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ABSTRACT

Analytical, Wavelet and Frequency based Mathematical Models
for Real-Time Rendering

Bo Sun

Real-time rendering techniques are critical and highly desirable in interactive

graphics applications such as video games, flight simulations, and interactive de-

sign softwares. Offline rendering solutions such as raytracing, path tracing, photon

mapping, and other Monte Carlo methods can generate very realistic images and

capture fairly complicated effects such as caustics, soft shadows, atmospherical

scattering or subsurface scattering, and environment lighting but take hours or

even days to run. For interactive applications, a large number of real-time ren-

dering techniques have been proposed. They, however, either capture effects that

are too simplistic, missing critical complicated effects, or make very constraining

assumptions that limit them to specific application scenarios. There is a wide gap

and a large unexplored area between slow offline renderers and particular real-

time solutions. In this thesis, we take analytical, frequency and wavelet based

approaches to investigate efficient algorithms for more complicated natural phe-

nomena. Practically, we aim to provide efficient solutions/tools that are general

enough to be combined with existing real-time rendering techniques and expand

the domain of tractable effects. On a theoretical level, we try to identify traits of

graphics computation and uncover insights about the optimal mathematical rep-

resentations, leveraging the advancing power of graphics hardware. While open

topics are plenty, we choose to focus on key effects that are the most lacking in

the current state of art of rendering techniques. In particular, we present solutions



to four challenging problems. First, we consider real-time rendering of scenes in

scattering media, capturing the effects of light scattering in fog, mist and haze. We

present a physically based analytic model that captures these effects while main-

taining real time performance and the ease of use of the OpenGL fog model. Our

method is based on an explicit analytic integration of the single scattering light

transport equations for an isotropic point light source in a homogeneous scattering

medium. Second, we introduce a novel near-field relighting framework. At the

core of this framework is an affine double and triple product integral theory - an

important generalization of triple product wavelet integrals that enables one of the

product functions to be scaled and translated. Our theoretical development over-

turns the long-held belief that operations such as affine transformation are difficult

inwavelets and require converting to and from the pixel domain. We show through

detailed analysis that while simple analytic formulae are not easily available, there

is considerable sparsity that we can exploit computationally. The canonical cou-

pling coefficients we derived and our way of exploiting unstructured sparsity are

all new powerful insights. We demonstrate practical implementation of an intu-

itive lighting design system coupled with near-field relighting capabilities. We

also illustrate initial examples of wavelet importance samplingwith near-field area

lights, and image processing directly in the wavelet domain. Finally, we present

two frequency based approaches to normal map filtering and dynamic soft shad-

owing. Our main theoretical contributions in these applications are respectively

formulating the normal map filtering as a convolution in the frequency domain

and developing the spherical harmonic exponentiation and logarithm techniques.

Our analysis has revealed important technical characteristics of light transport and

reflectance. Our analytical, frequency and wavelet based approaches have opened

up new perspectives for rendering novel effects that are conventionally viewed as

difficult to achieve.
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Chapter 1

Introduction

1.1 Motivation

The mission of computer graphics is to visualize the world around us. For over

20 years, a perennial challenge for graphics rendering has been to create high

quality realistic-looking images in real time. Real-time rendering introduces a

whole new dimension in “interactivity and flexibility”. This dimension is critical

in applicationswhere the rendering output depends onusers’ input and instant and

continuous visual feedback is demanded. One popular application is for the user to

navigate through the scene as in computer games, moving and panning the camera

as needed. However, “interactivity and flexibility” exceeds far beyond camera

navigation. For example, the lighting environment may change interactively, as

the sun rises and falls and the weather condition varies. Variations in lighting

dramatically change the appearance of the scene. In addition, objects inside the

scene may move around or change in geometry by themselves. For example, a

character walks around or a bird flaps its wings, and their cast shadow patterns

should change accordingly. Further, material properties may evolve with time,

e.g., paint will dry, solidify, and eventually peel off a surface, leading to the sharp

1
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change in its specularities and color contrast as we observe in real life. The current

state of real-time rendering techniques is far from being able to accommodate all

these effects and render all natural phenomena.

Because of the complexity of light transport and the high dimensionality of the

representations of real lighting and materials, the cost of synthesizing a realistic

image is prohibitive. To properly simulate light transport, all lighting coming from

the upper hemisphere has to be integrated and light bouncing between different

objects, scattering through participating media and occlusion by floating blockers

have to be accounted for. To better model real-world effects, complicated material

models such as BRDFs [78], BTFs [25], and BSSRDFs [39] and high dimensional

lighting representations such as light field [64] or lumigraph [35] are often needed.

Offline methods such as raytracing [124], path tracing [51], photon-mapping [47]

and radiosity [34] can simulate light transport and add to the ambience of scenes

with effects such as intricate shadows, complex inter-reflections and volumetric

scattering. However, they are too slow to be real time and do not suit the need

of interactive applications such as video games, simulations, previsualization and

design systems. Though rapid advancements have been made in the real-time

rendering domain, either the effects they capture are too simplistic or their assump-

tion are too constraining. Many methods are still limited to simple, often static,

effects because of the lack of suitable mathematical representations and efficient

computational algorithms. The intimidating cost of rendering more complicated

effects has impeded them from being further included in more real-time applica-

tions. The computational bottleneck has also constrained designers’ capabilities to

fully realize their design concepts and have set interactively generated images even

further away from being realistic. Thus, we conduct a systematic study on some

of the key rendering problems, exploring their optimal mathematical representa-

tion and exploiting the computational aspects of light transport and the theoretical
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characteristics of illumination, shadows and materials properties.

1.2 A Walkthrough with the Reflection Equation

Inwhat follows, we provide a quickwalkthrough of our research detailed in the rest

of the thesis, starting from the reflection equation to introduce specific rendering

problems that we focus on.

1.2.1 Reflection Equation

The reflection equation forms the basis of most modern real-time rendering algo-

rithms. We first review the reflection equation:

Lr(x, ωo) =

∫

Ω

Li(x, ωi)V(x, ωi)ρ(x, ωi, ωo)(ωi · n(x))dωi, (1.1)

where x is the location of a vertex, or a pixel in the image, ωo is the viewing

direction, ωi is the incident direction, Li is the incident radiance from the light

source at a vertex or a pixel, V is the visibility function, ρ is the BRDF at location

x, and (ωi · n(x)) is the cosine of the incident angle. It is sometimes convenient to

fold the cosine term (ωi · n(x)) into the BRDF ρ(x, ωi, ωo) and write the reflection

equation in a simpler form:

Lr(x, ωo) =

∫

x,Ω

Li(ωi)V(x, ωi)ρ(x, ωi, ωo)dωi. (1.2)

The BRDF, ρ, plays an important role in the above integration and is worth

mentioning. It was first introduced by [78]. The BRDF describes how incoming

light is distributed after reflection from the material’s surface. To be physically

accurate, the BRDF must satisfy the first law of thermodynamics (conservation
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of energy) and Helmholtz’s reciprocity principle for general BRDFs or Rayleigh’s

reciprocity principle for arbitrary surfaces. For each point and a given x, the

BRDF is a function of both the incoming and outgoing directions and hence is

four-dimensional. For its high dimensionality, for real-time purposes, three main

approaches are often used to approximate the BRDF: complex analytic models

(Blinn-Phong [12], Torrance-Sparrow microfacet [115], Ward’s anisotropic [122],

Oren-Nayar diffuse [82], Ashikhmin-Shirley anisotropic [3] ), factorizations (SVD

[55], Homomorphic [69]), and basis approximation (spherical harmonics [18], [123],

sums of separable bicubic polynomials [33], wavelets [98], and Lafortune [62], ).

BRDFs can be further divided into two classes: isotropic and anisotropic. Higher

dimensional functions such as BTFs [25] and BSSRDFs [39] were also introduced

to describe more complicated surface materials. However, BRDFs usually suffice

for uniform surfaces.

The reflection equation described above focuses on direct occlusion or illumina-

tion and depends only on the local individual properties of the surfaces. To take the

environment as a whole and consider interreflection between different points, one

needs to extend the reflection equation to the full rendering equation [51], which is

described in Sec. 2.1. Nevertheless, for introductory purposes, the reflection equa-

tion is a good starting point and has been widely used in many real-time rendering

frameworks.

1.2.2 Problem Introduction and Formulation

Evaluating the reflection equation is non-trivial as one has to integrate all incom-

ing rays over the entire upper hemisphere for each vertex or pixel. One modern

approach is to use signal processing analysis [86, 91, 87] and project each integrand

onto bases such as spherical harmonics or wavelets, converting expensive integra-

tions to multiplications in the frequency or wavelet domain. E.g., assuming distant
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lighting and diffuse material, we can define a combined transport function:

T(x, ωi) = V(x, ωi)ρ(x, ωi). (1.3)

Projecting the transport function in equation 1.3 and the lighting term onto some

orthonormal basis, we rewrite the reflection integral as

Lr =

∫

(
∑

j

L jφ j(ωi))(
∑

k

Tk(x)φk(ωi))dωi (1.4)

=
∑

j

∑

k

L jTk(x)

∫

φ j(ωi)φk(ωi)dωi (1.5)

= ~T(x) ·~L (1.6)

which becomes a dot product of the coefficient vectors of ~T and ~L. We notice

that ~T captures the scene’s response to lighting and forms a linear system for

the input lighting. The linearity of the lighting system was employed by many

relighting systems but recently popularized by precomputed radiance transfer

(PRT) introduced by [102]. Equation 1.4 provides the foundation for precomputed

radiance transfer, which will be described in more detail in Sec. 2.5. Preliminaries

for frequency and wavelet analysis will also be covered in Sec. 2.2.

Despite advances in using frequency analysis, real-time rendering faces many

challenges. Firstly,manyphenomena such as light scattering of participatingmedia

cannot bemodeled by the reflection equation. It is less clear how to apply recent fre-

quency or wavelet analysis results to scattering media. In such cases, compact and

descriptive analytic models are powerful and effective in capturing complicated

effects [111]. Secondly, frequency and wavelet based rendering approaches are still

under development and far from being complete. E.g. the lighting term in the

reflection equation is often assumed to be distant for near-field lighting involves

affine transformation in frequency andwavelet bases [110]. Rendering is also often
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limited to static scenes and rigid objects. Blocking functions of blockers are often

precomputed and simply accumulated, as done in the shadowfield technique [126].

Underlying these problems, one fundamental challenge is to generalize operations

that are common in pixel space such as multiplication, dilation, translation, expo-

nentiation and filtering to the frequency or wavelet space. This line of research

carries significant theoretical influence not only on computer graphics but also on

signal processing, numerical computation and applied mathematics. We follow

these directions and focus on four specific rendering problems, each one of which

can be related to individual terms in the reflection equation. We start from the

lighting term.

Area Lights: The lighting term in the reflection equation is often treated as the

input in relighting problems and critical for the scene’s appearance. For real-time

rendering, common light models are point lights, spot lights, directional lights,

collimated lights and distant environment maps [15]. Light sources such as point

and directional can remove the requirement for expensive integration. Distant

environment maps were first introduced in [15] and later popularized by the en-

vironment and reflection mapping techniques [71, 26]. They significantly simplify

the shading calculation by removing the spatial dependence (x) of the lighting term

and therefore reduce its dimensionality to 2D (ωi). Near-field area lights produce

convincing visual effects that are otherwise hard to achieve. However, they are

rarely used in real-time rendering because they involve affine transforms of the

source radiance at different points in space. In [110] (Chap. 4), we propose a

wavelet based technique that efficiently performs light propagation in free space

using their wavelet coefficients. Our key contribution is a novel affine double and

triple product wavelet integral-that performs the affine transform operator in the

wavelet basis. We study the computational complexity in a number of bases, with
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particular attention paid to the commonHaarwavelets. We show thatwhile simple

analytic formulae are not easily available, there is considerable sparsity that can

be exploited computationally. The achieved benefits are twofold: firstly, large area

lights can be compressed efficiently using wavelets; secondly, light integration can

be converted to simple dot product in the wavelet space.

Scattering: The lighting can be subject to atmospherical changes such as fog, mist,

or haze. Before reaching the vertex, lightmay get reflected, refracted, attenuated, or

scattered by particles in the scattering media. In turn, a vertex’s incident radiance

in scattering media may get softened or blurred. These effects are not modeled

by the reflection equation and usually hard to capture in real time. A number

of sophisticated approaches based on Monte Carlo and finite element simulation

were adapted to render impressive effects including multiple scattering and non-

homogeneous media [52, 68, 49]. However, those methods take hours to render

a single image and do not work at interactive rates. The most common real-time

methods are essentially simple variants of the OpenGL fog model. While easy to

use and specify, the standard OpenGL fog model excludes many important quali-

tative effects like glows around light sources, the impact of volumetric scattering

on the appearance of surfaces such as the diffusing of glossy highlights, and the

appearance under complex lighting such as environment maps. In [111] (Chap.

3), we present an alternative physically based approach that captures these effects

while maintaining real-time performance and the ease-of-use of the OpenGL fog

model. Our method is based on an explicit analytic integration of the single scatter-

ing light transport equations for an isotropic point light source in a homogeneous

participating medium. This model can be easily implemented in modern graphics

hardware using a few small numerical lookup tables stored as texture maps, and

hence can be widely used in real-time rendering.
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Soft Shadows: The visibility term in the reflection equation can also be viewed

as a global term as it changes with the movement of the surrounding objects. In a

dynamic scene with multiple blockers, V(x, ωi) is the product of multiple blocking

functions v1, v2, . . . , vm. Previous methods for soft shadows numerically integrate

over many light directions at each receiver point, testing blocker visibility in each

direction. These numerical integration approaches are too slow to suit real-time

applications. Dynamically accumulating blockers using triple product integrals

[77] as done by the shadow field method [126] is also too expensive. In [92]

(Chap. 5.2), we take a novel frequency based approach to render soft shadows in

dynamic scenes by operating vectors representing visibility of blockers in spherical

harmonics. At each receiver point, we compute the product of the visibility vectors.

Instead of computing an expensive SH product, we perform inexpensive vector

sums to accumulate the log of blocker visibility. SH exponentiation then yields the

total product visibility vector over all blockers. Our key contribution is developing

exponentiation operator in the spherical harmonic basis.

Filtering: Rendering can be performed in either vertex space or screen space.

From the screen space’s perspective, filtering is critical for representing detail, such

as color textures or normal maps, across a variety of scales. While MIP-mapping

texturemaps is commonplace, accurate normalmap filtering remains a challenging

problem because of nonlinearities in shading - we cannot simply average nearby

surface normals. In [36] (Chap. 5.1), we take a frequency based approach and

show that normal map filtering can be formalized as a spherical convolution of

the normal distribution function (NDF) and the BRDF and the generated effective

BRDF can be used for efficient rendering.
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1.3 Thesis Overview, Organization and Contributions

We apply a structured approach to the four specific rendering problems introduced

in Sec. 1.2, i.e., single scattering, near-field relighting, dynamic soft shadowing,

and normal map filtering. The general principle underlying all our research is

based on exploiting compact analytical, frequency and wavelet based models and

effectively combining novelmathematical representationswith the advancing hard-

ware support. At the theoretical level, the thesis will seek to discover the optimal

mathematical representation and the most compact model for various complicated

effects. The thesis also reports on the engineering challenges of our techniques,

as studied in real experiments. The practical impact of the outcome of the thesis

would not only be on real-time rendering but also on many related fields such

as importance sampling, image processing, physics simulation and signal process-

ing. Below is the organization of the rest of the thesis and our primary technical

contributions.

Background, Chapter 2: In Chap. 2, we describe the background for our tech-

niques and explain mathematical preliminaries required for understanding the

technical derivations in this thesis. Readers who are more familiar with these

basics and technologies may safely skip Chap. 2 to the detailed presentations of

specific methods in Chap. 3, 4 and 5. Section 2.1 first introduces the rendering

equation, the basis for the derivation of reflection equation. Section 2.2 provides an

overview of themathematical tools and key properties of the Fourier, spherical har-

monic and wavelet bases. Section 2.3 introduces environment mapping methods

[15, 71, 26]. Section 2.4 describes frequency analysis results of the lighting convo-

lution [86, 91, 87]. Section 2.5 presents the precomputed radiance transport (PRT)

framework [102] and reviews its recent developments [101, 103, 104, 76, 77, 120].
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An Analytic Single Scattering Model, Chapter 3: We consider real-time render-

ing of scenes in participating media, capturing the effects of light scattering in fog,

mist and haze. In Chap. 3, we present a physically based approach that captures

these effects while maintaining real-time performance and the ease-of-use of the

OpenGL fog model. This work is also presented and published in [111]. Our

method is based on an explicit analytic integration of the single scattering light

transport equations for an isotropic point light source in a homogeneous partici-

pating medium. We develop our analytic airlight and surface radiance models in

Sec. 3.3. In Sec. 3.5, we present the complete shading model and show how to

implement the model in modern programmable graphics hardware using a few

small numerical lookup tables stored as texture maps. In Sec. 3.6, we adapt our

model to generate the appearances of materials with arbitrary BRDFs, environ-

ment map lighting, and precomputed radiance transfer methods, in the presence

of participating media. Our primary technical contributions are:

• Explicit Compact Formula for Single Scattering for Real-Time Rendering.

• Implementation on Programmable Graphics Hardware.

• Extensions of the Model to Complex Lighting and General BRDFs.

AffineDouble and Triple ProductWavelet Integrals, Chapter 4: Many problems

in computer graphics involve integrations of products of functions. Double and

triple product integrals are commonly used in applications such as all-frequency

relighting or importance sampling, but are limited to distant illumination. In

contrast, near-field lighting from planar area lights involves an affine transform of

the source radiance at different points in space. In Chap. 4, we present a novel

affine double and triple product integral theory-this generalization enables one of

the product functions to be scaled and translated. This work is also presented and
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published in [110]. In Secs. 4.3 and 4.4, we study the computational complexity in a

number of bases, with particular attention to the commonHaar wavelets. We show

that while simple analytic formulae are not easily available, there is considerable

sparsity that can be exploited computationally. In Sec. 4.5, we demonstrate a

practical application to compute near-field lighting fromplanar area sources, which

can be easily combined with most relighting algorithms. In Secs. 4.6, we also

demonstrate initial results for wavelet importance sampling with near-field area

lights, and image processing directly in thewavelet domain. Our primary technical

contributions are:

• Computational Complexity Analysis in General, Pixel, Fourier and Haar

wavelets Bases.

• An Affine Double and Triple Product Integral Theory.

• Practical Applications and Algorithms in Near-Field Relighting, Wavelet Im-

portance Sampling, and Image Processing.

Frequency Based Approaches, Chapter 5 We introduce two novel frequency

based approaches to normal map filtering and soft shadowing in dynamic scenes.

Frequency Domain Normal Map Filtering, Chapter 5.1: Correct normal fil-

tering is difficult due to its non-linearity. In Sec. 5.1.2, we show analytically that

normal map filtering can be formalized as a spherical convolution of the normal

distribution function (NDF) and the BRDF, for a large class of common BRDFs such

as Lambertian, microfacet and factoredmeasurements. This work is also presented

and published in [36]. This is a joint work with my colleagues at Columbia Univer-

sity, Charles Han, Ravi Ramamoorthi, Eitan Grinspun. Our practical algorithms

leverage a significant body of work that has studied lighting-BRDF convolution.
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We also showhow spherical harmonics can be used to filter theNDF for Lambertian

and low-frequency specular BRDFs. Our specific technical contributions are

• Theory of Normal Map Filtering as Convolution.

• Novel Frequency Domain Representations.

• Extensions to Realistic BRDFs and Complex Lighting

Soft Shadowing using Spherical Harmonic Exponential, Chapter 5.2: Pre-

vious methods for soft shadows numerically integrate over many light directions

at each receiver point, testing blocker visibility in each direction. In Chap. 5.2,

we introduce a method that accumulate the product of visibility vectors in the

log space using spherical harmonic exponentiation. This work is also presented

and published in [92]. This research was conducted during my internship at Mi-

crosoft Research and is a joint work with researchers at Microsoft Research and

Zhejiang University. In Secs. 5.2.2 and 5.2.3, we show mathematical derivations of

SH exponentiation and logarithm and ways to optimize their computations. Sec-

tion 5.2.4 gives an overview of our approximation using sphere sets and real-time

implementation on GPU. Our primary technical contributions are

• First Real-Time Method for Soft Shadowing in Dynamic Scenes.

• Spherical Harmonic Exponentiation Technique.

• Sphere Set Approximation and Implementation on GPU.

Conclusion, Chapter 6: Chapter 6 concludes the thesis, offering a review of the

common techniques exploited and discussing the primary benefits and limitations

of our results. Finally, we suggest promising areas for future exploration.



Chapter 2

Background

2.1 Rendering Equation

The rendering equation was first simultaneously introduced by James T. Kajiya

[51] and David Immel et al. [44] from radiative heat transfer and neutron transport

literature. The rendering equation describes how light is reflected and scattered in

a scene and can be used to characterize many known rendering algorithms. It is an

integral equation in which the equilibrium radiance leaving a point is given as the

sum of the emitted plus reflected radiance under a geometric optics approximation.

Though it neglects for example wave effects, it has been proven useful to formalize

the rendering process in computer graphics. The rendering equation can bewritten

in the form

Lr(x, x
′) = Le(x, x

′) +

∫

S

Lr(x
′′, x)V(x′′, x)ρ(x′′, x, x′)dx′′, (2.1)

where Lr is the reflected exitant radiance from x to x
′, Le is the outgoing emitted

radiance from point x to x′, Lr is the incident radiance on point x from x
′′, and

ρ is the BRDF at point from directions x from x′′ to x and from x to x′. The

integration is performed for all surfaces in the scene. The difference between the

13
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reflection and the rendering equation is significant, i.e., Lr inside the integral now

includes incident radiance from not only light sources but also reflected radiance

from nearby objects. Therefore, the rendering equation describes more global

effects such as interreflection than the reflection equation. However, effects such

as volumetric scattering and flurescence are not modeled. Two important features

of the rendering equations are its linearity and spatial homogeneity, which means

a wide range of factorings and rearrangements of the equation are possible.

Solving the rendering equation has been a major challenge for computer graph-

ics andaccurately evaluating it is expensive. Popular approaches include radiosity[34],

ray tracing [124], path tracing [51], photon mapping [47], metropolis light trans-

port [117], Monte Carlo simulations and etc. All these techniques are offline based

rendering algorithms.

2.1.1 Reflection Equation

Omitting self-emitted radiance Le and assuming surfaces only reflect light sources

(not reflected radiances from other surfaces), the rendering equation can be signif-

icantly simplified to the reflection equation, as we introduced in Sec. 1.1. Please

note that in the reflection equation, it is customary to convert the integration over

all surfaces to the integration over the more familiar angular domain and change

variable x′′ to ωi. We rewrite the reflection equation here:

Lr(x, ωo) =

∫

Ω

Li(x, ωi)V(x, ωi)ρ(x, ωi, ωo)(ωi · n(x))dωi, (2.2)

where x is the location of a vertex, or a pixel in the image,ωo is the viewingdirection,

ωi is the incident direction, Li is the incident radiance from the light source at a

vertex or a pixel, V is the visibility function, ρ (different from its definition in Sec.

2.1)is the BRDF at location x for incoming angle ωi and outgoing angle ωo, and
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(ωi · n(x)) is the cosine of the incident angle. Compared to the rendering equation,

the reflection equation captures the first-order primary effects directly from the

lighting but is much more tractable for real-time rendering.

2.2 Orthonormal Bases

We briefly review a few orthonormal bases such as the Fourier basis, spherical

harmonics and Haar wavelets as they will be extensively used in later analysis in

the thesis.

Fourier Series: The Fourier series is the most popular tool for frequency analysis.

It is usually preferred for theoretical analysis, for example frequency analysis of

light transport [31]. Fourier analysis, named after Joseph Fourier, is the decompo-

sition of a function in terms of basis (sinusoidal) functions of different frequencies

that can be recombined to obtain the original function. Originally introduced to

solve the heat equation, it led to revolution in mathematics and reexamination

of foundations for many modern theories. The complex form (I =
√
−1) of a 1D

Fourier series on an azimuthal domain [0, 2π] can be written as:

φp(x) =

√

1

2π
eIpx. (2.3)

Fourier series also has a real form consisting of real sine and cosine functions.

Periodic functions that are otherwise difficult to analyze can be decomposed using

the Fourier basis to get their frequency coefficients. 2D and higher dimensional

Fourier bases are products of multiple 1D Fourier basis functions. We use the

Fourier analysis in Chaps. 4 and 5.1.
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Spherical Harmonics: Spherical harmonics are the angular domain analog to

Fourier series and are important in many theoretical and practical applications

such as computation of atomic electron configurations, the representation of gravi-

tational field, geoid, and magnetic field of planetary bodies. In computer graphics,

spherical harmonics play an important role in a number of topics (ambient occlu-

sion, global illumination, shape recognition, precomputed radiance transfer etc.)

and are useful for representing low-frequency spherical functions such as radiance

incident at a point and blocker visibility functionswhichmodulate distant radiance.

In mathematics, the spherical harmonics are the angular portion of an orthogonal

set of solutions to Laplace’s equation represented in a spherical coordinates. Spher-

ical harmonics in complex form can be written as

Ylm(θ, φ) = αl|m|P
l
m(cosθ)e

Imφ (2.4)

where l ≥ 0,−l ≤ m ≤ l, αl|m| is a normalization factor, and Plm are associated

Legendre polynomials. The azimuthal dependence is expanded in terms of Fourier

basis functions. The θ dependence is expanded in terms of the associated Legendre

functions Plm. The SH basis functions are orthogonal polynomials in s = (x, y, z)

restricted to the sphere s ∈ S. The indices obey l ≥ 0 and −l ≤ m ≤ l. Thus, there

are 2l+ 1 basis functions for a given order l. An order n SH projection has n2 vector

coefficients. An important relation is that Yl−m = (−1)mY∗lm. Spherical harmonics of
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the first 3 order can be written as

Y00 =

√

1

4π
(2.5)

Y10 =

√

3

4π
cosθ (2.6)

Y11 = −
√

3

8π
sinθeIφ (2.7)

Y20 =

√

5

16π
(3 cos2 θ − 1) (2.8)

Y21 = −
√

15

8π
sinθ cosθeIφ (2.9)

Y22 =

√

15

32π
sin2 θe2Iφ (2.10)

More importantly, spherical harmonics can be analytically rotated on the sphere

using a rotation matrix Dlmm′ :

Ylm(Rα,β,γ(θ, φ)) =
l∑

m′=−l
Dlmm′(α, β, γ)Ylm′(θ, φ). (2.11)

Given a spherical function f (ω), we can project this function onto spherical

harmonics to get a vector ~f representing its low-frequency behavior via

~f =

∫

Ω

f (ω) ~y(ω)dω (2.12)

where ~y(ω) is the vector of SH basis functions Ylm. Conversely, Given an SH vector

~f we can reconstruct a continuous spherical function f (ω) via

f (ω) =
n2−1∑

i=0

~fi yi(ω) = ~f · ~y(ω). (2.13)

Spherical harmonics is used for efficient representation of irradiance maps [86],

and frequency analysis of inverse and forward rendering [90, 87]. The original PRT
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Figure 2.1: 1D Haar wavelet basis functions.

framework was also proposed in terms of spherical harmonics in [102]. We use

spherical harmonics for frequency analysis in Chaps. 3, 5.1 and 5.2.

Haar Wavelets: The wavelets are scaled and translated copies of a finite length

or fast-decaying oscillating waveform known as the ”mother wavelet”. Wavelet

transforms have advantages over traditional Fourier transforms for representing

functions that have discontinuities and sharp peaks, and for accurately deconstruct-

ing and reconstructing finite, non-periodic and stationary signals. The first known

wavelets are Haar wavelets, proposed in 1909 by Alfred Haar. The Haar wavelet is

also the simplest possible wavelet. The normalized 1D Haar basis can be written

as

• The mother scaling function is

φ(x) =





1, for 0 ≤ x < 1

0, otherwise
(2.14)
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• The mother wavelet function is

ψ(x) =





1, for 0 ≤ x < 1/2

−1, for 1/2 ≤ x < 1

0, otherwise

(2.15)

• A normalized wavelet basis ψ j(x) at level l j and offset t j is

ψ j(x) = 2l j/2ψ(2l jx − t j), (2.16)

which is a scale and dilation of the mother wavelet ψ(x).

Using either the standard or nonstandard decomposition, the 1D Haar wavelet

transform can be easily extended to 2D or higher dimensions, as we show in Sec.

4.4.4. Below we recap a few key properties of Haar wavelets without proof. More

interested readers can refer to [21].

• The wavelets at the same level are orthonormal:
∫

ψi(x)ψ j(x)dx = δ(i − j).

• The wavelets have vanishing integrals:
∫

ψi(x)dx = 0.

• The product of the mother scaling function with any wavelet is simply still

the same wavelet: φ(x)ψi(x) = ψi(x)

• The square of a wavelet is equal to the scaling function restricted to (l, t) and

scaled by 4l.

• The product of two overlapping wavelets at different levels l < l′ is the finer

wavelet scaled by ±2l.

Wavelets have long been used in computer graphics to compress signals (images

and videos) and approximate higher dimensional functions such as BRDFs. It

has recently become popular in PRT based relighting algorithms for lighting and
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visibility representations. We use wavelets in our analysis in Chap. 4. It is also

used in wavelet importance sampling for efficient offline renderings [22].

2.3 Environment Mapping

Environment mapping technique was first introduced by Blinn and Newell [15] to

approximate mirror reflections and was later popularized by [71, 26]. Reflection

mapping based methods first approximate the reflection equation by dropping the

visibility term. Thus, it works best for simple BRDFs and objects and achieves

real-time rates. For mirror reflection surfaces, the incident radiance gets perfectly

reflected in a reflected direction. The reflected radiance can be written as

Lr(x, ωo) = Li(x, ωr(n)), (2.17)

where ωr is the reflected direction of the outgoing angle ωo with respect to the

surface normal n. No integration is involved in the calculation. Reflection of

vectorswith respect to surface normal can be calculated using simple linear algebra.

The reflected radiance can be obtained by indexing into environment map using

the reflection vector ωr, greatly speeding up the performance. This is the reflection

technique introduced in [15, 71] was popularized later in movies such as Interface,

Flight of the Navigator, Abyss, Terminator 2 and etc.

Environment maps can be represented using a number of different parameter-

izations. For example, the map can be created by choosing a center of projection

and project the environment onto it. Popular forms are spherical maps, latitude-

longitude maps, cube maps, dual parabolic maps and etc. To achieve the highest

level of fidelity, environment maps can also encode high dynamic range radiance

values [27].

The original environment reflection mapping technique was also quickly ex-
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tended to relighting with Lambertian or simple Phong BRDFs. In these cases, since

the BRDF is given, the shading integration of the lighting with the BRDF can be

performed beforehand to generate a prefiltered environment map. At run time,

GPUs can be used for fast texture looks ups. In particular, Miller et al. [71] and

Heidrich et al. [40] performed the following integrations before hand:

Ldi f f use(x) = kd

∫

Ω

Li(x, ωi)(ωi · n(x))dωi, (2.18)

Lphong(x, ωo) =

∫

Ω

Li(x, ωi)(ωr · ωi)ndωi, (2.19)

where kd is the diffuse surface albedo that describes absorption, ωr is the reflected

outgoing direction, and n is the Phong exponent. These calculations generate

prefiltered environment maps indexed by the surface normal direction n and the

reflected outgoing direction ωr. Multiple environment maps may be needed for

glossy materials such as the Phong BRDF with view point variations.

Environment mapping techniques uniformly assume the the surrounding en-

vironment is infinitely far away so that the spatial parallax can be safely ignored

to speed up the computation. Often only one environment map or a few suffice.

Because environment maps are preintegrated and tabulated, they cannot easily

handle shadow and interreflection effects. As a result, they cannot be easily ap-

plied to planner and concave surfaces. Despite these limitations, environment

mapping techniques are widely used for real-time applications such as games for

their simplicity in hardware implementation.

2.4 Frequency Analysis of Irradiance Integration

Ramamoorthi and Hanrahan [86, 91, 87] pioneered important research on signal

processing analysis of irradiance maps and shading convolution. Basri and Jacobs
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[7] independently published similar frequency analysis results on face recognition.

Their work has laid the foundation for much recent development in pre-computed

radiance transfer (PRT) [102]. Ramamoorthi and Hanrahan [86] applied spheri-

cal harmonic analysis to irradiance environment maps. Spherical Harmonics, as

introduced in Sec. 2.2, are the analogue to the Fourier basis on the sphere and ap-

proximate spherical functions well. Ramamoorthi and Hanrahan show that, when

the filter kernel is broad, the prefiltered Lambertian BRDF can be well approxi-

mated using the nine lowest-order spherical harmonic coefficients. As convolution

reduces to multiplication in the frequency domain, the lighting integration can be

calculated very efficiently, dramatically increasing the performance and reducing

the storage requirements. Specifically, they show that the irradiance convolution

reduces to a multiplication:

E(θ, φ) =
∑

lm

ÂlLlmYlm(θ, φ), (2.20)

where E(θ, φ) is the irradiance, Llm is the spherical harmonic coefficients of the

environment lighting, Ylm(θ, φ) is the spherical harmonic basis function, Âl is a

simple analytic function whose explicit formula can be derived. They further show

that that Âl vanishes for odd values of l > 1, and even terms fall off very rapidly as

l
5
2 . The analytic formulae are given by

l = 1 Â1 =
2π

3
(2.21)

l > 1, odd Â1 = 0 (2.22)

l = even Â1 = 2π
(−1) l2−1

(l + 2)(l − 1)
[ l!

2l( l
2
!)2

]

(2.23)
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Numerically, the first few terms are

Â0 = 3.141593 Â1 = 2.094395 Â2 = 0.785398 (2.24)

Â3 = 0 Â4 = .0.130900 Â5 = 0 Â6 = 0.049087 (2.25)

The key is that Âl decays very fast with l. Thus, the irradiance is well approximated

by 9 spherical harmonic coefficients, instead evaluating a full hemispherical inte-

gral. For rendering, this simple algorithm can implemented using 4x4 matrices.

Though efficient, this approach is limited to Lambertian diffuse reflectance and

distant environment lighting. In [88], Ramamoorthi and Hanrahan extended the

spherical harmonic approach to specular BRDFs under distant illumination using

spherical harmonic reflection maps (SHRM). SHRM is a 4D spherical harmonic

representation of the environment reflection at changing views. Sloan et al. [102]

later applied spherical harmonic results to exploit the linearity of light transport

and proposed precomputed radiance transfer (PRT).

One common limitation of spherical harmonic based approaches is that spher-

ical harmonic basis is not well suited to approximate high frequency signals and

display ringing artifact at higher orders. This prevents spherical harmonics from

being applied on high frequency lighting environment or very glossy BRDFs. Ng

et al. in [75] discussed the inability of a low-order SH basis to approximate high

frequency environment maps. They propose non-linear wavelet approximation

for representing the environment maps and light transport matrix to achieve all-

frequency effects. A wavelet basis contains area lights that vary from the size of

a cubemap pixel to essentially the size of the entire sky. They show that usually

0.5 ∼ 1% wavelet basis coefficients suffice to accurately approximate detailed pho-

tographed illumination, and that 0.1 ∼ 0.2% suffice for simpler environments or

synthetic area lights. They precompute lighting and transport matrices in 6x64x64
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cubmaps and for renderingperformagiant sparsematrixmultiplication. They later

extended the use of wavelets to triple product wavelet integrals [76]. Other bases

such as symmetric radial basis functions (SRBFs) [116, 36] are also experimented

in the PRT relighting framework.

2.5 Precomputed Radiance Transfer (PRT)

Much of our work is built upon the precomputed radiance transfer (PRT) frame-

work. Relighting techniques have been developed from the basic approach in-

troduced by Nimeroff et al. [79] and Dorsey et al. [29] to much recent work on

precomputed radiance transfer (PRT) [102], using the signal processing analysis

results and leveraging the linearity of light transport. The original PRT algorithm

proposed by Sloan et al. [102] is for static scenes in low frequency lighting environ-

ment. PRT solves the light integration problem using an tabulation of an object’s

response to the lighting in the frequency space, capturing the way an object shad-

ows, scatters, and reflects light. Equation 1.4 forms the basis for precomputed

radiance transfer. We rewrite it here as :

Lr =

∫

(
∑

j

L jφ j(ωi))(
∑

k

Tk(x)φk(ωi))dωi (2.26)

=
∑

j

∑

k

L jTk(x)

∫

φ j(ωi)φk(ωi)dωi (2.27)

= ~T(x) ·~L, (2.28)

where Lr is the reflected radiance, L is the incident lighting and T is the transport

function. PRT pre-computes light transport functions for each vertex and reduce

complex integrations to a simple inner product of the light vectorwith the transport

vectors in the frequency space. This work has rekindled a great interest not only in

pre-computation based relighting but also in selection of better bases for lighting
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approximation.

Other methods [56, 101, 120, 121, 65] quickly improved the PRT technique to al-

low for better real-time performance and rendering of non-diffuse or translucent ob-

jects. As per-point transfer matrices form a high-dimensional surface signal, Sloan

et al. [101] apply clustered principal component analysis (CPCA) to compress them

to a low-dimensional set of per point weights on a per-cluster set of representative

matrices. Ng et al. [75] used non-linear wavelet approximation for representing

the environment map and light transport matrix to achieve all-frequency effects.

Wang et al. [120] and Liu et al. [65] extended PRT to glossy objects using sepa-

rable BRDF approximations. While [111] added atmospherical scattering effects

to PRT, Wang et al. [118] further incorporated rendering of translucent objects in

PRT. Tsai et al. [116] introduced for PRT a new data representation using spherical

radial basis functions (SRBFs) and compressed the precomputed data using cluster

tensor approximation. Ng et al. [76] further extend the general PRT framework to

triple product wavelet integrals for handling higher dimensionality and sampling

rate. Triple product wavelet integral is then further generalized by [112] to render

dynamic glossy objects.

There has also been active research on extending PRT techniques to rendering

more dynamic effects, such asmoving and deformable objects, mid-range illumina-

tion, wrinkled surfaces andnear-field lighting. Sloan et al. [104] capture local effects

such as bumps, wrinkles, or other detailed features by applying zonal harmonics

(ZH). Zhou et al. [126] present a shadow field technique for dynamic scenes, which

precomputes for each scene entity a shadow field that describes the shadowing

effects, and for each light sources a source radiance field that records radiance from

an illumination. James et al. [46] take a data-driven approach to global illumina-

tions of dynamic deformable scenes. Because they parameterize all possible scene

deformations, they are able to precompute novel reduced coparameterizations of
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global scene illumination for low frequency lighting conditions. Annen et al. [2] use

a first-order Taylor expansion of the spherical harmonic lighting coefficients and

an interpolation scheme based on these gradients to render mid-range illumina-

tion. Spherical harmonic scaling [119] tries to approximate the effects of mid-range

illumination by simple spherical function scaling. Spherical harmonic exponenti-

ation [92] can render near-field soft shadowing effects in real time, but has to use

sphere sets to approximate geometries. Kristensen et al. [60] extend work on PRT

for distant lighting to local lighting by introducing unstructured light clouds. Sun

and Ramamoorthi [110] proposed a novel affine double and triple product wavelet

integral theory for near-field relighting.

This body of work has laid the foundation formuch of ourmathematical deriva-

tions for real-time rendering. For example, we have used the frequency based con-

volution framework to extend our analytic single scattering model, via the form of

a point spread function (PSF), to arbitrary BRDFs, complex lighting and precom-

puted radiance transfer [111]. In Sec. 5.2, the spherical harmonic exponentiation

technique presented for soft shadows is based on PRT, but extends it to multiple

dynamic blockers. In chapter 4, our theory of affine double and triple wavelet

product integrals for near-field relighting is an important generalization of the

triple product wavelet integrals of Ng. et al [76]. From the next chapter, we start

with our analytic single scattering model for real-time rendering.



Chapter 3

A Practical Analytic Model for Single

Scattering

3.1 Introduction

Many real-time rendering applications like games or interactive simulations seek

to incorporate atmospheric effects such as mist, fog and haze. These participating

media lead to a number of qualitative effects not present in clear-day conditions

(compare Fig. 3.1A with our result in Fig. 3.1C). In computer graphics, the ap-

proaches for capturing these effects represent two ends in the spectrum of speed

and quality. For high-quality rendering, a number of Monte Carlo and finite

element techniques have been proposed. These methods can model general volu-

metric phenomena and scattering effects. However, they are slow, usually taking

hours to render a single image. At the other extreme, perhaps the most common

approach for interactive rendering is to use the OpenGL fog model, which simply

blends the fog color with the object color, based on the distance of the viewer

(Fig. 3.1B). This model is also popular because of its simplicity. However, many

qualitative effects are missing, such as the glows around light sources, the effect of

27
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(a) Clear day (b) OpenGL fog (c) Our model

Figure 3.1: Rendered images of a scene with 66,454 texture-mapped triangles and 4 point lights.
(a) Standard OpenGL rendering (without fog), (b) OpenGL fog, and (c)Our real-time model, that
includes the glows around light sources, and changes to surface shading such as dimming of diffuse
radiance (floor and wall), brightening of dark regions (back side of pillars and vases) and dimming
and diffusing of specular highlights (inset). All the visual effects are rendered by our method at
about 20 frames per second.

scattering on object shading, and the ability to incorporate complex lighting effects

like environment maps.

Figure 3.2 illustrates three important visual effects due to light transport in

scattering media. In this discussion, we assume single scattering (i.e. that light

scatters at most once in themedium). Figure 3.2A corresponds to direct transmission

of light from the source or surfaces to the viewer. This simple approach is essentially

what interactive models like OpenGL fog implement. Figure 3.2B also includes the

glows around light sources, commonly referred to as airlight [59]. Figure 3.2C

further includes the effect of airlight on the outgoing surface radiance, leading to

effects such as the spreading out of specular highlights and softening of shadows.

Figure 3.2D illustrates the case where the surface radiance is single scattered in

addition to being attenuated, before reaching the view point. Implementing the

latter effect requires a depth-dependent convolution.

In this section, we present an alternative physically based approach that cap-

tures these effects while maintaining the real-time performance and ease of use of

the OpenGL fog model. This work is published in [111]. Our method is based on

an explicit analytic integration of the single scattering light transport equations for

an isotropic point light source in homogeneous participating medium. Our model
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can be implemented as a simple vertex or pixel shader (pseudocode in Fig. 3.13).

The method can also be applied with complex lighting allowing environment map-

ping and precomputed radiance transfer to be used interactively with participating

media. Our specific technical contributions are:

Explicit Compact Formula for Single Scattering: One of the main contributions

of our method is the derivation of an explicit compact formula for the single

scattering from an isotropic point source in a homogeneous participating medium,

by analytically integrating the single scattering equations. This airlight model (Sec.

3.3) allows us to simulate effects like the glows around light sources (Fig. 3.2B). We

can also use the model to calculate the effects of scattering on the surface shading

(Fig. 3.2C).

Implementation on Programmable Graphics Hardware: We reduce these dif-

ficult integrals to a combination of analytic functions that depend only on the

physical parameters of the problem, and a few lookups of tabulated 2D functions,

that are smooth and purely numerical. The numerical functions can be precom-

puted and stored as 2D texturemaps, and the entire analytic computation and table

lookups can be implemented in simple pixel or vertex shaders (Sec. 3.5).

Extensions toComplex Lighting andBRDFs: Mathematically, wederive a point-

spread function (PSF) to represent the glow around a light source. We can convolve

an environment map with this PSF to get the appearance of a foggy scene under

natural lighting. This approach enables methods such as environment mapping

and precomputed radiance transfer to be used with volumetric scattering effects.
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Figure 3.2: Diagrams showing three cases of how light travels to the viewer through the partici-
pating medium. In (a) light travels in a straight line and directly reaches the surface and the viewer.
This is essentially what previous interactive models such as OpenGL fog compute. In (b), in addition
to what happens in (a), airlight scatters to the viewer and produces effects like glows around the
light source. In (c), in addition to what happens in (b), airlight also scatters to the surface and gets
reflected, leading to effects such as the diffusing out of specular highlights and brightening of darker
regions. In image (d), reflected rays from the surface also scatter to the viewer.

3.2 Previous Related Work

The literature on simulating volumetric effects is large, going back to [14], and we

only discuss important representative papers. Most techniques are based on nu-

merical or analytic approximations to the radiative transfer equation [20]. Monte

Carlo ray tracing methods were adapted by computer graphics researchers to

render impressive effects including multiple scattering and non-homogeneous me-

dia [53, 67, 48]. However, suchmethods can take hours to render a single image. To

speed up rendering, numerical methods that only simulate single scattering have

also been proposed [83, 72, 95, 94]. However, they still require significant running

times, and are not suitable for interactive applications.

Hardware-accelerated numerical methods: A number of recent hardware ac-

celerated techniques can significantly decrease the running times of numerical

simulations, although they are still usually not fast enough for many interactive

applications such as games. Dobashi et al. [28] describe a multi-pass rendering

technique that numerically integrates the single scattering equations, using graph-

ics hardware to accumulate the results at a number of planes in the scene, similar

to volume rendering. Harris and Lastra [38] render clouds by including a forward
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scattering term in addition to single scattering. Note that their method is geared

toward the case when the viewer is far from the clouds, and they apply a different

and slower approach when the viewer and scene are immersed inside the medium,

as is the scenario in our work.

These methods are intended to apply to specific phenomena like the sky or

clouds [28, 93, 38]. This allows them to make use of complex tabular volume

specifications, precomputed lighting solutions or multipass rendering techniques

to produce effects including inhomogeneous media and simple heuristics for mul-

tiple scattering. They allow for viewpoint, and in a few cases interactive lighting

variation, but usually fix the medium properties and scene specification.

In contrast, our technique, while focusing on homogeneous media and single

scattering, can be encapsulated in a simple shader for general scenes, and allows for

real time variation of the viewpoint, lighting, scattering properties of the medium,

and even scene geometry and reflectance. Another major benefit of our method

is that it addresses the effects of scattering on surface shading (Fig. 3.2C) and

complex lighting like environmentmaps. These effects are not included in previous

methods because they are difficult to numerically simulate efficiently, requiring an

integration over all incident scattered lighting directions at each surface point.

Analytically based methods: The diffusion approximation for optically thick

media was applied to subsurface scattering [106, 49]. An analytic form for the

single scattering term was also derived by Hanrahan and Krueger [37]. However,

the problem we are solving is very different from that of subsurface scattering,

where the light sources and viewer are outside the medium. In our case, both

the sources and viewer are immersed inside the medium. Also, unlike in the case

of diffusion, we are interested in strongly directional effects like glows around

sources.
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s, v, p Subscripts for Source, Viewer, surface Point
γ Angle between light source and viewing ray
Dsv Distance between source and viewer
Dvp Distance between viewer and closest surface point
Dsp Distance between source and surface point
Tsv Optical thickness between source, viewer (βDsv)
Tvp Optical thickness between viewer, surface point (βDvp)
Tsp Optical thickness between source, surface point (βDsp)
β Scattering coefficient of the participating medium
α Angle of scattering
x Distance along the ray from viewer (integration variable)
d Distance of single scattering from light source
I0 Radiant intensity of point light source
fr BRDF of surface

Figure 3.3: Notations used in Chap. 3.

Analytic expressions for airlight with directional light sources, based on the

derivation by Koschmeider [59], are used frequently for rendering skies [84, 42, 73].

However, our focus is different. We wish to derive an analytic model with “near-

field” point sources, which is a significantly more complex lighting situation as

compared to distant lighting (collimated beams).

Analytic expressions for the glows around point light sources inside homoge-

neous media have also been derived [67, 11, 74]. Therefore, those methods could

be used to render glows in real time. However, it is not clear how to extend them

to a complete real-time rendering system that also considers the effects of airlight

on surface shading, or handles complex environment map lighting. Furthermore,

their derivations involve approximations that are not feasible in several common

rendering scenarios. For instance, themodel derived byMax [67] does not take into

account attenuation. Biri et al. [11] use a polynomial approximation to single scat-

tering which results in inaccurate glows along viewing directions near the source.

The multiple scattering model in [74] is not strictly valid when objects are present

in the medium, especially near the sources (as is generally true in most common

scenes), or for optically thin media. Further, the integration required for surface
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Figure 3.4: Diagram showing how light is scattered once and travels from a point light source to
the viewer.

radiance cannot be computed analytically or simulated numerically in real time.

3.3 Airlight Model

In this section, we derive an explicit model for the single scattered radiance at

a viewer, due to an isotropic point light source, assuming that both the viewer

and the source are immersed in a homogeneous scattering medium. Consider the

scenario illustrated in Fig. 3.4 (the notations used are indicated in Fig. 4.2). The

point light source has a radiant intensity I0 and is at a distance Dsv from the view

point, making an angle γwith the viewing direction. The radiance, L, is composed

of the direct transmission, Ld, and the single scattered radiance or airlight, La,

L = Ld + La. (3.1)

The direct term Ld simply attenuates the incident radiance from a point source

(I0/D2sv) by an exponential corresponding to thedistance between source andviewer,
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and the scattering coefficient1 β,

Ld(γ,Dsv, β) =
I0

D2sv
e−βDsv · δ(γ), (3.2)

where the delta function indicates that for direct transmission, we receive radiance

only from the direction of the source (no glows).

3.3.1 The Airlight Integral

We focus most of our attention on the airlight La. The standard expression [80] is

given by an integral along the viewing direction,

La(γ,Dsv,Dvp, β) =

∫ Dvp

0

βk(α) · I0 · e
−βd

d2
· e−βxdx , (3.3)

whereDvp is thedistance to the closest surface point along the viewing ray or infinity

if there are no objects in that direction, and k(α) is the particle phase function. The

exponential attenuation corresponds to the total path length traveled, d + x. The

two parameters d and angle α in the integrand depend on x. In particular, d is given

by the cosine rule as

d =

√

D2sv + x2 − 2xDsv cosγ. (3.4)

Let us now substitute equation 3.4 into equation 3.3. For now, we also assume

the phase function k(α) is isotropic and normalized to 1/4π. In this case,

La(γ,Dsv,Dvp, β) =
βI0
4π

∫ Dvp

0

e−β
√
D2sv+x

2−2xDsv cosγ

D2sv + x2 − 2xDsv cosγ
· e−βxdx . (3.5)

We refer to this equation as the airlight single scattering integral and next focus on

1When there is light absorption in addition to scattering, β is called the extinction coefficient and
is given by the sum of the scattering and absorption coefficients. In this paper, we simply refer to β
as the scattering coefficient, and it is straightforward to include absorption in our models.
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Figure 3.5: 3D plot of special function F(u, v) in the range of 0 ≤ u ≤ 10 and 0 ≤ v ≤ π
2 . The

plot shows that the function is well-behaved and smooth and can therefore be precomputed as a 2D
table. As expected from the definition in equation 3.15, the function decreases as u increases, and
increases as v increases. The maximum value in the plot above therefore occurs at (u = 0, v = π

2 ).
Also note from equation 3.15, that for u = 0, there is no attenuation so the function is linear in v.

simplifying it further to derive an explicit form.

3.3.2 Solution to the Airlight Integral

We take a hybrid approach to solve equation 3.5. The key result is that this integral

can be factorized into two expressions—(a) an analytic expression that depends

on the physical parameters of the scene and (b) a two-dimensional numerically

tabulated function that is independent of the physical parameters. Essentially,

this factorization enables us to evaluate the integral in equation 3.5 analytically. A

high-level sketch of the derivation is given below and detailed simplifications are

included in appendix A.

STEP 1. Reducing the dimensions of the integral: Since the integral in equa-

tion 3.5 depends on 4 parameters, our first step is to apply a series of substitutions

that reduce the dependency of the integrand to only one parameter. For this, we

first write the expressions in terms of optical thicknesses T∗ = βD∗ and t = βx. In

most cases, this eliminates the separate dependence on both β and the distance



36

parameters, somewhat reducing the complexity, and giving us a simpler intuition

regarding the expression’s behavior. Then, we combine the dependence on Tsv and

γ by making the substitution z = t − Tsv cosγ, to obtain

La(γ,Tsv,Tvp, β) =
β2I0
4π
e−Tsv cosγ

∫ Tvp−Tsv cosγ

−Tsv cosγ

e−z−
√
z2+T2sv sin

2 γ

T2sv sin
2 γ + z2

dz. (3.6)

Now, the integrand really depends on only one physical parameter Tsv sinγ, begin-

ning to make the computation tractable.

It is possible to further simplify equation 3.6. To encapsulate the dependence

on the physical parameters of the problem, we define the following two auxil-

iary expressions, corresponding respectively to the normalization term outside the

integrand, and the single physical parameter in the integrand, Tsv sinγ:

A0(Tsv, γ, β) =
β2I0e−Tsv cosγ

2πTsv sinγ
(3.7)

A1(Tsv, γ) = Tsv sinγ. (3.8)

It is then possible to derive, that

La = A0(Tsv, γ, β)

∫ π
4 +
1
2 arctan

Tvp−Tsv cosγ
Tsv sinγ

γ/2

exp[−A1(Tsv, γ) tan ξ] dξ. (3.9)

Now we briefly recap the mathematical derivation per the description above.
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Figure 3.6: Accuracy of the airlight model. The plots show the error (versus numerically inte-
grating equation 3.5) as a function of the resolution for the 2D tables for F(u, v). We report the
fractional error, normalizing by the total airlight over the hemisphere. The error for each resolution
is averaged over 40000 parameter values of β, Dsv, Dvp and γ. Bilinear (red) and nearest neighbor
(green) interpolation is used to interpolate F(u, v) at non-grid locations of the indices (u, v). The
plots clearly indicate the high accuracy of our compact formula, and that a 64 × 64 table for F(u, v)
suffices for a maximum error of less than 2%.

We start the derivation from equation 3.5.

La =
βI0
4π

∫ Dvp

0

e−β
√
D2sv+x

2−2xDsv cosγ

D2sv + x2 − 2xDsv cosγ
· e−βxdx (3.10)

——>substitute T∗ = βD∗ and t = βx

=
β2I0
4π

∫ Tvp

0

e−
√
T2sv+t

2−2tTsv cosγ

T2sv + t2 − 2tTsv cosγ
· e−tdt (3.11)

——>substitute z = t − Tsv cosγ

=
β2I0e−Tsv cosγ

4π

∫ Tvp−Tsv cosγ

−Tsv cosγ

e−
√
z2+T2sv sin

2 γ

z2 + T2sv sin
2 γ
· e−zdz (3.12)

——>substitute z = Tsv sinγ tan η

=
β2I0e−Tsv cosγ

4πTsv sinγ

∫ arctan
Tvp−Tsv cosγ
Tsv sinγ

γ− π2
e−Tsv sinγ

1+sin η
cos η dη (3.13)

——>substitute η = 2ξ − π
2

=
β2I0e−Tsv cosγ

2πTsv sinγ

∫ π
4 +
1
2 arctan

Tvp−Tsv cosγ
Tsv sinγ

γ/2

exp[−Tsv sinγ tan ξ]dξ, (3.14)

from which we obtain equation 3.9.
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Figure 3.7: Comparison of the airlightmodel with a standardMonte Carlo simulation that includes
multiple scattering. The plots show the relative RMS error between the two methods for the case of
isotropic phase function. [Left] The low RMS errors show that our model is physically accurate (less
than 4% error) for optically thin media (Tsv ≤ 2). [Right] From this plot, it is evident that multiple
scattering becomes more important as optical thickness increases. However, the actual errors grow
slowly and are still low for a wide range of optical thicknesses (Tsv < 10). It is also interesting to
note that for very high optical thicknesses (Tsv > 20), attenuation dominates over scattering and
once again the RMS errors decrease.

Although equation 3.9 might seem complicated, it is really in a simplified form.

We already have simple analytic expressions for A0 and A1. Further, the function

A1 is a numerical constant as far as the integration is concerned.

STEP 2. Evaluating the integral using a special function: To encapsulate the key

concepts in the integrand of equation 3.9, we define the special function,

F(u, v) =

∫ v

0

exp[−u tan ξ] dξ. (3.15)

Unfortunately, there exists no simple analytic expression for F(u, v). However, the

function is a well behaved 2D function as shown in Fig. 3.5. Therefore, we can

simply store it numerically as a 2D table. This is really no different from defining

functions like sines and cosines in terms of lookup tables. In practice, we will use

texture mapping in graphics hardware to access this 2D table. Note that F(u, v) is

purely numerical (independent of the physical parameters of the problem), and

needs to be precomputed only once.
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Finally, we can obtain for La(γ,Tsv,Tvp, β),

La = A0
[

F(A1,
π

4
+
1

2
arctan

Tvp − Tsv cosγ
Tsv sinγ

) − F(A1,
γ

2
)
]

, (3.16)

where we have omitted the parameters for La, A0 and A1 for brevity.

In the important special case of Tvp = ∞, corresponding to no objects along the

viewing ray, we get La(γ,Tsv,∞, β) as

La = A0(Tsv, γ, β)
[

F(A1(Tsv, γ),
π

2
) − F(A1(Tsv, γ),

γ

2
)
]

. (3.17)

In summary, we have reduced the computation of a seemingly complex single

scattering integral in equation 3.5 into a combination of an analytic function

computation that depends on the physical parameters of the problem and a

lookupof apre-computed2Dsmooth function that is independentof thephysical

parameters of the problem. In the rest of the paper, we will demonstrate several

extensions and applications of our model.

Extension to General Phase Functions: It is straight-forward to extend our

model to more general phase functions. It is well known that phase functions k(α)

of most media can be written as polynomials of cosα [45, 20],

k(α) =
n∑

k=0

Wk cos
k α , (3.18)

where Wk’s are coefficients of the polynomial. Similar to the previous derivation

for the isotropic case, we show in appendix B that the expression for general phase

functions can be written using the special function Fk(u, v) (analogous to F(u, v)),

Fk(u, v) =

∫ v

0

cosk 2ξ exp[−u tan ξ] dξ. (3.19)
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Figure 3.8: The images show glows around three identical point light sources (street lamps) at
different distances from the viewer. From left to right, we show three different values of the scattering
coefficient β (β = 0, 0.01, 0.04). Larger values of β correspond to larger optical thicknesses Tsv. We
clearly see the effect of greater glows for larger β. Also, the radiance from farther light sources
is attenuated more in each individual image, resulting in smaller glows for the farther lights. In
the fourth (rightmost) image, we show a different view with β = 0.04, where all the light sources
are approximately equidistant, with the result that they have similar glows. (The shading on the
surfaces is computed using the surface radiance model in Sec. 3.4.)

Thus, if n terms of the phase function are used, we need to store n 2D tables. In

practice, since a small value for n (typically n ≤ 3) typically suffices to represent

most phase functions, only a few 2D tables need to be stored.

3.3.3 Accuracy of the Airlight Model

We first investigate the accuracy of our analytic model as compared to numerically

integrating equation 3.5. Figure 3.6 shows plots of themean error in La as a function

of the resolution of the 2D numerical table for the special function F(u, v). We use

interpolation to evaluate F(u, v) at non-grid locations for the indices (u, v) (bilinear

and nearest neighbor interpolations are shown in Fig. 3.6). For each resolution,

the error computed is averaged over 40000 sets of parameter values for β, Dsv, Dvp,

γ. The error bars in the figure show the standard deviation of the errors. The plots

indicate that even a low resolution 64×64 table suffices to computeF(u, v) accurately,

with amaximumerror of less than 2%. As expected, bilinear interpolation performs

better, but, for faster rendering, one can use nearest neighbor interpolation with

only a small loss in accuracy.

We also validate the accuracy of the single scattering assumption in our airlight

model. Figure 3.7 shows the relative RMS errors between glows around light
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sources computed using our model and a standard volumetric Monte Carlo ap-

proach that takes into account multiple scattering as well. The Monte Carlo simu-

lation took approximately two hours to compute each glow, whereas our explicit

model runs in real-time. The comparison was conducted for optical thicknesses

over a wide range Tsv ∈ (0.25, 25) and Tvp ∈ (0.5, 50), which covers almost all real sit-

uations. As expected, for optically thin media (Tsv ≤ 2), our model is very accurate

(less than 4% relative RMS error). Interestingly, even for greater optical thicknesses

(Tsv > 2), the error only increases slowly. Thus, our single scattering model may

be used as a viable approximation for most common real-time rendering scenarios,

such as games.

3.3.4 Visual Effects of the Airlight Model

The dependence of the model on the viewing direction γ and the distance of the

source from the observer Dsv, predicts visual effects like the glows around light

sources and the fading of distant objects. As discussed above, these effects are

physically accurate for thin fog (low β and T), and qualitatively reasonable in other

cases. In Fig. 3.8, we also see how these glows change as a function of the medium

properties (the scattering coefficient β) and distance to the sources. As β increases,

we go from no glow (β = T = 0) to a significant glow due to scattering. The

differences in the 3 light sources should also be observed. The farther lights are

attenuated more, and we perceive this effect in the form of reduced glows around

more distant sources. The final (rightmost) image in Fig. 3.8 shows a different

viewpoint, where the sources are at approximately the same distance, and the

glows therefore look the same.
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Figure 3.9: Diagram showing how light travels from a point light source to a surface point and
gets reflected towards the viewer by the surface point.

3.4 The Surface Radiance Model

In this section, we discuss the effects of airlight on the outgoing surface radiance.

Consider the illustration in Fig. 3.9, where an isotropic point light source s illumi-

nates a surface point p. We will calculate the reflected radiance at the surface. To

get the actual appearance at the viewer, we need to attenuate by exp[−Tvp] as usual,

where Tvp is the optical thickness between viewer and surface point.

The reflected radiance Lp is the sum of contributions, Lp,d and Lp,a, due to di-

rect transmission from the source, and single scattered airlight from the source

respectively,

Lp = Lp,d + Lp,a. (3.20)

The direct transmission corresponds to the standard surface reflectance equa-

tion, only with an attenuation of exp[−Tsp] added because of the medium, where

Tsp is the optical thickness between the source and the surface point:

Lp,d =
I0e
−Tsp

D2sp
fr(θs, φs, θv, φv) cosθs, (3.21)

where fr is the BRDF, (θs, φs) is the direction to the source, and therefore also the
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incident direction, and (θv, φv) is the viewing direction. All angles are measured

with respect to the surface normal, in the local coordinate frame of the surface.

3.4.1 The Surface Radiance Integral

On the other hand, the single-scattered radiance Lp,a is more complicated, involving

an integral of the airlight (La from equation 3.17) over all incident directions,

Lp,a =

∫

Ω2π

La(γ
′(θs, ωi),Tsp,∞, β) fr(θi, φi, θv, φv) cosθi dωi . (3.22)

Consider the parameters of La in the integrand of the above equation. The angle γ′

in this case is the angle2 between the incident direction ωi and the source direction

(θs, φs). Note that for isotropic BRDFs, we can always rotate the coordinate system

so φs = 0, allowing us to write γ′(θs, ωi). Finally, La also depends on the optical

thickness between the source and the surface point Tsp (instead of between source

and viewer in equation 3.17).

We refer to equation 3.22 as the surface radiance single scattering integral, anal-

ogous to the airlight single scattering integral in equation 3.5, and next focus on

deriving an explicit compact form.

3.4.2 Solution to the Surface Radiance Integral

First consider the Lambertian case, so the BRDF is a constant kd. The integral will

thendependonly on theparameters ofLa, i.e.γ′,Tsp and β. Of these, thedependency

on β is primarily a normalization factor and does not affect the integrand. The angle

γ′ is a function of the source direction θs, and the integration variable ωi. Hence,

the integrand depends on only two physical variables, Tsp and θs. Thus, as in

2We use the prime on γ′ to make a technical distinction from the angle γ between the source and
viewer used in the previous section. An explicit trigonometric formula for γ′ is given in appendix
B.
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Figure 3.10: 3D plots of functions G0 and Gn for n = 20 in the range of 0 ≤ Tsp ≤ 10 and
0 ≤ θs ≤ π

2 . The plots show that both functions are well-defined and smooth and can therefore be
precomputed as 2D tables. The functions reach their peak values for θs = Tsp = 0, decaying with
increases in both parameters. The decay is faster for the peakier G20 on the right.

the previous section, we can define a special two-dimensional numerical function

G0(Tsp, θs).

For the Phong BRDF, we employ the reparameterization method in [88], mea-

suring angles from the reflection of the viewing direction about the surface normal,

rather than the surface normal itself. To indicate this, we denote by θ′s the angle the

source makes with respect to this reflected direction. Upon making this transfor-

mation, it can be shown that the Phong BRDF is mathematically analogous to the

Lambertian case. To allow for the Phong exponent n, we define the 2D function Gn

instead of G0. These functions are well-defined and smooth as shown by the plots

in Fig. 3.10. The details of these calculations are in appendix B, and the formula

for Gn is

Gn(Tsp, θ
′
s) =

∫

Ω2π

e−Tsp cosγ
′

sinγ′

[

F(A1,
π

2
) − F(A1,

γ′

2
)
]

cosn θi dωi, (3.23)

where γ′ and A1(Tsp, γ′) are functions of θ′s and ωi, i.e. γ
′(θ′s, ωi).

Now we briefly recap the mathematical derivation for the surface radiance

model per thedescription above. Wefirst consider theLambertianBRDF, beginning

with equation 3.22. Note that in the derivation below, γ′ is given from trigonometry
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by γ′(θs, ωi) = cosθi cosθs + sinθi sinθs cosφi.

Lp,a =

∫

Ω2π

La(γ
′(θs, ωi),Tsp,∞, β) fr(θi, φi, θv, φv) cosθi dωi (3.24)

——>substitute equation 3.17 for La and a constant kd for fr

=

∫

Ω2π

A0(Tsp, γ, β)
[

F(A1(Tsp, γ
′),
π

2
) − F(A1(Tsp, γ′),

γ′

2
)
]

kd cosθi dωi (3.25)

——>substitute equation 3.7 for A0 and take constants out of integration

=
β2I0kd
2πTsp

∫

Ω2π

e−Tsp cosγ
′

sinγ′

[

F(A1(Tsp, γ
′),
π

2
) − F(A1(Tsp, γ′),

γ′

2
)
]

cosθi dωi

=
β2I0kd
2πTsp

G0(Tsp, θs). (3.26)

For the Phong BRDF after reparameterization, instead of kd cosθi, we will obtain

ks cos
n θi, where n is the Phong exponent. This can be handled exactly as above,

simply replacing G0 with Gn.

The final shading formula, considering both direct transmission and single

scattering is then given by:

Lp = I0kd
[e−Tsp

D2sp
cosθs + β

2
G0(Tsp, θs)

2πTsp

]

+ (3.27)

I0ks
[e−Tsp

D2sp
cosn θ′s + β

2
Gn(Tsp, θ′s)

2πTsp

]

. (3.28)

As in the airlight model derivation, we have reduced the computation of surface

radiance due to single scattering to a few analytic function evaluations and a few

2D table lookups.

3.4.3 Visual Effects of the Surface Radiance Model

To illustrate the different qualitative effects we see on surfaces due to scattering, we

rendered spheres with Lambertian (Fig. 3.11) and Phong BRDFs (Fig. 3.12) using
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(a) (b) (c)

Figure 3.11: Influence of scattering on Lambertian surface radiance. In the foggy image (b),
created using our surface radiance model, we see a dimming due to attenuation and diffusing of
shading (note the brightening of darker areas compared to the clear day image in (a)). These effects
are perhaps more apparent in (c), where we also include airlight from the source.

(a) (b) (c)

Figure 3.12: Influence of scattering on specular surface radiance (top row has Phong exponent
10, bottom has Phong exponent 20). In the foggy images (b), we see a dimming and diffusing of
the specular highlight compared to the clear-day image in (a). Note also the overall loss in color
saturation and contrast, especially in (c). These are important visual effects, usually missing in
previous interactive techniques.

our model above. The columns are from left to right (a) no scattering, (b) the effects

of scattering on surface shading, and (c) combining this with the airlight effects

directly from the source. For the Lambertian sphere in Fig. 3.11, we see a dimming

due to attenuation of light through the scattering medium, and the diffusing of
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frag2app fmain(
float4 objPos : TEXCOORD3, // 2D texture coords
...
uniform samplerRECT F, // 2D special functions
uniform samplerRECT G0,
uniform samplerRECT Gn)
{
frag2app OUT; // output radiance
// Set up and calculate Tsv, γ, Dsv, Tvp, θs and θ′s

/********** Compute La from equation 3.16 ******/
A0 = (β ∗ I0 ∗ exp[−Tsv ∗ cosγ])/(2π ∗Dsv ∗ sinγ); // equation 3.7
A1 = Tsv ∗ sinγ; // equation 3.8
v = π/4 + (1/2) arctan

[

(Tvp − Tsv ∗ cosγ)/(Tsv ∗ sinγ)
]

;
// v is one of texture coords

f1 = texRECT(F, f loat2(A1, v)); // 2D texture lookup
f2 = texRECT(F, f loat2(A1, γ/2));
airlight = A0 ∗ ( f1 − f2); // equation 3.16

/********** Diffuse surface radiance from equation 3.27 ******/
d1 = kd ∗ exp[−Tsp] ∗ cosθs ∗ I0/(Dsp ∗Dsp);
d2 = (kd ∗ I0 ∗ β ∗ β)/(2π ∗ Tsp) ∗ texRECT(G0, f loat2(Tsp, θs));
di f f use = d1 + d2;

/********** Specular surface radiance from equation 3.28 ******/
s1 = ks ∗ exp[−Tsp] ∗ cosn θ′s ∗ I0/(Dsp ∗Dsp);
s2 = (ks ∗ I0 ∗ β ∗ β)/(2π ∗ Tsp) ∗ texRECT(Gn, f loat2(Tsp, θ′s));
specular = s1 + s2;

/********** Final Color (equation 3.29) ******/
OUT.color = airlight + (di f f use + specular) ∗ exp[−Tvp];
return OUT;
}

Figure 3.13: Pseudocode for the Cg fragment shader that implements our combined model for
airlight and surface radiance.

shading leading to a brightening of darker shadow regions. In the specular case,

we see a dimming and diffusing out of the specular highlight due to scattering,

combined with an overall reduction in color saturation and contrast. These are

important qualitative shading effects that add to the realism of scene appearance

in scattering media.

3.5 The Complete Model and Implementation

While the mathematical derivations in the previous two sections are somewhat

involved, the actual implementation is straightforward. Our model provides an

explicit form that can be easily implemented in modern programmable graphics

hardware. This requires minimal changes to both the original rendering code and
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scene description, and can therefore be easily integrated into other existing real-

time rendering methods. Indeed, the user need only specify the coefficient β of

the medium, as in standard OpenGL fog, and use the shader corresponding to our

model (pseudocode is in Fig. 3.13).

To compute the final appearance, we sum up the attenuated reflected radiance

from the surface and the airlight from the source,

L = e−TvpLp + La. (3.29)

La is the airlight and is given by equation 3.16. Lp is the exitant radiance at the

surface and is given by equations 3.27 and 3.28. We only need to compute a few

simple analytic terms and do 4 texture lookups for each vertex or pixel, two for

special function F, and one each for G0 and Gn (these texture lookups correspond

to the texRECT function call in the pseudocode of Fig. 3.13). Clearly, these compu-

tations can be done bymodern programable graphics cards interactively in a single

rendering pass.

In practice, we implement the model using Cg in the fragment shader of an

NVidia Geforce 6800 graphics card. The special functions F, G0 and Gn are pre-

computed and tabulated as 64× 64 floating point textures. Since these textures are

precomputed only once, we minimize frequent data transfer between the graphics

card and main memory.

The rendering speed depends on a variety of variables, and rendering time is

linear in the number of light sources. As shown in the video, we are able to achieve

real-time rates even for fairly complex scenes with several light sources. As an

example, we rendered the scene shown in Fig. 3.1, with 39,999 vertices and 66,454

triangles. We simulated the scattering effects from 4 light sources and achieved

about 20 fps using the graphics hardware mentioned above. The model for the
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scene was obtained from http://hdri.cgtechniques.com.

3.6 Complex BRDFs and Lighting

So far, we have considered arbitrarily located point lights, and simple Lambertian

and Phong BRDFs, showing how an explicit expression can be derived and im-

plemented. Rendering time is linear in the number of lights. In this section, we

show how these ideas can be extended to efficiently handle complex BRDFs and

environment map lighting using convolution, if we are willing to make particular

simplifying assumptions.

We first introduce the notion of a point-spread function (PSF) for the radiance

or glow from a point source due to single scattering. This is similar in spirit to

the PSFs derived by Narasimhan and Nayar [74] and Premoze et al. [85] in the

context of multiple scattering for offline rendering. We will then discuss a number

of applications including

• Rendering arbitrary BRDFs with point light sources, by convolving the BRDF

with this PSF, as shown in Fig. 3.15. This approach can be used if we are

willing to precompute a tabular BRDF representation, instead of using a

simple explicit formula, as for Lambertian and Phong BRDFs.

• Convolving an environment map with the PSF to efficiently handle very

complex lighting (with possibly thousands of lights, corresponding to the

pixels of an environment map). This convolution is possible if we assume

that all light sources are equally far away, as in a distant environment map.

This enables us to obtain the characteristic glows and blurriness around light

sources on foggy days, as shown in Fig. 3.16.

• Integrating volumetric scattering into precomputed radiance transfer meth-
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ods that include complex lighting, realistic materials, cast shadows and inter-

reflections (Fig. 3.17). The idea of convolving with the point-spread function

can be applied to almost any technique that uses environment maps, en-

abling environment mapping and precomputed radiance transfer to be used

in participating media for the first time.

Throughout the section, we apply the signal-processing results of Ramamoorthi

andHanrahan [87] and Basri and Jacobs [7] to efficiently compute the convolutions

in the frequency domain using spherical harmonics.

3.6.1 Airlight Point Spread Function (PSF)

In Sec. 3.3, we determined the radiance La(γ,Dsv,Dvp, β) from a point source reach-

ing a viewer, due to single scattering. If we fix the distance to the source Dsv, the

integrating distance Dvp, and the scattering coefficient β of the medium, the radi-

ance becomes a function only of the angle γ. We normalize this function by I0/D2sv

to account for the intensity of the source, and define the PSF as

PSF(γ)Dsv,Dvp,β =
D2svL(γ,Dsv,Dvp, β)

I0
. (3.30)

Since the PSF is mostly applied for surface shading, we will generally set Dvp = ∞,

as in Sec. 3.4.

3.6.2 Empirical PSF factorization for Speedup

The PSF defined above still depends on the parameters of the medium such as

the coefficient β. So, changing these parameters changes the PSF and requires us

to redo any convolutions. However, we have observed empirically that the PSF

above can be factored into a purely angular component that is independent of the
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medium parameters and an amplitude component that depends on the medium

parameters. This factorization enables us to change the medium parameters

interactively without having to re-compute the PSF or redo any convolutions.

Specifically,

NPSF(γ) =
F(sinγ, π

2
) − F(sinγ, γ

2
)

2π sinγ · e(cosγ−1) (3.31)

PSF(γ)Dsv,∞,β = Tsve
−Tsv ·NPSF(γ), (3.32)

where NPSF has only angular dependence, independent of other physical parame-

ters.

The empirical PSF factorization is inspired by the observation that after being

normalized by Tsve
−Tsv, the PSF becomes essentially independent of the medium

physical parameters (optical thickness) and largely depends on angle γ as shown in

Fig. 3.14 (left). This implies we can factor the PSF into a purely angular component

and an amplitude component that depends on the medium parameters. We define

the angular componentNPSF(γ) as the PSF(γ)Tsv=1 normalized byTsve
−Tsv anddefine

the amplitude component as the normalization factor Tsve
−Tsv . Then, the PSF can be

expressed using these two terms as in equation 3.32. The absolute approximation

error is plotted in Fig. 3.14 (right) for 11 different optical thickness ranging from

0.1 to 3.1.

3.6.3 Rendering with arbitrary BRDFs

We can use convolution with the PSF to render with arbitrary tabulated BRDFs,

such as measured reflectance. For each outgoing direction, we tabulate the BRDF

as a function over the sphere of incident directions. A new effective BRDF can be

obtained for that outgoing direction by convolving this function with the PSF.

Mathematically, we first write the (isotropic) BRDF in terms of spherical har-
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Figure 3.14: [Left] Plot of PSF(γ)Dsv,∞,β normalized by Tsve
−Tsv for different optical thicknesses

Tsv ranging from 0.1 to 3.1. After normalization, the PSF depends onγ and is largely independent of
Tsv. This implies that we can factor it into a purely angular component and an amplitude component
depending on Tsv. [Right] The average and standard deviation of the absolute error of the empirical
PSF. While the error increases for smaller angles γ, it remains well below 0.05.

monic coefficients for each outgoing angle as

ρorig(θi, θo, φ) =
∑

l,m

ρ
orig

lm
(θo)Ylm(θi, φ), (3.33)

where ρ
orig

lm
are the coefficients, and Ylm is the spherical harmonic. To perform the

convolution [87], we multiply the coefficients ρ
orig

lm
of the original BRDF by the

corresponding coefficients of the point-spread function3 PSFl,

ρefflm(θo) =

√

4π

2l + 1
PSFlρ

orig

lm
(θo). (3.34)

Then, we can use the effective BRDF to compute the reflected radiance due to

airlight, and the original BRDF for the reflected radiance due to direct transmission.

Thus, standard rendering algorithms can be executed with only slight modifica-

tion and at virtually no additional cost. Note however, that while our previous

formulae for Lambertian and Phongmodels required no precomputations, the con-

volution approach requires precomputation of the spherical harmonic coefficients

3Since the PSF is radially symmetric, depending only on γ, only spherical harmonic coefficients
with m = 0 are nonzero.
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for a collection of outgoing angles.

Figure 3.15 shows images rendered with the Blue metallic BRDF measured by

Matusik et al. [66]. In the left image, we simply render a tabular description of the

BRDFwithout scattering. In the right image, we use the formula above to compute

a new effective tabulated BRDF, including the effects of airlight. The brightening

of darker regions owing to scattering is clearly visible on the right.

3.6.4 Rendering with Environment Maps

Our point spread function can be applied directly to environment maps, with the

effects of scattering obtained by convolving the environment map with the PSF. To

use a single PSF for all sources, we must assume that the lighting is made of small

equidistant light sources (fixed Dsv). This is a good approximation when the size

of the objects is small compared to the distance to the environment4.

We first consider simply looking at the environment, where we would like to

see the glows around the bright light sources, to create the effects of foggy or misty

appearance. To achieve this effect, we simply need to convolve the environment

map with the PSF,

Lconvolvedlm =

√

4π

2l + 1
PSFlL

original

lm
. (3.35)

Furthermore, similar to equation 3.1, we can simply use a combination of the

original attenuated environment map Lattenuated (for direct transmission, and corre-

sponds to Ld in equation 3.1) and the convolved version L
convolved above (for airlight,

and corresponds to La in equation 3.1) to compute the surface shading,

L f inal = Lattenuated + Lconvolved (3.36)

Lattenuated = Loriginale−Tsv . (3.37)

4Note that while this assumption is similar to standard environment mapping, our PSF requires
us to specify a finite (but possibly large) Dsv.
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Figure 3.15: [Left] A teapot rendered using the measured blue metallic BRDF. [Right] The teapot
as it appears in a scattering medium. The brightening of darker regions, and softening of shading,
is clearly visible.

Figure 3.16: [Top Left] Grace cathedral environment map with no scattering. [Bottom Left]
The environment map is convolved with the airlight single scattering PSF to create a foggy/misty
appearance. Notice the glows around the light sources, the blurring of the sources and the brightening
of dark areas. [Right] A scene illuminated by the environment map without scattering (left) and
with scattering (right). Notice the spreading of the highlights and brightening of the spheres due to
scattering.

Figure 3.16 shows results obtained by convolving the Grace Cathedral environ-

ment map [27] with the single scattering PSF. The blurring of light sources and

the overall increase in brightness in dark regions can be immediately seen. Below

that, we compare the appearances of spheres rendered illuminated by this environ-
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Figure 3.17: [Left] A scene rendered using precomputed radiance transport, to capture the complex
shadows and specular surface BRDFs. [Middle] The same scene rendered as though it was immersed
in a scattering medium, with the observer close to the object. Notice the blurring and fogging of
the environment in the background. In the insets, we see a number of shading changes, such as
the brightening of dark regions in the face because of the scattering of light, the attenuation due to
dimming and diffusing of specular highlights on the base, and the softening of shadows on the plane.
[Right] The same scene including effects of airlight between viewer and object (as if the viewer were
far away, seeing the Buddha through fog). Note the loss in contrast and saturation.

ment map with and without scattering. Notice the spreading of highlights and the

brightening of the objects.

3.6.5 Precomputed Radiance Transfer

The traditional environment map rendering techniques do not take shadows or

interreflections into account. Precomputed radiance transport methods [102] com-

pute the visibility in an off-line manner, followed by interactive rendering. To add

participating media, we only need to convolve the lighting (environment map)

with our PSF and use the result as input to the existing precomputed radiance

transfer techniques. To demonstrate this, we used the technique of [120, 65], which

handles non-diffuse objects under all-frequency environment illumination using a

separable BRDF approximation.

We show the result of the Happy Buddha model rendered with the Ashikhmin-
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Shirley BRDF [3] in Fig. 3.17. The left image is the standard resultwith no scattering.

In the middle image, we show a view of the Buddha, where we include the effect of

airlight from the environment on surface appearance, but there is no attenuation or

scattering between the viewer and object itself (as if the observer were very close to

the Buddha). We clearly see the foggy appearance of the background and the glows

or airlight due to the light sources. On the face of the Buddha, we see a brightening

of darker regions, along with a dimming and diffusing of specular highlights. A

similar effect is seen on the base, where the dimming and diffusing of highlights

reduces saturation and contrast. Finally, the shadows on the plane are blurred out,

with a considerable softening and loss of detail. In the right image, there is also

scattering or airlight between the object and the viewer (as if the observer were far

away and seeing the Buddha through fog). This leads to a further loss of detail and

contrast, so that the original glossy appearance of the object is essentially lost.

3.7 Discussion and Future Work

Our approach can be easily implemented in programmable graphics hardware

and leads to a number of new effects in the real-time domain, such as interactive

rendering with glows around light sources, the effects of scattering on surface

shading, environment maps, and precomputed light transport. The key insight

is a new analytic model for integrating the light transport equations assuming

single scattering, which can also be extended to predict the impact of scattering

or airlight on the inherent appearance of surfaces. More broadly, our approach

indicates the power of using explicit formulae to simulate difficult effects like

volumetric scattering, speeding up such a process by many orders of magnitude.

We do sacrifice some generality, considering only isotropic point light sources,

single scattering, homogeneous media, and excluding most cast and volumetric
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shadowing, but believe this is a worthwhile tradeoff to enable a simple technique

that achieves real-time rates.

Future work can follow many avenues. For instance, we can attempt to extend

our theoretical model to consider non-isotropic light sources (like spotlights) and

inhomogeneous media. Our preliminary work in this area indicates that some

of these generalizations, while relatively simple in standard surface calculations,

are rather non-trivial for volumetric media. In general, we believe that analytic

models of difficult to simulate volumetric phenomena are critical to achieving

efficient renderings for real-time applications.



Chapter 4

Affine Double and Triple Product

Wavelet Integrals for Rendering

4.1 Introduction

In last chapter, we presented an analytic single scattering model for real-time

rendering. In this chapter, we focus on real-time near-field relighting and take a

wavelet based approach to this problem. We start by reviewing somemathematical

fundamentals for relighting. Integrations of products of functions are common in

computer graphics and applied mathematics. For example, the reflection equation

can be viewed as either a triple product integral [76] consisting of three factors: the

lighting, BRDF, and visibility, or a double product integral where the BRDF and

visibility are combined into the light transport function. A common assumption

is that the illumination is distant, and each factor is represented in basis functions

such as spherical harmonics or wavelets.

Local area lights have long been used as not only a practical modeling tool but

also an indispensable artistic device to set up a mood for a scene, e.g., comfortable

couches in a living room illuminated by a ceiling lamp (Fig. 4.1A), or stretch chairs

58
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Figure 4.1: A and B: Our method enables relighting of scenes lit with near-field illumination—a
planar area source can be moved, retextured, reshaped and rotated (in plane) at real-time rates.
Important effects like spatially varying shading on the floors in 1A and 1B, soft shadows under the
chairs in the close-up of 1B, and colored specularities on the cushions and tables in the close-ups
of 1A and 1B are clearly visible. These effects are difficult to capture using only distant lighting,
as shown in Fig. 8C. C: Area lighting can be formulated as an affine transform. For simplicity,
we parameterize the light field using a spatial coordinate x and an angular direction, given by
the intercept v on a virtual plane, as shown in the diagram. The original area light is denoted as
F(v), and the vertex’s incident radiance as Lz,x(v), where z and x respectively are the vertical and
horizontal coordinates of the vertex P1. The intensity at P1, Lz,x(v), is then given by an affine
transform (F(zv+x)) from simple trigonometry. Our main contribution is a novel theory of affine
double and triple product wavelet integrals that enables near-field area lighting to be used in almost
any precomputation-based relighting framework.

illuminated by the light from a circular vista window (Fig. 4.1B). Standard double

and triple product integrals, however, are not suitable for near-field relighting.

The basic problem is that the incident lighting varies across the scene, and needs

to be evaluated at all points in space. With proper parameterization however, light

propagation fromplanar area sources can be formulated as an affine transformation

of the original source radiance, as shown in Fig. 4.1C. We call the transformed

integrals affine double or triple product integrals (Sec. 4.3).

We present the first theoretical and computational analysis of affine double

and triple product integrals in computer graphics. Our work is published in

[110]. For actual computations, we focus our analysis on Haar wavelets, which

have gained considerable attention in relighting. Haar wavelets are simple, and
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superior in compactly representing all-frequency effects such as natural lighting,

specular BRDFs and intricate shadowing, often using only 1 ∼ 2% of coefficients

[75]. Fundamentally, the problem we are trying to solve is to find an efficient

representation for wavelets that are affinely transformed (scaled and translated).

Wavelets, however, are known for their lack of even translation invariance [108].

For example, simply translating a Haar wavelet basis function one pixel to the left

would change its coefficients dramatically, causing its power to spread acrossmany

different sub-bands.

Our main technical contribution is a novel affine double and triple product

integral theory for Haar wavelets, which is presented in Sec. 4.4. The theory is

developed primarily on 1D signals—since 2D and higher dimensional wavelets

are simply products of 1D basis functions, a direct extension to higher dimensions

is possible (Sec. 4.4.4). Note that we focus on 1D affine transforms, i.e. scaling and

translations, and therefore do not consider rotations and shears in 2D or 3D. As

seen in our practical applications, this is a general wavelet framework for many

rendering problems.

The standard theory of double and triple product integrals is expressed in terms

of standard coupling and tripling coefficients respectively. Our theory studies the

affine analogs, that must now account not only for the different basis functions

being coupled or integrated, but also the scale and translation in the affine trans-

form. Affine coupling and tripling coefficients therefore gain two more degrees

of freedom and are respectively 4D and 5D functions for 1D signals. In Sec. 4.4.2,

we show that these coefficients can be boiled down to an intuitive 2D analytic

core function, which we call the canonical coupling coefficient M. The canonical

coupling coefficient exposes the inherent sparsity of the affine transform, which

can be exploited to develop efficient computational methods. This is analogous to

how standard tripling coefficients are theoretically complex, but actually sparse in
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Haar wavelets [76].

Our theoretical development enables fast practical algorithms for affine trans-

forms in Haar wavelets. This overturns a commonly held view that operations

like shifts or scales are difficult in the wavelet domain. Our main practical focus is

on relighting, and we take a significant step towards generalizing wavelet-based

relighting methods to near-field settings with planar area light sources (Sec. 4.5;

Figs. 4.1, 4.8 and 4.9). There are also applications to a variety of other problems

that depend on wavelet representations. Section 4.6 describes initial solutions for

wavelet importance sampling [22]with near-field area lights, and image processing

(dilation and translation) directly in the wavelet domain. Readers more interested

in implementation may want to first familiarize themselves with the basic con-

cepts introduced in Sec. 4.3, and then focus on the applications in Secs. 4.5 and 4.6,

skimming through the development of the theory in Sec. 4.4 as needed.

4.2 Previous Related Work

Light Transport Analysis: Recent papers [31, 89] have conducted a comprehen-

sive analysis of light transport in Fourier and gradient representations. As noted

in [31], one of the main aspects is the propagation of light from an area source,

which can be written as an affine transform (in much the same form as Fig. 4.1C).

Ramamoorthi et al. [89] characterized the basic mathematical operations of light

transport, noting that linear or affine transforms are a key element, but there is no

simple formula inwavelets. Bydeveloping a framework for affinedouble and triple

product wavelet integrals, we take a significant step towards a full computational

framework for rendering in the wavelet domain.

Double and Triple Product Integrals: Much of the work in relighting [102, 75]

can be seen as double product integrals of the illumination and the light transport
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function. These integrals usually reduce to simple dot products in orthonormal

bases like spherical harmonics and Haar wavelets. Subsequently, Ng et al. [76]

developed the triple product integral framework to consider the integration of the

lighting, BRDF and visibility, as needed for changing both view and illumination.

The samemathematics can be applied to efficientlymultiplying twowavelet signals

[9]. Most recently, these results have been generalized to products of multiple

functions [112]. Our work can be viewed as an important generalization of the

standard double and triple product integral framework to affine double and triple

product integrals.

Affine Transforms of Basis Functions: Affine transforms of Fourier basis func-

tions are well known [16]. Spherical harmonics can be analytically rotated, as often

used for environment maps [102]. However, the standard affine transform usually

considered in the spatial domain has no simple analog in the spherical domain—

therefore, we do not consider spherical harmonics in this paper. Researchers have

approximated the affine transform using a combination of spherical rotations and a

spherical scaling operation [118]. This approximation is limited to only mid-range

illumination, since the distortion tends to be too severe in the near field.

Wavelets lack translation invariance, and have no simple formula for affine

transforms. Beylkin [10] and others have studied the concurrent wavelet decom-

position of all integer (not continuous) circulant shifts of a signal. In comparison,

our goals are different and more ambitious in that we want to consider a general

continuous affine transform (and not just all integer shifts). Nevertheless, we are

inspired by the sparsity indicated by [10], and [119] who studied wavelet rotations.

We have developed a fast algorithm for wavelet affine transforms, even when no

simple analytic formula exists.
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Near Field Relighting and Image Processing: Relighting techniques have been

developed from the basic approach introduced by Nimeroff et al. [79] and Dorsey

et al. [29] to much recent work on precomputed radiance transfer (PRT) [102]. In

terms of our application, the most closely related works are methods extending

PRT to near-field and dynamic settings. Spherical harmonic gradients [2] and

scaling [118] try to approximate the effects of mid-range illumination. Spherical

harmonic exponentiation [92] can render near-field soft shadowing effects in real

time, but has to use sphere sets to approximate geometries so that affine transforms

are avoided. As a precursor, Mei et al. [70] proposed decomposing the illumina-

tion into directional lights and searching through precomputed spherical radiance

transport maps to render dynamic scenes. Zhou et al. [126] then developed pre-

computed shadow or source radiance fields to support all-frequency effects, but

cannot support very high sampling rates nor general changes in the lighting (such

as editing the pattern of an area source in lighting design). Kristensen et al. [60]

also extend PRT to local lighting using unstructured light clouds. Overall, these

methods have to assume pre-determined lights, allowing changes of only light

positions or scale intensities. In contrast, our method assumes planar area sources,

but allows near-field relighting with dynamic editable lights, and eliminates the

need for lighting-dependent precomputations and storage.

Other applications shown at the end of the paper include wavelet importance

sampling theproduct of the area lighting andgeneral BRDFs forMonteCarlo offline

rendering systems, which has previously only been applied to distant environment

maps [22]. In addition, we also explore image processing. A number of image

operations such as additions andmultiplications can already be performed directly

in the wavelet domain [30, 61]. Our algorithms extend these operations to dilations

and translations, which can be cast as affine transforms.
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Notations Descriptions Acronyms

v,u Integration variables
s, o Scaling and offsetting variables
li, ti Level and offset of a wavelet ψi(v)
F(v),G(v) Functions in pixel domain
H(v),W(v) Functions in pixel domain
Φi(v) Orthonormal basis function
ψi(v) Wavelet basis function
Ci j Standard Coupling Coefficient SCC
Ci jk Standard Tripling Coefficient STC
Di j(s, o) Affine Coupling Coefficient ACC
Di jk(s, o) Affine Tripling Coefficient ATC
M(r, c) Canonical Coupling Coefficient CCC
r, c Radius and center of the transformed

mother wavelet in the CCC

Figure 4.2: Notations used in Chap. 4.

4.3 Affine Double and Triple Product Integrals

In this section, we introduce affine coupling and tripling coefficients. We use 1D

wavelets for simplicity in our analysis (we will see that our results extend directly

to higher dimensions in Sec. 4.4.4). Notation used in this paper is shown in Fig.

4.2.

4.3.1 Standard Coupling and Tripling Coefficients

Double and triple product integrals can be written respectively as:

H(v) =

∫

F(v)G(v)dv, (4.1)

H(v) =

∫

F(v)G(v)W(v)dv, (4.2)

where H, F, G andW are functions in the spatial or angular domain. For example,

in relighting applications, v could be the incident angle, H could be the reflected
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radiance, and F, G and W could correspond to the lighting, visibility and BRDF

respectively. For compact representation, it is common to expand them in basis

functions. The double product integral becomes

H(v) =

∫ (∑

i

FiΦi(v)
)(∑

j

G jΦ j(v)
)

dv

=
∑

i

∑

j

FiG j

∫

Φi(v)Φ j(v)dv

=
∑

i

∑

j

FiG jCi j, (4.3)

Ci j =

∫

Φi(v)Φ j(v)dv, (4.4)

where Φ(v) are some set of orthonormal basis functions. We denote Ci j as the

Standard Coupling Coefficient, or SCC.

Similarly, the triple product integral becomes

H(v) =

∫ (∑

i

FiΦi(v)
)(∑

j

G jΦ j(v)
)(∑

k

WkΦk(v)
)

dv

=
∑

i

∑

j

∑

k

FiG jWk

∫

Φi(v)Φ j(v)Φk(v)dv

=
∑

i

∑

j

∑

k

FiG jWkCi jk, (4.5)

Ci jk =

∫

Φi(v)Φ j(v)Φk(v)dv. (4.6)

We denote Ci jk as the Standard Tripling Coefficient, or STC.

4.3.2 Affine Coupling and Tripling Coefficients

The SCC and STC only apply well to functions that are “fixed” and “static”. We

now consider functions that are affinely transformed. Without loss of generality,

we assume F(v) is scaled and translated to F(sv+ o). With respect to the illustration
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in Fig. 4.1C, the offset o corresponds to the horizontal position x, and the scale s to

the vertical distance z. This leads to an important variation of the standard double

product integral, which we call the affine double product integral:

H(s, o; v) =

∫

F(sv + o)G(v)dv

=

∫ (∑

i

FiΦi(sv + o)
)(∑

j

G jΦ j(v)
)

dv

=
∑

i

∑

j

FiG jDi j(s, o), (4.7)

Di j(s, o) =
∫

Φi(sv + o)Φ j(v)dv. (4.8)

We denote Di j(s, o) as the Affine Coupling Coefficient, or ACC. Just as standard

triple product integrals are used formultiplication, the samemachinery as equation

4.8 is useful for affinely transforming a function. In fact, equation 4.7 is equivalent

to an affine transform of F followed by a standard double product integral with G.

Similarly, the affine triple product integral can be written as

H(s, o; v) =

∫

F(sv + o)G(v)W(v)dv

=

∫ (∑

i

FiΦi(sv + o)
)(∑

j

G jΦ j(v)
)(∑

k

WkΦk(v)
)

dv

=
∑

i

∑

j

∑

k

FiG jWkDi jk(s, o), (4.9)

Di jk(s, o) =
∫

Φi(sv + o)Φ j(v)Φk(v)dv. (4.10)

We denote Di jk(s, o) as the Affine Tripling Coefficient, or ATC.
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4.3.3 Discussion of Properties

Properties of SCC and STC: Because of the orthonormal relation between two

different basis functions, the SCC reduces to a Kronecker delta function, Ci j = δi j,

and has exactly N non-zero terms, where N is the total number of basis functions.

The STC is slightly more complicated. For general orthonormal bases, the com-

plexity (i.e., number of nonzero coefficients) of the STC is O(N3). Sparsity exists

for bases with special structures [76], e.g., the complexity is O(N) for pixel bases,

O(N2) for 2D Fourier series, and O(N logN) for Haar wavelets. The complexities

of the SCC and STC are recapped in Sec. 4.4.3. In addition, note that both the SCC

and STC are symmetric:

Ci j = C ji, Ci jk = Cperm(i jk), (4.11)

where perm(i jk) is any permutation of the triplet (i, j, k).

Properties of ACC and ATC: By contrast, the ACC and ATC both gain two more

degrees of freedom, since there are two new arguments: the scale s and the offset

o. In fact, the SCC and STC are special cases of the ACC and ATC, when the scale

is 1 and the offset is 0,

Ci j = Di j(1, 0), Ci jk = Di jk(1, 0). (4.12)

The ACC and ATC do not preserve the same symmetries of the SCC and STC, e.g.,

the ACC follows this more complex identity:

Di j(s, o) =
1

s
D ji(
1

s
,−o
s
). (4.13)

Relation between ACC and ATC:
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Lemma 1. For any orthonormal basis, the ATC can be represented using the the ACC and

STC as

Di jk(s, o) =
∑

l

Dil(s, o)Cl jk. (4.14)

The Lemma can be proved by expanding Φ(sv + o) in terms of Φ(v) and then

using associativity as follows. By definition, the ATC is

Di jk(s, o) =

∫

Φi(sv + o)Φ j(v)Φk(v)dv. (4.15)

The integrand function Φi(sv + o) can be viewed as a function of s and o, and be

expanded in basis Φl(v) as

Φi(sv + o) =
∑

l

( ∫

Φi(su + o)Φl(u)du
)

Φl(v)

=
∑

l

Dil(s, o)Φl(v). (4.16)

Plugging equation 4.16 into 4.15, we obtain:

Di jk(s, o) =

∫ (
∑

l

Dil(s, o)Φl(v)

)

Φ j(v)Φk(v)dv

=
∑

l

Dil(s, o)

∫

Φl(v)Φ j(v)Φk(v)dv

=
∑

l

Dil(s, o)Cl jk. (4.17)

Lemma 1 indicates that the computational complexity of the affine tripling

coefficient Di jk(s, o) relies on those of the ACC and STC. Lemma 1 also suggests a

way of evaluating the ATC using the ACC and STC.



69

4.4 Complexity of Affine Coupling and Tripling Coef-

ficients

In this section, we study the computational complexity of the affine coupling and

tripling coefficients (ACC & ATC), determining their numbers of non-zero terms

in a number of bases. In wavelets, we focus on the Haar basis for its simplicity. We

present the main results that are essential for understanding the key insights and

implementing the theory, leaving many detailed mathematical derivations for the

appendices.

4.4.1 General, Pixel and Fourier Bases

In general orthonormal bases, the complexities of the ACC and ATC are O(N2)

and O(N3) respectively (can be lower for some values of s and o). This can be

contrasted to the linear complexity of the SCC, and highlights the fact that the

original orthonormal relation between different basis functions no longer holds

under an affine transform.

Pixel basis functions, in mathematical terms, are disjoint and discrete step func-

tions. A unique aspect of the pixel basis is that both the integration and product of

multiple different pixels is zero. This leads directly to the linearO(N) complexity of

the ACC and ATC. The pixel basis’s complexity can formally analyzed as follows.

Firstly, the ATC, according to Lemma 1, reduces to the ACC because in pixel basis

Ci jk equals 1 when i = j = k, and otherwise is 0. As a result, the complexities of

the ATC and ACC are the same, and we only need to analyze the ACC Di j(s, o).

Calculating the ACC in the pixel basis is essentially equivalent to determining if

the two pixels Φi(sv + o) and Φ j(v) overlap. Without loss of generality, assume that

the original pixel basis is defined in the range [0, 1] and there are N pixel basis

functions in total. Each pixel Φi(sv + o) covers an area of 1/(sN), and Φ j(v) an area



70

of 1/N. Any given Φ j(v), independent of the offset o, can overlap with at most s+ 1

basis functions Φi(sv + o) due to the area constraint. Taking all Φ j(v) into account,

we obtain a maximum of (s+ 1)N overlapping pairs. Similarly, any given Φi(v) can

overlap at most s−1 + 1 basis functions Φ j(v). Considering all Φi(v) gives maximally

(s−1+1)N overlapping pairs. Combining these twomaximums, we derive an upper

bound min
(

(s + 1)N, (s−1 + 1)N
)

of the complexity, which can be proven tight easily.

The tight upper bound min
(

(s + 1)N, (s−1 + 1)N
)

is a function of the scale s, and its

maximum is 2N when s = 1. So we have proved the complexity of the ACC and

ATC in the pixel basis is O(N). Despite its simplicity, the pixel basis is a poor basis

for compression, which often outweighs its efficiency in calculation.

The Fourier series is mostly preferred in theoretical analysis and has a well-

known 2D affine theorem [16]. As described in Sec. 2.2, the complex form (I =
√
−1)

of a 1D Fourier series on an azimuthal domain [0, 2π] can be written as:

φp(v) = (2π)−1/2eIpv.

Based on the 2D affine Fourier theorem [16], we recap the derivation for the 1D

Fourier basis1:

Dpq(s, o) =

∫ 2π

0

Φp(sv + o)Φ
∗
q(v)dv

= eIpo
∫ 2π

0

(2π)−1/2eIspv(2π)−1/2e−Iqvdv

= eIpoCsp,q = eIpoδsp,q. (4.18)

So we have shown that the ACC in the Fourier basis can be mapped to the SCC,

and thus has the same linear O(N) complexity. The specific mapping depends on

the scale s and offset o. Therefore same as the SCC, the complexity of the ACC in a

1D Fourier basis is O(N).

1Since the Fourier basis is complex, complex conjugates of basis functions are used in ACCs and ATCs.
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To relate the ATC to the ACC, we start with Lemma 1:

Dnpq(s, o) =
∑

l

Dnl(s, o)Clpq.

Substituting Dnl using equation 4.18 and Clpq =
√

1
2πδl+p,q [76], we obtain

Dnpq(s, o) =
∑

l

eInoδsn,l(2π)
−1/2δl+p,q = (2π)−1/2eIno

∑

l

δsn,lδl+p,q

= (2π)−1/2eInoδsn+p,q, (4.19)

where δsn+p,q is non-zero when sn+p− q = 0. Since one of the subscripts is uniquely

determined by the other two, there are only two degrees of freedom as opposed

to three. So the complexity of the ATC in the 1D Fourier basis is O(N2). All

our analysis for the 1D Fourier basis can be easily extended to 2D and higher

dimensions because high dimensional Fourier bases are just products of multiple

1D bases. So we have shown that the complexity of the ATC in the Fourier basis is

O(N2).

Spherical harmonics are the extension of the Fourier basis to the sphere. They

are not considered in this discussion since no standard operation in the spherical

domain directly maps to the affine transform.

4.4.2 Haar Wavelets

We present our main theoretical contribution in this section, deriving the complexi-

ties of affine coupling and tripling coefficients inHaarwavelets. Readers interested

in implementation may wish to skip to the summary of complexities in Sec. 4.4.3

on a first reading.
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Figure 4.3: The canonical coupling coefficient M(r, c) is an integration of two wavelets denoted as
α and β, with α being affinely transformed, as shown in A. Variables r and c correspond to the radius
and center of the transformed wavelet α. B-G show different overlapping relations of wavelets α and
β. Variables maxr and minr are respectively the bigger and smaller of the radii of the two wavelets,
and sr and dr their sum and difference.

Wavelet and Scaling Functions

The normalized 1D Haar basis [107] is defined as

• The mother scaling and wavelet functions are

φ(v) =





1, for 0 ≤ v < 1

0, otherwise
,

and

ψ(v) =





1, for 0 ≤ v < 1/2

−1, for 1/2 ≤ v < 1

0, otherwise

.
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• A normalized wavelet basis ψ j(v) at level l j and offset t j is

ψ j(v) = 2l j/2ψ(2l jv − t j),

which is a scaled and dilated copy of the mother wavelet.

Canonical Coupling Coefficient (CCC)

The ACC is a 4D function of the two subscripts i and j, the scale s, and the offset

o. Similarly, the ATC is a 5D function. Since according to Lemma 1 the ATC can

be reduced to the ACC, we first focus our analysis on the ACC. To reduce the

dimensionality of the ACC, we invoke the standard property of Haar wavelets as

a multi-resolution series and write wavelet basis functions in terms of the mother

wavelet ψ(v).

Di j(s, o) =

∫

ψi(sv + o)ψ j(v)dv

= 2
li+l j
2

∫

ψ(2lisv − ti + 2lio)ψ(2l jv − t j)dv. (4.20)

To simplify equation 4.20, we make the substitution u = 2l jv − t j so that trans-

formations of the two mother wavelets can be merged into a single combined

transformation.

Di j(s, o) = 2
li−l j
2

∫

ψ(2li−l jsu − ti + 2lio + st j2li−l j)ψ(u)du

= 2
li−l j
2

∫

ψ(
u

2r
− c
2r
+
1

2
)ψ(u)du

Di j(s, o) = 2
li−l j
2 M(r, c) , (4.21)
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//c and r are respectively the center and radius of the transformed wavelet.
//d is the distance between the centers of the two wavelets.
//sr and dr are respectively the sum and difference between the two radii.

1. d = |c − 0.5|; sr = r + 0.5; dr = |r − 0.5|;
2. maxr = max(r, 0.5); minr = min(r, 0.5);

3. if (d >= sr) M = 0; // Fig. 4.3B
4. else if (d >= maxr) M = d − sr; // Fig. 4.3C
5. else if (d >= max(dr,minr)) M = dr − d; // Fig. 4.3D
6. else if (d >= min(dr,minr))
7. if (dr >= minr) M = 0; // Fig. 4.3E
8. else M = sr − 3d; // Fig. 4.3F
9. else if (d <= min(dr,minr)) M = 2(minr − d); // Fig. 4.3G

Figure 4.4: Analytic formula of M(r, c) in pseudocode. Branches correspond to different overlap-
pings between the two wavelets, as illustrated in Fig. 4.3.

where

M(r, c) =

∫

ψ(
u

2r
− c
2r
+
1

2
)ψ(u)du , (4.22)

r =
2l j−li−1

s
, and c =

2l j−liti − 2l jo + 2l j−li−1
s

− t j. (4.23)

We callM(r, c) theCanonical Coupling Coefficient, or CCC. The CCC encapsulates

the core structure of theACC.Variables r and cdictate the combined transformation

in wavelet ψ( u
2r
− c
2r
+ 1
2
). Intuitively, they are respectively the radius and center of

the transformed wavelet ψ( u
2r
− c
2r
+ 1
2
), as shown in Fig. 4.3A.

Property 1. The evaluation of the 4D affine coupling coefficient reduces to a combination

of a few simple analytic function computations and an estimate of the 2D analytic function

M(r, c) called the canonical coupling coefficient, as described by equation 4.21. Variables

r and c are given by equation 4.23. M(r, c) is a sparse, piece-wise linear, and symmetric

function.

In its analytic form, M(r, c) is a branching function as shown in Fig. 4.4. The

calculation ofM(r, c) is equivalent to determining the overlapping relation between

the originalmotherwaveletψ(u) (denoted as β) and the transformedoneψ( u
2r
− c
2r
+ 1
2
)

(denoted as α). Their overlapping relation depends on their relative positions
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Figure 4.5: A: Canonical Coupling Coefficient M(r, c) in the c dimension (the horizontal axis is
c − 0.5 to better demonstrate the symmetry) for all different ranges of the radius r. The red labels
represent line slopes, while the black labels are measurement marks along the axes. B:M(r, c) in the r
dimension for c ≥ 0.5. The horizontal axis is the radius r of the transformed wavelet. When c ≤ 0.5,
M(r, c) can be computed using the symmetry M(r, c − 0.5) = M(r, 0.5 − c). This graph illustrates
a number of important properties of M, such as its sparsity, piece-wise linearity, symmetries and
boundedness.

(centers) and sizes (radii). We group their overlapping relations into six cases and

show them in Fig. 4.3. For brevity in exposition, we assume that α’s radius is

smaller than that of β, and α is located on the left. Our analysis will still hold when

α’s radius is actually larger or it is located on the right, since β can then be viewed

as “the transformed wavelet” and exchange roles with α. In all cases, M(r, c) can

be computed in no more than 9 lines of code (Fig. 4.4 also cross references the six

cases in Fig. 4.3).

Properties of CCC

M(r, c) has special structures and important properties that can be exploited for

computation. In Fig. 4.5, we plotM(r, c) in both r and c dimensions to better expose

many such properties. We examine a few important ones here:

Sparsity: M(r, c) is sparse. As shown in Fig. 4.5,M(r, c) is non-zero over only very

limited ranges of the radius r and the center c. In particular, M(r, c) is zero when

the right end-point of the transformed wavelet is less than 0 (meaning c + r < 0),
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or the left end-point is greater than 1 (meaning c − r > 1). In these cases, the two

wavelets do not overlap and their integration is 0. These two boundary conditions

compactly combine to |c − 0.5| > r + 0.5.

M(r, c) = 0, when |c − 0.5| > r + 0.5. (4.24)

Since the ACC reduces to the CCC, the ACC will be sparse if many combinations

of i, j, s and omake r and c fall into the zero ranges. We will discuss the complexity

of the ACC formally in Sec. 4.4.2.

Piece-Wise Linearity: M(r, c) is a piece-wise linear function. As observed in Fig.

4.5,M(r, c) has only a limited set of slopes {0,±1,±2± 3} in both r and c dimensions.

This is because the partial derivatives of M(r, c) with respect to r and c are just

combinations of a few mother wavelets ψ(u). These mother wavelets are valued

respectively at one of the three break-points (c− r, c+ r and c, as in Fig. 4.3A) of the

transformed wavelet ψ( u
2r
− c
2r
+ 1
2
).

∂M(r,c)
∂c = 2ψ(c) − ψ(c − r) − ψ(c + r) = {0,±1,±2,±3}, (4.25)

∂M(r,c)
∂r = ψ(c − r) − ψ(c + r) = {0,±1,±2}. (4.26)

The piece-wise linearity of M can be formally proved by computing its partial

derivatives. We compute the partial derivatives ofM(r, c) with respect to c and r as
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follows2:

∂M(r, c)

∂c
=

∂

∂c

∫

ψ(
u

2r
− c
2r
+
1

2
)ψ(u)du

=
−1
2r

∫
(

δ(
u

2r
,
c − r
2r
) + δ(

u

2r
,
c + r

2r
) − 2δ( u

2r
,
c

2r
)
)

ψ(u)du

= −
∫

(

δ(u, c − r) + δ(u, c + r) − 2δ(u, c)
)

ψ(u)du

= 2ψ(c) − ψ(c − r) − ψ(c + r)
∂M(r, c)

∂r
=

∂

∂r

∫

ψ(
u

2r
− c
2r
+
1

2
)ψ(u)du

=
−1
2r2

∫
(

δ(
u

2r
,
c − r
2r
) + δ(

u

2r
,
c + r

2r
) − 2δ( u

2r
,
c

2r
)
)

(u − c)ψ(u)du

=
−1
r

∫
(

δ(u, c − r) + δ(u, c + r) − 2δ(u, c)
)

(u − c)ψ(u)du

=
−1
r

(

− rψ(c − r) + rψ(c + r)
)

= ψ(c − r) − ψ(c + r)

Consequently, the ACC is also piece-wise linear, and its gradient is easily com-

puted from that ofM(r, c) using the chain rule.

Symmetry: M(r, c) is symmetric. In the c dimension, as shown in Fig. 4.5A,M(r, c)

is reflection-symmetric about 0.5. This reflection symmetry is also reflected in

computation inFig. 4.4 as the calculationdependsnot on cdirectly, but on d = |c−0.5|.

d = |c − 0.5| is reflection-symmetric about 0.5. In mathematical terms, we have

M(r, 0.5 + c) = M(r, 0.5 − c), (4.27)

In the r dimension,M(r, c) also has a certain degree of symmetry. When r is above 1,

we can invert its value to below 1 by changing the integration variable in equation

4.21 to w = u
2r
− c
2r
+ 1
2
.

2Kronecker delta is denoted as δ(x, y) here which equals 0 when x = y.
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M(r, c) = 2rM(
1

4r
,
1

2
+
1

4r
− c
2r
). (4.28)

The symmetry properties of M can be formally proved in mathematics. We

derive the symmetry properties ofM(r, c) in the c and r dimensions as follows:

M(r, c + 0.5) =

∫ ∞

−∞
ψ(
u − c − 0.5
2r

+
1

2
)ψ(u)du

= −
∫ ∞

−∞
ψ(
u − c − 0.5
2r

+
1

2
)ψ(1 − u)du //ψ(u) = −ψ(1 − u)

=

∫ −∞

∞
ψ(
−w − c + 0.5

2r
+
1

2
)ψ(w)dw //substitute w = 1 − u

=

∫ ∞

−∞
ψ(
w + c − 0.5
2r

+
1

2
)ψ(w)dw //ψ(0.5 + u) = −ψ(0.5 − u)

= M(r, 0.5 − c)

M(r, c) =

∫

ψ(
u − c
2r
+
1

2
)ψ(u)du

= 2r

∫

ψ(w)ψ
(

2r(w − 0.5) + c
)

dw //substitute w =
u − c
2r
+
1

2

= 2rM(
1

2r
,
1

2
+
1

4r
− c
2r
)

Due to these symmetries,weonly store anon-repeatingquarter ([0 < r ≤ 1,−r ≤ c ≤ 0.5])

of the non-zero range ofM(r, c) and save three fourths of the storage space.

Boundedness: Finally,M(r, c) is both upper and lower bounded, which makes it

ideal for quantization and encoding in hardware textures.

max
(

M(r, c)
)

= 2min(r, 0.5) ≤ 1,

min
(

M(r, c)
)

= −min(r, 0.5) ≥ −0.5.



79

N

N
N Nlog

,
1.0, 0.00
0.9, 0.00
0.9, 0.23
0.9, 0.55
0.6, 0.00
0.6, 0.23
0.6, 0.55

s o

8

64

8
30
36
15
27
33
21

24
16

256

16
79
85
36
63
79
46

64
32

1024

32
182
185

86
137
174
100

160
64

4096

64
390
387
190
288
364
212

384
128

16384

128
812
795
399
593
748
439

896
256

65536

256
1665
1613

822
1205
1516

896

2048
512

262144

512
3376
3254
1676
2431
3053
1814

4608
2

C.

0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

N, order of wavelets
n

u
m

b
e
r 

o
f 

n
o

n
-z

e
ro

 t
e
rm

s

0 100 200 300

1

2

3

4

5

6

7

n
u

m
b

e
r 

o
f 

n
o

n
-z

e
ro

 t
e
rm

s/
 N

400

N
2

N, order of wavelets

N

A. B.

500

N Nlog

Figure 4.6: Complexity of affine Haar wavelet coupling coefficients for 50 randomly generated
sets of scales and offsets. Figure 4.6A empirically shows the O(N logN) complexity of the ACC. 7
representative curves out of 50 are highlighted and their values listed in table C. Note that in Fig
4.6A for most scales and offsets, the actual numbers of non-zero ACC terms fall well below N logN
(cyan line), and some even below N (when significant offsets and scales transform a large portion of
the wavelet tree out of [0, 1]). The formal proof of the complexity of the ACC is in Appendix D.

Complexities of Haar ACC and ATC

The number of non-zero ACC terms varies significantly with the scale and offset.

We first show empirically in Fig. 4.6 the O(N logN) complexity of the ACC. In Fig.

4.6A, we plot the numbers of non-zero ACC terms versus the total numbers of

the wavelets for 50 randomly generated sets of scales and offsets. 7 representative

curves out of the 50 are highlighted, and their numerical values are tabulated in Fig.

4.6C. To better illustrate the logarithmic behavior part of theO(N logN) complexity,

we divide all curves by N and plot them again in Fig. 4.6B. Note that O(N logN) is

just an upper bound. In practice, for most scales and offsets, the complexity of the

ACC is well below N logN as shown in Fig. 4.6. The actual complexity of the ACC

is comparable to that of standard tripling coefficients (STCs) developed by [76].

The O(N logN) complexity can also be mathematically proved by determining the

upper-bound of the total overlapping pairs between the two wavelet trees, one
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of which is affinely transformed. In practice, indices of non-zero ACC terms can

be picked either using equation 4.24 (the sparsity property of the CCC), or from a

compact pre-tabulated table, as implemented in Sec. 4.5.5.

Nowwegive a formal proof of the complexity ofHaarACC. In theHaarwavelet

basis, the ACC is non-zero only when wavelets Φi(sv + o) and Φ j(v) overlap with

each other. Counting the number of non-zero ACC terms reduces to determining

the number of overlapping wavelet pairs. Since wavelets are best organized in a

tree structure, we denote the two wavelet trees using I and J. The basic structure

of a wavelet tree is that two wavelets in the same tree will overlap only if they are

in the same tree branch. We start by fixing a level and picking a wavelet for each

wavelet tree: level li and wavelet Φi(sv + o) for tree I, and level l j and wavelet Φ j(v)

for tree J. Since respectively at levels li and l j there are 2
li and 2l j wavelets, Φi(sv+ o)

and Φ j(v) each must subtend 1/(s2li) and 1/(2l j) in area. Any given wavelet Φ j(v)

at level l j in tree J can overlap with at most s · 2li−l j + 1 wavelets Φi(sv + o) at level

li in tree I due to the area constraint. Summing over all levels in tree I, we get at

most
∑

li
(s2li−l j + 1) overlapping pairs between the wavelet Φ j(v) and wavelet tree

I. Since the formula just derived is valid for any wavelet in tree J, we now sum

over all wavelets Φ j(v) in wavelet tree J and get a maximum of
∑

l j
2li

∑

li
(s2li−l j + 1)

overlappingpairs between trees I and J. Similarly,we can start fromagivenwavelet

Φi(sv+ o) in tree I and obtain a maximum of
∑

li
2li

∑

l j
(2l j−li/s+ 1) overlapping pairs

between trees I and J. Combining these two maximums, we obtain an upper

bound of min(
∑

li,l j(s2
li + 1),

∑

li,l j(2
l j/s + 1)), which is tight for most s and o. The

upper bound’s maximum is N logN + log2N. So the complexity of the ACC in the

Haar wavelet basis is O(N logN). Because of compression, only a small subset (n

out of N) of wavelet coefficients suffice to generate accurate results, and thus the

complexity reduces to O(n logN).

To compute the complexity of Haar ATC, we invoke the standard property of



81

Haar wavelets that the product of two wavelets is either the finer wavelet up to a

scale if they overlap, or zero otherwise. Therefore when wavelets overlap, the ATC

reduces to the ACC, and subsequently to the CCC according to Property 1. When

wavelets do not overlap, the ATC is simply zero. Based on this key observation,

we derive Property 2 that relates the ATC to the CCC.

Property 2. The Haar ATC, as defined in equation 4.10, is evaluated using the canonical

coupling coefficient as follows:

• In equation 4.10, if basis functions Φ j(v) and Φk(v) overlap,

Di jk(s, o) = 2
li−lm+ln
2 M(r, c), (4.29)

where n = min( j, k), m = max( j, k), and

c =
2lm−liti − 2lmo + 2lm−li−1

s
− tm,

r =
2lm−li−1

s
.

• Otherwise, Di jk(s, o) = 0.

As discussed, the ATC in the Haar wavelet basis reduces to an ACC when the

non-zero segments of Φ j(v) and Φk(v) overlap, or is 0 otherwise. Since there are at

mostO(logN) overlapping pairs of wavelets Φ j(v) and Φk(v), the complexity of the

ATC in the Haar basis is O(n log2N). For interested readers, Property 2 can also be

verified against Lemma 1.

4.4.3 Summary of Complexities in All Bases

The following table summarizes the computational complexities of the SCC, STC,

ACC and ATC in different bases. For general orthonormal bases, there is no spar-

sity due to the lack of special structures. The pixel basis, despite its simplicity, is a
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poor basis for compression and hence undesirable for practical applications. The

Fourier basis is widely used in theoretical analysis, but is not good at capturing

all-frequency lighting (or visibility/BRDF) as shown in [75]. Haar wavelets are

preferred in all-frequency relighting and only need a handful of coefficients and

basis functions to achieve good approximations. To distinguish from N, the total

number of basis functions, we denote the number of terms retained after compres-

sion as n. n is usually around 1 ∼ 2% ofN for wavelets. As shown in the following

table, Haar wavelets have linear or close-to-linear complexities ranging from n to

O(n log2N) across all columns. In practice, we would need to compute far fewer

terms after compression than in the other bases. This makes Haar wavelets ideal

for many operations in practical applications.

STC
O(N )

N
O(N )

O(nlogN)

ACC
O(N )

N
N

O(nlogN)

Bases
General
Pixel
Fourier
Haar

2

SCC
N
N
N
n

ATC
O(N )

N
O(N )

O(nlog N)

3

2

3

2

2

4.4.4 Generalization to Higher Dimensions

A high dimensional Haar basis can be viewed as a product of multiple 1D Haar

wavelet basis functions for both standard and non-standard decompositions, as

utilized by [22]. Similarly to a high dimensional Fourier basis, a high dimensional

Haar basis can be written as

Ψi(v) =

Q∏

q=1

ψiq(vq), (4.30)

where Ψi is a Q-dimensional basis function, variables i and v are Q-dimensional

vectors, and iq and vq index into the q-th dimension of vectors i and v.
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The ACC becomes

Dij(s,o) =

∫

. . .

∫

︸    ︷︷    ︸

Q

Ψi(sv + o)Ψj(v)dv

=

Q∏

q=1

( ∫

ψiq(sqvq + oq)ψ jq(vq)dvq

)

︸                              ︷︷                              ︸

1D affine coupling coefficient

=

Q∏

q=1

Diq jq . (4.31)

Similarly, the ATC becomes

Dijk(s,o) =

∫

. . .

∫

︸    ︷︷    ︸

Q

Ψi(sv + o)Ψj(v)Ψk(v)dv

=

Q∏

q=1

( ∫

ψiq(sqvq + oq)ψ jq(vq)ψkq(vq)dvq

)

︸                                       ︷︷                                       ︸

1D affine tripling coefficient

=

Q∏

q=1

Diq jqkq , (4.32)

whereΨi,Ψj andΨk are Q-dimensional basis functions, and variables i, j, k, s, and

o are vectors ofQ elements. Equations 4.31 and 4.32 show that the highdimensional

HaarACCandATCare products ofmultiple 1DACCs andATCs respectively. They

enable scales and translations in wavelets, but not rotations or shears.

The complexities of thehighdimensionalACCandATCare respectivelyO(n[
logN

Q
]Q)

and O(n[
logN

Q
]2Q). If we denote the total number of basis functions in 1D as Ñ, we

obtain N = ÑQ for higher dimensions. Noting that logN = Q log Ñ and the com-

plexities of 1D ACCs and ATCs are O(ñ log Ñ) and O(ñ log2 Ñ), multiplying these

complexities Q times respectively generates the complexities of the high dimen-
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sional ACC and ATC. For relighting, we will be working with 2D ACCs, whose

complexity is O(n log2N) from the above analysis. However, we show in Sec. 4.5.5

that we can develop a more efficient algorithm with O(n logN) complexity.

4.5 Interactive Near-Field Relighting

We now develop our main practical application, showing how to integrate our

theory with the PRT framework to render near-field lighting effects at interactive

rates. Later Sec. 4.6 will present initial results for wavelet importance sampling for

near-field planar area lights and image processing directly in the wavelet domain.

4.5.1 Basic Relighting Framework

In the reflection equation, the exitant radiance is

B(q,ωo) =

∫

Ω

L(q,ωi)V(q,ωi)ρ(q,ωi,ωo)(ωi · n)dωi

=

∫

Ω

L(q,ωi)T(q,ωi,ωo)dωi, (4.33)

where B is the reflected radiance as a function of the spatial location q and outgoing

directionωo, L is the incoming lighting,ωi is the incident direction,V is the visibility,

ρ is the BRDF, and n is the surface normal. Symbols in bold represent 2D vectors.

Often the visibility V, BRDF ρ and cosine term (ωi · n) are combined into the

transport function T as shown in Equation 4.33. Equation 4.33 is a double product

integral of the lighting and the transport function, and is often expanded in the

Haar wavelet basis in actual computations.

In most relighting algorithms, distant illumination is assumed so that L(q,ωi) =

L(ωi) is the same for all vertices q. However, in the near-field setting considered

here, we need to propagate light from the planar area source to each spatial location.
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Wewill show below that this corresponds to an affine transform of the original area

source radiance. Thus, equation 4.33 becomes an affine double product integral,

and can be efficiently computed on the fly for each vertex using the theory of Secs.

4.3 and 4.4.

4.5.2 Light Propagation

We consider light propagation from an area light source in 1D as shown in Fig. 4.1C.

Extension to 2D planar sources in Sec. 4.5.5 is straightforward as explained in Sec.

4.4.4. The area light is F(v), and the incident radiance at a vertex L(z, x; v). Variables

z and x are the vertical and horizontal coordinates of the vertex. v is the intercept

on a virtual plane a unit distance away. From simple trigonometry, the incident

radiance can be written as

L(z, x; v) = F(zv + x), (4.34)

which is an affine transformation of the original light F(v). z and x respectively

correspond to s and o previously used in the ACC.

It is worth making a note of the parameterization. In terms of the more familiar

angular coordinates, v = tanθ, and we must include the correct angular/area

measure for dv/dθ when changing the integration variable from θ to v. As is

conventional, we incorporate this into the transport function T(v). We emphasize

that while our parameterization is similar to the linearization used in, for instance

[31], equation 4.34 is exact, and not an approximation.
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The coefficients of the incident radiance Lk(z, x) can be computed as

Lk(z, x) =

∫

F(zv + x)ψk(v)dv

=

∫ (∑

i

Fiψi(zv + x)
)

ψk(v)dv

=
∑

i

FiDik(z, x), (4.35)

where Fi are the wavelet coefficients of F. Equation 4.35 propagates light directly

in the wavelet domain.

We emphasize that equations 4.34 and 4.35 simply express the incident radiance

at a given spatial location. The PRT algorithm can be treated as a black box, that

takes this incident lighting L and applies the light transport function T. Therefore,

ourmethod canbe incorporated into almost anyPRT framework and representation

for T, including those that are view-dependent.

By substituting the angle ωi with v using appropriate normalizing weights

(numerical cubature), we can write equation 4.33 as

B =

∫

L(z, x; v)T(v)dv =
∑

i

∑

j

FiT jDi j(z, x), (4.36)

where T j is the wavelet coefficient of the transport function T(v).

4.5.3 Relighting with Light Field

A general light field can be denoted as F(v1, v2) and the local incident radiance

L(z, x; v) equals to F(x + zv, v). Similarly, this relation can be written in wavelets

using the ATC as
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Figure 4.7: A, B, and C are renderings using our method with different face sizes. D is the ground
truth from a raytracer, using a full representation of the lighting environment at each vertex. E
shows the coverage ratios of the top face over the upper hemisphere with different sizes. In the graph,
the blue solid curve is the top face solid angle covered, and the green dotted curve the energy of a
centrally aligned Lambertian lobe. For a standard cube map, its top face size is 2. Top face sizes 3
or 4 can generate visually accurate results.

Lk(z, x) =

∫

L(z, x; v)ψk(v)dv

=

∫

F(zv + x, v)ψk(v)dv

=

∫ (∑

i

∑

j

Fi jψi(zv + x)ψ j(v)
)

ψk(v)dv

=
∑

i

∑

j

Fi jDi jk(z, x). (4.37)

4.5.4 Parameterization

It is common to parameterize the sphere S2 of directions using a cube map con-

sisting of six faces. Propagations of light to the six faces would require six affine

transformations. To speed up the computation, we make a trade off by using only

the top face3, but expand its size to cover a larger solid angle. The top face is

aligned with the light plane. Our simplification is motivated by the observation

3Similar plane-angle and plane-plane parameterizations have been used in light field represen-
tations [64, 19].
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Our methodRaytracing Environment map

A. B. C. D.

Our method, edited light

Figure 4.8: A diffuse scene of a fertility sculpture and three spheres lit by a simple textured area
light. The light textures are shown in the top left corners. The area sources are above the fertility
sculpture, but cropped to save space. A, B and C: Images A, B and C compare raytracing, our
method, and distant environment map lighting respectively. Compared to distant lighting in C, we
see that our method in B correctly captures the spatially varying shading on the floor and sculpture
and generates a result that is quite close to the ground truth. About 1% of source level and 22% of
target level lighting coefficients are used in our method. D: Finally, we can edit the light texture
and shape, and rotate it in real-time to obtain a distinct appearance in D. This important tool for
lighting design would not be possible with previous techniques like precomputed shadow and source
radiance fields.

that in near-field settings for most vertices, at least one of the lighting, visibility

or BRDF terms would tend to peak at the top face and die out towards periph-

eral regions. In addition, the cosine term (cosine of the incident angle) reduces

contributions towards grazing angles.

We make the top face adjustable so that a large or smaller solid angle can be

covered as needed. The top face in the standard cubemap is assumed size 2. Figure

4.7 shows that mid-sized faces can cover a sufficient portion of the hemisphere. For

example, a size 10 top face covers 82% solid angle of a hemisphere and captures 99%

energy of a centrally aligned Lambertian lobe. The Lambertian lobe corresponds

just to the cosine term. In our experiments, sizes 3 or 4 suffice to generate visually

accurate results.

Assumptions and Limitations

We have assumed planar area light sources, where the angular distribution of light

is uniform. We have not implemented, but showed theoretically in Sec. 4.5.3

how to handle lights with angular variations such as light fields using ATCs. As
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noted above, we use an expanded top-face parameterization that may omit light

incident at grazing angles. Our method is general enough to allow interactive

scaling, translation and horizontal rotation of lights and general edits to the light

textures. However, as in most wavelet-based relighting algorithms, we cannot

support general out of plane rotations of the lighting.

4.5.5 Rendering Algorithm

We present key computation steps and major rendering results in this section. All

renderings and time measurements are done on a commodity 3.0 GHz Dual-Quad-

Core PC with 4GB memory.

Log-Linear-Time Light Propagation

To propagate light, we compute equation 4.35 in 2D,

Lk(z, x) =
∑

i

FiDik(z, x),

where x and z are 2D variables4, and i andk are respectively 2D vectors of (i1, i2) and

(k1, k2). Since we have to loop through all subscripts i and k, we only evaluate the

equation for non-zero 2D ACCDik(z, x). Variables z and x respectively correspond

to the scale s and the translation o. Recall that we useN to denote the total number

of basis functions and n for the number of terms retained after compression. The

total cost appears to be theO(n log2N) complexity of the 2DACCs, which is derived

in Sec. 4.4.4.

In fact, a better O(n logN) algorithm exists if we separate 2D ACCs as products

4Since each vertex has only one depth from the light source, vector z’s two elements are the same
z1 = z2.
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of 1D ACCs and perform the computations in each dimension in succession.

Step 1: ∀ i2, k1 Zi2k1(z1, x1) =
∑

i1

Fi1i2 ·Di1k1(z1, x1),

Step 2: ∀ k1, k2 Lk1k2(z1, z2, x1, x2) =
∑

i2

Zi2k1 ·Di2k2(z2, x2).

Zi2k1 is an intermediate variable that carries the accumulation result from the first

dimension. Step 1 involves looping over subscripts i1, i2 and k1. For any given i2,

over all i1 and k1, there are approximately O(
√
n logN) non-zero Di1k1(z1, x1) for the

complexity of 1DACCs is about the square root of that of 2DACCs. Multiplying the

number of i2which is about
√
n gives the cost for step 1 asO(n logN). Similarly, step

2 also takesO(n logN) time, and thus the total complexity of both steps isO(n logN).

This computation is performed independently for all three color channels.

Precomputation and Rendering

Transport functionsT are precomputed similarly to [75], except using the expanded-

top-face parameterization. Light propagation (equation 4.35) involves computing

the ACCs. There are two practical approaches, one relying on memory looks ups

and the other favoring faster computation.

Memory Based Approach: It is easy to store all non-zero 1D ACCs Dik(s, o) com-

pactly in a 4D table and look up their values during the computation. Due to

the sparsity of ACCs, the cost to compute and store the 4D table is minor. As

shown in the following table, non-zero ACCs for wavelet order 32 and at spatial

resolution 256 only takes 1.06 seconds to precompute and 18.66MB to store. Note

that the space and time cost scales close to linearly with the order of the wavelets,

confirming our analysis in Sec. 4.4.2. Precomputed tables at all different orders and

resolutions will be downloadable from our web site.
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36.24MB
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Because of the independence of lighting coefficients across vertices, light propa-

gation can be easily parallelized onmulti-core machines or clusters. We implement

both single-thread and multiple-thread rendering algorithms on a 3.0 GHz Dual-

Quad-Core machine using the boost library. To ensure workload balance between

threads, we choose a round-robin scheduling scheme among a pool of tasks, each

carrying a small number (512) of vertices to compute. Compared to the single-

thread, an eight-thread implementation generates the exact same rendering result,

but improves the speed by about 6.5 times and easily obtains real-time rates. Most

of our relighting results are generated using the multi-thread memory-based im-

plementation.

Computational Approach: For machines with faster computation, we tabulate

M(r, c) (canonical coupling coefficient defined by equation 4.22) in a 2D texture and

compute ACCs using equation 4.21. Since M(r, c) is sparse and symmetric (Sec.

4.4.2), the entire M table can fit into the L2 cache. A 256x256 M table in floating

point only takes 0.25 MB space. In our experiment settings, the computational

approach is about half as fast as the memory based approach.

Non-Linear Lighting Approximation

Realistic illumination can be well approximated using a handful of wavelet coef-

ficients. Our model allows compression at two levels, of both the original light F
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(source level) and the local incident radiance L (target level), drastically speeding

up the performance.

Source-Level Compression At the source level, lighting coefficients Fi are or-

dered, and the most significant ones are picked, as in standard PRT. Using only 1%

of source level coefficients usually generates accurate renderings, as shown in Figs.

4.8 and 4.9.

Target-Level Compression Target lighting coefficients Lk vary across all vertices

and change as the light source is dynamically updated. It is difficult to pre-

determinewhich target coefficients are important, and generating and sorting them

in real time is too expensive. Instead, we assume a heuristic light F̃i and precom-

pute lighting predictions L̃k for a number of z and x values. The light predictions

L̃k are used to pick target lighting coefficients Lk at run time.

L̃k(z, x) =
∑

i

F̃iDik(z, x). (4.38)

Rarely will the lighting predictions L̃k be exactly the same as the actual lighting Lk.

They however, roughly track how power distributions of the wavelet coefficients

under affine transformations changewith respect to spatial locations. We use a sim-

ple constant light heuristic (a vector with only DC, [1, 0, 0, ...]) in our experiments,

and need about 20 ∼ 30% of target level lighting coefficients for visually accurate

results, as shown in Figs. 4.8 and 4.9.

4.5.6 Results

We demonstrate three scenes—fertility (39,391 vertices, Fig. 4.8), chairs (59,995

vertices, Figs. 4.1B and 4.9A-C), and couches (68,046 vertices, Figs. 4.1A and 4.9D-

F). All scenes have static geometries and are rendered using PRT, with near-field
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A. B. C.

D. E. F.

Figure 4.9: Two specular scenes rendered with near-field sources using our method. Light textures
used are shown in the upper left corners, and their sizes and positions vary. In the chair scene, note
the sharper and larger shadows underneath the chairs when the light is small and close (A), and
smaller and softer shadows when the light is larger and far away (B). Also note in the couch scene
how light editing (change texture, reshape) from D to E influences specular reflections on the tables
and cushions. Fig. 4.1A follows E but resizes and rotates the light. C and F render both specular
scenes from another view point with a different light texture. Specular rendering from a different
view point requires a separate precomputation. Close-ups can be found in Fig 4.1. Performance
numbers are reported in Fig. 4.11.

lighting effects generated using our method. The chairs, tables and couches have

specular materials with precomputation done per vertex [75]. The fertility scene is

diffuse and can be viewed from different angles. In all cases, we can interactively

edit the light.

Near-Field vs. Distant Lighting Effects

In Fig. 4.8B, we light a diffuse fertility scene with near-field lights. Spatially

varying shadings and colored soft shadows on the floor are clearly visible. In

contrast, Fig. 4.8C shows a rendering using the standard environment mapping
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technique,5 which fails to capture the shading variations on the floor or sculpture

that are critical to the mood of the scene.

In Fig. 4.9, we render two specular scenes with a number of lights at different

positions. Inparticular,when the light is closer to thefloor inFig. 4.9A (as compared

to Fig. 4.9B), shadows of both chairs expand sideways and the specularity on the

table focuses. In Figs. 4.9D-E, we can clearly observe how editing the light texture,

as well as its shape and size, changes the specular highlights on the tables and

cushions. These effects are hard to capture with distant illumination. Close-ups

are found in Figs. 4.1A and 4.1B.

Light Editing

We develop a prototype light editing and design system, which allows artists to

edit the lights in a more intuitive and interactive way. An artist can move, resize,

or horizontally rotate the light. Lights can also be textured. Image processing

methods such as blending, filtering, warping and painting can be easily applied

to edit the light texture. Because the cost of compressing the edited light texture

into wavelets in real-time is minor, changes can be immediately reflected in the

realistically rendered images using our algorithm. For example, starting from Fig.

4.9D, we first paint and reshape the light to obtain Fig. 4.9E, and then resize and

rotate the light to generate the image in Fig. 4.1A. Note the generality of our system

to handle textured and editable/reshapeable light sources in Figs. 4.8 and 4.9, which

cannot be addressed by previous near-field lighting techniques like precomputed

source radiance fields [126].

5The incident lighting at the center of scene is used as the “environment map” and fed to all
vertices for shading computations.
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Accuracy Analysis

Validation: We compare the ground truth image from a raytracer in Fig. 4.8A

with our result in Fig. 4.8B. We also showed a ground truth comparison in our

didactic example of a knot scene in Fig. 4.7. Since we only use a finite plane to

parameterize the upper hemisphere, light incident at grazing angles is omitted,

resulting in dimmer shading for some boundary vertices and the lack of grazing

angle specularities. Also, lighting coefficients are compressed at both the source

and target levels. Thus, energies at certain frequencies may be lost. Nevertheless,

Figs. 4.7 and 4.8 clearly demonstrate that our results show little visual difference

from the ground truth, but now can be rendered at real-time rates. Similar results

hold for our other images.

Lighting Approximation Error: Figure 4.10 shows the approximation errors for

different compressions at both source and target levels. A few representative light

textures used in the renderings are included in the accuracy analysis. Note that the

horizontal axes inFig. 4.10 are ona log scale. The approximation accuracy improves

quickly with increasing numbers of coefficients used. In addition, the target level

compression is less efficient than the source level, requiring more coefficients for

the same level of accuracy. This inefficiency is due to the fact that we rely on a

constant heuristic light to predict significant lighting coefficients after the affine

transformation. Our experiments show that 1% of the source level and 20 ∼ 30% of

the target level lighting coefficients (using a constant light heuristic) usually suffice

to generate visually accurate results.

Performance

All images are rendered at 1200x900 resolution and a wavelet order of 32. The

rendering speed depends on a number of factors such as the total number of
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Figure 4.10: Approximation errors of the source (graph A) and target (graph B) level compressions.
Four representative light textures with different levels of high frequencies are used. The horizontal
axes are on a log scale.

vertices, numbers of the retained source and target level lighting coefficients, and

the complexities of the scene materials. In table 4.11, we report the rendering

performance for the fertility, chair and couch scenes. As shown in the second and

third performance columns (which correspond to the common compression usage),

our algorithm provides real-time performance, as also seen in the accompanying

video.

Source=1%
Target=20%

38.71fps

7.58fps

25.87fps

4.52fps

23.34fps

3.91fps

Source=1%
Target=1%

151.86fps

32.79fps

107.33fps

20.43fps

101.64fps

18.60fps

Source=5%
Target=40%

24.83fps

4.17fps

12.48fps

2.03fps

11.98fps

1.94fps

Source=100%
Target=100%

7.04fps

1.08fps

4.86fps

0.75fps

4.80fps

0.71fps

Source=20%
Target=70%

13.78fps

2.17fps

7.87fps

1.15fps

7.31fps

1.10fps

#Verts

39,391

56,995
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Scenes

fertility

chairs

diffuse

specular

specular
couches

Threads

8 threads

1 thread

8 threads

1 thread

8 threads

1 thread

Figure 4.11: Rendering performance with different compressions. For each scene, the upper row
contains the performance numbers using the multi-thread implementation, and the lower row for
the single-thread implementation. All performance is measured on a 3.0 GHz Dual-Quad-Core
PC with 4.0 GB memory. The second and third columns correspond to realistic compression levels
for accurate rendering, and achieve real-time rates for both the single-thread and multi-thread
algorithms.
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4.5.7 Comparison to Previous Near-Field Relighting Methods

In comparison with previous techniques, our method offers significant design

flexibilities and achieves effects that are otherwise hard to capture. Annen et al.

[2] and Wang et al. [118] pioneered rendering mid-range illuminations, using

respectively spherical harmonic gradients and scaling. Lights are assumed some

distance away from the scene so that the lighting can be smoothly interpolated and

its propagation (affine transformation) approximated. Our work can be seen as

extending these methods to near-field settings, as shown in Fig. 4.8. Moreover, our

technique can also render specular scenes, such as the chair and couch scenes in Fig.

4.9. Zhou et al. [126] and Kristensen et al. [60] made important advances in near-

field rendering of both diffuse and specular scenes. The light content however, is

built into theprecomputations andhas to remain static during rendering. Designers

can move the light or change its intensity, but not edit the light shape or texture.

Our method can be seen as an important generalization of their techniques, and

allows light editing to be fully integrated with any PRT framework. For example,

interactively painting the lights and changing their shapes, as done in Fig. 4.8D and

4.9, or quickly flipping through several arbitrary light textures during relighting,

as demonstrated in the video, are all feasible with our method. Finally, Annen et al.

[2], Wang et al. [118] and Kristensen et al. [60] base their methods on the spherical

harmonic basis and cannot capture all-frequency effects.

4.6 Other Applications

BesidesourmainproblemofPRTnear-field relighting, affinely transformedwavelets

and wavelet integrals have many other potential applications in rendering, image

and signal processing, and numerical analysis. As a first proof of concept, we

demonstrate initial examples of wavelet importance samplingwith near-field light-
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ground truth ground truth

ground truth

our method, 8 samples

our method, 8 samples

distant lighting, 8 samples

distant lighting, 8 samples

light sampling, 8 samples

light sampling, 8 samples

Figure 4.12: A gold dragon under a near-field area source rendered using wavelet importance
sampling. The ground truth rendering is at the top. In the close-ups, for the same number samples
(8), we compare the result of our method with those by standard wavelet importance sampling but
assuming that the light is distant (distant lighting), and light importance sampling (light sampling).
Order 64 wavelets are used for all three sampling methods. Our method converges to the ground
truth an order of magnitude faster, exhibiting substantially less noise at this sample count.

ing for offline Monte Carlo rendering, and image dilation and translation directly

in the wavelet domain for image processing.

4.6.1 Wavelet Importance Sampling

Clarberg et al. [22] have shown that importance sampling the product of the

BRDF and the distant lighting can greatly reduce the variance in Monte Carlo

rendering. However, their method is limited to distant environment map lighting,

since lighting-BRDFproducts are computedusing standard triple product integrals.

Our theory enables a direct extension to the near-field setting, with planar area
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sources. We pre-tabulate BRDFs as 4D functions as done in [22]. For each pixel,

we affinely transform the original light source into the local incident radiance

using equation 4.35 of Sec. 4.5, in a very similar fashion as for relighting. We

then multiply the wavelet coefficients of the local radiance with those of the BRDF

using the standard triple product wavelet integral [76]. Thereafter, we perform

hierarchical wavelet warping to obtain importance samples, used for Monte Carlo

estimation. Distinct from [22], we use the standard wavelet decomposition and an

expanded-top-face parameterization, as we do in Sec. 4.5 for relighting.

We demonstrate a near-field rendering of a gold dragon under an area light

source in Fig. 4.12. We observe visual effects such as highly contrasted and spa-

tially varying shadings that are hard to obtainwithdistant lighting. In the close-ups,

we compare the result of our method with those of standard wavelet importance

sampling, but assuming the light is distant (distant lighting), and light importance

sampling (light sampling). With only 8 samples per pixel, our method can sig-

nificantly reduce the noise and generate results that are visually indistinguishable

from the ground truth.

4.6.2 Image Dilation and Translation

Many image operations such as convolution, masking and zooming involve basic

operators like dilations (scales) and translations. Using our theory, images com-

pressed usingwavelets can be scaled and translated directly in thewavelet domain,

instead of first requiring decompression into the pixel domain. If needed, e.g., im-

ages are streamed from a remote server, image dilations and translations can also

be performed in a multi-resolution fashion.

The basic equation for image scaling and translation remains the same as equa-

tion 4.35. F(v), originally the area light, becomes the source image and L(v), the

incident radiance, becomes the target image. Variables z and x respectively de-



100

Original image
before zooming

Pixel up-sampling
time=0.121s

Our method, time=0.007s
src=15%, dst=20%

Our method, time=0.004s
src=5%, dst=10%

Our method, time=0.002s
src=1%, dst=4%

-1-2-3-4-5
10 10101010 1.0

0

0.01

0.02

0.03

0.04

Fraction of Terms Retained

T
im

e
p

e
r

O
p

e
ra

ti
o

n
(s

)

dst=100%,

src varies

Pixel up-sampling takes 0.121 s

src=100%,
dst varies

Figure 4.13: Zooming in on a building in a picture of Berlin. The top left is the original image.
The red box at the top contains zoomed images using up-sampling in the pixel domain and our
method. Our method is visually as accurate as the pixel domain method, but more than 15 times
faster. More results with different compressions at both the source and target levels (src and dst) are
shown in the column beneath the red box. In the bottom left graph, we plot the performance curves
of our method with different compressions. Each curve corresponds to either the source or the target
level compressions (one level per curve). The horizontal axis is on a log scale. Time measurements
of the pixel method include decompression and recompression of images encoded in wavelets.

scribe the amount of dilation and translation. As before, compression of wavelet

coefficients can be performed at both the source and target levels.

An example result is shown in Fig. 4.13, where we zoom in on a building in a

photograph of Berlin, and plot the performance curveswith different compressions

for the source and target. As shown in the red box, our method is visually as

accurate as the brute force up-sampling in the pixel domain, but more than 15

times faster. With more compression (two bottom right images), the speed-up can
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be up to 60 times at the cost of losing some details in the final images. Accuracy

analysis can be referred to Fig. 4.10 in Sec. 4.5. Along with other wavelet domain

image operations such as additions and multiplications, we believe our work is a

significant step towards a complete wavelet domain toolbox for image processing.

4.7 Discussion and Future Work

We have presented a novel theory of affine double and triple product integrals. In

particular, we have analyzed the sparsity of affine coupling and tripling coefficients

in the Haar wavelet basis, showing that they have nearly linear complexity, which

leads to efficient algorithms for computing affine transforms in Haar wavelets.

Besides being of substantial theoretical interest, our framework has significant

practical implications. We develop some of the first methods for including near-

field lighting effects in all-frequency PRT algorithms. A planar area source can be

translated, dilated, rotated in its plane, and have its texture edited, all while the

scene is rendered in real-time—local lighting is propagated to each vertex via an

affine transform of the source radiance directly in wavelets. Our method can be

integrated with almost any PRT algorithm.

Future work in relighting can follow many avenues. Better heuristics can be

experimented with for more efficient lighting compression. Relighting with more

general illumination sources like light fields and dynamic textures can be explored.

Our theory can also be applied to many other applications that depend on

wavelet representations. As a proof of concept, we demonstrate implementation

of wavelet importance sampling with near-field lights for offline Monte Carlo ren-

derers. We also show the practical utility of our theory in dilating and translating

images directly in the wavelet domain for image processing. However, we have

only scratched the surface of applications, and we predict many future develop-
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ments in graphics and applied mathematics.

Finally, our work reveals the fundamental sparsity of some basic wavelet oper-

ations (dilation and translation). This opens up a fresh perspective in approaching

many other operations that have traditionally been viewed as difficult to compute

directly with wavelets. Together with standard double and triple product integrals

(multiplication), more complicated operators can be built, e.g. convolutions can be

reduced to translations and multiplications. The basic mechanism and computa-

tional machinery we employed in developing our theory will shed key insights on

constructing a complete suite of wavelet domain operations.



Chapter 5

Frequency Based Approaches to

Real-Time Rendering

In last chapter, we presented a novel theory of affine double and triple product

wavelet integrals for near-field relighting. In this chapter, we introduce two fre-

quency based approaches respectively to correctly filtering normal maps [36] and

generating soft shadows in dynamic scenes [92]. Mathematical tools in frequency

analysis such as spherical harmonics are exploited. This chapter includes jointwork

with my colleagues at Columbia University and researchers at Microsoft Research

and Zhejiang University. We focus on the key idea or my specific contributions,

and detail on implementation and extensions may be skipped.

5.1 Frequency Domain Normal Map Filtering

5.1.1 Background and Preliminaries

Representing surface detail at a variety of scales requires good filtering algorithms.

A common, linear approach to reduce aliasing is MIP-mapping [125]. Normal

mapping (also known as bump mapping [13] or normal perturbation), a simple

103
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zoomed in

zoomed out

(a) V-groove

(e) standard

(d) NDF

(c) V-groove

(b)

NDF          BRDF     effective

BRDF

convolution(f)

Figure 5.1: Consider a simple V-groove. Initially in closeup (a), each face is a single pixel. As
we zoom out, and average into a single pixel (c), standard MIP-mapping averages the normal to an
effectively flat surface (e). However, our method uses the full normal distribution function or NDF
(d), that preserves the original normals. This NDF can be linearly convolved with the BRDF (f) to
obtain an effective BRDF, accurate for shading.

and widely used analogue to color texture mapping, specifies the surface normal

at each texel. Unfortunately, normal map filtering is very difficult because shading

is not linear in the normal. For example, consider the simple V-groove surface

geometry in Fig. 5.1a. In a closeup, this spans two pixels, each of which has

distinct normals (b). As we zoom out (c), the average normal of the two sides (e)

corresponds simply to a flat surface, where the shading is likely very different.

Our most important contribution in [36] is theoretical, formalizing these ideas

and developing a comprehensive framework for normal map filtering. This is joint

work with Charles Han, Ravi Ramamoorthi and Eitan Grinspun. In Sec. 5.1.2, we

derive an analytic formula, showing that filtering can be written as a spherical

convolution of the BRDF of the material with a function we define as the normal

distribution function (NDF)1 of the texel. This mathematical form holds for a large

class of common BRDFs including Lambertian, Blinn-Phong, microfacet models

like Torrance-Sparrow, and many measured BRDFs. However, the convolution

does not apply exactly to BRDF models that depend on the “reflected direction”

1We define the NDF as a weighted mapping of surface normals onto the unit sphere; more
formally, it is the extended Gaussian Image [43] of the geometry within a texel.
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Figure 5.2: Top: Closeup of the base normal map; all other methods are identical at this scale
and are not shown. Schematic (a) and diffusely shaded (b) views are provided to aid in compari-
son/visualization. Middle:When we zoom out, differences emerge between our (6-lobe) spherical
vMF method, the Toksvig approach (rightmost), and normalized MIP-mapping. (Unnormalized
MIP-mapping of normals produces an essentially black image.) Bottom: Zooming out even further,
our method is clearly more accurate than Toksvig’s model, and compares favorably with ground
truth. (The reader may zoom into the PDF to compare images.)

between the light source and viewer, e.g., the standard Phong model. Our ana-

lytic result immediately connects geometrical normal map filtering with the older

lighting-BRDF convolution result for appearance [6, 87]. This result also unifies

many previous normal map filtering approaches, which can now be viewed as

special cases.

Moreover, we can immediately apply a host of mathematical representations

originally developed for lighting-BRDF convolution. In particular, we develop

two novel algorithms. Our first method (Sec. 5.1.2) is a general framework that

uses spherical harmonics (SH). Our second method, intended for high-frequency

materials, uses an approximate function fitting technique known as spherical expec-

tation maximization (EM) [5]. This method approximates or fits the NDF with von
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Acronym Definition Symbol

NDF normal distribution function γ(n)
SH spherical harmonics Ylm

SRBF spherical radial basis function γ(n · µ)
EM expectation maximization
vMF von Mises-Fisher distribution γ(n · µ;θ),

θ = {κ, µ}
movMF mixture of vMF lobes γ(n;Θ),

Θ = {α j, θ j}Jj=1

Table 5.1: Important abbreviations and acronyms used in Sec. 5.1.

Mises-Fisher (vMF) distributions (refer [36] for details).

Previous Related Work

Normal Map Filtering: Many previous methods approximate the normal distri-

bution function using a single symmetric or asymmetric lobe. [97] described the

lobe using covariance matrices, while [81] mapped normal distributions consisting

of a single 3D Gaussian. A simple GPUmethod is described in [114]. In our frame-

work, these methods can retrospectively be considered similar to using a single

vMF lobe.

An early inspiration is [32], which uses up to seven Phong lobes per texel

(and up to 56 at the coarsest scales). Note that [32] uses nonlinear least-squares

optimization to fit lobes. In our experience, this is unstable and slow, especially

considering the number of peaks and texels in a normal map. The most recent

and closest previous work is [113], which uses EM to fit Gaussian lobes to a planar

projection of the hemispherical NDF at each texel. It is easy to understand [113] as

an important special case in our theoretical framework. [113] uses planar Gaussian

fits, which has be shown to be considerably less accurate both in our work (please

refer to [36] for details) and in other contexts [109]. Further, [113] treat the BRDF

itself as a pre-baked distribution of normals at fine-scale texels.
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Hierarchy of Representations: A hierarchy of scales, with geometry transition-

ing to bump or normal maps, transitioning to BRDFs, was first proposed by Ka-

jiya [50]. This idea is explored in detail by [8], but they do not focus on normal map

filtering as in our work. Similarly, appearance-preserving simplification methods

replace fine-scale geometry with normal and texture maps [23]. It is likely that our

approach could enable continuous level of detail and anti-aliasing in these meth-

ods. Separately, our formulation allows one to understand the tradeoff between a

normal distribution and the BRDF, since the final image is given by a convolution

of the NDF and BRDF.

Further, many of our mathematical representations and ideas derive from previ-

ous spherical convolution techniques [6, 87]. We also build on PRT methods that

are introduced in Sec. 2.5.

Mathematical Preliminaries

The reflected light B at a spatial point x in direction ωo is

B(x, ωo) =

∫

S2
L(x, ωi)ρ(ω

′
i , ω

′
o) dωi, (5.1)

where L is the lighting at x from incident direction ωi, and ρ is the BRDF (including

the cosine of the incident angle). This is the standard reflectance equation.

Effective BRDF: Wedefine a new function, the effective BRDF or transfer function

that depends on the surface normal (that we denote as n(x) or simply n for clarity)

as,

ρeff(ωi, ωo;n) = ρ (Rn(ωi),Rn(ωo)) ,
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allowing us to write equation 5.1 using the global directions,

B(x, ωo) =

∫

S2
L(x, ωi)ρ

eff(ωi, ωo;n(x)) dωi. (5.2)

BRDF Parameterizations: Many BRDFs such as Lambertian, Blinn-Phong or

microfacet half angle (like Torrance-Sparrow), and many factored and measured

BRDFs can be written as

ρeff(ωi, ωo;n) = f (n · ω(ωi, ωo)), (5.3)

where the 1D function f is radially symmetric about the shading normal n, and

depends on the chosen parameterization ω(ωi, ωo) (henceforth ω).

NormalMapFiltering: In screen space, the exitant radiance or pixel colorB(x, ωo)

at a surface location x should represent the average radiance at theN corresponding

finer-level texels q:

B(x, ωo) =
1

N

∑

q∈x

∫

S2
L(x, ωi)ρ

eff(ωi, ωo;n(q)) dωi

=

∫

S2
L(x, ωi)





1

N

∑

q∈x
ρeff(ωi, ωo;n(q))




dωi.

This formulation allows us to define a new effective BRDF,

ρeff(ωi, ωo; x) =
1

N

∑

q∈x
ρ
(

Rn(q)(ωi),Rn(q)(ωo)
)

. (5.4)

Note that the effective BRDF now depends implicitly on all the normals n(q) at x,

rather than on a single normal. The next section shows how to explicitly represent

ρeff as a convolution of the original BRDF and a new function we call the NDF.
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5.1.2 Theory of Normal Mapping as Convolution

In this section, we introduce our theoretical framework for normal map filtering as

convolution anddescribe how spherical harmonics can be used as themathematical

representation for practical implementation.

Normal Distribution Function (NDF) and Effective BRDFs

Our first step is to convert equation 5.4 into continuous form, defining

ρeff(ωi, ωo;γ(·)) =
∫

S2
ρ (Rn(ωi),Rn(ωo))γ(n) dn, (5.5)

where γ(n) is a new function that we introduce and define as the normal distribution

function (NDF), and the integral is over the sphere S2 of surface orientations. Note

that a unique NDF γ(n) exists at each surface location x; for a discrete normal map,

γ(n) would simply be a sum of (spherical) delta distributions at n(q), the fine-scale

normals at x. Formally, γ(n) = 1
N

∑

q∈x δ(n − n(q)), as seen in Fig. 5.1d.

We further substitute the form of the BRDF from equation 5.3. Recall in this

case that the BRDF only depends on the angle between ω and the surface normal

n, and is given by f (ω · n). The effective BRDF is now also only a function of ω,

ρeff(ω;γ(·)) =
∫

S2
f (ω · n)γ(n) dn. (5.6)

Note that the initial BRDF ρ(·) = f (ω · n) is symmetric about n, but the final result

ρeff(ω) is an arbitrary function on the sphere and is generally not symmetric.

Spherical Harmonics

We analyze equation 5.6 in the frequency domain using spherical harmonic (SH)

basis functions Ylm(·), which are the frequency domain analog to Fourier series on
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Our method

Standard anisotropic

filtering

“Ground truth”

Figure 5.3: Spherical harmonic anisotropic filtering for Lambertian reflection. Note the behavior
for far regions of the plane. With standard normal filtering, these regions are averaged to a nearly
flat surface. By contrast, our method is quite accurate in distant regions.

the unit sphere. The l index is the frequency with l ≥ 0, and −l ≤ m ≤ l,

γ(n) =
∞∑

l=0

l∑

m=−l
γlmYlm(n) f (ω · n) =

∞∑

l=0

flYl0(ω · n)

ρeff(ω) =
∞∑

l=0

l∑

m=−l
ρefflmYlm(ω).

The above is a standard function expansion, as in Fourier series. Note that the

symmetric function f (ω · n) is expanded only in terms of the zonal harmonics Yl0(·)

(m = 0), which are radially symmetric and thus depend only on the elevation angle.

Equation 5.6 has been extensively studied within the context of lighting-BRDF

convolution for Lambertian or radially symmetric BRDFs [6, 87]. Since the the-

ory is mathematically identical, we may directly use their results. Specifically,

equation 5.6 expresses a spherical convolution of the NDF with the BRDF filter.

ρefflm =

√

4π

2l + 1
flγlm.
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(a) Our method, f rame 1 (b) Our method, f rame 2 (c) “Ground truth”, f rame 2 (d) Our method, zoomed out

Figure 5.4: Stills from a sequence of cloth draping over a sphere, with closeups indicating correct
normal filtering using our spherical harmonic algorithm (the full movie is shown in the video).
Note the smooth transition from the center (almost no filtering) to the corners (fully filtered) in
(b)—compare also with ground truth in (c). (d) is a zoomed out view that also filters correctly. We
use a blue fabric material from the Matusik database as the BRDF.

Explicitly making the NDF and effective BRDF functions of a texel q, we have

ρefflm(q) = ρ̂lγlm(q) ρ̂l =

√

4π

2l + 1
fl , (5.7)

where theNDF considers all normals covered by q. While qusually corresponds to a

given level and offset in a MIP-map, it can also consider more general “footprints”.

Practical implementation with spherical harmonics is straightforward, involv-

ing two basic steps: (1)computing a MIP-map of NDF coefficients for each level

of texels q of the normal map. An important insight is that, unlike the original

normals, these spherical harmonic NDF coefficients γlm(q0) can now correctly be

linearly filtered or averaged for coarser levels γlm(q). (2) rendering the final color by

directly computing equation 5.7.

We implement the algorithm in a pixel shader using GLSL (see our website for

example code). The spherical harmonicsYlm are stored in floating point textures, as

are the MIP-mapped NDF coefficients γlm(q). An example of Lambertian reflection

using only nine spherical harmonic coefficients (l ≤ 2) is shown in Fig. 5.3. Note

that we preserve accuracy in far away regions of the plane, while naı̈ve averaging

of the normal produces a nearly flat surface that is much darker than the actual.

Specular materials with BRDF f (wh n) also fit within our framework. Fig. 5.4

shows closeup views from an animation sequence of cloth draping over a sphere,
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using the blue fabric material from the Matusik database. Note the accuracy of our

method (compare (b) with the supersampled “ground truth” in (c)).

5.2 Soft Shadowing using Spherical Harmonic Expo-

nentials

5.2.1 Background and Preliminaries

Soft shadows are critical for realistic image synthesis. In [92], we propose a novel

soft shadowing technique using spherical harmonic exponentials. This is joint

work with researchers at Microsoft Research and Zhejiang University. Our goal is

accurate generation of soft shadows in general, dynamic scenes where tabulation

is impractical. Our method operates directly on vectors representing the low-

frequency visibility function of a blocker as seen from a receiver point, expressed

using the spherical harmonic (SH) basis. The fundamental difficulty is that SH

rotations and products [77] are very expensive, precluding GPU implementation

and restricting real-time CPU implementation to a few precomputed blockers.

Our solution approximates blocker geometry as a collection of spheres. Rather

than computing blocker products directly, we represent blocker visibility in log

space. The total log blocking vector can then be accumulated as a simple sum of
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log vectors over all blockers. For order-n SH vectors, this reduces per-blocker com-

putation from O(n5) to O(n2). Given the total log of blocker visibility at a receiver

point, we perform SH exponentiation to yield the total blocker visibility. The result

correctly accounts for blocker overlap and low-frequency directional dependence.

Ours is the first real-time method for rendering soft shadows from low-frequency

environmental lighting in dynamic scenes withmany blockers. In particular, we in-

troduce two technical contributions to do this. One is to accumulate low-frequency

blocker visibility in log space. The Volterra series forms the mathematical founda-

tion for SH exponentiation. The second is tomake approximation of low-frequency

visibility efficient using sets of bounding spheres. Our work is published in [92].

Related Work

Using triple products of lighting, reflectance, and visibility, [76] presents a method

for fast relighting and view change in static scenes. Shadow fields [126] extend

this method to account for dynamic visibility changes and form the basis for our

approach of directly manipulating low-frequency visibility vectors. SH rotation

and products used in these methods are more expensive with the “all-frequency”

basis (wavelets over cube maps), which typically has an order of magnitude more

basis components than low-order SH.

Ambient occlusion [17, 58] yields shadows, but maximally soft ones having

no response to lighting directionality. [17] makes use of simple approximating

elements for blockers organized as a hierarchy. The following work of [100] used

a multipass algorithm that separates the ambient occlusion problem into high-

frequency and low frequency ambient occlusions. [57] designed a method to

work with deforming meshes based on a low-dimensional set of parameters, as in

character animation. Several methods [54, 17, 126] including ours may be termed

blocker accumulation methods because they process a list of blocker geometry at
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each receiver point. Other methods employ multiple shadow buffers [99, 1, 70]

and so entail slow integration over lighting directions when rendering large lights.

For example, [54] is a blocker accumulation method that also uses the directional

lighting basis, but is limited only to very simple scenes. On the other hand, soft

shadow volumes [4] can handle greater scene complexity but only small area light

sources. Convolution can also be used to shadow [105], but it produces a scalar

modulation rather than true hemispherical radiance and is difficult to apply in

general scenes with non-planar receivers and large-depth blockers. Holomorphic

factorization [69] uses log space to factor high-dimensional BRDFs into a sum of

positive, lower-dimensional functions. Only scalar exponentiation is required at

run-time, while we make use of the full exponentiated vector.

Mathematical Preliminaries

We use math italic for scalars and 3d points or vectors (e.g., x, s), boldface italic for

SH vectors (e.g., ~f , ~g), and sans serif for matrices and higher-order tensors (e.g., Γ,

M, D). Spherical harmonic basis is introduced in Sec. 2.2.

SH Products and the Triple Product Tensor are useful for computing the com-

bined shadowing effect of multiple blockers directly in the SH basis, without re-

sorting to numerical integration over directions [54, 70] or performing complicated

geometric clipping operations [4, 63]. The SH product, denoted ~f ∗ ~g, represents the

order-n projected result of multiplying the reconstruction of two order-n vectors, ~f

times ~g, or

~f ∗ ~g =
∫

S

f (s) g(s) ~y(s) ds ⇒ ( ~f ∗ ~g)i =
∑

jk

Γi jk
~f j ~gk (5.8)

where the SH triple product tensor, Γi jk, is defined by

Γi jk =

∫

S

~yi(s) ~y j(s) ~yk(s)ds. (5.9)
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Γ is a symmetric, sparse, order-3 tensor. This definition incurs truncation error

because the product of two order-n vectors is actually order 2n − 1. Order-n SH

products areO(n5) [76]. The following table records the number of nonzero entries

in Γ as function of n:

1 2 3 4 5 6 7 8

1 10 83 369 1164 2961 6586 13018

Even at low orders, SH product is an expensive operation.

We can also define the SH product matrix,M f , given an SH vector ~f . The product

matrix is a symmetricmatrixwhich encapsulates SHproductwith ~f ; in otherwords,

~f ∗ ~g = M f ~g for an arbitrary vector ~g. M f is defined by

(M f )i j =
∑

k

Γi jk
~fk (5.10)

Shadowing using SH Products [126] computes the product of a collection of m

blockers ~g[1], ~g[2], . . . , ~g[m], via

~g = ~g[1] ∗ ~g[2] ∗ · · · ∗ ~g[m] (5.11)

where each ~g[i] is the SH projection of the corresponding blocker visibility function

g[i](s) =





0, if object i blocks in direction s;

1, otherwise.
(5.12)

Although SH product is commutative, it is not associative, so the ordering inwhich

the above products are performed matters.
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Shadowing in Log Space instead accumulates the log of blocker visibilities, de-

noted by ~f [1], ~f [2], . . . , ~f [m] where ~f [i] = log(~g[i]). Thus

~g = exp( ~f ) = exp
(
~f [1] + ~f [2] + · · · + ~f [m]

)

(5.13)

Accumulating the log now involves vector sums which are independent of the

blocker ordering and much cheaper than SH products. Sec. 5.2.2 discusses how

the SH exponential is computed while SH log is discussed in Sec. 5.2.3.

Shading then makes use of the total visibility vector ~g. For diffuse surfaces, the

computation is (~H(N),~L, ~g) where~L is the light vector, ~g is the total blocker visibility

vector, and ~H(N) is the irradiance weighting function given the surface normal N

[86]:

~H(N) =
1

π

∫

s

max(s ·N, 0) ~y(s) ds (5.14)

(~a,~b,~c) for three SH vectors ~a, ~b, and ~c denotes the integral of the product of the

three reconstructed functions and is given by

(~a,~b,~c) = (~a ∗~b) · ~c = (~b ∗ ~c) · ~a = (~c ∗ ~a) ·~b =
∑

i jk

Γi jk ~ai~b j ~ck

The total visibility vector can also be used to shade other types of BRDFs [56] or

textural detail [101, 104]: the vector ~g ∗~L represents shadowed incident radiance to

apply to the receiver.

5.2.2 Spherical Harmonic Exponential

Let ~f be an SH vector to be exponentiated, and ~g be the result of this exponentiation.

The Volterra series [96] allows any analytic, univariate, scalar function h(x) (e.g.

h(x) = exp(x)) to be applied to an SH vector, or indeed any discrete function basis.
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We begin with the integral formulation

h( ~f ) =

∫

S

h
(
f (s)

)
~y(s) ds =

∫

S

h





∑

i

~fi yi(s)




~y(s)ds (5.15)

which applies h to the reconstructed function f (s) at each spherical point s and

then projects the result to the vector h( ~f ). Substituting the Taylor expansion of the

function h(x)

h(x) = h0 + h1 x + h2 x
2 + h3 x

3 + · · · , (5.16)

we obtain the SH power series

h( ~f ) = h0~1 + h1 ~f
1 + h2 ~f

2 + h3 ~f
3 + · · · (5.17)

where

~1 = (
√
4π, 0, 0, . . . , 0)

~f p =

∫

f p(s) ~y(s)ds =

∫ 



∑

i

~fi ~yi(s)





p

~y(s)ds.

The vector ~1 corresponds to a constant value of 1 over the sphere, and satisfies

~1 ∗ ~f = ~f for any ~f . Degree p powers of ~f can be written in terms of order-(p+1)

tensors Γ, via

( ~f p)i =
∑

i1,i2,...,ip

Γi,i1,i2,...,ip
~fi1
~fi2 . . .

~fip (5.18)

where the tensor Γ represents theVolterra kernel (when scaled by hi) and generalizes

the triple product tensor we encountered before:

Γi,i1,i2,...,ip =

∫

S

~yi(s) ~yi1(s) ~yi2(s) . . . ~yip(s) ds (5.19)

Numerical integration (5.15) or high-order tensors (5.17) are too expensive to
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evaluate on-the-fly. The result can be approximated by substituting repeated SH

products for true SH powers in the series. This incurs approximation error because

it truncates after each binary product. For example, ~f 3 ≈ ( ~f ∗ ~f )∗ ~f because the result

of the first square ~f ∗ ~f is truncated back to an order-n SH vector before multiplying

by ~f again. Nevertheless the approximation is typically accurate, especially for

vectors representing bandlimited visibility functions. Using repeated SH products,

we obtain the following approximation called the SH product series, more practical

for real-time evaluation:

h∗( ~f ) = h0~1 + h1 ~f + h2 ~f ∗ ~f + h3 ~f ∗ ~f ∗ ~f + · · ·

= h0~1 + h1 ~f + h2 ~f
2∗ + h3 ~f

3∗ + · · · (5.20)

We use the notation

~f p∗ = ~f ∗ ~f ∗ · · · ∗ ~f
︸         ︷︷         ︸

repeated p times

and note that ~f p ≈ ~f p∗. For p > 3, product order matters; we assume the product is

amassed from left to right.

Now applying the Volterra series using the Taylor expansion for h(x) = exp(x)

in (5.20), we obtain the product series

exp(x) = 1 + x +
x2

2
+
x3

3!
+ · · · (5.21)

exp∗(
~f ) = ~1 + ~f +

~f 2∗

2
+
~f 3∗

3!
+ · · · (5.22)

Product Series Approximation

For a finite number of terms in (5.22), approximation error increases as ‖ ~f ‖ increases,

just as it does in (5.21) as |x| increases. For this reason, evaluation techniques try to

reduce themagnitude of the input vector ~f and thereby increase accuracy for a fixed
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number of terms. Another technique factors the series to reduce the number of SH

products. These techniques are analogous to ones used for the matrix exponential

[41]. In fact, computing the exponential of an SH vector and a matrix are related

since

M f p∗ ≈ (M f )
p ⇒ Mexp∗( f ) ≈ exp

(

M f

)

. (5.23)

DC Isolation We express ~f as the sum of its DC component plus its remaining

components, or ~f = ~̂f +
~f0√
4π
~1. ~̂f simply zeroes out the DC component of ~f , i.e.,

~̂f = (0, ~f1, ~f2, . . . , ~fn2−1) = ~f − ( ~f · ~1)~1, (5.24)

Then (5.22) becomes

exp∗(
~f ) = exp





~f0√
4π




exp∗(

~̂f ) (5.25)

which is easily derived since ~f ∗ ~1 = ~f .

(5.25) analytically computes the exponential of the DC component, reducing the

magnitude of the residual vector ~̂f . This vector is then exponentiated using the

series method augmented by additional techniques described in the following.

Scaling/Squaring We alsomake use of a technique used in evaluating scalar (and

matrix) exponentials, which observes that

exp(x) =
(

exp
(
x

2p

))2p

⇒ exp∗(
~f ) ≈




exp∗





~f

2p









2p∗

(5.26)

where p is a positive integer. In other words, to compute exp(x) we first divide

the input x by a power of 2, compute the exponential of this scaled input, and

finally repeatedly square the result p times. The same idea can be applied to SH

exponentiation using p repeated squarings via the recurrence ~f 2
p∗= ~f 2

p−1∗ ∗ ~f 2p−1∗.

(5.26) only approximates the product series in (5.22), but typically reduces error
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relative to the power series in (5.17). SH squares are also cheaper than general SH

products, making this approximationmore useful. We choose p as a function of ‖ ~f ‖

using p = max(0,
⌊

log2 ‖ ~f ‖ + 3
⌋

). At most p=3 squarings are needed for low-order

(n ≤ 6) SH vectors in our examples.

Factoring (5.22) can be evaluated by accumulating successively higher powers of

~f via ~f p+1 = ~f p ∗ ~f . This requires p-1 SH products for a degree p expansion. The

number of SH products can be reduced by segregating even and odd powers. (5.20)

becomes

h∗( ~f ) ≈
(

h0~1 + h2 ~f
2∗ + h4 ~f

4∗ + · · ·
)

+

~f ∗
(

h1~1 + h3 ~f
2∗ + h5 ~f

4∗ + · · ·
)

(5.27)

improving to only (p+1)/2 products for degree p expansion. Furthermore, fewer

products implies smaller truncation error and thus a better approximation to (5.17).

Powers of ~f should be computed so as to minimize the number of products in each

term: ~f 2∗ = ~f ∗ ~f , ~f 4∗ = ~f 2∗ ∗ ~f 2∗, ~f 6∗ = ~f 4∗ ∗ ~f 2∗, and so on. Even better factorings can

be obtained for series degree p > 12 [41].

We compare a number of algorithms for evaluating the SH exponential. PS-p

uses the simple product series evaluation of degree p from (5.22). PS*-p uses DC

isolation (5.25) and scaling/squaring (5.26) applied to a factored degree-p product

series from (5.27). We also described in the original paper [119] an optimal linear

approximation to the product series denoted as OL. We also extend the accuracy

of this method via a hybrid method, called HYB, which applies scaling/squaring to

the optimal linear method.
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5.2.3 Spherical Harmonic Logarithm

A naive method for SH log applies (5.15):

~f = log(~g) =

∫

S

log
(
max(g(s), ǫ)

)
~y(s) ds (5.28)

where we clip evaluations of g(s) that are close to 0 or negative using a small

threshold ǫ. This method works poorly for two reasons. First, it neglects how

truncation error from taking log affects the subsequent exponential. Substantial

error ‖ exp∗(log(~g)) − ~g‖ results, manifested as attenuation of frequencies near the

Nyquist band. Second, clipping to a constant introduces artificial high frequencies

and so suboptimally picks a signal that’s close to the original, g(s), but avoids places

where log is undefined.

We address both these problems by approximately inverting the exponential

using an eigenanalysis of the product matrix Mg. Inverting the exp∗ operator

takes truncation into account, reducing high-frequency attenuation after the final

exponential. Clipping in the space of eigenvalues of Mg rather than sampled

spherical values g(s) eliminates artificially-introduced high frequencies.

Diagonalizing SH Exp

Rewriting (5.22) in terms of the product matrixM f , we obtain

~g = exp∗(
~f ) = ~1 + ~f +

M f
~f

2!
+

M2
f
~f

3!
+ · · · . (5.29)

Then eigenanalysis on the symmetric product matrix yields

M f = RTf D f R f ⇒ (M f )
p = RTf Dp

f
R f (5.30)
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where R f is a rotation matrix, D f is a diagonal matrix, and powers of D are taken

with respect to each of its diagonal components. Substituting these powers, (5.29)

becomes

~g = exp∗(
~f ) = ~1 + RTf q(D f ) R f

~f (5.31)

q(x) = 1 +
x

2!
+
x2

3!
+ · · · =

exp(x) − 1
x

(5.32)

where q is applied to each diagonal element of D f . Note that (5.31) represents an al-

ternative method of evaluating SH exponential which avoids error from truncating

to a finite series. However, it is not practical to compute the required eigenanalysis

on-the-fly, and we use this formulation only to derive a method for SH log, which

is computed as a preprocess.

Inverting SH Exp

We begin with an eigenanalysis of the product matrix of ~g, Mg = RTg DgRg. (5.23)

then implies that Mlog(g) ≈ RTg log(Dg) Rg for positive definite product matrices Mg.

(5.31) can therefore be approximately inverted using

log(~g) = RTg q
′(Dg) Rg (~g − ~1) (5.33)

q′(x) = 1/q(log(x)) = log(x)/(x − 1) (5.34)

where the function q′ is applied to each diagonal component.

To avoid applying log to values that are negative or close to 0, we clip the

eigenvalues ofMg via

D̃g = max(Dg, ǫ), M̃g = RTg D̃g Rg (5.35)

and apply (5.33) to D̃g rather than Dg. Eigenvalue clipping yields smaller error
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(a) n=3, 1.9x (b) n=4, 3.4x (c) n=5, 6.5x (d) n=6, 11.0x (e) n=6, product

Figure 5.5: SH order comparison. The “walking man” model contains nS=60 spheres.

‖Mg − M̃g‖ compared with clipping values of g(s) over the sphere as in (5.28).

In practice, we have found that setting the threshold ǫ to 0.02 times the largest

eigenvalue works well for low-order SH vectors.

5.2.4 Implementation and Results

Asingle sphere’s blocking function is easily represented as the SHvisibility function

for circles of angular radius θ

g(s, θ) =





0, if s · (0, 0, 1) ≥ cos(θ);

1, otherwise.
(5.36)

As a preprocess, we approximate the real geometry using sets of bounding spheres.

Our approximation algorithm applies variational shape approximation [24] to the

problem of bounding geometry within a set of spheres.

For diffuse surfaces in lighting environments, we tabulate ~LH(N) = ~L ∗ ~H(N)

where ~L represents the lighting and ~H(N) is defined in (5.14). The result is then

dottedwith the exponentiatedblocker vector ~g from (5.13) toproduce the shadowed

result, ~LH(Np) · ~g. For static receiver points, local shadowing effects can be “baked

in” by dotting with the precomputed vector ~H(Np) ∗ ~gp where ~gp represents local

visibility due to static occluders.

Timings were performed on a 3.2Ghz PC with 1Gb of memory and an NVidia

7800GTX graphics card. Figure 5.5 compares shadowing at various SH orders n.
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(a) battle scene, 23.2Hz (b) dino scene, 22.4Hz

Figure 5.6: Images from GPU rendering. Frame rate for the particular image is shown.

The factor below each log space image represents total rendering speedup observed

in a CPU implementation, when accumulating blockers in log space and applying

PS*-2 rather than accumulating products. Approximation error from doing the

computation in log space is difficult to see; Figure 5.6 presents images rendered

on the GPU from two, more complex scenarios. SH order n=4 is used. We obtain

good performance (10-30Hz) and high-quality soft shadows. The battle scene

involves two characters (troll and wizard) and contains 65k vertices (41k static

and 24k dynamic) and 244 leaf node sphere blockers. 120 receiver clusters were

used: 100 for the ground plane, 8 each for the wizard and troll, 4 for the troll’s

club, and 1 each for each of the other objects (rock and columns). Frame rate was

measured between 14.3 and 32.8Hz and averaged 22.4Hz. The dino scene contains

a sequence of different clips. The most complicated, running at 10-12Hz, contains

8 moving dinosaurs, 120k vertices (75k static and 45k dynamic), 500 blocker leaf

node spheres and 256 receiver clusters (192 for the ground surface and 8 for each

dinosaur). Frame rate over all clips was measured between 10.1 and 26.3Hz and

averaged 12.6Hz.
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5.3 Discussion of Frequency Based Approaches

In Sec. 5.1, we have developed a comprehensive theoretical framework for normal

map filtering with many common types of reflectance models. Our method is

based on a new analytic formulation of normal map filtering as a convolution of

the NDF and BRDF. The algorithms are simple enough to be implemented as GPU

pixel shaders, enabling real-time rendering on graphics hardware. The convolu-

tion result unifies a geometric problem (normal mapping) with understanding of

lighting and BRDF interaction in appearance. In [50], a hierarchy of level-of-details

was spelled out including explicit 3D geometry, normal or bump maps, and BRDF

or reflectance. Our method has addressed filtering of normal maps and to some

extent, the transition to a BRDF at far distances. A critical direction for future work

is filtering of geometry or displacement maps, where effects like local occlusions,

shadowing, masking and interreflections are important.

In Sec. 5.2, we have presented a novel dynamic soft shadowing algorithm using

spherical harmonic exponentials. Accumulating low-frequency blocker visibility in

the spherical harmonic basis provides a direct method for rendering soft shadows

without integrating over a huge number of lighting directions. We accelerate

this approach by accumulating in log space rather than product space, and then

computing the SH exponential required using new methods (HYB and PS*-p). Per-

blocker computation is greatly reduced, allowing us to handlemore blockers and to

map the computation to the GPU in a single shading pass. Future work can extend

to anisotropic blocker models, handling diffuse inter-reflection, and experimenting

with alternative models for spatial shading variation.



Chapter 6

Conclusion and Future Work

This thesis (and related published works [111, 92, 36, 110]) has introduced impor-

tant new analytical, wavelet and frequency based methods for four challenging

rendering problems: single scattering, near-field relighting, normal map filtering

and dynamic soft shadowing. In Chap. 3, we presented a practical analytic single

scatteringmodel for real-time rendering. Our analytical model easily achieves real-

time performancewhilemaintaining the ease of use of the standardOpenGLmodel.

Our approach can be easily implemented in programmable graphics hardware and

leads to a number of new effects in the real-time domain, such as interactive ren-

deringwith glows around light sources, the effects of scattering on surface shading,

environment maps, and precomputed light transport. In Chap. 4, we introduced a

novel theory of affine double and triple product wavelet integrals for near-field re-

lighting. Our theory overturns the long-held beliefs that operations such as affine

transformation are hard in wavelets, thus requiring converting to and from the

pixel domain. Our work also significantly advanced the state of art in near-field re-

lighting. We described two frequency based approaches in Chap. 5. We formulate

the problemof normalmapfiltering as frequency domain convolution, leveraging a

large body of mathematical developments on lighting-BRDF convolution. We also

126
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invented the spherical harmonic exponentiation technique to render soft shadows

in dynamic scenes for skinned characters. All of our models are physically based,

and can be easily implemented/reproduced from our publications.

My published work in this direction already made solid contributions to ex-

ploiting novel mathematical representations and faster numerical algorithms for

interactive rendering. They have laid foundations for further investigations of bet-

ter real-time rendering techniques and optimal models. Future work can follow

two main directions. First, we should extend our presented ways of rendering

scattering, lighting and shadowing effects to more general scenarios— scattering

(inhomogeneous, time varying, subsurface), lighting (light field, indirect illumina-

tion), and shadowing (deformable objects, complex geometries). Second, we strive

to build complete suites of frequency and wavelet domain operations, combining

analytic derivations with computational methods. This line of investigation will

hold the promise for a complete rendering framework in the frequency andwavelet

domain. Further, our derived models, such as affine double and triple product in-

tegrals, should be tested for more applications beyond interactive rendering, such

as video processing, tracking, and recognition.

6.1 General Interactive Effects

Sacrificing some generality is often a worthwhile tradeoff to enable simple tech-

niques to achieve real-time rates. It is one of our main goals for future research to

generalize these techniques to more complicated scenarios. As presented in this

thesis, we developed a practical analytical single scattering model [111] but only

considered isotropic point light sources, single scattering, homogeneous media,

and excluding most cast and volumetric shadowing. For future research, it will

be worth extending our theoretical model to non-isotropic light sources (like spot-
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lights) becausemany non-isotropic sources can be described using analytic models.

Secondary scattering of surface reflected radiance to the eye can be included using

depth-dependent convolution. If the inhomogeneous media field can described by

analytic models, it will be also worth conducing research on extending our models

to inhomogeneous and possibly time-varying media. One can also experiment

combining our analytical model with the popular dipole model for subsurface

scattering.

In Chap. 4, we presented a novel affine double and triple product wavelet

integral theory and applied it to near-field relighting. Immediate work can follow

several avenues. We used a simple constant light heuristics for lighting compres-

sion. Better heuristics should be experimented. We also limited ourselves to simple

planar area light sources and did not address general rotations. We, however, show

theoretically in [110] that relighting with light fields can be formulated using our

model. General rotations of light sources can be achieved using wavelet rotation

[119]. Formore near-field effects, a number of interesting areas areworth exploring:

near-field scattering effects, relighting with non-planar light sources, and dynamic

near-field shadows for deformable objects.

In Chap. 5, we presented two frequency based approaches. We first invented

spherical harmonic exponentiation technique for dynamic shadowing. Direct fu-

ture work can extend to anisotropic blocker models using ellipsoidal blocking

functions, handling diffuse inter-reflection with precomputed global light trans-

port. Finally, we proposed frequency domain normal map filtering. A future

direction is filtering of geometry or displacement maps, where effects like local

occlusions, shadowing, masking and interreflections are important.

Our preliminarywork in these areas indicates that someof these generalizations,

while relatively simple in concept and widely implemented in offline renderers,

are rather non-trivial to incorporate in real-time rendering. For example, near-
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field lighting effects require efficient affine transform of signals in the wavelet

basis, which was widely believed to be difficult. However, we are optimistic that

with the development of more powerful mathematical representations and rapid

advancement of hardware capabilities, problems will become more tractable with

some challenges being conquered in the near future.

6.1.1 Development of Mathematical Representations

A compact and powerful mathematical representation is the key to real-time ren-

dering, often speeding up the performance bymany orders ofmagnitude. As in the

development of the single scatteringmodel, our key insight is a new analyticmodel

for integrating the light transport equations assuming single scattering, which can

also be extended to predict the impact of scattering or airlight on the inherent ap-

pearance of surfaces. Analyticmodels are also used for subsurface scattering effects

[49]. In general, we believe that analytic models of difficult to simulate volumetric

phenomena are critical to achieving efficient renderings for real-time applications.

Wavelet and frequency analysis can provide new insights and reveal the key

structures of the problem. Much of the recent development in relighting and PRT

methods have relied on insights derived from frequency and wavelet analysis: the

lighting-BRDF convolution reduces to a dot product in the frequency or wavelet

domain [86, 91, 76], high dimensional functions such as the lighting, BRDF and vis-

ibility can be more efficiently represented in spherical harmonic or wavelet bases

[88, 77], the light transport can be analyzed in the frequency domain [31]. We have

also leveraged recent results of frequency analysisand applied to normal map fil-

tering. Our method is based on a new analytic formulation of normal map filtering

as a convolution of the NDF and BRDF. The algorithms are simple enough to be

implemented as GPU pixel shaders, enabling real-time rendering on graphics hard-

ware. As a result, efficient and flexible operations in the wavelet and frequency
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domain become critical. For example, in wavelets affine transformation was con-

ventionally considered as very difficulty and required converting to and from the

pixel domain. We have presented a novel theory of affine double and triple product

integrals that efficiently computes affine transforms in Haar wavelets. In spherical

harmonics, we developed spherical harmonic exponentiation techniquewhich con-

verts prohibitive multiplications to inexpensive additions. However, operations in

the wavelet and frequency domain are far from complete, e.g., geometric contrac-

tion or shears, trigonometric functions. Our work reveals the fundamental sparsity

of some basic operations (dilation, translation and exponentation) and opens up

a fresh perspective in approaching many other operations that have traditionally

been viewed as difficult to compute directlywithwavelets and spherical harmonics.

Together with standard double and triple product integrals (multiplication), more

complicated operators can be built, e.g. convolutions can be reduced to transla-

tions and multiplications. The basic mechanism and computational machinery we

employed in these works will shed key insights on constructing a more complete

suite of wavelet and frequency domain operations.

Our developed models also have broader applications. For example, our affine

double and triple product integral theory can be widely applied to many other

applications that depend on wavelet representations. As a proof of concept, we

demonstrated initial results of wavelet importance sampling with near-field lights

for offline Monte Carlo renderers. We also show the practical utility of our theory

in dilating and translating images directly in the wavelet domain for image pro-

cessing. However, we believe in this thesis we have only scratched the surface of

many potential applications, and we predict many greater application and further

developments of these mathematical models in computer graphics, vision, and

applied mathematics.
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