=

1

∥ei∥

(
−κi−1

i,1 t̃− 2ti−1 ×mi−1
2

1 + ti−1 · ti

)
, (A13b)

∂κi−1
i,1

∂γi−1
= −mi−1

1 (κb)i, (A13c)
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∂κi
i,1

∂ei−1
=

1

∥ei−1∥

(
−κi

i,1t̃+
2ti ×mi

2

1 + ti−1 · ti

)
, (A14a)

∂κi
i,1

∂ei
=

1

∥ei∥

(
−κi

i,1t̃−
2ti−1 ×mi

2

1 + ti−1 · ti

)
, (A14b)

∂κi
i,1

∂γi
= −mi

1(κb)i, (A14c)

∂κi−1
i,2

∂ei−1
=

1

∥ei−1∥

(
−κi−1

i,2 t̃− 2ti ×mi−1
1

1 + ti−1 · ti

)
, (A15a)

∂κi−1
i,2

∂ei
=

1

∥ei∥

(
−κi−1

i,2 t̃+
2ti−1 ×mi−1

1

1 + ti−1 · ti

)
, (A15b)

∂κi−1
i,2

∂γi−1
= −mi−1

2 (κb)i, (A15c)

∂κi
i,2

∂ei−1
=

1

∥ei−1∥

(
−κi

i,2t̃−
2ti ×mi

1

1 + ti−1 · ti

)
, (A16a)

∂κi
i,2

∂ei
=

1

∥ei∥

(
−κi

i,2t̃+
2ti−1 ×mi

1

1 + ti−1 · ti

)
. (A16b)

∂κi
i,2

∂γi
= −mi

2(κb)i. (A16c)

where t̃ ≡ ti−1+ti

1+ti−1·ti .

Hessian of the Discrete Curvatures

Before deriving the Hessian of the curvatures, it is convenient to define several vari-

ables and compute their derivatives, as following (⊗ denotes the outer product, e.g.,

a⊗ b ≡ abT.)

∂ti

∂ei
=

1

∥ei∥
(
I3 − ti ⊗ ti

)
(A17a)

χ ≡ 1 + ti−1 · ti (A17b)
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∂χ

∂ei−1
=

1

∥ei−1∥
(
I3 − tk−1 ⊗ tk−1

)
tk (A17c)

∂χ

∂ei
=

1

∥ei∥
(
I3 − tk ⊗ tk

)
tk−1 (A17d)

∂t̃

∂ei−1
=

1

χ∥ei−1∥
((
I3 − ti−1 ⊗ ti−1

)
− t̃⊗

((
I3 − ti−1 ⊗ ti−1

)
ti
))

(A17e)

∂t̃

∂ei
=

1

χ∥ei∥
((
I3 − ti ⊗ ti

)
− t̃⊗

((
I3 − ti ⊗ ti

)
ti−1

))
(A17f)

Besides we have
∂

∂ei
(a× b) = [a]× ·

∂b

∂ei
− [b]× ·

∂a

∂ei
(A18)

for arbitrary vector a and b, where the notation [·]× denotes the cross product matrix

such that a× b = [a]× · b).

We then compute the Hessian of curvatures, where we have the following second

derivative for the first line of equation A13a,

∂2κi−1
i,1

∂ei−1∂ei−1
= −

(
−κi−1

i,1 t̃+
2ti ×mi−1

2

χ

)
⊗ ti−1

∥ei−1∥2

+
1

∥ei−1∥

(
−
∂κi−1

i,1

∂ei−1
⊗ t̃− κi−1

i,1

∂t̃

∂ei−1
−

2[mi−1
2 ]× · ∂ti

∂ei−1

χ
− 2ti ×mi−1

2

χ2
⊗ ∂χ

∂ei−1

)
,

(A19)

Noticing that the first term of the above equation contains ∂κi−1
i,1

∂ei−1 , and ∂ti

∂ei−1 = 0, after

combining the terms, we have

∂2κi−1
i,1

∂ei−1∂ei−1
= − 1

∥ei−1∥

(
∂κi−1

i,1

∂ei−1
⊗ ti−1 + t̃⊗

∂κi−1
i,1

∂ei−1
+ κi−1

i,1

∂t̃

∂ei−1
+

2ti ×mi−1
2

χ2
⊗ ∂χ

∂ei−1

)
.

(A20)

The Hessian matrix for this part is symmetric. We then simplify it by combining the

first and second terms. Also we define

m̃i−1
2 ≡ 2mi−1

2

χ
, (A21a)
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m̃i
2 ≡

2mi
2

χ
, (A21b)

m̃i−1
1 ≡ 2mi−1

1

χ
, (A21c)

m̃i
1 ≡

2mi
1

χ
. (A21d)

Before going on, remember that we also need the Hessians over the twisting angle

γ. To compute these terms we note

δ

(
∂κi−1

i,1

∂γi−1

)
= −δmi−1

1 (κb)i −mi−1
1 δ(κb)i

= −δγi−1mi−1
2 (κb)i −mi−1

1 δ(κb)i

(A22)

We then derive other Hessians following a similar strategy for deriving (A20), and

we use (A22) for the Hessians over γ. We have

∂2κi−1
i,1

∂ei−1∂ei−1
= − 1

∥ei−1∥
sym

(
∂κi−1

i,1

∂ei−1
⊗ (ti−1 + t̃) + κi−1

i,1

∂t̃

∂ei−1
+

1

χ

(
ti × m̃i−1

2

)
⊗ ∂χ

∂ei−1

)
,

(A23a)

∂2κi−1
i,1

∂ei∂ei
= − 1

∥ei∥
sym

(
∂κi−1

i,1

∂ei
⊗ (ti + t̃) + κi−1

i,1

∂t̃

∂ei
+

1

χ

(
ti−1 × m̃i−1

2

)
⊗ ∂χ

∂ei

)
,

(A23b)

∂2κi−1
i,1

∂ei∂ei−1
=

(
∂2κi−1

i,1

∂ei−1∂ei

)T

(A23c)

= − 1

∥ei−1∥

(
t̃⊗

∂κi−1
i,1

∂ei
+ κi−1

i,1

∂t̃

∂ei
+

1

χ

(
ti × m̃i−1

2

)
⊗ ∂χ

∂ei
+ [m̃i−1

2 ]× ·
∂ti

∂ei

)
,

(A23d)
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∂2κi−1
i,1

∂ei−1∂γi−1
=

1

∥ei−1∥
(
−κi−1

i,2 t̃− ti × m̃i−1
1

)
, (A24a)

∂2κi−1
i,1

∂ei∂γi−1
=

1

∥ei∥
(
−κi−1

i,2 t̃+ ti−1 × m̃i−1
1

)
, (A24b)

∂2κi−1
i,1

∂γi−1∂γi−1
= −(κb)i ·mi−1

2 , (A24c)

∂2κi−1
i,2

∂ei−1∂ei−1
= − 1

∥ei−1∥
sym

(
∂κi−1

i,2

∂ei−1
⊗ (ti−1 + t̃) + κi−1

i,2

∂t̃

∂ei−1
+

1

χ

(
ti × m̃i−1

1

)
⊗ ∂χ

∂ei−1

)
,

(A25a)

∂2κi−1
i,2

∂ei∂ei
= − 1

∥ei∥
sym

(
∂κi−1

i,2

∂ei
⊗ (ti + t̃) + κi−1

i,2

∂t̃

∂ei
+

1

χ

(
ti−1 × m̃i−1

1

)
⊗ ∂χ

∂ei

)
,

(A25b)

∂2κi−1
i,2

∂ei∂ei−1
=

(
∂2κi−1

i,2

∂ei−1∂ei

)T

(A25c)

= − 1

∥ei−1∥

(
t̃⊗

∂κi−1
i,2

∂ei
+ κi−1

i,2

∂t̃

∂ei
− 1

χ

(
ti × m̃i−1

1

)
⊗ ∂χ

∂ei
− [m̃i−1

1 ]× ·
∂ti

∂ei

)
,

(A25d)

∂2κi−1
i,2

∂ei−1∂γi−1
=

1

∥ei−1∥
(
κi−1
i,1 t̃− ti × m̃i−1

2

)
, (A26a)

∂2κi−1
i,2

∂ei∂γi−1
=

1

∥ei∥
(
κi−1
i,1 t̃+ ti−1 × m̃i−1

2

)
, (A26b)

∂2κi−1
i,2

∂γi−1∂γi−1
= (κb)i ·mi−1

1 , (A26c)

∂2κi
i,1

∂ei−1∂ei−1
= − 1

∥ei−1∥
sym

(
∂κi

i,1

∂ei−1
⊗ (ti−1 + t̃) + κi

i,1

∂t̃

∂ei−1
+

1

χ

(
ti × m̃i

2

)
⊗ ∂χ

∂ei−1

)
,

(A27a)
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∂2κi
i,1

∂ei∂ei
= − 1

∥ei∥
sym

(
∂κi

i,1

∂ei
⊗ (ti + t̃) + κi

i,1

∂t̃

∂ei
+

1

χ

(
ti−1 × m̃i

2

)
⊗ ∂χ

∂ei

)
,

(A27b)

∂2κi
i,1

∂ei∂ei−1
=

(
∂2κi

i,1

∂ei−1∂ei

)T

(A27c)

= − 1

∥ei−1∥

(
t̃⊗

∂κi
i,1

∂ei
+ κi

i,1

∂t̃

∂ei
+

1

χ

(
ti × m̃i

2

)
⊗ ∂χ

∂ei
+ [m̃i

2]× ·
∂ti

∂ei

)
,

(A27d)

∂2κi
i,1

∂ei−1∂γi
=

1

∥ei−1∥
(
−κi

i,2t̃− ti × m̃i
1

)
, (A28a)

∂2κi
i,1

∂ei∂γi
=

1

∥ei∥
(
−κi

i,2t̃+ ti−1 × m̃i
1

)
, (A28b)

∂2κi
i,1

∂γi∂γi
= −(κb)i ·mi

2, (A28c)

∂2κi
i,2

∂ei−1∂ei−1
= − 1

∥ei−1∥
sym

(
∂κi

i,2

∂ei−1
⊗ (ti−1 + t̃) + κi

i,2

∂t̃

∂ei−1
+

1

χ

(
ti × m̃i

1

)
⊗ ∂χ

∂ei−1

)
,

(A29a)

∂2κi
i,2

∂ei∂ei
= − 1

∥ei∥
sym

(
∂κi

i,2

∂ei
⊗ (ti + t̃) + κi

i,2

∂t̃

∂ei
+

1

χ

(
ti−1 × m̃i

1

)
⊗ ∂χ

∂ei

)
,

(A29b)

∂2κi
i,2

∂ei∂ei−1
=

(
∂2κi

i,2

∂ei−1∂ei

)T

(A29c)

= − 1

∥ei−1∥

(
t̃⊗

∂κi
i,2

∂ei
+ κi

i,2

∂t̃

∂ei
− 1

χ

(
ti × m̃i

1

)
⊗ ∂χ

∂ei
− [m̃i

1]× ·
∂ti

∂ei

)
.

(A29d)

∂2κi
i,2

∂ei−1∂γi
=

1

∥ei−1∥
(
κi
i,1t̃− ti × m̃i

2

)
, (A30a)

∂2κi
i,2

∂ei∂γi
=

1

∥ei∥
(
κi
i,1t̃+ ti−1 × m̃i

2

)
, (A30b)
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∂2κi
i,2

∂γi∂γi
= (κb)i ·mi

1, (A30c)

where we use the notation sym(A) ≡ (A+AT )/2. The Hessian terms other than the

ones above are all zero filled.

The total bending energy for a strand is then defined over curvatures

Eb =
1

4

∑
i

∑
j=0,1

[κi−j
i,1 − κ̄i−j

i,1 , κi−j
i,2 − κ̄i−j

i,2 ]Bi[κ
i−j
i,1 − κ̄i−j

i,1 , κi−j
i,2 − κ̄i−j

i,2 ]T . (A31)

where Bi ∈ R2×2 is the bending stiffness tensor at vertex i, and the variables with a

bar denote the rest states. With the gradient and Hessians of curvatures given above,

the bending force and its Jacobian can be trivially computed, following Kaldor et

al. [126].
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