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Abstract

An asynchronous, variational method for simulating elastica in complex contact and impact scenarios
is developed. Asynchronous Variational Integrators [1] (AVIs) are extended to handle contact forces
by associating different time steps to forces instead of to spatial elements. By discretizing a barrier
potential by an infinite sum of nested quadratic potentials, these extended AVIs are used to resolve con-
tact while obeying momentum- and energy-conservation laws. A series of two- and three-dimensional
examples illustrate the robustness and good energy behavior of the method.
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1. Introduction

Variational integrators (VIs) [2, 3, 4] are a general class of time integration methods for Hamiltonian
systems whose construction guarantees certain properties highly desirable of numerical simulations.
Instead of directly discretizing the smooth equations of motion of a system, the variational approach
instead discretizes the system’s action integral. By analogy to Hamilton’s least action principle, a
discrete action can be formed, and discrete Euler-Lagrange equations derived by examining paths
which extremize it. From the Euler-Lagrange equations, discrete equations of motion are readily
recovered. As a consequence of this special construction, VIs are guaranteed to satisfy a discrete
formulation of Noether’s Theorem [5], and as a special case conserve linear and angular momentum.
VIs are automatically symplectic [6]; while they do not necessarily conserve energy, conservation of the
symplectic form assures no-drift conservation of energy over exponentially many time steps [6].

Given the many advantages of VIs, it is natural to apply them to the handling of contact and impact,
a long-studied and challenging problem in physical simulation. Unfortunately, a näıve application of a
contact algorithm to a variational integrator is not guaranteed to preserve the variational structure of
the time integration method, and in practice one observes that the good energy behavior is lost. For
this reason, a few recent works have explored structure-preserving approaches for contact mechanics [7,
8, 9, 10]. Common to all these approaches is a synchronous treatment of global time, in which the
entire configuration is advanced from one intant in time to the next. While synchronous integration
is attractive for its simplicity, it has the drawback that a spatially-localized stiff mode—such as that
associated to a localized contact—can force the global configuration to advance at fine time steps.

Indeed, mechanical systems are almost never uniformly stiff. Different potentials have different
stable time step requirements, and even for identical potentials this requirement depends on element
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size, since finer elements can support higher-energy modes than coarser elements. Any global time
integration scheme cannot take advantage of this variability, and instead must integrate the entire
system at the globally stiffest time step.

Suppose the system can be partitioned into elements such that each force acts entirely within one
element. Then asynchronous variational integrators (AVIs) [1] generalize VIs by allowing each element
to have its own, independent time step. Coarser elements can then be assigned a slower “clock,” and
finer elements a faster one. Asynchrony avoids the undesirable situation in which a small number of very
fine elements degrade overall performance. AVIs retain all of the properties of variational integrators
mentioned above, except for discrete symplecticity. However, AVIs instead preserve an analogous
discrete multisymplectic form, and it has been shown experimentally that preservation of this form
likely induces the same long-time good energy behavior that characterize symplectic integrators [1].

To our knowledge, this work is the first to consider an asynchronous, variational treatment of contact
shown to retain multisymplecity. Rangarajan et al. [11] suggest AVIs for simulating penetration of a
soft hyperelastic material by rigid bodies, and propose handling contact by reflecting momentum at the
end of any elemental time step during which contact occurred. This method was observed to dissipate
energy during contact events; the amount of drift can be controlled by appropriately decreasing the time
steps of elements involved in contact. We are also aware that Ryckman and Lew [12] are concurrently
investigating extending the AVI framework to incorporate contact response.

The starting point for this approach is the selection of the penalty method as a model for contact [13,
14]. For each pair of elements in the system, a potential is added that is (piecewise) quadratic in the gap
function measuring the separation distance between the two elements. This potential vanishes when
elements are sufficiently far apart, and increases with increasing interpenetration, so that approaching
elements feel a force that resists impact. This approach suffers two limitations, however. Firstly, these
contact potentials are fundamentally nonlocal phenomena: for every pair of elements that might come
into contact during the course of the simulation, a potential coupling the two must be added. As will
be shown, the fact that contact potentials cannot be expressed as the integration over the material
domain of an energy density depending only on a neighborhood of the domain will present a technical
obstruction to the original formulation of AVIs, but fortunately one that can be overcome by a natural
generalization.

Secondly, penalty forces have a well-studied performance-robustness tradeoff [15]: adding a half-
quadratic potential requires choosing an arbitrary stiffness parameter, and for any stiffness chosen
for the penalty potential, two approaching elements will interpenetrate some distance, and in the
worst case tunnel completely through each other. Moreover, the stable time step of the penalty force
decreases as stiffness increases, so choosing a very stiff penalty potential is untenable as a solution
to excessive penetration or tunneling. In practice, users of the method must determine an adequate
penalty stiffness by iterated tweaking of parameters, until the simulation completes without collision
artifacts. An appealing modification of the penalty approach replaces the quadratic potential with
a nonlinear barrier potential [16] that diverges as the configuration approaches contact. Because the
barrier diverges, its stiffness is unbounded, necessitating a time-adaptive time stepping method. This
work presents a discrete analogue of the barrier potential—an infinite sequence of discrete penalty
layers—that in effect enables AVIs to serve as adaptive integrators.

This paper

• extends the construction of AVIs so that a discretization into disjoint elements is no longer
necessary, by associating a clock to each force instead of to each element;

• demonstrates that this generalization does not destroy the desirable integration properties guar-
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anteed by the variational paradigm, most importantly the conservation of the discrete multisym-
plectic form;

• leverages this extension to equip the AVI framework with a contact model. The proposed barrier
method uses a divergent sequence of quadratic potentials that guarantees non-penetration and
retains the asynchrony or conservation properties of AVIs;

• presents numerical evidence to support the claim that by retaining the symplectic structure
of the smooth system, simulations of thin shells undergoing complex (self-)interactions have
demonstrably good long-time energy and momentum behavior;

• describes simple extensions to the contact model to allow for controlled, dissipative phenom-
ena, such as a coefficient of restitution and kinetic friction. Although there is not yet theory
explaining the energy behavior of dissipative simulations run under a variational integrator, em-
pirical evidence is presented to show that the proposed method produces smooth, controlled, and
qualitatively correct energy decay.

This paper complements the publication [17], which provides a detailed description of the software
implementation using kinetic data structures [18]. For completeness, Section 6 briefly introduces these
concepts.

2. Related Work

The simplest contact models for finite element simulation follow the early analytical work of
Hertz [19] in assuming frictionless contact of planar (or nearly planar) surfaces with small strain.
In this regime, several approaches have been explored to arrive at a weak formulation of contact;
for a high-level survey of these approaches, see for example the overview by Belytschko et al. [20] or
Wriggers [21]. The first of these are the use of penalty forces, described for instance by Oden [22] and
Kikuchi and Oden [23]. The penalty approach results in a contact force proportional to an arbitrary
penalty stiffness parameter and to the rate of interpenetration, or in more general formulations to an
arbitrary function of rate of interpenetration and interpenetration depth; Belytschko and Neal [15]
discuss the choosing of this parameter in Section 8. Recent work by Belytschko et al. [24] uses moving
least squares to construct an implicit smooth contact surface, from which the interpenetration distance
is evaluated. Peric and Owen [25] describe how to equip penalty forces with a Coulomb friction model.

Seeking to exactly enforce non-penetration along the contact surface leads to generalizations of
the method of Lagrange multipliers. Hughes et al. [26] and Nour-Omid and Wriggers [27] provide
an overview of this approach in the context of contact response. Such contraint enforcement can
be viewed as a penalty force in the limit of infinite stiffness, impossible to attain in practice since
the system becomes ill-conditioned. Taylor and Papadopoulos [28] considers persistent contact by
extending Newmark to treat jump conditions in kinematic fields, thus reducing undesirable oscillatory
modes. However, the effects of these modifications on numerical dissipation and long-time energy
behavior is not considered.

The Augmented Lagragian method blends the penalty and Lagrange multiplier approaches, and
combines the advantages of both: unlike for pure penalty forces, convergence to the exact interpene-
tration constraint does not require taking the penalty stiffness to infinity, and the Lagrange multiplier
solve tends to be well-conditioned. Bertsekas [29] gives a mathematical overview of the augmented
Lagrangian method, and Wriggers et al. [30] and Simo and Laursen [31] expand on its application to
contact problems in finite elements.
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Non-smooth contact requires special consideration, since in the non-smooth regime there is no
straightforward way of defining a contact normal or penetration distance. Simo et al. [32] discretize
the contact surface into segments over which they assume constant contact pressure; this formulation
allows them to handle non-node-to-node contact using a perturbed Lagrangian. Kane et al. [33] apply
non-smooth analysis to resolve contact constraints between sharp objects. Pandolfi et al. [10] extend the
work of Kane et al. by describing a variational model for non-smooth contact with friction. Cirak and
West [34] decompose contact resolution into an impenetrability-enforcement and momentum-transfer
step, thereby exactly enforcing non-interpenetration while nearly conserving momentum and energy.

Several authors have explored a structure-preserving approach to solving the contact problem.
Barth et al. [7] consider an adaptive-step-size algorithm that preserves the time-reversible symmetry of
the RATTLE algorithm, and demonstrate an application to an elastic rod interacting with a Lennard-
Jones potential. Kane et al. [8] show that the Newmark method, for all parameters, is variational,
and construct two two-step dissipative integrators that yield good energy decay. Laursen and Love [9],
by taking into account velocity discontinuities that occur at contact interfaces, develop a momentum-
and energy-preserving method for simulating frictionless contact. This paper shares with these last
approaches the viewpoint that structured integration, with its associated conservation guarantees, is
an invaluable tool for accurately simulating dynamic systems with contact.

Although several previous approaches are also adaptive, the algorithm described in this paper is
the first structured integrator for contact mechanics that achieves time adaptivity using asynchrony.
This novel approach guarantees the robustness of the proposed integrator, without compromising the
good properties of structured integration.

3. Variational Integrators

This section presents a background on variational integration and symplectic structure [6, 4, 5].
Let γ(t) be a piecewise-regular trajectory through configuration space Q, and γ̇(t) = d

dtγ(t) be the
configurational velocity at time t. For simplicity, assume that the kinetic energy of the system T de-
pends only on configurational velocity, and that the potential energy V depends only on configurational
position, so that the Lagrangian L at time t may be written as

L(q, q̇) = T (q̇)− V (q). (1)

Then given the configuration of the system q0 at time t0 and qf at tf , Hamilton’s principle [35]
states that the trajectory of the system γ(t) joining γ(t0) = q0 and γ(tf ) = qf is a stationary point of
the action functional

S(γ) =

∫ tf

t0

L [γ(t), γ̇(t)] dt

with respect to taking variations δγ of γ which leave γ fixed at the endpoints t0, tf . In other words,
γ satisfies

dS(γ) · δγ = 0. (2)
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Integrating by parts, and using that δγ vanishes at t0 and t1,

dS(γ) · δγ =

∫ tf

t0

(
∂L

∂q
(γ, γ̇) · δγ +

∂L

∂q̇
(γ, γ̇) · δγ̇

)
dt =

∫ tf

t0

(
−∂V
∂q

(γ)− ∂2T

∂q̇2
(γ̇)γ̈

)
· δγ dt = 0.

Since this equality must hold for all variations δγ that fix γ’s endpoints,

∂V

∂q
(γ) +

d

dt

(
∂T

∂q̇
(γ̇)

)
= 0, (3)

the Euler-Lagrange equation of the system. This equation is a second-order ordinary differential
equation, and so has a unique solution γ given two initial values γ(t0) and γ̇(t0).

3.1. Symplecticity

The flow Θs : [γ(t), γ̇(t)] 7→ [γ(t+ s), γ̇(t+ s)] induced by (3) has many structure-preserving prop-
erties; in particular it is momentum-preserving, energy-preserving, and symplectic [36]. To derive this
last property, for the remainder of this section the space of trajectories is restricted to those that satisfy
the Euler-Lagrange equations. For such trajectories, if the requirement that δγ fix the endpoints of γ
is relaxed, then the boundary terms of the integration by parts are no longer 0 and

dS(γ) · δγ =
∂T

∂q̇
[πq̇(q, q̇)] · δγ

∣∣∣∣tf
t0

, (4)

where πq̇ is projection onto the second factor.
Since initial conditions (q, q̇) are in bijection with trajectories satisfying the Euler-Lagrange equa-

tion, such trajectories γ can be uniquely parametrized by initial conditions [γ(t0), γ̇(t0)]. For the
remainder of this section variations δγ are also restricted to first variations: those variations in
whose direction γ continues to satisfy the Euler-Lagrange equations. These are also parametrized
by variations of the initial conditions, (δq, δq̇). For conciseness of notation, the change of variables
ν(t) = (γ(t), γ̇(t)) and δν(t) = [δγ(t), δγ̇(t)] can be used; using this notation the above two facts can be
rewritten as ν(t) = Θt−t0ν(t0) and δν(t) = Θt−t0∗δν(t0). The action (1), a functional on trajectories
γ, can also be rewritten as a function Si of the intial conditions,

Si(q, q̇) =

∫ tf−t0

0

L [Θt(q, q̇)] dt,

so that

dS(γ) · δγ = dSi [ν(t0)] · δν(t0).

5



Substituting all of these expressions into (4),

dSi [ν(t0)] · δν(t0) =

(
∂T

∂q̇
◦ πq̇

)
[Θt−t0ν(t0)] · δγ(t)

∣∣∣∣tf
t0

=

(
∂T

∂q̇
◦ πq̇

)
[Θt−t0ν(t0)] dq · δν(t)

∣∣∣∣tf
t0

=

(
∂T

∂q̇
◦ πq̇

)
[Θt−t0ν(t0)] dq ·Θt−t0∗δν(t0)

∣∣∣∣tf
t0

= (Θtf−t0
∗θL − θL)ν(t0) · δν(t0),

where θL is the one-form
(
∂T
∂q̇ ◦ πq̇

)
dq. Since dSi is exact,

d2Si = 0 = Θtf−t0
∗dθL − dθL,

so since t0 and tf are arbitrary, Θ∗sdθL = dθL for arbitrary times s, and Θ preserves the so-called
symplectic form dθL.

3.2. Discretization

Discrete mechanics [37, 2, 38, 39, 4, 6] describes a discretization of Hamilton’s principle, yielding a
numerical integrator that shares many of the structure-preserving properties of the continuous flow Θs.
Consider a discretization of the trajectory γ : [t0, tf ]→ Q by a piecewise linear trajectory interpolating
n points q = {q0, q1, . . . qn−1}, with q0 = γ(t0) and qn−1 = γ(tf ), where the discrete velocity q̇i+1/2 on
the segment between qi and qi+1 is

q̇i+1/2 =
qi+1 − qi

h
, h =

tf − t0
n

.

An analogue of (3) in this discrete setting is needed. To that end, a discrete Lagrangian

Ld(qa, qb) = T

(
qb − qa
h

)
− V (qb) (5)

can be formulated, as well as a discrete action

Sd(q) =

n−2∑
i=0

hLd(qi, qi+1). (6)

Motivated by (2), a discrete Hamilton’s principle can be imposed:

dSd(q) · δq = 0

for all variations δq = {δq0, δq1, . . . , δqn−1} that fix q at its endpoints, i.e., with δq0 = δqn−1 = 0. For
ease of notation, the kinetic and potential energy terms in (5) can be written to depend on (qa, qb),
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two points of phase space consecutive in time, instead of (q, q̇):

Td(qa, qb) = T

(
qb − qa
h

)
T ′d(qa, qb) =

∂T

∂q̇

(
qb − qa
h

)
Vd(qa, qb) = V (qb) V ′d(qa, qb) =

∂V

∂q
(qb).

Then

dSd(q) · δq =

n−2∑
i=0

h (D1Ld(qi, qi+1) · δqi +D2Ld(qi, qi+1) · δqi+1)

=

n−2∑
i=0

h

(
− 1

h
T ′d(qi, qi+1) · δqi +

1

h
T ′d(qi, qi+1) · δqi+1 −

∂V

∂q
(qi+1) · δqi+1

)
= T ′d(qn−2, qn−1) · δqn−1 − T ′d(q0, q1) · δq0 − h

∂V

∂q
(qn−1) · δqn−1

+

n−2∑
i=1

(
T ′d(qi−1, qi)− T ′d(qi, qi+1)− h∂V

∂q
(qi)

)
· δqi

=

n−2∑
i=1

(
T ′d(qi−1, qi)− T ′d(qi, qi+1)− h∂V

∂q
(qi)

)
· δqi = 0.

Since δqi is unconstrained for 1 ≤ i ≤ n− 2,

∂T

∂q̇
(q̇i+1/2)− ∂T

∂q̇
(q̇i−1/2) = −h∂V

∂q
(qi), i = 1, . . . , n− 2, (7)

the discrete Euler-Langrange equations of the system.
Unlike in the continuous settings, the discrete Euler-Lagrange equations do not always have a

unique solution given initial values q0 and q1. Therefore in all that follows it is assumed that Td and
Vd are of a form so that (7) gives a unique qi+1 given qi and qi−1—this assumption always holds, for
instance, in the typical case where Td is quadratic in q̇. Then the discrete Euler-Lagrange equations
give a well-defined discrete flow

F : (qi−1, qi) 7→ (qi, qi+1),

which recovers the entire trajectory from initial conditions, in perfect analogy to the continuous setting.

3.3. Symplecticity of the Discrete Flow

By analogy to the continuous setting, it is desired that F preserve a symplectic form, just as dθL
is preserved by Θ. As in the continuous setting, trajectories q are restricted to those that satisfy
the discrete Euler-Lagrange equations, and variations to first variations (and the condition that these
variations vanish at the endpoints is lifted), yielding

dSd(q) · δq = T ′d(qn−2, qn−1) · δqn−1 − T ′d(q0, q1) · δq0 − h
∂V

∂q
(qn−1) · δqn−1.
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F k denotes the discrete flow F composed with itself k times, or k “steps” of F . Again, all q satisfying
(7) can be parametrized by initial conditions ν0 = (q0, q1), and first variations by δν0 = (δq0, δq1), so
that the discrete action can be rewritten as

Sid(ν0) =

n−2∑
i=0

hLd(F
iν0).

Putting together all of the pieces,

dSid(ν0) · δν0 = dSd(q) · δq

= T ′d(qn−2, qn−1) · δqn−1 − T ′d(q0, q1) · δq0 − h
∂V

∂q
(qn−1) · δqn−1

=

(
T ′d(qa, qb)− h

∂V

∂q
(qb)

)
dqb · (δqn−2, δqn−1)

∣∣∣
qa=qn−2, qb=qn−1

=
[
T ′d(F

n−2ν0)− hV ′(Fn−2ν0)
]
dqb · Fn−2∗δν0 − T ′d(ν0)dqa · δν0

= θ+Fn−2ν0
· Fn−2∗δν0 + θ−ν0 · δν0

=
(
Fn−2

∗
θ+
)
ν0
· δν0 + θ−ν0 · δν0.

for the indicated two-forms θ+ and θ−. Since d(hLd) = θ+ + θ−, d2(hLd) = 0 = dθ+ + dθ−. Moreover
the initial conditions ν0 are arbitrary, hence

d2Sid = 0 =
(
Fn−2

)∗
dθ+ + dθ− = −

(
Fn−2

)∗
dθ− + dθ−,

so

dθ− =
(
Fn−2

)∗
dθ−.

Since n is arbitrary, the discrete flow F preserves the symplectic form dθ−. Using backwards error
analysis, it can be shown that this geometric property guarantees that integrating with F introduces
no energy drift for a number of steps exponential in h [6], a highly desirable property when simulating
molecular dynamic or other Hamiltonian systems whose qualitative behavior is substantially affected
by errors in energy.

4. Asynchronous Variational Integrators

In Section 3.2 an action functional (6) was formulated as the integration of a single discrete La-
grangian over a single time step size h. Such a construction is cumbersome when modeling multiple
potentials of varying stiffnesses acting on different parts of the system: to prevent instability one must
integrate the entire system at the resolution of the stiffest force. Asynchronous variational integrators
(AVIs), introduced by Lew et al. [1], are a family of numerical integrators, derived from a discrete
Hamilton’s principle, that support integrating potentials at different time steps. Their formulation
assumes a spatial partition, with each potential depending only on the configuration of a single ele-
ment; in this exposition, the general arguments set forth by Lew et al. are followed, but the notation
and derivation departs from their work as necessary to support potentials with arbitrary, possibly
non-disjoint spatial stencil.
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Let {V i} be potentials with time steps hi. Each potential V i is concerned with certain moments in
time—namely, integer multiples of hi—and these moments are inconsistent across different potentials.
Time is therefore subdivided in a way compatible with all potentials: for a τ -length interval of time,
the set Ξ(τ) is defined by

Ξ(τ) =
⋃
V i

bτ/hic⋃
j=0

jhi.

That is, Ξ(τ) is the set of all integer multiples less than τ of all time steps. Ξ can be ordered, and in
particular let ξ(i) be the (i+ 1)-st least element of Ξ. For ease of notation, also let ωi(j) = ξ−1(jhi);
that is, ω converts the jth timestep of potential i into a global time index.

If n is the cardinality of Ξ, a trajectory of duration τ is then discretized by linearly interpolating
intermediate configurations q0, q1, . . . , qn−1, where qi is the configuration of the system at time ξ(i).
Velocity is discretized as q̇k+1/2 = qk+1−qk

ξ(k+1)−ξ(k) on the segment of the trajectory between qk and qk+1.

A global action functional of these trajectories is needed, and can be constructed in the natural way:

Sg(q) =

n−2∑
j=0

[ξ(j + 1)− ξ(j)]Td [qj , qj+1, ξ(j), ξ(j + 1)]−
∑
V i

bτ/hic∑
j=1

hiV i(qωi(j)),

where, for T (q̇) the kinetic energy of the entire configuration, Td(qa, qb, ta, tb) = T
(
qb−qa
tb−ta

)
. For use in

the following, also let T ′d(qa, qb, ta, tb) = ∂T
∂q̇

(
qb−qa
tb−ta

)
.

No attempt has been made to define a Lagrangian pairing the kinetic and potential energy terms;
it will be seen that an action defined in this way still leads to a multisymplectic numeric integrator.
To this end, Hamilton’s principle dSg(q) · δq = 0 is imposed for variations δq = {δq0, . . . , δqn−1} with
δq0 = δqn−1 = 0. Then Sg can be rewritten as

Sg(q) =

n−2∑
j=0

[ξ(j + 1)− ξ(j)]Td [qj , qj+1, ξ(j), ξ(j + 1)]−
n−1∑
j=1

∑
hi|ξ(j)

hiV i(qj), (8)
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where the notation hi|ξ(j) is abused to mean “all indices i for which hi evenly divides ξ(j),” so that

dSg(q) · δq =

n−2∑
j=0

T ′d [qj , qj+1, ξ(j), ξ(j + 1)] · (δqj+1 − δqj)−
n−1∑
j=1

∑
hi|ξ(j)

hi
∂Vi
∂q

(qj) · δqj

= T ′d [qn−2, qn−1, ξ(n− 2), ξ(n− 1)] · δqn−1 − T ′d [q0, q1, ξ(0), ξ(1)] · δq0

−
∑

hi|ξ(n−1)

hi
∂V i

∂q
(qn−1) · δqn−1

+

n−2∑
j=1

T ′d [qj−1, qj , ξ(j − 1), ξ(j)]− T ′d [qj , qj+1, ξ(j), ξ(j + 1)]−
∑
hi|ξ(j)

hi
∂V i

∂q
(qj)

 · δqj
=

n−2∑
j=1

T ′d [qj−1, qj , ξ(j − 1), ξ(j)]− T ′d [qj , qj+1, ξ(j), ξ(j + 1)]−
∑
hi|ξ(j)

hi
∂V i

∂q
(qj)

 · δqj .
The Euler-Lagrange equations are then

∂T

∂q̇
(q̇k+1/2)− ∂T

∂q̇
(q̇k−1/2) = −

∑
hi|ξ(k)

hi
∂V i

∂qi
(qk), (9)

These equations are similar to those derived for synchronous variational integrators (7), except that
only a subset of potentials V id contribute during each time step. As in the synchronous case, if, as is
typical, Td(q̇) is quadratic in q̇, the system (9) gives rise to an explicit numerical integrator that is
particularly easy to implement in practice. Algorithm 1 gives pseudocode for such integration when
Td = q̇TMq̇ for a mass matrix M; Lew et al. [36] discuss the algorithm in greater detail.

4.1. Multisymplecticity

The right hand side of (9) depends on ξ(k), and so unlike (7), the Euler-Lagrange equations for AVIs
are time dependent, and do not give rise to a uniform update rule F (qi−1, qi) 7→ (qi, qi+1). Instead,
consider the total, time-dependent flow F̂ k(q0, qi) 7→ (qk, qk+1). Once again, trajectories satisfying
(9) are parametrized by ν0 = (q0, q1), and first variations by δν0 = (δq0, δq1). By restricting to such
trajectories and variations, the action (8) can be rewritten as

SiAVI =

n−2∑
j=0

[ξ(j + 1)− ξ(j)]Td
(
F̂ j(ν0), ξ(j), ξ(j + 1)

)
−
∑
V i

bτ/hic−1∑
j=0

hiV id (F̂ω
i(j+1)(ν0)).
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Algorithm 1 An algorithm for integrating the trajectory given by the AVI Euler-Lagrange equations
(9) adapted from Lew et al. [36]

Let events be (potential, time step, time) triplets E = (V, h, t).
Denote by qV the configuration subspace on which V depends.
Let PQ be a priority queue of events, sorted by event times E.t.
Tg ← 0 {Tg maintains the value of the simulation clock}
q ← q0 {Set up initial conditions}
q̇ ← q̇0
for all Vi do
Ei ← (Vi, h

i, hi) {Add all potentials to the queue as events}
PQ.push(Ei)

end for
loop

(V, h, t)← PQ.pop
q ← q + (t− Tg)q̇
q̇V ← q̇V − hM−1V

∂V
∂qV
{Update only those elements affected by this event.}

PQ.push(V, h, t+ h) {Return the event to the queue, with a new, later time}
Tg ← t {Update the simulation clock}

end loop

Then, for V id
′
(qa, qb) = ∂V i

∂q (q),

dSiAVI(ν) · δν = dSg(q) · δq
= T ′d [qn−2, qn−1, ξ(n− 2), ξ(n− 1)] · δqn−1 − T ′d [q0, q1, ξ(0), ξ(1)] · δq0

−
∑
V i

∑
hi|ξ(n−1)

hi
∂V i

∂qi
(qn−1) · δqn−1

= T ′d

[
F̂n−2(ν0), ξ(n− 2), ξ(n− 1)

]
· δqn−1 − T ′d [ν0, ξ(0), ξ(1)] · δq0

−
∑
V i

∑
hi|ξ(n−1)

hiV id
′
[
F̂n−2(ν0)

]
· δqn−1

= θ−ν0 · δν0 + θ+
F̂n−2ν0

· F̂n−2∗δν0

= (θ− + F̂n−2∗θ+)ν0 · δν0

for one-forms θ− and θ+. Once again

0 = d2SiAVI = dθ− + F̂n−2∗dθ+, (10)

but unlike when the action was a sum of Lagrangians, from the multisymplectic form formula (10)
there is no way of relating dθ− to dθ+, and thus discrete symplectic structure preservation is not
recovered. Nevertheless, Lew et al. [1] conjecture that this multisymplectic structure leads to the good
energy behavior observed for AVIs.
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Figure 1: Plots of the potential energy of the first three layers as a function of gap function g (left), and a plot of
the total potential energy contributed by all layers ≤ n for n = 1, 2, 3 (right). Notice the potential energy diverges as
separation distance approaches 0, guaranteeing that collision response is robust.

5. Discrete Penalty Layers

The above reformulation of AVIs can be leveraged to resolve collisions with guaranteed perfect
robustness, and via momentum-symplectic integration, so that the energy behavior of the system as a
whole remains good. Consider a standard penalty force approach, which for every two elements A,B
and surface thickness η defines the gap function

gη(q) = inf
a∈A,b∈B

‖a− b‖ − 2η

measuring the proximity of A to B.
The penalty potential is then defined as

V (q) =

{
0 gη(q) > 0

kgη(q)2 g(q) ≤ 0,

where k is a user-specified stiffness. As previously discussed, V alone does not robustly prevent
interpenetrations: the potential can be viewed as placing a spring between the approaching elements,
and for sufficiently large relative momentum in the normal direction, the spring will fully compress,
then fail. However, consider placing an infinite family of potentials Vl, l = 1, 2, . . . , between the
primitives, where

Vl(q) =

{
0 gη/l(q) > 0

l3kg2η/l gη/l(q) ≤ 0.

The region η
n+1 ≤ d(q) ≤ η

n , where exactly n of the potentials are active, is called the n-th discrete
penalty layer. Figure 1 shows a plot of the potential energy of the first few potentials for the case
η = k = 1, as well as the cumulative potential energy of all of the potentials.
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The total potential energy of the springs when fully compressed is

∞∑
l=1

l3k4
(η
l

)2
= 4kη2

∞∑
l=1

l,

which diverges. The infinite array of potentials is guaranteed to stop all collisions. This guarantee
in no way depends on the chosen stiffness k: although performance and trajectory will vary with the
choice of stiffness, unlike for penalty forces the stiffness does not affect the guarantee. The method is
always guaranteed to be robust.

There is one obstruction to implementing this scheme in practice: integrating the l-th spring stably
and with good energy behavior requires a time step proportional to 1

l3/2
, which vanishes as l → ∞.

Using a traditional integrator, one could decide ahead of time to only simulate the first few springs—
but then the guarantee that no penetrations will occur is lost, and the simulation must be run at a
prohibitively small time step. AVIs, with the above modifications, and a bit of extra bookkeeping, are
a first step towards alleviating the problem, by allowing the user to assign each spring its own time
step. This bookkeeping is now described, in terms of modifications to the basic Algorithm 1.

6. The Asynchronous Algorithm

AVIs allow each penalty layer to be assigned a different time step, so that less stiff (l small)
layers can take large time steps regardless of the presence of the stiffer layers. However, it is still not
possible as a practical matter to integrate the system, since arbitrarily large l would need arbitrarily
small time steps, and the global time in Algorithm 1 would never advance. The following observation
surmounts this obstacle: at any time during a well-posed simulation, the number of layers that are
exerting a non-zero force, or that are active, is finite. More precisely, a simulation is well-posed if
its total energy over time is bounded—that is, if the simulation begins in a non-penetrating state; all
prescribed, infinite-mass bodies are stationary; and only a finite amount of energy is added over time
in the form of external forcing. Inactive penalty potentials can be ignored by Algorithm 1 entirely,
since they do not change configurational velocity, and the position integration that would take place
during the handling of an inactive potential can just as well be done by the following event. Therefore
the simulation would be guaranteed to never stop making progress if there is a lower bound for the
amount of global time Tg that elapses with the processing of any event. Such a lower bound exists
if there is a way to detect which penalty potentials are active or inactive at all times and remove all
inactive events from the priority queue PQ.

Suppose that at the start of the simulation, all penalty layers are inactive. Thus no penalty layer
events are needed on the queue. For each pair of simulation elements, the time ta that the first penalty
layer would become active (assuming all elements continue along the trajectory described by their
initial velocities) can be calculated, and the corresponding event added to the queue at that time.
Such an approach suffers from two problems, however. Firstly, solving for the time when the gap
function will be zero is easy in some cases, such as if the elements are two spheres or two planes,
but can involve expensive root solves in others, such as if the elements are two non-rigid triangular
elements of a thin shell simulation. Secondly, the times computed are fragile: should any event alter
the velocity of one of the elements (such as a material force, or gravity, or another penalty force if
one of the elements collides with a third party) the activation time is no longer valid and must be
recomputed.
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Instead of an exact time, only a conservative guarantee, or certificate [18], that the first penalty
layer will not be active before some time tc (where necessarily tc ≤ ta) is truly needed. For example,
one certificate is the existence of an 2η-thick planar slab S that separates the two elements up until time
tc, where η is the thickness of the first penalty layer. For an m-dimensional configuration space, such
a planar slab is understood to be an extrusion of an (m−1)—dimensional affine subspace. Concretely,
let w be a unit vector in Rm, wi be m− 1 linearly independent vectors in Rm orthogonal to w, and p
a point in Rm. Then the slab Sw,p is the set

Sw,p =
{
p+ αw +

∑
i

βiwi

∣∣∣− η ≤ α ≤ η, βi ∈ R
}
.

If such a slab separates the two elements, the first penalty layer cannot become active before tc. This
certificate can be placed as an event on the queue, with time tc. The certificate might then suffer
several fates: [17]

• An event modifies the velocity of one of the elements before time tc. The certificate placed on
the queue is then no longer valid until time tc, but instead until a new time t′c which may be
sooner or later than tc. The algorithm must thus reschedule the certificate, by removing its event
from the queue, and reinserting it at the appropriate new time.

• The certificate event is popped from the queue without incident, but it is possible and convenient
to find a new separating slab that guarantees the penalty layer does not activate before time
t′c > tc. This new certificate can then be pushed on the queue for time t′c.

• The certificate event is popped from the queue without incident, but finding a new slab is
impossible, costly, or a slab can be found, but the new time t′c is judged heuristically to be too
near tc. The first penalty layer may then be activated early: doing so affects the efficiency, but
not the correctness, of the simulation. Simultaneously, the algorithm searches for an η-thick
separating slab to serve as a certificate that layer two is not yet active, and the whole process
described above is repeated.

Detecting when a penalty layer event becomes inactive, and should be removed from the queue,
is much simpler than detecting layer activation: whenever a penalty force for layer n is integrated,
the algorithm simply checks if the force applied was 0. If so, and if the two elements in question are
separating, layer n is now inactive: it is not pushed back onto the queue (and instead a separating
slab of thickness η/n is sought.)

It is very important to note that when an event becomes active and is added back into the event
priority queue, it is done so at a time that is an integer multiple of its timestep from its last time
of integration. That is, those times when integration would do nothing have been optimized away,
but the potential’s “integration clock” has not been tampered with or realigned, since every potential
having a fixed-size time step was fundamental to the proof that asynchronous variational integration
is multisymplectic. The spring-on-a-plane example described below underlines the danger of failing to
maintain such a fixed time step.

For an event E, denote all simulation elements on which E depends the support of V . Denote
all simulation elements whose velocities are modified by E the stencil of E. For force integration
events, there is no distinction between stencil and support. Certificates have a support, but no stencil.
Algorithm 2 uses this terminology to incorporate the above into the AVI algorithm.

In Algorithm 2 and its accompanying subalgorithms, the behavior of the functions FindCertificate
and Schedule will depend on the type of certificate chosen. FindCertificate returns a new certificate
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Algorithm 2 Proposed algorithm for asynchronous contact resolution.

Let force events be (potential, time step, time) triplets E = (V, h, t).
Let PQ be a priority queue of events, sorted by event times E.t.
Tg ← 0 {Tg maintains the value of the simulation clock}
q ← q0 {Set up initial conditions}
q̇ ← q̇0
Push non-penalty (e.g. material) events on the queue
for all pairs of elements K1, K2 do
E ← FindCertificate(K1, K2)
PQ.push(E)

end for
loop
E ← PQ.pop
q ← q + (E.t− Tg)q̇
if E is a force event then

handleForceEvent(PQ, E)
else

handleCertificateEvent(PQ, E)
end if
Tg ← E.t {Update the simulation clock}

end loop

for a given pair of elements, if possible and practical, and Schedule computes the time a certificate
becomes invalid, as described in the paragraphs above. For thin shell simulation, where all simulation
elements are convex triangles, edges, and vertices, separating slabs serve as ideal certificates, since it
is cheap to compute Schedule, in this case by calculating element-plane intersection times. Although
any choice of certificate, and heuristic for when to abort searching for a new certificate, preserves the
correctness of the algorithm, the progress property described in the first paragraph of this section relies
on the certificates efficiently weeding out inactive events so that some certificate is found before all
(infinitely many) layers for a pair of elements are activated. No problems have been observed using
separating slabs for thin-shell simulations, but different certificates may be needed, e.g., for concave
rigid bodies.

6.1. Further Optimizations

The technique explored in the previous section, of finding a sequence of conservative certificates
guaranteeing that some property holds, instead of calculating an exact time when that property stops
holding, is the central idea behind a wide class of algorithms known as Kinetic Data Structures (KDSs)
[18]. In the case described above, the property was inactivity of a given penalty layer. KDSs are
particularly well-suited for an asynchronous approach, since certificate expiration times may not all
align to some convenient simulation clock, and the required rescheduling of certificates/searching for
new certificates can reuse the priority queue data structure already needed for force integration events.
To improve the efficiency of the implementation used to create the examples below, several more KDSs
in addition to the separating slabs discussed above were implemented: a bounding volume hierarchy
[40] was used to take advantage of the fact that spatially distant elements are unlikely to collide,
separation lists [41] to optimize the bookkeeping of this hierarchy, and a novel KDS was devised to
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Algorithm 3 handleForceEvent

Require: Priority queue of events PQ and force event E that needs processing
{Processing a force event E is a three-step process: integrating the force, rescheduling all events
whose support depends on E’s stencil, and lastly, resceduling E itself.}
for all i in Stencil(E) do
q̇i ← q̇i − (E.h)M−1i

∂E.V
∂qi

{Update only those elements affected by this event.}
end for
{Reschedule all events whose support depends on E’s stencil}
for all Certificate events E′ with Stencil(E) ∩ Support(E′) 6= ∅ do
PQ.remove(E′)
Schedule(E′)
PQ.push(E′)

end for
{If E was a penalty force event, it exerted 0 force, and the two primitives in question are separating,
then we no longer need it}
if E is a penalty force event and ∂E.V

∂qi
= 0 then

if E.V.K1 and E.V.K2 have positive relative velocity (are separating) then
return

end if
if addCertificate(E.V.K1, E.V.K2) then

return
end if

end if
{Otherwise, reschedule E itself}
PQ.push(V, h, t+ h)

Algorithm 4 handleCertificateEvent

Require: Priority queue of events PQ and certificate event E that needs rescheduling
if not addCertificate(E.K1, E.K2) then
{Finding a new certificate failed. We must thus activate a penalty force, one layer deeper than
the deepest currently active penalty force event.}
CurLayer ← max{penalty events E′ on queue for E.K1 and E.K2}E

′.layer
E′ ← new PenaltyForceEvent(E.K1, E.K2, CurLayer + 1)
PQ.push(E′) {Push the appropriate penalty force event on the queue}

end if
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Algorithm 5 addCertificate

Require: Priority queue of events PQ, and two elements K1 and K2
{Attempts to find a certificate for the collision of K1 against K2 and add it to the queue. Returns
true if one was found.}
E′ ← FindCertificate(K1, K2)
if E′ was successfully found then
PQ.push(FindCertificate(K1, K2))
return true

end if
return false

leverage the observation that high-frequency, low amplitude oscillations in velocity do not significantly
change a separation slab’s expiration time, so that rescheduling is in many cases unnecessary. All of
the improvements are described in greater detail in [17].

7. Dissipation

The framework, as described so far, gives near-perfect long-time energy conservation. In the real
world, however, many dissipative phenomena are observed — for instance friction, spring damping,
and non-unit coefficients of restitution during collisions. Several simple modifications can be made
to the proposed method to take such dissipation into account. Qualitatively, these have performed
well in practice: energy seems to behave well over long times for dissipative systems analogously to
the near-conservation observed for Hamiltonian systems, but a theoretical understanding of this good
behavior remains future work.

7.1. Coefficient of Restitution

It is often desirable to simulate semi-elastic or inelastic collisions. A simple modification to the
potential Vl allows the use of arbitrary coefficients of restitution e:

Vl(q) =

{
0 gη/l(q) > 0

l3ksgη/l(q)
2 gη/l(q) ≤ 0,

where s is e if the primitives are separating, 1 otherwise. The penalty layers exert their full force
during compression, then weaken according to the coefficient of restitution during decompression.

This approach, while simple, does have a limitation in the inelastic limit e = 0: due to error
introduced by numerical integration, two colliding primitives may have non-zero, though small, post-
response normal relative velocity. The magnitude of this velocity is at most kη/l, so it can be limited
by choosing a small enough base stiffness k.

7.2. Friction

The Coulomb friction model is a simple approximation to kinetic friction: at a point of contact
between two bodies, the Coulomb force has magnitude µ|Fn|, where µ is a coefficient of friction and
Fn is the normal force at the contact points, and has direction opposite the relative tangential motion
of the contact points.
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Figure 2: The relative error in energy of a spring bouncing on a plane when a) the system is integrated by mixing
variational material force integration with impulse-based collision response (blue), b) the alignment of the integration
clocks is not respected (maroon), c) using the proposed method (brown).

Whenever an impulse is applied during integration of a penalty layer, a corresponding frictional im-
pulse can also be applied. Just as increasingly stiff penalty forces are applied for contact forces, friction
forces are increasingly applied (equal to µ|Fn|) to correctly halt high-speed tangential motion. Notice
that these friction forces, like the material and contact penalty forces, are applied asynchronously:
every layer applies friction independently at its own time step.

This simple, asynchronous formulation of friction fits very naturally into the framework of AVIs.
Unfortunately, it is unsuitable for simulations featuring static friction, such as a block of wood resting
on an inclined plane. The above formulation, with friction applied piecemeal during penalty inte-
gration, is reactive instead of proactive, and in simulations of this type the block of wood has been
observed “creeping” down the incline no matter how high a coefficient of restitution is chosen. A more
comprehensive model of friction compatible with the AVI framework, which correctly handles static
friction, remains future work.

8. Results

8.1. Spring on a plane

As a simplest didactic demonstration of the proposed method, three experiments were conducted.
A vertical spring of unit rest length, stiffness, and endpoint masses began each of the three simulations
stationary a unit height above a fixed horizontal plane. The springs fell under a gravitational force of
strength 1m/s2, with impact handled in one of three different ways:

In the first experiment, gravity and the stretching force were integrated synchronously, and an
instantaneous impulse was applied whenever the bottom of the spring touched the plane. Figure 2
shows error in energy over time when using this method. Energy in this experiment, far from being
conserved, took a random walk.

In the second experiment, all forces were integrated asynchronously using the proposed method.
The thickness η was chosen to be 0.1, and the penalty base stiffness k, 1000. Energy in this case was
well-conserved over long time: although energy experiences high-frequency, low-amplitude oscillations,
there was no drift.

The importance of respecting the integrity of each potential’s integration clock is highlighted in
the third experiment. Instead of adding a force event onto the priority queue at an integer multiple of
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its time step, the events are added at the precise moment when each layer becomes active. As can be
seen from the resulting plot of energy error (Figure 2), energy is no longer well-conserved, but instead
seems to increase monotonically over time.

8.2. Box of particles

Figure 3: A rigid box containing 900 spheres with random initial velocity, several minutes after the start of the simulation.

0 10 20 30 40 50

-0.0004

-0.0002

0.0000

0.0002

0.0004

Time H s L

R
el

at
iv

e
E

ne
rg

y
D

ev
ia

tio
n

0 10 20 30 40 50
-0.02

-0.01

0.00

0.01

0.02

Time H s L

R
el

at
iv

e
E

ne
rg

y
D

ev
ia

tio
n

Figure 4: Left: The relative error in measured energy (brown) and momentum (orange), as compared to the same
quantities at the start of the simulation, for the box of spheres. Right: The relative error of energy of the box, with
gravity added, over time.

As an example that involves more collisions, consider a fixed 3 m× 3 m square box. Inside this box
900 spheres of radius 10 cm were uniformly distributed, each of which was given a random velocity of
magnitude between 0 and 10 m/s. Figure 3 depicts this box after several minutes have elapsed. Energy
error over time is plotted in Figure 4 (left), and it is again almost perfectly conserved. The same plot
also shows the error in total momentum of the box over time, and it is exactly zero, as expected since
a multisymplectic integrator is used. Gravity (9.8 m/s2) was added to the box and again the relative
error of energy was plotted over time (Figure 4, right), Good behavior of the energy error was still
observed.
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Figure 5: The energy of the box of 900 spheres under different coefficients of restitution: from top to bottom, 1.0, 0.9,
0.8, 0.7, 0.5, 0.2, 0.0.

As a test of controllable dissipation by using a coefficient of restitution, the box with gravity was
resimulated several times using different coefficients of restitution. Figure 5 shows the resulting energy
plots. For any chosen coefficient of restitution, the non-conservative energy behavior is qualitatively
as one would expect.

8.3. Sphere-Plate Impact

The impact experiment of a spherical shell against a thin plate, as described in Cirak and West’s
article on Decomposition Contact Response (DCR) [34], was reproduced using the proposed framework.
A sphere of radius 12.5 cm approaches a plate of radius 35 cm with relative velocity 100 m/s. Both
the sphere and the plate have thickness 0.35 cm. The time steps of the material forces (stretching and
bending) are 10−7 s (the same as those chosen by Cirak and West.)
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Figure 6: Total energy over time of a thin sphere colliding against a thin plate, simulated using the proposed contact
response method (right) compared to data provided for decomposition contact response [34] (left).

Figure 6 compares energy over time when this simulation is run using both the proposed method
and DCR. Using the former there is no noticeable long-term drift; closely examining the energy data
reveals the high-frequency, low-amplitude, qualitatively-negligible oscillations characteristic of sym-
plectic integration. The latter introduces noticeable artifical energy decay.
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8.4. Large-scale Three-dimensional Examples

Harmon et al. [17] describe a series of optimizations that improve the efficiency of Algorithm 2.
These optimizations were incorporated to form our Asynchronous Contact Mechanics (ACM) code.
This code continues to yield qualitatively good results when scaled to additional large-scale problems.

Figure 7: Simulated tying of a cloth reef knot (left) and bowline knot (right).

Two thin rectangular 27 cm× 2 cm ribbons were modeled as thin shells of 5321 vertices, subject to
constant-strain triangle stretching forces [42] (stiffness 750) and discrete shell bending forces formulated
by Grinspun et al. [43] (stiffness 0.05). These ribbons were positioned into a loose reef knot by an
artist. The knot was then tightened by constraining the end of the ribbon to move apart at 10 cm/s,
and running the simulation.

Figure 7, left, shows the ribbon after 2 seconds. Since the velocities of the ends of the ribbons were
constrained, the knot material became arbitrarily stretched once the knot was tight. The forces pressing
the two ribbons into each other thus grew unbounded, but the two ribbons never interpenetrated, nor
were other collision-related artifacts observed. It should be stressed that this good behavior did not
require the tweaking of the penalty stiffnesses nor any other artificial parameters.

As a second large-scale example, a ribbon similar to the ones in the reef knot simulation was
positioned by an artist into a loose bowline knot tied around a cylindrical thin shell of 1334 vertices.
The bowline was then tightened by fixing one end of the ribbon and constraining the other to move
away from the cylinder at 10 cm/s. Again, the knot successfully tightened with no penetrations or
other artifacts (Figure 7, right).

8.5. Sphere and Wedge

Inspired by Pandolfi et al. [10], a rigid thin-shell sphere was dropped into a wedged formed by two
thin shell triangular prism, shown in Figure 8. Each prism has an isosceles base with width 12.92 cm
and height 20.05 cm, and length 38.41 cm. The prisms contain 71 vertices each. The sphere contains
92 vertices, has radius 4.97 cm and begins the simulation 20.84 cm above the ground plane on which
the prisms rest. The sphere has initial downwards velocity of −100 cm/s (no gravity). The sphere and
shells use the same thin shell model as the debris in the above trash compactor example, with bending
and stretching stiffness parameters 100000 and 50000 respectively.

As the sphere descends, it enters into multiple contact with the faces of the wedge, which undergo
elastic deformation and high-frequency vibration. Despite the large areas of simultaneous contact and
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Figure 8: A sphere falling into a wedge, at the beginning of the simulation (left and center) and 0.42 seconds later, after
the sphere has reflected off of the wedge (right). The center figure shows the mesh elements of the bodies.
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Figure 9: The relative error in energy of the wedge-sphere system as a function of time. The energy oscillates about its
initial value without drift.

high velocity at the time of impact, the energy of this system, plotted in Figure 9, exhibits good
behavior and does not drift.

8.6. Draping on Spikes

ACM’s ability to robustly handle degenerate geometry was tested by dropping two 1994-vertex,
15 cm × 50 cm cloth meshes (stretching stiffnes 500, bending stiffness 0.1, stretching damping 1.0,
bending damping 0.1) on top of a rigid 20 cm × 20 cm plate from which protrude 36 7.8 cm spikes
(see Figure 10). Each spike was modeled using six highly-degenerate, sliver triangles: each triangle’s
most acute angle measures 3.47 degrees (see Figure 11). The cloth was allowed to fall under gravity
(9.8 m/s2) and drape on top of the spikes until it had come to rest. No penetrations, oscillations, or
other artifacts were observed.

After the cloth came to rest, the bottom cloth was pulled out from under the top one by constraining
one side of the cloth to move at 10 cm/s parallel to and away from spiked plate; see Figure 12. The
bottom cloth scraped against the spikes and slid, with no dissipation, against the top cloth. No
interpenetrations occured.
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Figure 10: Two cloth rectangles were draped on a bed of spikes. The system at the start of the simulation (left), and
after the cloth has come to rest (right).

Figure 11: A close-up of one of the spikes; the spike has been rotated clockwise 90 degrees to conserve space. Each spike
is composed of six triangles with apex angle 3.47 degrees.

Figure 12: After the cloth came to rest, the bottom cloth was pulled out from under the top one. The simulation 3
seconds after pulling began.

8.7. Trash Compactor

Various coarse thin-shell solid objects (platonic solids, tori, etc.) modeled as triangle meshes were
placed in a rectangular box measuring 71.5 cm×36.7 cm×9.3 cm. The four sides were scripted to close
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Figure 13: Walls close in and compress various thin-shell objects. The beginning (left) and end (right) of the simulation.

in and compress the objects within: the length at 20 cm/s, and the width at 10 cm/s. All objects were
given the same material parameters (stretching stiffness 1000, bending stiffness 10, stretching damping
15, bending damping 0.5) and held to the floor of the box by gravity (9.8 m/s2). Figure 13 shows the
box at the beginning of the simulation, and after the simulation had run for 3.4 seconds. A simple
plastic deformation model, described by Bergou et al. [44], allowed the objects to crush plastically
when stressed by the encroaching walls. Nevertheless, the material forces acting on the objects grew
larger as the box decreases to a small fraction of its original volume, yet no object penetrated any
other object or wall, as guaranteed by the method.

9. Effects of Stiffness and Thickness Parameters

The proposed algorithm requires choosing values for two parameters: k, the stiffness of the outer-
most layer, and η, the outermost layer’s thickness. In penalty methods the choice of stiffness is often
critical – there is no guaranteed maximum degree of constraint violation, so failure to judiciously set
the stiffness to a problem-dependent optimal value can result in arbitrary large penetrations and errors
in trajectories and, in the worst case, the tunnelling of objects through each other.

The proposed method using discrete penalty layers, by contrast, is guaranteed by construction
to prevent interpenetrations for any choice of stiffness parameter. Different choices of parameter
value do, however, affect the trajectory of the simulation – increasing the stiffness decreases the time
objects are in contact during impact events, and more closely approximates exact enforcement of the
constraint gη > 0. Changing the stiffness also requires changing the time step of penalty force events to
retain stability and good energy behavior. A full theoretical understanding of the relationship between
stiffnesses and stable time steps for AVIs remains future work; for instance recent research [45] suggests
that poorly chosen time step ratios can lead to resonance instabilities. Nevertheless, in practice,
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a penalty time step proportional to 1√
k

was observed to be stable for all experiments described in

Section 8.
The choice of thickness η likewise does not affect the method’s non-interpenetration guarantee, but

does influence the trajectory, since shrinking η shrinks the distance over which the penalty layers are
permitted to act, approaching exact enforcement of the constraint g0 > 0 as the thickness vanishes.
Moreover, since the maximum potential energy Vl of a layer l is proportional to η2, for smaller η stiffer,
deeper layers will be activated to resolve a given collision, carrying a performance cost.
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Figure 14: The trajectory (left) and energy behavior over time (right) of a single ball bouncing elastically between two
parallel walls in two dimensions, for two different outer layer thicknesses (top row: η = 1 m; bottom row: η = 0.1 m)
and three outer layer stiffnesses (solid line: k = 1; dashed line: k = 0.1; dotted line: k = 0.01). Although the choice of
these parameters affects the trajectory of the system, good energy behavior is guaranteed for any such choice.

To explore the effects of k and η on a simple simulation, a particle in 2D of unit mass was simulated
bouncing between two parallel walls 1 m apart (no gravity). The particle was initially positioned
midway between the walls, with velocity 1 m/s at 85 degrees to the bottom wall. Figure 14 shows the
trajectory and energy of the particle for various choices of k and η.

10. Conclusion and Future Work

A framework for asynchronous, structure-preserving handling of contact and impact has been pre-
sented. Provable guarantees were established for this framework: impact handling is robust, allowing no
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penetrations or tunneling; the good properties of AVIs are preserved, such as a discrete Noether’s The-
orem and discrete multisymplectic structure; and for well-posed problems, the amount of computation
required to simulate the problem is bounded and in particular finite. Good long-time energy behavior,
conjectured to accompany multisymplectic structure, was confirmed empirically by both didactic and
challenging, large-scale experiments. Modifications to allow for simple dissipative phenomena, such as
a coefficient of restitution, were described. Data structures and algorithms to improve performance,
such as the use of separating slabs to prune inactive penalty layers, were briefly discussed. Imple-
mentation details for these and other optimizations, as well as ideas for future improvements to the
algorithms that promise to substantially decrease computation time, are treated more comprehensively
by Harmon et al. [17].

Missing from the basic asynchronous contact framework described by this paper is comprehensive
handling of friction, particularly static friction. Static friction conflicts fundamentally with asynchrony:
in an asynchronous simulation, contact between a pair of elements is resolved piecemeal, by summing
the impulses at many different times contributed by many different penalty layers. At any given
moment of time it is unclear how to define a total normal force, an element necessary for the robust
treatment of even the most elementary static friction models. Successfully merging the handling of
friction with the asynchronous framework, to allow simulations of systems such as a standing house of
cards, remains a challenging area for future research.
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