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Figure 1:Stress test.Shoving cloth through a narrow funnel yields free-�owing motion, despite the complex network of contact regions.

Abstract

Robust treatment of complex collisions is a challenging problem in
cloth simulation. Some state of the art methods resolve collisions
iteratively, invoking a fail-safe when a bound on iteration count is
exceeded. The best-known fail-safe rigidi�es the contact region,
causing simulation artifacts. We present a fail-safe that cancels im-
pact but not sliding motion, considerably reducing arti�cial dissi-
pation. We equip the proposed fail-safe with an approximation of
Coulomb friction, allowing �ner control of sliding dissipation.
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1 Introduction

Robust collision response is a vital research area in cloth and shell
simulation; not only must collisions be prevented, but the response
must be physical. While the handling of individual collisions is
well understood, simultaneous collisions can halt existing methods.

The response framework of Bridsonet al. [2002] is widely adopted
in industry for its ef�ciency, versatility, and proven ability to solve
practical problems. Its ef�ciency is partly due to a built-in fail-
safe: when facing a cluster of interacting simultaneous collisions,
the framework extracts the rigid body motion of the cluster, as pre-
sented by Provot [1997]. This rigid impact zone(RIZ) approach
prevents collisions, but also eliminates all relative tangential veloc-
ity, unphysically dissipating energy from the system. In a simple
simulation, a RIZ is rarely needed; however, many complex and
practically-relevant scenes require frequent invocations of the fail-
safe, which leads to excessive energy dissipation and even unphys-
ical locking of otherwise free-�owing fabric. To partially alleviate
this rigidi�cation, Huh et al. [2001] divided the impact zone into
clusters, and Tsiknis [2006] considered shearing modes.

We present a simple projection method for resolving simultaneous
collisions, while preserving as much tangential motion as possible
given the time step resolution. This method serves as an improved
fail-safe for the framework of Bridsonet al. [2002], increasing the
quality, consistency, and physical plausibility of simulations, as we
demonstrate in a series of challenging example scenarios designed
to exercise the fail-safe. In addition, we show that the method is
compatible with an approximation of Coulomb friction, allowing
the choice of any desired sliding dissipation.

2 Theory

Con�guration space The entire mesh, at any instant in time, can
be viewed as a point in a high-dimensional space; for ann-vertex
mesh with verticesX1;X2; : : : ;Xn 2 R3, thecon�guration spaceis
Q = R3n. As the mesh evolves through time, it traces out the
curve[X1(t); : : : ;Xn(t)]T = q(t) 2 Q (a column vector by conven-
tion). Using a dot to denote differentiation with respect to time,
�q(t) is thecon�gurational velocityat any instantt [Lanczos 1986].
Lastly, M is the mass matrix,p(t) = M �q(t) is the momentum, and
1
2hp;pi M � 1 = 1

2pTM� 1p is the kinetic energy.

Collision Constraints We view each collision as the violation of
a real-valued constraint function,C(q), with C(q) < 0 wheneverq
is an inadmissable (penetrating) con�guration. We associate one
constraint function to each impending vertex-triangle or edge-edge
collision. The constraint for an impending collision between the
triangle(X1(t);X2(t);X3(t)) and the vertexX4(t) is

Cvt(q) = N � [X4 � (a1X1 + a2X2 + a3X3)] ;

whereN(t) is the triangle normal, and the three scalarsa1(t);a2(t),
anda3(t) are the barycentric coordinates of the projection ofX4(t)
onto the plane spanned by the triangle. Similarly, the constraint
for an impending collision between the edges(X1(t);X2(t)) and
(X3(t);X4(t)) is

Cee(q) = N � [(a3X3 + a4X4) � (a1X1 + a2X2)] ;

wherea1(t);a2(t);a3(t) anda4(t) are the parametric values of cor-
responding closest points on the �rst and second edge, respectively,
andN(t) is the cross product of the two edges. If the two edges are
parallel at the time of contact we ignore it, since this collision will
be detected by the vertex-triangle constraint. We refer to the rate
of change of the constraint function,�C, as thenormal velocity. By
convention,N(t) is oriented such that a negative normal velocity
corresponds to approaching primitives.



Unlike collision detection and response algorithms that solve these
constraints as a function of time [Snyder et al. 1993], we formulate
them primarily to reason about and resolve collisions in con�gu-
ration space. While each constraint depends on only four vertices
(called thestencil), it is formally a scalar function ofq, and can
be differentiated with respect toq to yield theconstraint gradi-
ent, ÑC, a row vector in con�guration space. By the chain rule,
we may rewrite the normal velocity as�C = ÑC�q. For a vertex-
triangle collision, the constraint gradient expressed in the local in-
dices of the stencil is

ÑCvt = ( � a1N;� a2N;� a3N;N) ; (1)

for an edge-edge collision, the gradient in local indices is

ÑCee= ( � a1N;� a2N;a3N;a4N) : (2)

To elevate the constraint gradient to con�guration space, we simply
map the local indices to their global positions, with zeros every-
where else, in the style of �nite element stiffness matrix assembly.

Impulse response for a single constraint Let unprimed and
primed quantities refer to thepre-andpost-response states, respec-
tively. A valid response satis�es two properties. First, it pushes
colliding objects apart by applying a nonnegative impulse along the
constraint direction,i.e., p � p0= ÑCT l for some (unknown) non-
negative multiplierl . Second, since the impulse should prevent
colliding points from approaching further, it must lead to a nonneg-
ative post-response normal velocityÑC�q0= ÑCM� 1p0.

For an inelastic collision, we seek the maximally dissipative re-
sponse among all valid responses, per the de�nition of purely
inelastic. Thus, we minimize post-response kinetic energy,
1
2kp0k2

M � 1 = 1
2kp+ ÑCT l k2

M � 1, with respect tol , which yields

l =
� ÑC�q

hÑC;ÑCi M � 1
:

One property of the above inelastic response is that the normal ve-
locity vanishes along the constraint direction:ÑC�q0= 0.

Impulse response for multiple constraints Cirak and
West [2005] treat the above case of a single constraint in de-
tail. We, however, are interested in the case ofk simultaneous
constraints,i.e., k vertex-triangle and edge-edge collisions with
possibly nondisjoint stencils. Now letÑC = [ ÑCT

1 ; : : : ;ÑCT
k ]T be a

k� 3n matrix whose rows span the possible impulse directions. For
any vectorlll 2 Rk, p0= p + ÑCT lll corresponds to the application
of a linear combination of collision impulses top. As in the
single-constraint case, we require that thel 1 : : : l k be nonnegative,
since constraint impulses can push but not pull, and that the
impulse yields nonnegative post-response relative velocities,i.e.,
that every row ofÑC�q0= [ ÑC1 �q0; : : : ;ÑCk �q0]T be nonnegative.

Solving for the lll that minimizes kinetic energy, subject to the
above constraints onlll and normal velocity, can be formulated as
a linear complementarity problem (LCP), solvable using methods
such as those described by Baraff [1994]. For multiple collisions
with overlapping stencils, some response impulses may be redun-
dant, i.e., responding to a subset of all the collisions may satisfy
all collision constraints. The LCP approach ensures that redundant
collisions do not yield pulling impulses(l i < 0).

However, since black-box linear solvers are more readily available
than LCP solvers, we propose an algorithm for approximatinglll
by assuming that post-response relative velocities are exactly zero:
ÑC�q0= 0. This may result in somel i < 0, introducing arti�cial

Figure 2:Stacking. Our projection method easily handles a multi-
tude of simultaneous collisions with overlapping stencils, allowing
each piece of stacked fabric to freely �ow down the inclined plane.

“sticking.” Observe that our simpli�cation affects only the fail-safe;
since Bridsonet al.'s framework resorts to the fail-safe only after
many iterations of repulsive impulses that are designed to prevent
sticking, we have not observed any signi�cant sticking artifacts.

If we relax the conditions on a response beingvalid to allow both
positive and negative entries inlll , then�q0 is the minimizer of

k �q � �q0k2
M ; subject to ÑC�q0= 0 :

This minimization projects the velocity onto the orthogonal com-
plement of the span of the columns ofÑCT . Hence we call this the
inelastic projection. We may repose the above as an extremization
of the augmented functional

W( �q0; lll ) =
1
2

k�q0� �qk2
M + ( ÑC�q0)T lll ;

with respect to( �q0; lll ), wherelll is a vector of Lagrange multipliers.
The corresponding stationary equations are

0 = D1W( �q0; lll ) = p0� p+ ÑCT lll ; (3)

0 = D2W( �q0; lll ) = ÑC�q0 : (4)

Equation (3) guarantees that the response acts only along theÑC
direction, and (4) ensures vanishing normal velocities. Substituting
(3) into (4), it follows that we can recover the inelastic response for
a set ofk simultaneous collisions by solving the linear system

ÑCM� 1ÑCT lll = ÑC�q (5)

for lll , and then substituting it into (3) to obtain the unique post-
inelastic-collision momentum,p0.

In theory, the length of the gradient vectors does not matter, but
we normalize the constraint gradients to improve numerical robust-
ness. Even so, when collision detection creates a set of nearly par-
allel gradients, the above linear system can be poorly conditioned
or even singular. Thus we recommend the use of an iterative solver
intended for near-singular systems when solving (5).

3 Algorithm

Our method is a replacement step in the algorithm of Bridsonet
al. [2002], which is divided into three stages of response:

� repulsion forces,
� continuous collision response (CCR), and
� rigid impact zones (RIZ).



Our method replaces the RIZ step with an inelastic projection step.
In the case of a single collision, our method reduces to the CCR
step, so it is acceptable to replace the CCR step as well. When the
colliding region grows, our method expands in the same manner as
the RIZ step (see Algorithm 1).

Each constraint gradient depends on a stencil of four vertices (recall
x2). We de�ne animpact zone(IZ) as a set of constraint gradients
with overlapping stencils. Inelastic projection is performed per IZ,
and since vertices outside of the IZ are unaffected by collision re-
sponse, we restrictq in x2 to be the subset of con�guration space
corresponding to the vertices in the impact zone. Furthermore, the
gradients we use are evaluated at the time of collision.

Algorithm 1 Collision Response Algorithm
1: Detect proximity using start-of-timestep positions
2: Apply repulsion forces
3: while new collisions detecteddo
4: Insert each new constraint into its own IZ
5: Merge all new and existing IZs that share vertices
6: for each impact zone (IZ)do
7: Reset IZ to pre-response velocities
8: Apply inelastic projection (x2)
9: Apply friction (x4)

10: end for
11: end while

One may resolve cloth-object and self-collision in separate passes
as mentioned by Bridsonet al.[2003]. However, the passes must be
prioritized, potentially allowing penetrations in the lower-priority
pass. To prevent unresolved collisions in the two-pass approach,
Algorithm 1 responds to all self-collisions and cloth-object colli-
sions simultaneously. Our collision step treats prescribed objects
and simulated cloth alike; the in�nite mass of prescribed objects
ensures that they are unaffected by simulated cloth.

Scripted objects with in�nite mass proved dif�cult for RIZs. Any
RIZ that contains a scripted (cloth or object) vertex has its motion,
in part, determined by that vertex. If a RIZ contains multiple ver-
tices whose velocities are not consistent with a unique rigid motion,
then the RIZ fails and the timestep must be halved (since in general
smaller timesteps lead to smaller RIZs). On the other hand, inelas-
tic projection �nds a solution unless the vertices are constrained in
fundamentally opposed directions,e.g., a vertex is being pinched
by scripted objects.

After we apply a normal impulse to stop an impending collision,
we are free to apply a corresponding frictional impulse. Inx4, we
propose a simple friction model that is guaranteed not to introduce
new collisions within the IZ. Nevertheless, the frictional impulse
applied to the IZ may cause new collisions with vertices outside
the IZ. If this occurs, we grow the IZ to include the new vertices
(Algorithm 1, line 5), reset the IZ to pre-collision velocities (line
7), and restart the process.

4 Friction

The complex interaction between collisions requires the careful se-
lection of the direction in which friction is applied, lest more col-
lisions be instigated. We apply friction per IZ by again restricting
q to be the con�guration subspace corresponding to the vertices of
the IZ. Vertices outside the impact zone remain untouched.

Building on Cirak and West [2005], we decompose the con�gura-
tional velocity as

�q0= �q0
�x + �q0

norm+ �q0
slide :

These three global velocity vectors are characterized by the local
velocities they induce on each constraint:�q0

�x corresponds to zero
relative velocity (normal and tangential) for all constraints;�q0

norm
corresponds to purely normal velocity for all constraints;�q0

slide is
the sliding velocity for which friction must be applied.

Following inelastic projection,�q0
norm is zero. With that, we have

�q0
slide = �q0� �q0

�x : (6)

To �nd �q0
�x , we project out motion that induces a relative velocity

for any constraint. For a single constraint, this relative velocity is

Vrel = Ñh�q0 ; (7)

whereh(q) = X4 � (a1X1 + a2X2 + a3X3) for a vertex-triangle col-
lision andh(q) = ( a3X3 + a4X4) � (a1X1 + a2X2) for an edge-
edge collision, using the same notation as inx2. For multi-
ple constraints, we project out any velocity in the row space of
ÑH =

�
ÑhT

1 ; :::;ÑhT
k

� T , whereÑH is a 3k � 3n matrix andk is
the number of constraints in the IZ, leaving us with�q0

�x . To imple-
ment this projection, observe that�q0

�x is the minimizer of

k �q0� �q0
�x k2

M ; subject to ÑH �q0
�x = 0 :

We solve the linear systemÑHM� 1ÑHT lll 0= ÑH �q for lll 0 2 R3n

to recover�q0
�x = q0+ M� 1ÑHT lll 0and �q0

slide (see (6)).

From the sliding velocity�q0
slide, we can apply an approximation of

Coulomb friction. We would like the friction to be proportional
to the normal force, which is simply the change in relative veloc-
ity, bounded by the pre-collision sliding velocity. Given a pre-
projection velocity�q, post-projection velocity�q0, and friction co-
ef�cient m, the change in velocity due to friction is

D�q = min
�
mk�q0� �qk;k �q0

slidek
� [�q0

slide :

Note that the amount of friction applied is dictated by the mag-
nitude of the normal force in con�guration space. Thus a large
normal force for one constraint may induce a larger friction im-
pulse on other constraints. This operation is performed per impact
zone, so in practice the colliding region is small and local enough
that this approximation yields plausible results. A correct treat-
ment could build on the work of Kaufmanet al. [2005], who inter-
sect with a limit curve for each constraint, preventing extraneous
friction. However, for the purposes of a fail-safe, our experiments
demonstrate that this approximation is satisfactory.

5 Results

We tested our method on several challenging scenarios that exercise
two possible fail-safes—the original RIZ and inelastic projection.

Figure 1 (and accompanying video) shows frames from our simula-
tion of square cloth being plunged into a small funnel by a scripted
ball. This example highlights the importance of allowing free-
�owing tangential motion, since otherwise the cloth rigidi�es and
halts inside the chute. Unlike the inelastic projection, the RIZ fail-
safe fails to give a plausible response. We also ran this example
using two passes of collisions response, as discussed inx3. Again
RIZ fails, this time by allowing the cloth to penetrate the funnel,
even with an object thickness 100 times larger than the cloth thick-
ness, and a timestep of 10� 4 seconds.



Table 1:Performance evaluation.Timing (in seconds) for exam-
ples executed on a single thread of a 2.66 Ghz Intel Core 2 Duo with
4GB RAM, comparing RIZ (shaded rows) and inelastic projection
(white rows).

Figure 2 (and accompanying video) shows a scenario where tan-
gential sliding is key and RIZ has a fundamental limitation. In this
example, we drop a sequence of small (2-triangle) squares onto an
incline. Observe how the projection method allows the squares to
smoothly slide despite the long chain of simultaneous, interacting
collisions. We repeat this example with friction, to reinforce that
free-�owing tangential sliding still allows control of friction. As
an example where RIZ has an advantage over inelastic projection,
we drop a large number of cloth squares in a stack on a �at plane;
here the rigid response is physically correct, and linear projection
is wasted work.

In the video we show a thin ribbon falling through a trough under
varying coef�cients of friction. Notice that the linear projection
fail-safe gives markedly different behaviors as friction is increased,
whereas with RIZ even the frictionless ribbon sticks.

Our algorithm applies to thin shells as well as cloth, as we demon-
strate by crushing a plastic cylinder between a thin wire and a nar-
row crevice.

Table 1 lists timings for many of the above examples. Notice that
simulations run with the inelastic projection fail-safe have run times
comparable to the RIZ fail-safe, with linear projection at worst 15%
slower than RIZ. Indeed, since most simulation time is spent per-
forming collision detection, and not collision response, the addi-
tional linear solve in the proposed fail-safe does not substantially
decrease the speed of simulation.

Limitations Our method suffers from all the usual limitations of
impulse-based collision response. Additionally, treating all colli-
sions occurring over a timestep as simultaneous may introduce arti-
�cial dissipation: if collisions were handled instead in causal order,
responding to earlier collisions could prevent subsequent ones.

The linear system solved during inelastic projection can be ill-
conditioned or singular; since it is not acceptable for the fail-safe
itself to fail, a numerical method suited for ill-conditioned matri-
ces (such as SVD or GMRES) is strongly recommended. We also
tested QLP factorization [Stewart 1999], but unfortunately it did not
approximate the singular values well enough for our needs.

Our method has two friction-related limitations. The magnitude
of friction is governed by the magnitude of the collision response
impulse in con�guration space. This magnitude dictates the amount
of friction for an entire IZ, potentially resulting in large collision
impulses increasing the applied friction for another part of the IZ.
Our method also supports only one coef�cient of friction per IZ.

Conclusion Since inelastic projection requires a straightforward
linear solve, we hope that it can be quickly incorporated into exist-
ing frameworks. Our method is compatible with an approximation
of Coulomb friction that does not create additional collisions; this
allows for the ef�cient simulation of a wide range of materials, in-
cluding cloth and thin shells.

We are intrigued by the possibility of incorporating LCP as a fail-
safe. Thus, we plan to release a technical report outlining this ap-
proach with comparisons against the inelastic projection.

Dealing with the shortcomings that our method resolves left us with
a new set of exciting research opportunities. In particular, current
deformable simulations ignore the causality of collisions, treating
any that occur within a timestep as simultaneous. While rigid body
simulations can treat collisions in order by stepping to the collision
time, resolving it, and starting with new initial conditions, the large
number of degrees of freedom in cloth simulation have thus far pro-
hibited such methods. This motivates our ongoing investigation of
asynchronous methods for resolving collisions in causal order.
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