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Thin shells — solids that are thin in one dimension compared to the other

two — often emit rich nonlinear sounds when struck. Strong excitations can

even cause chaotic thin-shell vibrations, producing sounds whose energy

spectrum diffuses from low to high frequencies over time — a phenomenon

known as wave turbulence. It is all these nonlinearities that grant shells such

as cymbals and gongs their characteristic “glinting” sound. Yet, simulation

models that efficiently capture these sound effects remain elusive.

We propose a physically based, multi-scale reduced simulation method

to synthesize nonlinear thin-shell sounds. We first split nonlinear vibrations

into two scales, with a small low-frequency part simulated in a fully nonlinear

way, and a high-frequency part containing many more modes approximated

through time-varying linearization. This allows us to capture interesting

nonlinearities in the shells’ deformation, tens of times faster than previous

approaches. Furthermore, we propose a method that enriches simulated

sounds with wave turbulent sound details through a phenomenological

diffusion model in the frequency domain, and thereby sidestep the expensive

simulation of chaotic high-frequency dynamics. We show several examples

of our simulations, illustrating the efficiency and realism of our model.
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1 INTRODUCTION
Thin shells produce rich and complex sounds: from containers such

as trash cans and plastic bottles, to musical instruments like cymbals

or gongs. Once excited, vibrational displacements as small as the

thickness trigger highly nonlinear dynamics, such as time-varying

amplitudes of the spectrum harmonics, energy exchange between

vibrational modes, and ultimately chaos and turbulence [Chaigne

et al. 2005]. As a result, thin-shell sound has time-varying details

across awide frequency spectrum. In this paper, we present amethod
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Fig. 1. Splashy Tamtam. A Tamtam gong produces rich nonlinear sounds.
When it is struck hard (e.g., at the position indicated by the red dot), its
vibrational energy quickly cascades from low to high frequencies — a phe-
nomenon known as wave turbulence, and produces rich sound details in a
wide spectrum. Our method is able to efficiently simulate nonlinear thin-
shell sounds, and enrich them with a fast phenomenological model of wave
turbulence. The nonlinear sound and the emergence of wave turbulence are
shown in the spectrogram on the bottom and the supplemental video.

that efficiently captures these challenging nonlinear sound effects,

including wave turbulence in particular.

Recent advances in physics-based sound models have enabled

the synthesis of nonlinear sounds from thin shells, often at a pro-

hibitive simulation cost [O’Brien et al. 2001]. The Harmonic Shells

model [Chadwick et al. 2009] significantly reduces the runtime simu-

lation cost, but requires a heavy precomputation process that learns

a thin-shell cubature scheme from full simulation data. While the

resulting sounds capture certain nonlinearities such as pitch glide,

other important nonlinear effects such as the turbulence-like energy

cascade are still missing.
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We propose a multi-scale reduced simulation method to syn-

thesize nonlinear thin-shell sounds. In comparison to previous ap-

proaches, the advantages of our method are threefold: i) Our pre-
computation does not require any full-space simulation nor any

training step, and is therefore significantly faster than classic cuba-

ture schemes. ii) At runtime, our simulation is tens of times faster

than the state-of-the-art approach for qualitatively similar sounds.

iii) More notably, our method is able to capture a wide spectrum of

nonlinearities and greatly enrich the resulting sound details.

A remarkable nonlinearity that our method captures is wave tur-
bulence, a phenomenon that emerges when the thin shell is struck

hard [Touzé et al. 2012; Zakharov et al. 1992]. Here the term “tur-

bulence” indicates an analogy with fluid turbulence wherein the

energy of the system is transferred through scales. With a strong

excitation, thin-shell vibration becomes chaotic, and the vibrational

energy cascades from low to high frequencies. Eventually, the vi-

brational energy — and the emitted sound — is spread over a wide

frequency spectrum. The perceptual importance of wave turbulence

has long been recognized by musicians: they use a large metal-

lic “thunder sheet” to produce dramatic shimmering sounds, and

describe thin-shell instruments like cymbals and gongs as being

“splashy” and as having “lots of spread” (see Figure 1). However, a

computational model of wave turbulence sound remains elusive in

existing thin-shell simulation methods.

To capture the nonlinear inter-modal energy transfers and com-

plex turbulent behavior proper to thin-shell sounds, one could sim-

ulate the fully nonlinear equations of motion with sufficiently fine

spatial and temporal discretization. However, such simulations are

intractable. The simulation remains expensive even in a reduced

subspace, due to the high number of modes and their nonlinear

forcing involved in wave turbulence.

To address this computational bottleneck, the cornerstone of our

method is a multi-scale view of a thin-shell’s nonlinear vibration.

We model the vibration at three scales. First, we split the nonlin-

ear vibration into two parts: a low-frequency part contributing to

large-scale vibration and a high-frequency part usually in small

scale. The low-frequency vibration consists of a small number of

vibrational modes simulated in a fully nonlinear fashion. While the

high-frequency vibration contains many more modes, they can be

approximated through time-varying linearization. Both parts are

coupled together by a frequency-splitting scheme in a two-way

manner. Meanwhile, by carefully applying an isometry approxima-

tion to thin-shell bending, we reformulate the nonlinear internal

force as a cubic polynomial whose terms are dynamically pruned at

runtime. In consequence, the simulation cost is largely reduced.

Furthermore, we model wave turbulence across low and high fre-

quencies, as the turbulence-like energy cascade develops at low fre-

quencies and evolves toward high frequencies. Instead of painstak-

ingly simulating wave turbulence, we generate wave turbulence

sounds procedurally. By augmenting a recently developed phe-

nomenological model [Humbert et al. 2016], we capture the cascad-

ing behavior of the energy spectrum in turbulent regimes. Through

analyzing system chaos using the theory of dynamical systems, we

couple the phenomenological model with simulated thin-shell dy-

namics. This approach yields a user-controlled tool that enriches

the simulated sounds with turbulent details at a minimal cost.

In summary, our major technical contributions include:

• A frequency-splitting scheme to simulate nonlinear modal vi-

bration of many modes.

• A reformulation of the thin-shell bending force as a cubic poly-

nomial. Based on this formulation, we further develop a prun-

ing algorithm that drastically reduces the cost of the internal

force evaluation.

• A fast, user-controlled tool that enriches the simulated sound

with a physically inspired wave turbulence sound texture.

2 RELATED WORK

2.1 Thin-shell dynamics
Thin plates and shells are ubiquitous in computer animation. Simula-

tion methods have been used early on to animate large-deformation

soft materials such as cloth [Baraff and Witkin 1998; Terzopoulos

et al. 1987], small-deformation stiff materials [Chadwick et al. 2009],

and elastoplastic materials such as crumpling paper [Narain et al.

2013].

While various thin-shell models have been developed in mechan-

ics [Chapelle and Bathe 2010], hinge-based bending methods are

often preferred for graphics applications for their simplicity and

efficiency [Bridson et al. 2003; Grinspun et al. 2003]. Under the as-

sumption of isometric deformations, hinge-based energies can be

simplified into low-order polynomials in thin plates [Bergou et al.

2006] and shells [Garg et al. 2007]. We also harness the isometry

assumption, but apply it to the formulation of forces rather than

potential energy. Our approach yields a cubic polynomial form of

bending forces and avoids sound artifacts that would be produced

by previous polynomial models.

For membrane energies, Gingold et al. [2004] proposed a model

that penalizes the deviation of triangle edges from their rest lengths.

Volino et al. [2009] later used the St. Venant-Kirchhoff (StVK) model,

arguably the simplest material model able to capture geometric non-

linearity. The StVK energy is quartic in the deformation degrees of

freedom, and the forces are therefore cubic. Barbic and James [2005]

have already exploited this polynomial form in reduced models for

3D volumetric meshes. Here we also use this property to compute

membrane forces in a reduced space of 2D shells.

2.2 Nonlinear vibrations
There is a rich literature on nonlinear vibrations of thin struc-

tures [Nayfeh andMook 1995]. We refer to [Moussaoui and Benamar

2002] for a comprehensive literature review. Most of these works

simulate nonlinear vibrational motion in a limited frequency range.

Very few aimed for simulating the emitted thin-shell sounds [Cremer

and Heckl 2013].

To synthesize sound, one way is to explicitly timestep a finite

element model at audio rates [O’Brien et al. 2001]. This idea was

further developed by Bilbao [2008], who designed an energy con-

serving finite difference discretization and time-stepping scheme to

synthesize the sound of nonlinear plates. Bilbao [2010] later showed

that by using specifically constructed discretizations for special

domains like rectangles and spherical caps, one could capture non-

linear and turbulent effects at a very coarse resolution of a few

hundred elements.
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Pierce and Van Duyne [1997] used all-pass nonlinear passive fil-

ters to imitate nonlinear mode-coupling effects. Linear eigenmodes

have been used for nonlinear subspace integration and resolve cou-

pling among modes [Bathe 2007]. Our work uses a similar approach

to construct vibrational modes. More recently, Cirio et al. [2016]

proposed a time-varying linear sound model accelerated by the

component mode synthesis technique. Their method focuses on

synthesizing sounds from crumpling shells but not nonlinear phe-

nomena such as wave turbulence.

Ducceschi and Touzé [2015] recently presented a method that

synthesizes impressive sounds of planar gongs and cymbals with up

to a thousand modes. Their method exploits the analytical expres-

sions of vibrational modes for regular planar plates, and employs

ad hoc rules to limit the number of couplings for a given mode.

However, their approach is limited to flat sheets, and it is unclear

what these rules are for arbitrary shells and how to apply them.

Most related to ours is the work of Chadwick et al. [2009]. It

uses precomputed cubature schemes to compute nonlinear forces

in reduced space, and thereby greatly reduces the runtime computa-

tional cost, producing high quality nonlinear sounds. This comes

at the cost of an expensive cubature optimization step, as well as

the need to precompute a training set using full-space simulations.

In contrast, our method does not require full-space simulation nor

a training step, and our runtime simulation appears more than an

order of magnitude faster for qualitatively similar sound quality.

In addition, we propose a procedural wave turbulence model that

further enriches simulated sounds.

2.3 Wave turbulence
Wave turbulence is a chaotic wave phenomenon, wherein the en-

ergy of the system is transferred through scales, often referred as

an energy cascade [Zakharov et al. 1992]. Therefore, the term “tur-

bulence” is an analogy with hydrodynamic turbulence [Ducceschi

et al. 2014].

Wave turbulence is a universal phenomenon, not just in nonlinear

shells. The Kolmogorov–Zakharov spectrum emerges from these

phenomena, as analytically shown in [Newell et al. 2001]. Similar

energy spectra have been derived for turbulent phenomena in differ-

ent media: water waves [Falcon et al. 2007; Zakharov and Filonenko

1967], plasmas [Musher et al. 1995], nonlinear optics [Dyachenko

et al. 1992] and quantum liquids [Vinen 2000]. In computer graphics,

the Kolmogorov spectrum has been used to enrich the details of

animated fluids [Kim et al. 2008; Rasmussen et al. 2003].

We aim to capture the wave turbulence in thin shells, especially

its manifestation in sound. The resulting sound exhibits a wide-

band spectrum where linear modal vibrational frequencies can no

longer be easily distinguished [Chaigne et al. 2005]. Thin-plate wave

turbulence has been extensively studied using the Föppl-von Kár-

mán equation for large deflections [Ducceschi et al. 2014; Düring

et al. 2006; Touzé et al. 2012]. As the vibrational energy is trans-

ferred from the input energy scales to the high-frequency scales,

the Kolmogorov-Zakharov spectrum emerges again.

The connection of wave turbulence and Kolmogorov spectrum

alsomotivates the development of phenomenological models used in

many different contexts [Falkovich and Shafarenko 1991; Josserand
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Fig. 2. Method overview. (Left) Our method precomputes a polynomial
form for runtime evaluation of thin-shell internal forces. Our runtime simu-
lation is built on a new frequency-splitting scheme in reduced modal space,
and is further accelerated by dynamically pruning polynomial terms. (Right)
Our reduced simulation not only produces nonlinear sounds but also cap-
tures chaos in low-frequency modes, which drive a phenomenological model
to produce a wave turbulence sound that enriches the simulated sound.

et al. 2006; Leith 1967]. In particular, the recent work of Humbert

et al. [2016] uses a nonlinear diffusion equation in the frequency

domain to reproduce the wave turbulence spectrum that agrees with

experiments. We augment this phenomenological approach with a

damping term and a source term tailored for diffusing the modal

energies produced by our reduced simulation. This model enables

us to procedurally generate wave turbulence at a minimal cost.

3 METHOD OVERVIEW
This section provides an overview of our multi-scale treatment of

thin-shell sound synthesis (see Figure 2). We discretize the geometry

of a thin shell with a triangle mesh. The dynamics of the discretized

shell are governed by Newton’s second law of motion,

M Üu + D Ûu + fint(u) = fext, (1)

where u is the vector of nodal displacements of the mesh, M and D
are respectively the mass and damping matrices, fext is the vector
of external nodal forces such as gravity and contact, and fint(u)
represent the internal forces, including membrane and bending

forces (§4). Crucially, the forces fint are nonlinear with respect to

the configuration degrees of freedom.

We accelerate computation via model reduction [Krysl et al. 2001].

Let U denote the basis of a reduced displacement space and q de-

scribe thin-shell displacement in the reduced space. Substituting

u = Uq into (1) and premultiplying by UT , we obtain the reduced

governing equation for thin-shell vibration,

Üq + D̃ Ûq + ˜fint(q) = UT fext (2)

where
˜fint(q) = UT fint(Uq), and D̃ = UT (αM + βKu )U is the re-

duced Rayleigh damping matrix, with Ku being the stiffness matrix,

Ku = ∂
∂u fint(u). Following Chadwick et al. [2009], we construct U

through linear modal analysis that solves a generalized eigenvalue

problem K0U = MUS [Shabana 2012], where K0 = Ku |u=0 and S is
the resulting diagonal matrix of squared modal frequencies.

3.1 Frequency Splitting
The column vectors of U describe distinct vibrational modes that

have different vibrational frequencies. Because of the nonlinear

internal force fint, these frequencies may vary, depending on the
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Fig. 3. Modal displacements of low- and high-frequency modes. We take
the example of a falling cymbal (right and also see video), and plot the modal
displacements of individual modes in low (<400Hz) and high (>4000Hz)
frequencies with respect to time. It is evident that the model displacements
of low-frequency modes are generally orders of magnitude larger than those
of high-frequency modes (please note the different scales of the Y-axes in
both panels). This observation motivates our frequency-splitting scheme.

deformation configuration u. We observe that, regardless of the

variation, the frequency values at the rest configuration u = 0 (i.e.,
the square root of Si,i , the diagonal values of S) reliably indicate the
frequency scales of individual modes. In other words, low-frequency

modes remain in a low-frequency band throughout, and likewise

for high-frequency modes. More importantly, we notice that higher-

frequency modes have small modal displacements (Figure 3). This

is because to reach the same vibrational amplitude, high-frequency

modes consume more kinetic energy than their low-frequency coun-

terparts.

These observations underpin our proposed frequency splitting

scheme. We split the modal basis U into low-frequency and high-

frequency modes, UL and UH, based on a user-controlled frequency

threshold for the rest-state frequencies. We then express the dis-

placement as

u = uL +uH =
[
UL UH

] [
qL
qH

]
. (3)

Here the high-frequency displacement uH is small compared to

low-frequency displacement uL. This decomposition allows us to

linearize the internal force fint around uL through a first-order

Taylor expansion,

fint(u) ≈ fint(uL) +
∂ fint
∂uL
(u −uL). (4)

Since uH = u −uL, we express fint(u) using uL and uH as

fint(u) ≈ fint(uL) + KLuH, (5)

where KL is the stiffness matrix at the displacement uL (i.e. without

any contribution from high-frequency displacements). Introduc-

ing (5) into the reduced equations of motion (2) yields a new form

of the equation, one that we will numerically integrate in this work:

Üq + D̃ Ûq + ˜fint(qL) + K̃LqH = UT fext. (6)

The internal force term now has two parts,
˜fint(qL) = UT fint(ULqL)

and K̃LqH = UTKLUHqH.
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Fig. 4. Thin-shell bifurcation.We excite a thin plate with increasing forces
(the red arrow in the top-right inset) and simulate its dynamical responses
(Eq. (6)). As the force increases, its vibration bifurcates, changing from linear
vibration (left) to nonlinear (middle), and finally moving into a turbulent
regime (right). This spectrogram is generated without any wave turbulence
enrichment, indicating that Eq. (6) is able to capture chaos, albeit in low
frequencies. We note that this spectrogram is qualitatively close to spec-
trograms from physical experiments, as shown in Figure 1 of [Touzé et al.
2012] (also shown in the top-left inset, Image courtesy of Cyril Touzé).

In this form, fully nonlinear dynamics are captured by
˜fint(qL)

at low frequencies. At high frequencies, while the force is linear

with respect to qH, the stiffness matrix K̃L varies with respect to uL,
thereby coupling together low- and high-frequency displacements.

This coupling is two-way: low-frequency displacement uL = ULqL
affects K̃L and in turn drives the high-frequency force K̃LqH. Mean-

while, the force vector K̃LqH spans the entire space of q, not just
the subspace that qH resides in, thus influencing low-frequency

displacement as well.

By splitting in the frequency domain, we can apply different, ap-

propriate models to the two frequency bands. There are often many

vibrational modes (i.e., a long vector q) within the human hearing

range. Directly integrating (2) with a long vector q is expensive, as

noted in [Chadwick et al. 2009]. Our scheme is able to sidestep this

hurdle by keeping qL short (in practice less than 50) while ensuring

qH is long enough to cover sufficient sound spectrum. Furthermore,

this idea enables us to compute both low- and high-frequency parts

of the internal forces efficiently, by exploiting proper membrane and

bending models. Indeed, as will be discussed in §4.2, we are able to

reduce
˜fint(qL) into a cubic polynomial, with an O(m3

L
) evaluation

complexity, wheremL is the size of qL; the computation of K̃LqH is

comparably fast. As a result, our runtime simulation is much faster

than the cubature scheme used in [Chadwick et al. 2009] (see §7.3).

The two later sections (§4 and §5) are dedicated to describing our

fast computation of the two internal force terms.

3.2 Wave Turbulence Enrichment
Explicitly simulating wave turbulence requires us to solve the Föppl-

vonKármán equations, a system of fourth-order nonlinear PDEs [Chia

1980]. This is rather expensive: when the vibrational energy is cas-

caded to high frequencies, one has to solve the PDE with a high-

resolution mesh to capture high-frequency wave turbulence.
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Fig. 5. Wave turbulence enrichment.We simulate the sound from a thun-
der sheet (in Figure 13): (Left) the sound spectrogram resulting from nonlin-
ear shell simulation, (Middle) the wave turbulence spectrogram generated
by diffusing vibrational energies, and (Right) the final sound spectrogram
that mixes the simulated sound with turbulent details.

Inspired by the work of adding synthetic turbulence for flu-

ids [Kim et al. 2008], we propose an algorithm that procedurally

generates a sound “texture” of wave turbulence in a wide frequency

spectrum. The resulting wave turbulence texture is in turn added to

the simulated thin-shell sound to enrich its details.

Our wave turbulence sound is generated in analysis-synthesis

fashion. First, at each timestep during thin-shell simulation, we

measure the chaos in low-frequency modes using a well-defined

quantity, called the Lyapunov exponent, from the theory of dynami-

cal systems [Wiggins 2003]. We are able to capture low-frequency

chaos, because the low-frequency force
˜fint in (6) is fully nonlinear,

and a strong excitation can render the low-frequency vibrations

chaotic (see Figure 4). We use the measured Lyapunov exponent

at every timestep to estimate how much wave turbulence should

be generated. Consequently, a system that is not chaotic will not

produce wave turbulence sound.

After the shell simulation, we synthesize a time-varying power

spectrum (i.e., power spectrogram) of the wave turbulence sound.

Without explicitly simulating the energy cascade, we generate the

power spectrogram using a phenomenological model that diffuses

the vibrational power spectrum over time. The amount of energy

cascaded at each timestep is related to the modal vibrational energy

as well as system chaos measured by the Lyapunov exponents. From

the power spectrogram, we construct the wave turbulence sound

and merge it with the simulated thin-shell sound (Figure 5).

4 LOW-FREQUENCY FORCE
We now describe how to efficiently compute the low-frequency part

of the internal force,
˜fint(qL), to integrate the reduced equation of

motion (6). A classic approach of evaluating nonlinear forces in

reduced space is to use a cubature scheme [An et al. 2008], which

requires preparation of training data using full-space simulations.

In addition, cubature schemes for thin shells exhibits slower con-

vergence rates than volumetric models [Chadwick et al. 2009].

Instead, we found that we could efficiently compute internal

forces directly in the subspace when approximating
˜fint(qL) using

a cubic polynomial of qL. We first approximate the full-space force

fint(u) as a cubic polynomial of u. Then, because of the linear re-

lationship u = Uq, the reduced force
˜fint(q) = UT fint(Uq) can be

expressed as

˜fint(q) =
m∑
i=1

Liqi +
m∑
i=1

m∑
j⩾i

Qi jqiqj +

m∑
i=1

m∑
j⩾i

m∑
k⩾j

Ci jkqiqjqk ,

(7)

where m is the length of q, and qi is the i-th element of q. The
coefficients, Li ,Qi j , andCi jk , are all vectors having the same length

as q. Then, the low-frequency force
˜fint(qL) can be expressed by

using qL in (7) (and qH = 0). This results in a cubic polynomial with

many fewer terms:

˜fint(qL) =
mL∑
i=1

Liqi +
mL∑
i=1

mL∑
j⩾i

Qi jqiqj +

mL∑
i=1

mL∑
j⩾i

mL∑
k⩾j

Ci jkqiqjqk ,

wheremL is the length of qL, andmL ≪m. Precomputation of the

coefficients does not require any full-space simulation or training

step, making it faster than using cubature schemes. Moreover, since

the vector qL is short, runtime evaluation of the polynomial is fast,

with a complexity of O(m3

L
). In the next section, we will see that

this polynomial form is also beneficial to the fast evaluation of

high-frequency forces. In consequence, our runtime simulation is

significantly sped up.

Our formulation is derived from the elastic shell model. The

elastic deformation energy, E(u), consists of two parts, E(u) =
Em(u) + E

b
(u), where Em(u) and E

b
(u) are the membrane strain

energy and bending energy of the shell, respectively. The internal

force in full space is defined as fint(u) = −∇uE(u). Next, we start
from a particular choice of membrane and bending models, and

show how to derive the cubic polynomial force from these models.

4.1 Membrane Energy
The membrane energy model is straightforward to choose. Since

our shells are almost inextensible, strains will remain small and we

can therefore use a linear strain-stress relationship with a nonlinear

strain measure. Inspired by previous work [Barbič and James 2005],

we use the St. Venant-Kirchhoff (StVK) model in its cubic polynomial

form for reduced-order force computation, applying it to the context

of our thin shell triangular discretization.

Starting from the work of [Volino et al. 2009] which discretizes

the StVK model for thin-shell meshes, we reformulate the StVK full-

space forces into a cubic polynomial with respect to u, and expand

the resulting polynomial coefficients into their corresponding linear,

quadratic, or cubic reduced polynomial vector. For more details, we

refer the reader to the supplementary document.

4.2 Bending Energy
Caution is neededwhen computing the bending force. At first glance,

a natural choice is the hinge-based bending model [Garg et al. 2007],

wherein the bending energy associated to an edge i of the shell

mesh is defined as:

E
b
(u)i =

3|ei |2

Ai
(1 − cos(θi − θ i )). (8)
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(a) (b)

Fig. 6. (a) Notation used in the bending model (8). (b) Directly applying a
cubic polynomial energy [Garg et al. 2007] yields nonzero ghost forces even
at the rest configuration (see video for the sound artifacts).

The notation here is shown in Figure 6-a: Ai denotes the total area
of the two triangles incident to the edge ei , and θi is the dihedral

angle of the edge on the deformed mesh. A bar (e.g., θ i ) denotes
the quantity evaluated on the undeformed mesh. For most thin

shells producing interesting sounds (e.g., shells with metallic or

plastic material), the membrane stiffness is high, and therefore it is

reasonable to assume that the shell bending undergoes isometric

deformations. Garg et al. [2007] applied this assumption to the

bending energy (8) and reduced it to a cubic polynomial of u.
This seems to suggest that, under the isometry assumption, we

can benefit from a bending force in quadratic polynomial form with

respect tou. However, perhaps surprisingly, we have found that this
formulation from [Garg et al. 2007] leads to nonzero bending forces

at the undeformed shell state. The ghost bending force at u = 0 is
due to the negative bending energy caused by applying the isometry

assumption, and is always within the shell membrane (i.e., in the

plane of one of the two triangles in Figure 6-b). In Appendix A, we

provide an explanation why the ghost bending forces occur.

These ghost bending forces might not produce noticeable artifacts

visually: since they are always within the shell membrane, they can

be quickly absorbed and balanced by the stiff membrane forces

before producing any noticeable motion. Yet, they ruin the sound

synthesis process. They produce membrane vibrations, perceived

as high-pitch ringing, even before any external force is applied (see

video). They also introduce local stiffening and affect bendingmodes.

To make matters even worse, because the ghost bending forces are

tangent to their respective triangles, they rotate when the shell

undergoes rigid rotation. As a result, rotational rigid-body modes

become mixed up with deformation modes, which completely spoils

the modal analysis step in §3.

We therefore seek a new way of expressing the hinge-based bend-

ing model (8) in polynomial form. We start by directly taking the

gradient of (8) with respect tou to obtain an expression of the bend-

ing force. This yields a rational polynomial whose order is much

higher than three, as detailed in the supplemental document.

This rational polynomial, although complex, expresses the bend-

ing force precisely. Next, we simplify the bending force expression

by applying the isometry assumption. This means that all the edge

lengths and in-plane angles of all triangles are preserved. Thus, in

all the terms of the rational polynomial, we replace norms of all the

edges and all the dot products of vectors within individual triangles

by their values at the rest state, as shown in the supplemental docu-

ment. We note that this simplification does not change the bending

force evaluation at the rest state; no ghost bending force would be

generated at rest.
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Fig. 7. Quartic terms. Using the falling cymbal as an example, we compute
the L2 (top) and L∞ errors introduced by dropping quartic terms in the

force computation at each timestep. The L2 error is computed as
∥fc−fq ∥2
∥fq ∥2

,

where fq and fc are the internal forces evaluated with and without quartic
terms. The L∞ error is defined in a similar way.

Remarkably, this simplification yields a quartic polynomial with

respect to u, which we call the isometric bending force. We use

symbolic computation to turn the simplified force expressions into

polynomial form.

Furthermore, we notice that all quartic terms in the expression of

the isometric bending force have the form eaeTb (ec × ed ), where ei
is the vector of a triangle edge. We observe that, under the isometry

assumption, the contribution of these quartic terms to the overall

displacement is negligible even for moderately large deformations,

as shown in Figure 7. In addition, we discovered that in the absence

of local rigid rotation these quartic terms simply vanish. Appendix C

provides an explanation of this interesting discovery. Consequently,

we expand each of these quartic terms until we can isolate indi-

vidual quartic products among degrees of freedom, and drop them.

The resulting isometric bending force is a cubic polynomial of u,
producing no ghost bending force at the rest state. With this cubic

polynomial, we substituteu with Uq, and obtain a cubic polynomial

of q as expressed in (7) (see details in Appendix B).

5 HIGH-FREQUENCY FORCE
Wenowpresent our fast algorithm for evaluating the high-frequency

force term, K̃LqH, appearing in (6). Recall that K̃L = UTKLUH,

which can be rewritten as

K̃L = UT
∂

∂qH
fint(ULqL + UHqH)

����
qL,qH=0

=
∂

∂qH
˜fint(q)

����
qL,qH=0

.

(9)

K̃L is therefore the derivative of the reduced internal forces
˜fint(q)

with respect to the reduced coordinates qH. As shown in (7),
˜fint(q)

is approximated by a cubic polynomial of q. After taking its partial

derivative with respect to qH, many terms in the polynomial vanish

because we are evaluating the derivative at qH = 0. First, any
term that involves variables only in qL but not in qH vanishes in

the derivative. Second, if a term involves at least two variables in

qH, it also disappears in the partial derivative, because taking the

ACM Trans. Graph., Vol. 37, No. 4, Article 110. Publication date: August 2018.



Multi-Scale Simulation of Nonlinear Thin-Shell Sound with Wave Turbulence • 110:7

time (s)

ra
tio

 (%
)

ra
tio

 (%
)

time (s)

(a) (b)

(c) (d)

Fig. 8. Pruning efficiency. In four examples (a-d) that we will show in §7,
we collect the ratio between the number of evaluated polynomial terms
(after pruning) and the number of total terms at each timestep. Many terms
are needed for accurate force evaluation only when the shell is heavily
impacted. Most of the time, only a small number of terms are used. This
pruning algorithm yields a total speedup of up to two orders of magnitude.

derivative eliminates only one of theqH variables in that term. After

discarding the vanishing terms, the high-frequency force can be

written as the following polynomial:

K̃LqH =
m∑

i=mL+1

Liqi +
mL∑
i=1

m∑
j=mL+1

Qi jqiqj +

mL∑
i=1

mL∑
j⩾i

m∑
k=mL+1

Ci jkqiqjqk ,

(10)

wheremL andm are the length of qL and q, respectively. The coeffi-

cient vectors, Li ,Qi j , andCi jk , are precomputed as described in §4.

Runtime evaluation of (10) has therefore a tractable complexity of

O(m2

L
m). Next, we propose a simple but extremely efficient pruning

technique to further reduce the evaluation cost.

5.1 Runtime Vector Pruning
We observed that many terms in (10) can become small during

the simulation. Without loss of generality, consider a cubic term,

Ci jkqiqjqk . Summing up this term in the polynomial costs 4m op-

erations (three multiplications and one addition for each of them
elements in vectorCi jk ). On the other hand, the contribution of this

term has an upper bound of |Ci jk |∞ |qiqjqk |. Here the infinity norm
of Ci jk can be precomputed and stored. At runtime, computing

this upper bound costs three multiplications. If the upper bound is

sufficiently small (below a user set threshold), we can skip this term,

saving 4m operations.

Because the modal displacement q oscillates, the estimated upper

bound |Ci jk |∞ |qiqjqk | may sometimes oscillate around the pruning

threshold, resulting in (subtle) temporal incoherence. To avoid this

artifact, we use the value max(|qi |, |q̂i |) as |qi | when computing the

upper bound. Here |q̂i | is the most recent peak value of |qi | right
before the current timestep.

Fig. 9. Interpretation of Lyapunov Exponents. A solution u(t ) of a dy-
namical system is a trajectory starting at an initial point u(t0). A small
perturbation leads to a different trajectory. The Lyapunov exponent mea-
sures how quickly an initial perturbation δu(t0) atu(t0) grows as the system
evolves. In a chaotic system, this perturbation grows exponentially.

In practice, we apply the same pruning technique to all linear,

quadratic, and cubic terms in both low- and high-frequency forces,

while the evaluation of (10) is the major performance bottleneck

of our runtime simulation. Consequently, the pruning threshold

gives full control over the graceful degradation of quality, allowing

the user to adjust the tradeoff between speed and quality. In all

our final examples, we use the same threshold value (i.e., 10
−3
),

and observe up to 14× speedups over the non-pruning evaluation,

without noticeable degradation in sound quality.

6 SYNTHETIC WAVE TURBULENCE
We now show how to enrich simulated thin-shell sounds with syn-

thetic wave turbulence. Here we are not aiming to simulate wave

turbulence on triangle meshes, as this is fundamentally challeng-

ing, especially at high frequencies. Instead, our goal is to provide

a user-controllable tool to add turbulent “textures” to the simu-

lated sounds, akin in spirit to Perlin Noise [Perlin 1985] and fluid

turbulence textures [Kim et al. 2008] in computer graphics.

6.1 Measuring Chaos
Wave turbulence is a manifestation of thin shells vibrating in a

chaotic regime [Cadot et al. 2016]. Mathematically, the chaos of a

dynamical system can be quantified through Lyapunov exponent, so
we start by introducing this concept.

6.1.1 Lyapunov exponents. Consider a dynamical system such as

that described in (1). The chaos of this system is characterized by its

sensitivity to initial conditions: two initial conditions that differ by

an infinitesimal perturbation δu(t0) can yield diverging trajectories

after a finite amount of time [Chaigne et al. 2005] (see Figure 9).

When a system becomes chaotic, this divergence is asymptotically

exponential (as t →∞), expressed by

|δu(t)| ≈ eλt |δu(t0)|, (11)

where the rate λ > 0 is called the Lyapunov exponent [Wiggins

2003]. The value of λ can be different for different directions of

initial perturbation δu(t0). Among all λ values, the largest one is

called the Maximal Lyapunov exponent (MLE).

6.1.2 Numerical computation. To numerically evaluate the MLE

of our thin-shell system, we follow the algorithm described in [Ru-

gonyi and Bathe 2003]. Consider a normalized random perturbation
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δqL0 of (6) at time t0 (i.e., |δqL0 |2 = 1) and zero velocity perturbation.

In a single timestep, the evolution of δqL0 satisfies the differential

equation,

δ ÜqL + K̃LδqL = 0. (12)

Here we neglect the damping term for simplicity and linearize the

force
˜fint atqL because we consider only a single timestep. Through

numerical integration, we evolve the perturbation over a timestep

and obtain δqL1. Let d1 = |δqL1 |2 denote its norm. Next, we use d1

to normalize both δqL1 and its current velocity perturbation δ ÛqL1,

and use the normalized quantities as the initial condition of (12)

to continue the numerical integration of the perturbation vector.

These steps repeat at each timestep, and we obtain a time series of

Lyapunov exponent values according to (11):

λ(tk ) =
1

tk

k∑
i=1

lndi . (13)

At each timestep, normalization is needed to avoid numerical over-

flow, since the perturbation can otherwise grow exponentially due

to chaos. Also, at each timestep before integrating the perturbation,

we update K̃L, setting it as the stiffness matrix at the current low-

frequency displacement uL. In fact, K̃L has been computed at every

timestep for integration of the thin-shell vibration in (6) and can be

reused here. So the overhead of computing λ(tk ) is minimal.

6.1.3 Local stability indicator. It can be proved that the time

series of λ(tk ) converges to the MLE of the system regardless of the

choice of the initial perturbation δqL0 [Wolf et al. 1985]. A positive

MLE is usually considered as an indication that the system becomes

chaotic as t → ∞, but it contains no information about the local
dynamic stability, one that indicates how likely the system changes

from stable to unstable (chaos) at a specific instant. Fortunately, as

pointed out in [Rugonyi and Bathe 2003], the local dynamic stability

can be measured by the average slope of the curve tλ(t). The average
is required since λ(t) slightly oscillates as K̃L changes over time. By

definition, the slope is always non-negative. The higher the slope is,

the more chaos the system is currently experiencing. In our case,

although λ(tk ) is computed using low-frequency modes only, it

is sufficient to indicate wave turbulence (see Figure 10), because

wave turbulence, while evolving towards high frequencies, usually

develops at low frequencies [Cadot et al. 2016].

In summary, we compute tkλ(tk ) as given in (13) at each timestep

(see Algorithm 1). We then smooth it out and use finite differences to

compute its slope s(tk ) at each timestep. Afterwards, we normalize

all s(tk ) into the range [0, 1]. s(tk ) is our measure of how much

wave turbulence sound needs to be generated at each timestep, as

described next.

6.2 Synthesizing Wave Turbulence
With the local stability indicator computed at each timestep, we

now synthesize wave turbulence sound by leveraging a phenomeno-

logical model of cascading energy [Humbert et al. 2016]. This phe-

nomenological model treats the vibrational energy spectrum in

frequency domain. Let E(f , t) denote the shell’s vibrational energy
in spectral band f at time t , which is the quantity we will esti-

mate. The cascading energy is modeled as a diffusion process in the

ALGORITHM 1: Numerical computation of λ(tk )tk
Input: Random initial modal perturbation vector δqL0.

Output: The time series of λ(tk )tk .
Set δ ÛqL0 = 0;
foreach timestep i do

di ← δqLi ;

compute λ(ti )ti using (13);
δqLi ← δqLi /di , δ ÛqLi ← δ ÛqLi /di ;
δqL(ti+1), δ ÛqL(ti+1) ← timestep (12) using δqL(ti ) and δ ÛqL(ti );

end

time (s) time (s)

Fig. 10. Stability indicator.We plot tλ(t ) and its slope from simulations
wherein a cymbal (left) and gong (right) are struck with a sequence of
impacts (see more discussion in §7.2). tλ(t ) increases as the vibrational
energy builds up until the system turns chaotic. Afterwards, as the energy
dissipates, the increase of tλ(t ) slows down.

frequency domain, described by

∂E

∂t
=
∂

∂f

(
ϕ f E2

∂E

∂ f

)
− γ (f ,E) + κ(f , t), (14)

where ϕ is a user-defined scaling factor that controls how quickly

the energy diffuses over time, and γ (f ,E) is the dissipation rate of E
due to damping. We introduce κ(f , t) as the source term describing

howmuch energy is injected at each time instant. This term does not

appear in the model of [Humbert et al. 2016]. We include it to model

the energy transferred from modal vibrations, as will be elaborated

shortly. Humbert et al. [2016] showed that the stationary solution

of (14), without damping and source terms, agrees with the Kol-

mogorov spectrum emerging inmany turbulent phenomena [Düring

et al. 2006; Kim et al. 2008]; and the time-varying solution of (14)

describes how the wave turbulence cascades energies dynamically
to reach the stationary Kolmogorov spectrum.

6.2.1 Damping term γ (f ,E). We derive a simple damping term

γ (f ,E) based on the Rayleigh damping model that we use in shell

simulation (6). Given a vibrational mode at frequency f , the Rayleigh
damping force is linear with respect to themodal velocity Ûqf , written

asdf Ûqf , wheredf is the damping coefficient from thematrix D̃ in (6).

Over an infinitesimal time period ∆t , the velocity change due to

damping alone is ∆ Ûqf = −∆tdf Ûqf , and the corresponding change

of vibrational energy at frequency f is

∆Ef = ( Ûqf − ∆tdf Ûqf )
2 − Ûq2

f . (15)

Taking the derivative of (15) with respect to time and neglecting

the second order term (as ∆tdf ≪ 1), we get the damping term,

γ (f ,E) = −2df Ef . (16)
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Fig. 11. Energy diffusion. On the top is the wave turbulence spectrum
resulted from solving (14) when a cymbal is strongly hit. Sound energies are
cascaded from low to high frequencies, and then dissipated due to damping.
The synthesized turbulence sound waveform is shown below. We note that
this spectrum, while generated phenomenologically, agrees qualitatively
with the prediction by nonlinear finite difference simulation, as shown in
Figure 16 of [Ducceschi et al. 2014].

6.2.2 Source term κ(f , t). We model the source term directly

in a discrete setting. At each timestep tk , we would like to use

the change of the shell’s modal vibrational energy to drive the

diffusion of wave turbulence. Also, the injected wave turbulence

energy should be proportional to the local stability indicated by

s(tk ) from the previous step: if the system is stable at tk , then no

additional wave turbulence should be generated at tk . Thus, we
propose a source term defined at timestep tk as

κ(f , tk ) = σs(tk )[Ev (f , tk ) − Ev (f , tk−1
)], (17)

where σ is a user-defined scalar to control the strength of the wave

turbulence (see video), and Ev (f , tk ) is the power spectrum of the

modal vibration at tk . Ev (f , tk ) is computed using modal vibrational

energies of all modes (i.e., Ûq2

f ) in our nonlinear simulation, and then

interpolated over the entire spectrum. It is possible that κ(f , tk ) be-
comes negative at some point (i.e., a sink), reflecting the dissipation

of modal vibrational energies.

6.2.3 Implementation. Numerically solving (14) in frequency-

time domain is very fast. In practice, we use Matlab’s pdepde func-
tion to solve it. We discretize the frequency domain with 10Hz steps

and use a time discretization of 200∆t , where ∆t = 1/44100sec is

the integration timestep. The computational overhead introduced

by this step is negligible, occupying only about 1% to 3% of the total

time cost of the pipeline (see Figure 14). An example is illustrated

in Figure 11.

6.2.4 Sound synthesis. Lastly, we generatewave turbulence sound
signals from the diffused spectrogram E(f , t), which determines the

sound amplitude at each timestep but not the phase. It is worth not-

ing that this problem is similar to the classic phase retrieval problem

in optical and acoustic imaging [Fienup 1982]. Here we turn back

to our nonlinear simulation (6) and use the diffused spectrogram

E(f , t) instead of external forces to drive the vibrations. Through-

out the simulation, we inject additional modal velocity into every

mode to match E(f , t). The velocity to be injected for each mode is

computed as the change in velocity in the spectrogram at the cor-

responding modal frequency. Since vibrational velocities oscillate,

Table 1. Material parameters used in all examples.

Examples

Young Poisson Density Thick. Damping

mod.(Pa) ratio (kд/m3
) (m) α β

Cymbal 124e9 0.33 8400 0.7e-3 6.25e-9 1

Recycling bin 2.4e9 0.4 916 2.5e-3 300e-9 4

Trash can 190e9 0.30 7850 1e-3 75e-9 0.5

Water bottle 2.4e9 0.37 1200 1.5e-3 400e-9 0.5

Metal sheet 70e9 0.35 2700 2.5e-4 400e-9 0.5

Gong 110e9 0.33 8400 3e-3 6.25e-9 0.1

Thunder sheet 190e9 0.30 7850 1.6e-3 75e-9 0.5

we inject velocity to a given mode right after its velocity oscillation

peak. This way, we weakly constrain the velocities to target the

diffused spectrogram but let the nonlinear coupling between modes

dictate the overall turbulent behavior.

7 RESULTS
All our results were computed on a 3.6 GHz Quad-core Intel Xeon

E5-1620 CPU (2012) with 32GB of memory, using symplectic Euler

integration timestepped at audio rates (44100 Hz). Our precompu-

tation step is trivial to parallelize, and we implemented it on an

Nvidia GTX 970 GPU using CUDA. Simulation parameters and rep-

resentative timings are summarized in Table 2. Material parameters

used in these examples are listed in Table 1. All examples include

modal sound propagation, following the standard far-field acoustic

transfer approximation [Cirio et al. 2016; Zheng and James 2010]

that uses the fast multipole method to solve the Helmholtz equation

for every vibrational mode [Shen and Liu 2006]. We refer the reader

to our accompanying video for all our animation and audio results.

7.1 Nonlinear Shells
First, we synthesized the sound produced by thin-shell objects hit-

ting a rigid ground. The shells bounce a few times before coming

to rest. Similar to [Chadwick et al. 2009], we treat the thin shells as

rigid bodies to compute contact forces using the method [Smith et al.

2012], and timestep the simulation at audio rates. Contact forces

were used during sound synthesis to excite the subspace nonlinear

model. Forces were always convolved with a raised sine function

to approximate their short temporal distribution [Ducceschi and

Touzé 2015]. To capture additional damping due to contact with the

ground, we increased the damping values whenever the object was

under contact [Zheng and James 2011].

We compared the sound generated by our approach to the sound

synthesized by a purely linear model [O’Brien et al. 2002], as well

as the “reference” sound produced by directly solving (2) — namely,

computing nonlinear forces in full space and then projecting them

onto the subspace with the same number of modes. All our sounds

are perceptually indistinguishable from the reference sounds (see

video), but our simulations, including the precomputation, are tens

of times faster (see Table 2).

Cymbal. We simulated a bronze cymbal with a 50cm diameter

dropped to the ground. One can clearly hear the rich metallic crash

of the cymbal due to the large initial impact. The linear sound, on

the other hand, is more reminiscent of a bell and thus unrealistic. As

the impacts become softer, the nonlinear approach produces sounds
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Fig. 12. Falling shells. A set of thin shells are dropped on the ground to produce various nonlinear sounds, including (from left to right) a cymbal, a plastic
recycling bin, a galvanized steel trash can, a large plastic bottle, and a small piece of metallic sheet. The one-meter ruler serves as a reference to provide a
sense of the physical sizes of the shells. Please refer to the video sound track.

Fig. 13. Turbulent shells. We simulated three shells, a cymbal (left), a
gong (sea Figure 1), and a large thunder sheet, to demonstrate their very
noticeable wave turbulence sound effects.

with different pitch, amplitude and structure, while the linear sounds

get only proportionally softer. Our approach is 77× faster compared

to the reference without any qualitative difference.

7.1.1 Recycling bin. A 40×38×55cm polyethylene (plastic) recy-

cling bin hits the ground and bounces around, producing a character-

istic wobbly sound when impacts are large. The nonlinear sound is

richer and more complex than its linear counterpart. Our simulation

is 34× faster than the reference approach.

7.1.2 Trash can. A 75cm high and 53cm wide galvanized steel

trash can produces a metallic crash when it hits the ground. When

the impacts soften, the trash can vibrates in the linear regime. Our

approach is 52× faster than the reference.

7.1.3 Water bottle. A large water cooler polycarbonate (plastic)

bottle (53cm high and 31cm wide) bounces and rolls on the ground.

The nonlinear low-frequency fluttering is clearly audible, producing

a hollow effect, while the linear counterpart remains dry. In this

case, our sound synthesis is 20× times faster than the reference.

7.1.4 Metal sheet. A small 18×12cmmetallic sheet hits the ground,

exciting the easily “bent” vibrational frequencies and giving rise to

a sequence of wobbly impacts. The linear sound, on the other hand,

sounds like a thick object and fails to convey the characteristics of

a thin sheet. Our simulation is 12× faster than the reference.

7.2 Turbulent Shells
We used a cymbal (described above), a gong (112cm in diameter),

and a thunder sheet (1.2m×0.5m) to illustrate the synthesis of wave

turbulence sound. Specifically, we used a Tamtam gong, well known

for its long ringing time and easily triggered turbulent regime. The

thunder sheet is a large and thin sheet of metal, sometimes bent,

used in musical or theatrical performances to produce loud and

shimmering noises.

The turbulent sounds are produced in two different ways: a single

large strike, and a “roll” motion. Both are standard in the repertoire

of these instruments. The roll motion is a sequence of soft impacts

to build up energy in the shell until the turbulent regime is reached.

Figure 10 shows the plot of the local stability indicator and its

gradient (as described in §6.1) for the cymbal and the gong when

excited by a roll with strikes of constant magnitude. We can observe

how chaos builds up as the roll unfolds. The build up in the case of

the gong is slower since impacts are softer: energy is fed into the

system at a slower rate compared to the cymbal.

We compared different turbulent sounds generated by varying σ
in Eq. (17), the strength of the wave turbulence. We used σ values

of 0.3, 1, and 3 for the cymbal, and 1, 3, and 9 for the thunder sheet.

We observe that the resulting sounds are not only increasingly

louder, but they also deliver a higher pitch. This is because as higher

amounts of energy are input into the diffusion process, the diffused

energy can cover a larger frequency spectrum, yielding a higher

overall pitch. This parameter provides the user the ability to control

the strength of wave turbulence enrichment.

We also compared qualitatively with recorded sounds of a cymbal,

a gong, and a thunder sheet. These sounds are downloaded online,

without knowing their precise geometry and recording setup. Our

wave turbulence enrichment renders the synthesized sounds with

similar characteristics.

The performance breakdown of these examples is shown in Fig-

ure 14. We note that the costs percentages for nonlinear and wave

turbulence simulation are the costs for the entire simulation, not the

cost per second of sound (unlike Table 2), so it is proportional to the

simulated time length, while the precomputation cost is indepen-

dent from the simulation time length. The turbulence simulation

cost includes the cost of solving (14) and final sound synthesis for

which we reuse our nonlinear simulation (recall §6.2).

7.3 Experiments
7.3.1 Vibratory regimes. We reproduce the physical experiment

of Touzé et al. [2012], which subjected a 40×60cm rectangular plate

to a sinusoidal forced excitation. The resulting sound spans all three

regimes, as shown in the spectrogram of Figure 4. Our results are

qualitatively similar to their experimental results (e.g., as shown

in Figure 1 of [Touzé et al. 2012]). When designing a numerical

experiment to reproduce the experimentally observed vibrational
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Table 2. Simulation parameters and timings for all examples. Please note that the synthesis and reference costs are per second of sound, while the
precomputation costs are the total time spent on the entire precomputation stage.

# DoFs # modes Freq. range (Hz) Length Precomp. Simulation Reference Speedup

Examples Low freq. High freq. Low freq. High freq. (s) cost (s) cost (s) cost (s)

Cymbal 93312 30 100 142-3903 3939-9933 2.5 960 43 3331 77×

Recycling bin 82632 50 240 99-730 746-2272 2.5 1840 119 4012 34×

Trash can 75195 40 120 55-2594 2596-6591 3 1790 57 2990 52×

Water bottle 43254 30 240 85-949 951-3331 2 930 90 1764 20×

Metal sheet 29637 50 150 38-1387 1405-5836 2 870 108 1304 12×

Gong 71742 30 260 38-626 646-3364 20 1615 97 3296 34×

Thunder sheet 45768 30 160 23-715 781-5132 4 620 83 1851 22×

regimes, Touzé et al. relied on an prohibitively expensive finite

difference simulation of the von Kármán equations. While their

solution took several days to compute, ours took only 324 seconds

for 10 seconds of sound (although likely on different hardware).

We also simulated the same experiment in full space to perform

a direct qualitative comparison (see audio in the supplementary

material). To mitigate the resulting massive computational burden

and prohibitive timestep constraints, we coarsened the mesh down

to a few thousand triangles and used an implicit Euler integration

scheme. For the reduced simulation, we used the same coarsened

mesh and added synthetic turbulence. Results show qualitatively

similar sounds, as well as the three vibratory regimes (recall Fig-

ure 4). A clear monotone sound due to the sinusoidal excitation

can be heard before the turbulent regime kicks in. This sound be-

comes quickly blurred in the reduced simulation due to synthetic

turbulence. In addition, the reduced simulation has an overall higher-

frequency pitch, showing that our approach captures the textural

characteristics, but not the exact behavior, of the turbulent regime.

Using the same finite difference approach as [Touzé et al. 2012] ,

Duccheschi et al. [2014] studied the influence of damping in a plate

under forced excitations. In particular, they successfully captured the

buildup and decay of wave turbulence in the power spectrum. Since

our approach includes damping and arbitrary energy injection using

our proposed γ (f ,E) and κ(f , t) terms in (14), we could also model

and capture this interesting behavior at a minimal computational

cost. For example, in our case, the cymbal as shown in Figure 11

shows similar energy diffusion and damping as captured by Figure

16 of their work.

7.3.2 Computation time. We compared our approach with the

Harmonic Shells (HS) model [Chadwick et al. 2009] for the cymbal

and water bottle scenarios in terms of computation time during both

precomputation and runtime synthesis phases. For this comparison,

we run HS simulator (shared by the authors) and ours on the same

hardware. We note that HS model uses the bending model [Gingold

et al. 2004] different from ours. As a result, even with the same

material parameters, the number of vibrational modes and their

frequencies are different. In general, our model appears to have

fewer modes in the low-frequency range.

First, we compared the simulation cost for generating their pre-

sented sounds and ours. In this case, the number of modes and the

frequency range are different. Using the HS model, precomputation

Cymbal (constant forces)

Precomp.

Diff.
Diff.

Diff.
Diff.

Sim.

Sim. Sim.

Sim.

Turb. sim. Turb. sim.

Turb. sim. Turb. sim.

Precomp.

Precomp. Precomp.
Cymbal (increasing forces)

Gong Thunder sheet

Fig. 14. Performance breakdown. The percentages of performance cost
are for precomputation (blue), nonlinear simulation (orange), spectrogram
diffusion (green), and wave turbulence propagation and sound synthesis
(red).

time took 156 minutes for the cymbal and 51 minutes for the water

bottle, while our model was 10× and 3.3× faster respectively. At

runtime, we are 51× faster than HS for the cymbal and 8.7× for the

water bottle, mainly thanks to our runtime vector pruning.

Next, we artificially modified our bending stiffness in order to

match the number of modes resulted from HS (500 for the cymbal

example) as well as the frequency range (61∼9940Hz). In this case,

we are still 2.6× faster at the precomputation stage and 20× faster

at synthesis. We include the resulting sounds as supplementary

material, but remind the reader that for the latter comparison, our

degraded sound quality is due to the artificial change in stiffness.

7.3.3 Tradeoff between quality and cost. There are two ways to

gain further speedups, although at the cost of sound quality. Re-

ducing the number of low frequency modes has a direct impact on

precomputation times, because precomputation has a cubic com-

plexity on the number of low frequency modes. We run our different

scenarios using different numbers of low frequency modes while

keeping the total number of modes unchanged. For the cymbal,

precomputation took 715s for 20 low-frequency modes, 489s for 10

low-frequency modes, and 469s for 5 low-frequency modes. For the

trash can, we measured 1102s for 30 low-frequency modes, 594s for

20 low-frequency modes and 385s for 10-low frequency modes. As

ACM Trans. Graph., Vol. 37, No. 4, Article 110. Publication date: August 2018.
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the number of low-frequency modes is reduced, the sounds grace-

fully diverge from the reference, but remain plausible.

Another potential speedup lies in the threshold used for runtime

vector pruning. For the four falling shell examples, Figure 8 shows

the percentage of polynomial vectors that are active at a given time,

using a pruning threshold of 10
−3
. The speedups over the complete

polynomial evaluation are 5.6×, 13.2×, 13.7×, and 13.5×, respectively.

In addition, we run our synthesis step by increasing the pruning

threshold by one order of magnitude each time (10
−2

and 10
−1
). The

synthesis of the falling cymbal sound took 32s and 18s respectively,

while the trash can took 35s and 20s respectively. Meanwhile, the

quality loss is evident as well: artifacts and glitches start to appear

in the sound as the pruning threshold becomes too large.

8 CONCLUSION
We have presented a physically based reduced simulation method

to synthesize the sound of nonlinear and turbulent thin shells. We

proposed a new frequency-splitting scheme in reduced space to

lower precomputation and runtime cost. We timestep low-frequency

modes in a fully nonlinear way, and drive high-frequency modes

through a time varying linearization of the subspace dynamics. We

used a polynomial form for runtime evaluation of thin-shell internal

forces directly in the subpace, and further accelerated the force

evaluation by dynamically pruning polynomial terms. Our reduced

simulation not only produces fast nonlinear sounds, but is also able

to capture chaos in low-frequency modes. We use this information

to drive a phenomenological model of wave turbulence to enrich

sounds with turbulent details at minimal cost.

Our approach and implementation are not without limitations,

and there are many opportunities for future work. By constructing

our reduced basis through linear modal analysis, we are limited to

moderately small deformations.While nonlinear effects are dramatic

under this construction, modal locking may emerge if excitations

are too large. For the very same reason, compliant materials remain

an open challenge even under small excitations. It would be inter-

esting to investigate the use of a different subspace basis, perhaps

using Principal Component Analysis on a subset of deformations,

or exploring the use of modal derivatives to enrich the linear basis.

In this work, we exploit the mathematical structure in the hinge-

basedmodel to reduce the computational complexity, but the frequency-

splitting method is independent from the choice of bending model.

It remains a future work to investigate how to accelerate other

bending models using the frequency splitting method.

Large thin shells often exhibit a low frequency spectrum, and a

large number of modes is required to cover even a small subset of

the audible frequency range. Our approach significantly reduces

the complexity of precomputation and synthesis steps by splitting

the frequency range, but a model with several thousands of modes

would remain very expensive to compute. Previous approaches

[Ducceschi and Touzé 2015] have employed ad-hoc rules to limit the

number of coupling terms among modes in thin plates only. It would

be interesting to explore similar ways to reduce the precomputaiton

burden when the modal basis is too large.

Finally, our modeling of turbulent phenomena relies on a purely

phomenological model of wave turbulence. While this is attractive

for the Computer Graphics field where computation speed is often

a critical factor — and similar strategies have been adopted (e.g.,

in [Kim et al. 2008; Perlin 1985]), we cannot claim that our turbulent

sounds are accurate from a mechanical point of view. Finding more

principled ways to address challenging chaotic dynamics at tractable

computation times remains an open problem.
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A OCCURRENCE OF GHOST BENDING FORCES
In their bending model, Garg et al. [2007] approximate the bending

energy (8) under the isometry assumption. First, Equation (8) is

written as

E
b
(u)i =

3|ei |2

Ai
(1 − cosθi cosθ i − sinθi sinθ i ). (18)

By applying the isometry assumption, cosθi and sinθi are approx-
imated using cubic polynomials with respect to vertex positions.

However, this approximation breaks a key property of the energy

function: namely, E
b
(u)i must be semi-positive definite.

To illustrate why this property cannot be satisfied under isometry

assumption, consider a 2D toy example shown in Figure 15-a, where

a 2D hinge consists of two edges, one horizontal along X-axis and

another pointing toward the 45°direction (i.e.,
¯θ = 45°). The hinge is

centered at origin. Suppose the rest position of x0 is at (1,−1), and

its deformed position is denoted by x . In this case, we have

cosθ =
x · (1 0)

|x |2
and sinθ =

x × (1 0)

|x |2
. (19)
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The red curve in Figure 15-b shows the bending energy (up to a

constant scale) with respect to the Y-coordinate of x (i.e., E
b
(y) =

1 − cosθ (y) cos
¯θ − sinθ (y) sin

¯θ ). As expected, E
b
(y) is always non-

negative, reaching zero when x = x0 (i.e., y = −1).

Under the isometry assumption, the edge length is assumed con-

stant. In other words, ∥x ∥2 in (19) is replaced by a constant ∥x0∥2.

Then, as the Y-coordinate of x changes, the estimated cosθ and sinθ

are
∥x ∥2
∥x0 ∥2

times of their true values. Thus, the estimated E
b
(y) value

might become negative, as shown by the blue curve in Figure 15-b.

At the rest position x = x0, the isometry assumption introduces

no error, so the energy function remains zero. However, because a

small perturbation of x from x0 can lead to a negative energy value,

the bending force, which is the negated derivative of E
b
(y) with

respect to the position, becomes non-zero. That non-zero force is

the unwanted ghost bending force.

B COMPUTATION OF REDUCED FORCE POLYNOMIAL
Here we describe how to compute the reduced force polynomial,

starting from the full space force polynomial formulation. We focus

on the derivation of cubic polynomial terms. Quadratic and linear

terms follow the same procedure.

The cubic polynomial force applied on the degree of freedom d
can be written in full space as:

f
d
(u) =

n∑
r=1

n∑
s=1

n∑
t=1

ar,s,td urusut , (20)

where u is the displacement vector of size n and ar,s,td is the poly-

nomial coefficient. Without loss of generality, let’s consider the

cubic term F r,s,td = ar,s,td urusut , applied to degree of freedom d
and involving displacements r , s and t .
For convenience, let’s call Vi row i of the modal matrix U . We

expand F r,s,td and reformulate it in terms of reduced displacements

q of sizem:

F r,s,td = ar,s,td urusut

= ar,s,td (VT
r q)(VT

s q)(VT
t q)

= ar,s,td

( m∑
i=1

Vr (i)qi

) ©«
m∑
j=1

Vs (j)qj
ª®¬
( m∑
k=1

Vt (k)qk

)
= ar,s,td

m∑
i=1

m∑
j=1

m∑
k=1

Vr (i)qiVs (j)qjVt (k)qk .

(21)

To compute the contribution of F r,s,td to
˜fint, we need to premultiply

F r,s,td by Vd , since
˜fint(q) = UT fint(Uq). Replacing F r,s,td by its

expanded version we get:

VdF
r,s,t
d = Vda

r,s,t
d

m∑
i=1

m∑
j=1

m∑
k=1

Vr (i)Vs (j)Vt (k)qiqjqk . (22)

The highlighted term is constant, can be precomputed, and is cumu-

lated in the coefficient vectorCi jk of Eq. (6).

C QUARTIC TERMS IN ISOMETRIC BENDING FORCES
We recall that all quartic terms in the expression of the isometric

bending force have the form eaeTb (ec × ed ), where ei is the vector

of a triangle edge. Specifically, c = 4 and d = 2, where e4 and e2 are

the two flap edges belonging to one triangle of the hinge.

Since we are interested in the displacement degrees of freedom,

we can rewrite all edges ei as the sum of the (constant) rest state

edge ei and its time varying displacement e∗i . Since all operations
in the term are distributive, we can isolate the quartic terms in

the displacements to the term e∗a (e
∗
b )
T (e∗

4
× e∗

2
). When the hinge

does not undergo rigid rotations, the term e∗
4
× e∗

2
vanishes since

e∗
4
× e∗

2
= (u2 −u0) × (u2 −u1) and u0 = u1 = 0.
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