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Figure 1: Stress test. Shoving cloth through a narrow funnel yields free-flowing motion, despite the complex network of contact regions.

Abstract

Robust treatment of complex collisions is a challenging problem in
cloth simulation. Some state of the art methods resolve collisions
iteratively, invoking a fail-safe when a bound on iteration count is
exceeded. The best-known fail-safe rigidifies the contact region,
causing simulation artifacts. We present a fail-safe that cancels im-
pact but not sliding motion, considerably reducing artificial dissi-
pation. We equip the proposed fail-safe with an approximation of
Coulomb friction, allowing finer control of sliding dissipation.
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1 Introduction

Robust collision response is a vital research area in cloth and shell
simulation; not only must collisions be prevented, but the response
must be physical. While the handling of individual collisions is
well understood, simultaneous collisions can halt existing methods.

The response framework of Bridson et al. [2002] is widely adopted
in industry for its efficiency, versatility, and proven ability to solve
practical problems. Its efficiency is partly due to a built-in fail-
safe: when facing a cluster of interacting simultaneous collisions,
the framework extracts the rigid body motion of the cluster, as pre-
sented by Provot [1997]. This rigid impact zone (RIZ) approach
prevents collisions, but also eliminates all relative tangential veloc-
ity, unphysically dissipating energy from the system. In a simple
simulation, a RIZ is rarely needed; however, many complex and
practically-relevant scenes require frequent invocations of the fail-
safe, which leads to excessive energy dissipation and even unphys-
ical locking of otherwise free-flowing fabric. To partially alleviate
this rigidification, Huh et al. [2001] divided the impact zone into
clusters, and Tsiknis [2006] considered shearing modes.

We present a simple projection method for resolving simultaneous
collisions, while preserving as much tangential motion as possible
given the time step resolution. This method serves as an improved
fail-safe for the framework of Bridson et al. [2002], increasing the
quality, consistency, and physical plausibility of simulations, as we
demonstrate in a series of challenging example scenarios designed
to exercise the fail-safe. In addition, we show that the method is
compatible with an approximation of Coulomb friction, allowing
the choice of any desired sliding dissipation.

2 Theory

Configuration space The entire mesh, at any instant in time, can
be viewed as a point in a high-dimensional space; for an n-vertex
mesh with vertices X1,X2, . . . ,Xn ∈ R3, the configuration space is
Q = R3n. As the mesh evolves through time, it traces out the
curve [X1(t), . . . ,Xn(t)]

T = q(t) ∈ Q (a column vector by conven-
tion). Using a dot to denote differentiation with respect to time,
q̇(t) is the configurational velocity at any instant t [Lanczos 1986].
Lastly, M is the mass matrix, p(t) = Mq̇(t) is the momentum, and
1
2 〈p,p〉M−1 = 1

2 pT M−1p is the kinetic energy.

Collision Constraints We view each collision as the violation of
a real-valued constraint function, C(q), with C(q) < 0 whenever q
is an inadmissable (penetrating) configuration. We associate one
constraint function to each impending vertex-triangle or edge-edge
collision. The constraint for an impending collision between the
triangle (X1(t),X2(t),X3(t)) and the vertex X4(t) is

Cvt(q) = N · [X4 − (α1X1 +α2X2 +α3X3)] ,

where N(t) is the triangle normal, and the three scalars α1(t),α2(t),
and α3(t) are the barycentric coordinates of the projection of X4(t)
onto the plane spanned by the triangle. Similarly, the constraint
for an impending collision between the edges (X1(t),X2(t)) and
(X3(t),X4(t)) is

Cee(q) = N · [(α3X3 +α4X4)− (α1X1 +α2X2)] ,

where α1(t),α2(t),α3(t) and α4(t) are the parametric values of cor-
responding closest points on the first and second edge, respectively,
and N(t) is the cross product of the two edges. If the two edges are
parallel at the time of contact we ignore it, since this collision will
be detected by the vertex-triangle constraint. We refer to the rate
of change of the constraint function, Ċ, as the normal velocity. By
convention, N(t) is oriented such that a negative normal velocity
corresponds to approaching primitives.



Unlike collision detection and response algorithms that solve these
constraints as a function of time [Snyder et al. 1993], we formulate
them primarily to reason about and resolve collisions in configu-
ration space. While each constraint depends on only four vertices
(called the stencil), it is formally a scalar function of q, and can
be differentiated with respect to q to yield the constraint gradi-
ent, ∇C, a row vector in configuration space. By the chain rule,
we may rewrite the normal velocity as Ċ = ∇Cq̇. For a vertex-
triangle collision, the constraint gradient expressed in the local in-
dices of the stencil is

∇Cvt = (−α1N,−α2N,−α3N,N) ; (1)

for an edge-edge collision, the gradient in local indices is

∇Cee = (−α1N,−α2N,α3N,α4N) . (2)

To elevate the constraint gradient to configuration space, we simply
map the local indices to their global positions, with zeros every-
where else, in the style of finite element stiffness matrix assembly.

Impulse response for a single constraint Let unprimed and
primed quantities refer to the pre- and post-response states, respec-
tively. A valid response satisfies two properties. First, it pushes
colliding objects apart by applying a nonnegative impulse along the
constraint direction, i.e., p−p′ = ∇CT λ for some (unknown) non-
negative multiplier λ . Second, since the impulse should prevent
colliding points from approaching further, it must lead to a nonneg-
ative post-response normal velocity ∇Cq̇′ = ∇CM−1p′.

For an inelastic collision, we seek the maximally dissipative re-
sponse among all valid responses, per the definition of purely
inelastic. Thus, we minimize post-response kinetic energy,
1
2‖p′‖2

M−1 = 1
2‖p+∇CT λ‖2

M−1 , with respect to λ , which yields

λ =
−∇Cq̇

〈∇C,∇C〉M−1

.

One property of the above inelastic response is that the normal ve-
locity vanishes along the constraint direction: ∇Cq̇′ = 0.

Impulse response for multiple constraints Cirak and
West [2005] treat the above case of a single constraint in de-
tail. We, however, are interested in the case of k simultaneous
constraints, i.e., k vertex-triangle and edge-edge collisions with
possibly nondisjoint stencils. Now let ∇C = [∇CT

1 , . . . ,∇CT
k ]T be a

k×3n matrix whose rows span the possible impulse directions. For

any vector λλλ ∈ Rk, p′ = p + ∇CT λλλ corresponds to the application
of a linear combination of collision impulses to p. As in the
single-constraint case, we require that the λ1 . . .λk be nonnegative,
since constraint impulses can push but not pull, and that the
impulse yields nonnegative post-response relative velocities, i.e.,
that every row of ∇Cq̇′ = [∇C1q̇′, . . . ,∇Ckq̇′]T be nonnegative.

Solving for the λλλ that minimizes kinetic energy, subject to the
above constraints on λλλ and normal velocity, can be formulated as
a linear complementarity problem (LCP), solvable using methods
such as those described by Baraff [1994]. For multiple collisions
with overlapping stencils, some response impulses may be redun-
dant, i.e., responding to a subset of all the collisions may satisfy
all collision constraints. The LCP approach ensures that redundant
collisions do not yield pulling impulses (λi < 0).

However, since black-box linear solvers are more readily available
than LCP solvers, we propose an algorithm for approximating λλλ
by assuming that post-response relative velocities are exactly zero:
∇Cq̇′ = 0. This may result in some λi < 0, introducing artificial

Figure 2: Stacking. Our projection method easily handles a multi-
tude of simultaneous collisions with overlapping stencils, allowing
each piece of stacked fabric to freely flow down the inclined plane.

“sticking.” Observe that our simplification affects only the fail-safe;
since Bridson et al.’s framework resorts to the fail-safe only after
many iterations of repulsive impulses that are designed to prevent
sticking, we have not observed any significant sticking artifacts.

If we relax the conditions on a response being valid to allow both
positive and negative entries in λλλ , then q̇′ is the minimizer of

‖q̇− q̇′‖2
M , subject to ∇Cq̇′ = 0 .

This minimization projects the velocity onto the orthogonal com-
plement of the span of the columns of ∇CT . Hence we call this the
inelastic projection. We may repose the above as an extremization
of the augmented functional

W (q̇′
,λλλ ) =

1

2
‖q̇′− q̇‖2

M +(∇Cq̇′)T λλλ ,

with respect to (q̇′,λλλ ), where λλλ is a vector of Lagrange multipliers.
The corresponding stationary equations are

0 = D1W (q̇′
,λλλ ) = p′−p+∇CT λλλ , (3)

0 = D2W (q̇′
,λλλ ) = ∇Cq̇′

. (4)

Equation (3) guarantees that the response acts only along the ∇C
direction, and (4) ensures vanishing normal velocities. Substituting
(3) into (4), it follows that we can recover the inelastic response for
a set of k simultaneous collisions by solving the linear system

∇CM−1∇CT λλλ = ∇Cq̇ (5)

for λλλ , and then substituting it into (3) to obtain the unique post-
inelastic-collision momentum, p′.

In theory, the length of the gradient vectors does not matter, but
we normalize the constraint gradients to improve numerical robust-
ness. Even so, when collision detection creates a set of nearly par-
allel gradients, the above linear system can be poorly conditioned
or even singular. Thus we recommend the use of an iterative solver
intended for near-singular systems when solving (5).

3 Algorithm

Our method is a replacement step in the algorithm of Bridson et
al. [2002], which is divided into three stages of response:

• repulsion forces,

• continuous collision response (CCR), and

• rigid impact zones (RIZ).



Our method replaces the RIZ step with an inelastic projection step.
In the case of a single collision, our method reduces to the CCR
step, so it is acceptable to replace the CCR step as well. When the
colliding region grows, our method expands in the same manner as
the RIZ step (see Algorithm 1).

Each constraint gradient depends on a stencil of four vertices (recall
§2). We define an impact zone (IZ) as a set of constraint gradients
with overlapping stencils. Inelastic projection is performed per IZ,
and since vertices outside of the IZ are unaffected by collision re-
sponse, we restrict q in §2 to be the subset of configuration space
corresponding to the vertices in the impact zone. Furthermore, the
gradients we use are evaluated at the time of collision.

Algorithm 1 Collision Response Algorithm

1: Detect proximity using start-of-timestep positions
2: Apply repulsion forces
3: while new collisions detected do
4: Insert each new constraint into its own IZ
5: Merge all new and existing IZs that share vertices
6: for each impact zone (IZ) do
7: Reset IZ to pre-response velocities
8: Apply inelastic projection (§2)
9: Apply friction (§4)

10: end for
11: end while

One may resolve cloth-object and self-collision in separate passes
as mentioned by Bridson et al. [2003]. However, the passes must be
prioritized, potentially allowing penetrations in the lower-priority
pass. To prevent unresolved collisions in the two-pass approach,
Algorithm 1 responds to all self-collisions and cloth-object colli-
sions simultaneously. Our collision step treats prescribed objects
and simulated cloth alike; the infinite mass of prescribed objects
ensures that they are unaffected by simulated cloth.

Scripted objects with infinite mass proved difficult for RIZs. Any
RIZ that contains a scripted (cloth or object) vertex has its motion,
in part, determined by that vertex. If a RIZ contains multiple ver-
tices whose velocities are not consistent with a unique rigid motion,
then the RIZ fails and the timestep must be halved (since in general
smaller timesteps lead to smaller RIZs). On the other hand, inelas-
tic projection finds a solution unless the vertices are constrained in
fundamentally opposed directions, e.g., a vertex is being pinched
by scripted objects.

After we apply a normal impulse to stop an impending collision,
we are free to apply a corresponding frictional impulse. In §4, we
propose a simple friction model that is guaranteed not to introduce
new collisions within the IZ. Nevertheless, the frictional impulse
applied to the IZ may cause new collisions with vertices outside
the IZ. If this occurs, we grow the IZ to include the new vertices
(Algorithm 1, line 5), reset the IZ to pre-collision velocities (line
7), and restart the process.

4 Friction

The complex interaction between collisions requires the careful se-
lection of the direction in which friction is applied, lest more col-
lisions be instigated. We apply friction per IZ by again restricting
q to be the configuration subspace corresponding to the vertices of
the IZ. Vertices outside the impact zone remain untouched.

Building on Cirak and West [2005], we decompose the configura-
tional velocity as

q̇′ = q̇′
fix + q̇′

norm + q̇′
slide .

These three global velocity vectors are characterized by the local
velocities they induce on each constraint: q̇′

fix corresponds to zero

relative velocity (normal and tangential) for all constraints; q̇′
norm

corresponds to purely normal velocity for all constraints; q̇′
slide is

the sliding velocity for which friction must be applied.

Following inelastic projection, q̇′
norm is zero. With that, we have

q̇′
slide = q̇′− q̇′

fix . (6)

To find q̇′
fix, we project out motion that induces a relative velocity

for any constraint. For a single constraint, this relative velocity is

Vrel = ∇hq̇′
, (7)

where h(q) = X4−(α1X1 +α2X2 +α3X3) for a vertex-triangle col-
lision and h(q) = (α3X3 + α4X4)− (α1X1 + α2X2) for an edge-
edge collision, using the same notation as in §2. For multi-
ple constraints, we project out any velocity in the row space of

∇H =
[

∇hT
1 , ...,∇hT

k

]T
, where ∇H is a 3k× 3n matrix and k is

the number of constraints in the IZ, leaving us with q̇′
fix. To imple-

ment this projection, observe that q̇′
fix is the minimizer of

‖q̇′− q̇′
fix‖

2
M , subject to ∇Hq̇′

fix = 0 .

We solve the linear system ∇HM−1∇HT λλλ ′ = ∇Hq̇ for λλλ ′ ∈ R3n

to recover q̇′
fix = q′ +M−1∇HT λλλ ′

and q̇′
slide (see (6)).

From the sliding velocity q̇′
slide, we can apply an approximation of

Coulomb friction. We would like the friction to be proportional
to the normal force, which is simply the change in relative veloc-
ity, bounded by the pre-collision sliding velocity. Given a pre-
projection velocity q̇, post-projection velocity q̇′, and friction co-
efficient µ , the change in velocity due to friction is

∆q̇ = min
(

µ‖q̇′− q̇‖,‖q̇′
slide‖

)

̂̇q′
slide .

Note that the amount of friction applied is dictated by the mag-
nitude of the normal force in configuration space. Thus a large
normal force for one constraint may induce a larger friction im-
pulse on other constraints. This operation is performed per impact
zone, so in practice the colliding region is small and local enough
that this approximation yields plausible results. A correct treat-
ment could build on the work of Kaufman et al. [2005], who inter-
sect with a limit curve for each constraint, preventing extraneous
friction. However, for the purposes of a fail-safe, our experiments
demonstrate that this approximation is satisfactory.

5 Results

We tested our method on several challenging scenarios that exercise
two possible fail-safes—the original RIZ and inelastic projection.

Figure 1 (and accompanying video) shows frames from our simula-
tion of square cloth being plunged into a small funnel by a scripted
ball. This example highlights the importance of allowing free-
flowing tangential motion, since otherwise the cloth rigidifies and
halts inside the chute. Unlike the inelastic projection, the RIZ fail-
safe fails to give a plausible response. We also ran this example
using two passes of collisions response, as discussed in §3. Again
RIZ fails, this time by allowing the cloth to penetrate the funnel,
even with an object thickness 100 times larger than the cloth thick-
ness, and a timestep of 10−4 seconds.



Table 1: Performance evaluation. Timing (in seconds) for exam-
ples executed on a single thread of a 2.66 Ghz Intel Core 2 Duo with
4GB RAM, comparing RIZ (shaded rows) and inelastic projection
(white rows).

Figure 2 (and accompanying video) shows a scenario where tan-
gential sliding is key and RIZ has a fundamental limitation. In this
example, we drop a sequence of small (2-triangle) squares onto an
incline. Observe how the projection method allows the squares to
smoothly slide despite the long chain of simultaneous, interacting
collisions. We repeat this example with friction, to reinforce that
free-flowing tangential sliding still allows control of friction. As
an example where RIZ has an advantage over inelastic projection,
we drop a large number of cloth squares in a stack on a flat plane;
here the rigid response is physically correct, and linear projection
is wasted work.

In the video we show a thin ribbon falling through a trough under
varying coefficients of friction. Notice that the linear projection
fail-safe gives markedly different behaviors as friction is increased,
whereas with RIZ even the frictionless ribbon sticks.

Our algorithm applies to thin shells as well as cloth, as we demon-
strate by crushing a plastic cylinder between a thin wire and a nar-
row crevice.

Table 1 lists timings for many of the above examples. Notice that
simulations run with the inelastic projection fail-safe have run times
comparable to the RIZ fail-safe, with linear projection at worst 15%
slower than RIZ. Indeed, since most simulation time is spent per-
forming collision detection, and not collision response, the addi-
tional linear solve in the proposed fail-safe does not substantially
decrease the speed of simulation.

Limitations Our method suffers from all the usual limitations of
impulse-based collision response. Additionally, treating all colli-
sions occurring over a timestep as simultaneous may introduce arti-
ficial dissipation: if collisions were handled instead in causal order,
responding to earlier collisions could prevent subsequent ones.

The linear system solved during inelastic projection can be ill-
conditioned or singular; since it is not acceptable for the fail-safe
itself to fail, a numerical method suited for ill-conditioned matri-
ces (such as SVD or GMRES) is strongly recommended. We also
tested QLP factorization [Stewart 1999], but unfortunately it did not
approximate the singular values well enough for our needs.

Our method has two friction-related limitations. The magnitude
of friction is governed by the magnitude of the collision response
impulse in configuration space. This magnitude dictates the amount
of friction for an entire IZ, potentially resulting in large collision
impulses increasing the applied friction for another part of the IZ.
Our method also supports only one coefficient of friction per IZ.

Conclusion Since inelastic projection requires a straightforward
linear solve, we hope that it can be quickly incorporated into exist-
ing frameworks. Our method is compatible with an approximation
of Coulomb friction that does not create additional collisions; this
allows for the efficient simulation of a wide range of materials, in-
cluding cloth and thin shells.

We are intrigued by the possibility of incorporating LCP as a fail-
safe. Thus, we plan to release a technical report outlining this ap-
proach with comparisons against the inelastic projection.

Dealing with the shortcomings that our method resolves left us with
a new set of exciting research opportunities. In particular, current
deformable simulations ignore the causality of collisions, treating
any that occur within a timestep as simultaneous. While rigid body
simulations can treat collisions in order by stepping to the collision
time, resolving it, and starting with new initial conditions, the large
number of degrees of freedom in cloth simulation have thus far pro-
hibited such methods. This motivates our ongoing investigation of
asynchronous methods for resolving collisions in causal order.
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