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ABSTRACT

Coherent Ray Tracing
for Complex Light Transport Effects

Ryan S. Overbeck

With current rendering algorithms, it is now possible to generate photorealistic images on a

single desktop computer. At the core of many of these algorithms is a ray tracer, which is

used to simulate physical light transport. All too often, the ray tracer is also the performance

bottleneck, and as a result, photorealistic images often take hours to generate and/or employ

approximations which detract from realism. Interactive content, by comparison, often

appears dull and artificial.

The past decade has seen vast improvements to the core ray tracing algorithms, promising

greater realism with faster render times. A large body of work has been dedicated to so-

called “coherent ray tracing” methods, where the coherence between neighboring rays is

exploited to improve ray tracing performance. These algorithms map cleanly to modern

processors’ Single Instruction Multiple Data (SIMD) units, render primary visibility and

point-light shadows at interactive to real-time rates, and provide over an order of magnitude

performance improvement over traditional one-at-a-time ray tracers in some cases. These

benefits do not come cheaply: we must sacrifice some of the generality of one-at-a-time ray

tracing. Moreover, coherence is not guaranteed for more complex light transport, beyond

primary visibility and point-light shadows. So it remains unclear as to how well these new

methods extend to the more complex light transport effects, such as area lighting, reflections,

refractions, depth of field, motion blur, and global illumination.

In this thesis, I propose three bodies of work which introduce and evaluate new algo-



rithms for coherent ray tracing dedicated to accelerating complex light transport effects: a

real-time beam tracer with application to exact soft shadows from area light sources, large

ray packets for real-time Whitted ray tracing, and adaptive wavelet rendering for general

high-dimensional effects.

I first introduce a highly optimized beam tracer which computes noise-free soft shadows

in seconds and renders antialiased primary visibility and point-light shadows in real-time.

Whereas bounding frusta have previously been used to cull away expensive per ray intersec-

tion tests for entire ray packets, I use the frustum as the atomic ray primitive. This results

in faster visibility testing when the scene geometry is coherent, and also provides an exact

visibility solution for efficient antialiasing and analytic soft shadows.

Then, to handle reflections and refractions, I construct an interactive Whitted ray tracer

composed of new algorithms for large ray packets and frustum culling. Within this frame-

work, I offer a thorough analysis of several coherent ray tracing algorithms, and observe

strong benefits, albeit less than for primary visibility and point-light shadow rays. Even in

situations of extreme incoherence, large ray packets tend to be 3×–6× faster than 4-wide

SIMD rays.

Finally, I propose adaptive wavelet rendering for general high-dimensional effects, such

as area lighting, depth of field, motion blur, and diffuse inter-reflections. This is an adaptive

Monte Carlo algorithm, but rather than adapt to a per pixel measure of variance, this new

algorithm adapts to variance in a multi-scale wavelet basis. Thus it adapts to smooth sources

of variance, such as the blur from an out-of-focus camera, by sampling at an effectively lower

resolution, while targeting edges with more focused sample distributions. The remaining

fine-scale noise is removed by a novel wavelet reconstruction filter. One notable aspect of

adaptive wavelet rendering is that it adaptively samples image regions rather than points,

and so is well suited to coherent ray tracing techniques. This new algorithm often achieves

near-reference quality images with general combinations of high-dimensional effects with an

average of only 32 samples per pixel, far fewer than required by traditional means. Moreover,



the algorithm is efficient, and maintains low overhead even when used with an optimized

coherent ray tracer.

Together, these three works improve coherent ray tracing performance for a broad range

of complex light transport effects that are vital for photorealistic rendering. They increase

the quality of interactive content and decrease the render times of offline photorealistic

content, bringing us two steps closer to interactive photorealistic images.
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Chapter 1

Introduction

Non-interactive computer generated imagery is now often indistinguishable from pho-

tographs. This is largely due to our ability to efficiently simulate the complex light transport

effects which affect appearance. Ray tracing is the most general algorithm for accurately

simulating geometric light transport, and it is at the heart of many physically based rendering

solutions, such as Whitted ray tracing, path tracing, distributed ray tracing, and photon map-

ping. Unfortunately, ray tracing is often slow, and the time to generate photorealistic images

may be prohibitive, taking hours to render a single image on a commodity workstation. This

greatly limits our experience with photorealistic imagery. Interactive applications, such as

video games, are still artificial in appearance, and even for offline production images for

feature films, the design process is hampered by the artist’s inability to freely iterate and

improve their work.

In an effort to bring interactive content closer to photorealism, researchers have recently

introduced vast improvements to the core ray tracing algorithms. At the heart of this recent

focus, are so-called coherent ray tracing algorithms. Using these methods, it is now possible

to ray trace simple scenes with primary visibility and point-light shadows in real-time.

However, photorealism requires more complex light transport than primary visibility and

point-light shadows. Real-world scenes have soft shadows from area light sources, glossy

1



CHAPTER 1. INTRODUCTION 2

reflections and refractions, blurry depth of field effects from out-of-focus camera lenses,

motion blur, and diffuse inter-reflections.

In this thesis, I seek to leverage coherent ray tracing techniques to accelerate complex

light transport effects. I offer three pieces of work to achieve this goal: a real-time beam

tracer with application to exact soft shadows from area light sources; large ray packets for

real-time Whitted ray tracing; and adaptive wavelet rendering for general high-dimensional

effects. Together, these three works address nearly the full gamut of light transport effects

required for photorealistic rendering.

1.1 Coherent Ray Tracing

In its most basic form, ray tracing is an exceedingly simple and general algorithm. It is

essentially a database query, where the input query is a ray of light, the database is a 3D

scene, and for output, we seek the intersection between the ray and the scene. To make this

query efficient, the geometric primitives, which constitute the scene, are organized into an

acceleration structure. This structure usually consists of a hierarchy of simpler geometry,

such as axis-aligned bounding boxes. Traditionally, rays are traced one-at-a-time, each one

traversing the acceleration structure and individually tested against the geometry primitives.

Coherent ray tracing techniques further accelerate a ray tracer by answering many ray

queries at the same time. Most rendering solutions require hundreds of millions of rays to

compute an image. Many of these rays will travel close together in 3D space, visiting the

same nodes in the acceleration structure, and often even intersecting the same geometry

primitives. Ray coherence refers to this quality of multiple rays traversing similar paths

through the scene, and it provides an opportunity to speed up a ray tracer.

There are many ways that coherence can accelerate the ray tracing process. Algorithmic

amortization is one. Some operations are expensive when performed individually for each

ray query, but when amortized across many queries, they become efficient. For example,
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loading geometric primitives into memory can be expensive when executed independently

for every ray. However, if one primitive needs to be tested for intersection against many

rays, it should be loaded only once for all rays. In some other cases, it may be possible to

perform one conservative intersection test for an entire group of rays in order to avoid many

tests for each individual ray.

Perhaps more importantly, coherent ray tracing methods expose data-parallelism, which

allows a ray tracer to utilize the Single Instruction Multiple Data (SIMD) arithmetic units on

modern CPUs. SIMD units perform the same operation on multiple data for the cost of one.

Most general function CPUs currently offer 4-wide SIMD units, and future hardware [59]

increases this to 16-wide, indicating a trend to wider and wider SIMD. On a 16-wide unit,

a perfectly data-parallel algorithm can theoretically achieve a 16× performance boost. In

reality, data-parallelism is difficult to exploit, and practical performance benefits tend to

be significantly less. In fact, even the most data-parallel algorithms rarely achieve more

than 3
4 of the theoretical maximum. Therefore, algorithmic data-parallelism is a precious

commodity.

While traditional one-at-a-time ray tracers are ill-suited to SIMD computation, co-

herent ray tracers are innately data-parallel. Since many ray queries need to be solved

simultaneously, they can be mapped to the multiple SIMD channels. For primary visibil-

ity and point-light shadows, coherent ray tracers tend to achieve a 3× performance boost

from 4-wide SIMD [76]. Even for less coherent rays, and larger SIMD widths, recent

research [24, 10] suggests that it is possible for coherent ray tracing to maintain %50–%90

SIMD utilization. These results indicate that coherent ray tracing may be vital to the future

of ray tracing, in order to efficiently map to future hardware.

Driven by the need to convert this potential to actual performance, recent research offers

a multitude of coherent ray tracing algorithms. Many of these algorithms are based on

ray packets (also called breadth-first ray tracing or ray stream tracing) [76, 72, 9, 74, 24],

where many rays are cast at the same time. Ray packets can amortize computation costs for
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scene traversal and shading across all rays in the packet. Moreover, on SIMD architectures,

multiple rays can be tested at the cost of a single ray. Another approach is to use bounding

frusta or interval arithmetic [57, 11, 74] around ray packets to cull away many expensive

ray–geometry intersection tests. For primary and point-light shadow rays, packet ray tracing

with frustum culling often performs over an order of magnitude faster than one-at-a-time

ray tracing.

Despite the proven benefits of coherent ray tracing algorithms, there are several hurdles

that prohibit their broader adoption. Many traditional ray tracing algorithms and rendering

APIs were designed specifically for one-at-a-time ray tracing, and do not trivially translate

to ray packets and breadth-first processing. As a result, incorporating coherent ray tracing

into existing renderers can be a lengthy and costly task. The benefits must be well proven

and the algorithms mature before they become worth the expense. Coherent ray tracing

algorithms must demonstrate their benefits on production quality scenes and images.

This thesis offers both new algorithms and a thorough evaluation of old algorithms

to demonstrate coherent ray tracing on the complex light transport effects required for

production quality rendering. Prior to this work, research focused almost exclusively on

primary visibility and point-light shadows. The rays required for computing the more

complex light transport effects are significantly less coherent, and therefore less apparently

amenable to existing coherent ray tracing methods. To move forward, we require new

algorithms that expose and exploit ray coherence. It is also necessary to re-evaluate old

algorithms under the duress of incoherence.

1.2 Thesis Overview

In this thesis, I offer three pieces of work which utilize coherent ray tracing for efficient, high-

quality rendering of complex secondary effects. All works demonstrate large performance

gains over traditional one-at-a-time ray tracing algorithms, and in many cases, final render
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quality is improved.

First, in Chapter 2, I introduce a real-time beam tracer with application to exact soft

shadows, which was originally published and presented in [51]. This work takes ray

coherence to the logical extreme. Rather than using a ray packet with a bounding frustum, I

propose to use only the frustum, and directly split it against the scene geometry. This beam

tracer is designed for 4-wide SIMD units and uses new algorithms for kd-tree traversal and

triangle intersection. It is dramatically faster than previous beam tracing implementations.

In fact, in many cases where the beam’s volume is small relative to the scene’s geometry, it

even out-performs the fastest known packet ray tracer. Beyond pure wall-clock performance,

beams offer qualitative benefits over rays such as improved antialiasing. I also demonstrate

a new application for beam tracing: computing exact noise-free soft shadows.

In Chapter 3, I present a real-time Whitted ray tracer using large ray packets and frustum

culling. This work was published and presented in [52]. Beyond just primary visibility

and point-light shadows which are known to be fast using coherent ray tracing, a Whitted

ray-tracer also requires ideal reflections and refractions. These rays tend to be significantly

less coherent, so I introduce partition traversal, a new ray packet algorithm which is robust

to degradation in coherence. I also introduce a new approach to construct bounding frusta

around general ray types including reflection and refraction rays. I then evaluate these

and other algorithms within an interactive Whitted ray tracer, and study how well these

algorithms respond to varying ray packet size, geometric complexity, and ray recursion

complexity. I find that packet ray tracing still offers significant benefits even for these less

coherent rays, but frustum culling’s impact is somewhat reduced.

Finally, in Chapter 4, I focus on general high-dimensional effects, including depth of

field, motion blur, area lighting, antialiasing, and diffuse inter-reflections. All of these

effects can be evaluated simultaneously by computing a high-dimensional Monte Carlo

integral, but standard Monte Carlo approaches are prone to severe noise. I therefore propose

adaptive wavelet rendering to adapt to image space variance and remove noise. This work
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will be published and presented in [50] after this thesis. In contrast to traditional methods

which adapt to a per-pixel measure of variance, this new algorithm adapts to variance in

a multi-scale wavelet basis, and distributes samples to reduce variance at specific scale

coefficients. To remove the noise in under-sampled regions, I introduce a novel wavelet

reconstruction which effectively chooses the smoothest image that fits the Monte Carlo

samples. In regions of smooth variance, I sample at an effectively lower resolution, and

the reconstruction removes the fine-scale noise. Near edges, samples are focused at the

fine-scale coefficients where the edges are resolved more clearly. This new algorithm is

particularly well-suited for acceleration by coherent ray tracing techniques because it adapts

to image regions rather than individual pixels, and it introduces significantly less overhead

than other adaptive algorithms.

These three works are significantly distinct from each other, both with respect to the

rendering effects they seek to accelerate as well as the approaches they use to exploit

coherence. Their difference from each other highlights the broad potential for future

research in coherent ray tracing. In Chapter 5, I offer closing remarks and address some of

the directions for future research indicated by this thesis.



Chapter 2

Beam Tracing for Efficient Antialiasing

and Analytic Soft Shadows

Soft shadows are valuable for photorealistic rendering. They provide visual depth cues

and help to set the mood in an image. However, generating accurate soft shadows involves

solving an expensive integral at each pixel.

The most common technique to approximate such integrals in computer graphics is

Monte-Carlo integration using distributed ray tracing. These methods sample the light

source many times and are prone to noise due to variance in the estimate. While importance

sampling and light source stratification can reduce this noise, it remains, and increasing the

sampling density provides only diminishing returns [60].

Ray tracing has a long history in graphics [78], and has received particularly focused

attention in the past few years spurred by new acceleration techniques which determine

primary visibility for complex scenes in real-time. These methods use ray bundles [76],

frustum proxies for kd-tree traversal [57, 74, 68, 32], and make efficient use of the register

SIMD (e.g., SSE) instructions available on most modern processors [76, 57, 74]. All of

these approaches leverage geometric coherence of neighboring rays as they traverse a scene.

However, per-pixel shading can still significantly reduce their performance (even by as much

7
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as 33% or more [57]). Furthermore, initial indications are that the benefits of these methods

are relatively modest for secondary effects such as soft shadows. The recent results from

Boulos et al. [9] show only a 2×–3× performance improvement for ray packets as compared

to individual rays for distribution ray tracing tasks.

When taken to the limit, full use of geometric coherence leads us to beam tracing.

Beam tracing was introduced by Heckbert and Hanrahan [33] as a method of leveraging

the geometric coherence of groups of rays by tracing a volume of rays instead of each ray

individually. While not as general a rendering solution as ray tracing, beam tracing can solve

many problems including antialiasing, specular reflections, and soft shadows. However, it

has received limited attention from the rendering community since its inception for two

reasons. First, the basic geometry intersection tests become significantly more complicated

when moving from rays to beams. Second, there has not been significant success in applying

acceleration structures to beam tracing.

In this chapter, I develop novel acceleration and intersection techniques for beam tracing.

I can obtain real-time results for primary rays, faster than the best accelerated ray-tracing

methods [57] for many scenes where the average visible triangle size is large compared

to the sample density. Moreover, it is important to note a fundamental difference between

beam and ray tracing. For rendering primary visibility, ray tracing first point samples the

image, and then determines visibility for each sample. On the other hand, beam tracing deals

directly with coherent area elements (visible triangles), and delays image space sampling

to the very end. In my beam tracing system, this final image-space sampling is delegated

to the highly parallel and specialized GPU rasterizer. Therefore, beam tracing can retain

coherence much further, which we can exploit for antialiasing, shading, and point light

shadows. Perhaps more importantly, beam tracing is particularly well suited to secondary

visibility for area lighting. No point sampling of the light is needed in this case—only

area samples are required. As seen in Fig. 2.11, I can obtain essentially exact soft shadows

from area lights significantly faster than previously possible. The shadows are exact in the
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sense that they are computed using an exact representation of the visibility between the light

source and the shade point. Compared to a ray tracer which approximates soft shadows

using 256 light source samples, this beam tracer can be 10×–40× faster.

The performance of this method derives from two main technical contributions. I have

designed a new algorithm for beam–triangle intersection (Sec. 2.2.2) which splits beams

at triangle edges. This algorithm combines the successes of fast ray–triangle intersection

and polygon clipping algorithms. The computational cost of the beam splitting operations is

nearly equivalent to generating only one new ray in a conventional ray tracer. I also introduce

the first effective method of kd-tree traversal (Sec. 2.2.3) for beam tracing. While frusta

have previously been used to determine a conservative traversal estimate for a bundle of rays

(and my approach is inspired by these works) I found that beam tracing can benefit even

more than rays from efficient kd-traversal. As a high level decision, I specifically designed

both my beam–triangle intersection and kd-tree traversal algorithms to be parallelizable

through use of SIMD SSE instructions. For beam tracing, this data parallel design leads to

new algorithms quite distinct from their serial counterparts.

The beam tracer’s performance now scales linearly with the number of visible triangles

with relatively minimal dependence on absolute scene size. Compared to ray tracing

for primary visibility (Sec. 2.3), I achieve a speed-up relative to the ratio of ray sample

density to the average visible triangle surface area. When the triangles are large relative to

sample density, beam tracing can be more than an order of magnitude faster than the fastest

ray tracers, and it is competitive even for moderate to large scenes (thousands of visible

triangles).

However, perhaps the biggest advantage of beam tracing is for precise soft shadows

from compact area light sources. As my analysis in Sec. 2.5 shows, the average number

of visible triangles (and hence hit beams) at each pixel tends to be significantly lower than

for primary visibility (less than 10 for my test scenes), enabling substantial performance

improvements over ray tracing. Even in highly tesselated scenes, where the performance
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benefits relative to ray tracing are reduced, this beam tracer achieves exact noise-free soft

shadows, independent of resolution in a matter of seconds.

2.1 Previous Work

I first discuss previous work on high quality soft shadows. I then consider methods for

acceleration of primary rays in ray tracing, and early efforts at beam tracing.

2.1.1 Accurate Soft Shadows

Sampling: The sampling-based approach was first introduced as distributed ray trac-

ing [15]. Using Monte Carlo integration, it solves a variety of rendering problems including

motion blur, depth of field, fuzzy reflections, and soft shadows. As with any sampling

based method, variance in the estimate is evidenced by noise in the result (see Figure 2.11).

In order to reduce variance to a reasonable tolerance, a large number of rays are often

required—typically 256 shadow rays for generating a single 24-bit image, and 1024 or more

shadow rays for production level rendering.

There are also methods that use visibility coherence to reduce the number of shadow

rays [1]. However, they typically offer only a 3×–4× speedup for intricate shadowing.

Moreover, they introduce measurable overhead when used with a heavily optimized ray

tracer, such as the one I use in my comparisons in Section 2.5, which can significantly

reduce the benefit.

Exact Methods: Only an exact solution is capable of guaranteeing an accurate and noise-

free result and many are available. These methods gather exact occluder geometry and

integrate over the resulting area elements. Hart et al. [29] turn point samples into area

samples using a flood-fill algorithm. Most methods search for silhouette edges through

back-projection and/or tracking visibility events [65, 17]. While these methods can produce
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very high quality results, they tend to be much slower than the sampling approaches and

scale very poorly with scene geometry. My beam-tracing approach also uses an exact

representation of the occluding geometry for noise-free images, but is sensitive only to

visible scene complexity making it fast even for large scenes.

Soft Shadow Volumes: The most recent work, introduced by Laine et al. [40], uses a

mixture of the visibility event and sampling approaches. Building upon the idea of shadow

volumes [16], they utilize penumbra wedges to narrow down the scene space from which a

given edge may be a silhouette. Their algorithm scales much better with sampling density

than ray tracing, allowing them to render significantly faster for scenes with low geometric

complexity. They use a hemicube to cache silhouette information which is highly sensitive

to light orientation producing fast render times only when the light is near axis-aligned.

Lehtinen et al. [41] fix many of these problems and produce impressive results even with

finely tesselated geometry. To achieve these results, they introduce a BSP construction

and query phase which is expensive both in time and memory relative to scene size. Both

Laine et al. [40] and Lehtinen et al. [41] determine the visible depth complexity from a

point, so they still must spend most of their time in a sample integration phase. My method

provides higher accuracy results and raises potential performance by completely removing

dependence on point sampling density.

Real-Time Methods: My work is distinct from approximate real-time techniques [30].

While these methods can work much faster than my approach or the above algorithms, they

focus on plausible rather than accurate soft shadows, requiring significant approximations

that break down in specific situations. Soler and Sillion [63], for example, convolve a

shadow map to blur the edges of a hard shadow, resulting in some visually pleasing results.

However, they have difficulties with bodies in contact and self-shadowing. Another recent

body of work is precomputed radiance transfer or PRT [62, 49]. PRT methods move the

visibility computations to a preprocess, and project the result into some basis (often spherical
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harmonics or wavelets) for compression. With visibility already determined, the illumination

can then be integrated in real-time with dynamic (usually distant) lighting environments. My

method is not comparable, since it only requires precomputation of the kd-tree which has

been shown to be interactive even for large scenes [36], easily allows dynamic local lighting,

and can be used with general shaders. The recent work of Ren et al. [55] approximates

scene geometry as a set of spheres to quickly project visibility to a spherical harmonic basis

removing the need for precomputation. However, they are only able to display extremely

low-frequency approximate soft shadows, whereas my system can handle exact shadows

using accurate scene geometry.

2.1.2 Real-time Ray Tracing

There has been a significant amount of work focused on exploiting geometric coherence of

rays to accelerate primary visibility determination. Wald et al. [76] showed that substantial

benefits could be obtained by casting four rays at a time and using SSE instructions to handle

these rays in parallel, reducing the number of kd-tree traversal steps and increasing memory

coherence. Reshetov et al. [57] use frusta as ray proxies to accelerate kd-tree traversal. They

determine the deepest kd-tree node that all of the rays in the frustum must visit, then start

ray traversal there. This further reduces the number of kd-tree traversal steps, and along with

extensive optimization, results in up to an order of magnitude speed improvement. Recently,

Wald et al. [74] extend frustum traversal to grids.

These algorithms attempt to adapt to variations in coherence using heuristics to split

the frustum along image plane axes. However, these splits are inexact for scene geometry

(both acceleration structures and triangles in general orientations), and one misplaced ray

is enough to slow down an entire packet. In my work, I split beams precisely at geometry

boundaries, exploiting all available coherence with dramatic benefits for both primary and

secondary effects.
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2.1.3 Beam Tracing

Beam tracing was introduced in Heckbert and Hanrahan [33]. While it has found limited

applicability in rendering, it has proven very useful in architectural acoustics [20, 21] where

antialiasing is a primary concern. Similarly, my beam-tracing approach provides antialiasing

essentially for free, and may therefore also be relevant in this domain.

Two related techniques are cone tracing [3] and ray differentials [37]. They use a partial

representation of the ray’s volume by including the ray’s spread angle and distance to the

ray’s image space neighbors respectively. These elegant methods present a compromise:

providing some of the benefits of beam tracing with the simplicity of ray tracing.

Most recent beam tracing methods are essentially improved or accelerated ray tracers.

Ghazanfarpour and Hasenfratz [22] provide for adaptive sampling, sending beams to predict

portions of an image which need higher sampling densities but fall back to rays to perform

the actual visibility testing. The work of Teller and Alex [68] uses beams as a bounding

volume for a single ray, then spreads the ray’s results to the rest of the beam. They use splits

aligned to the image axes at kd-tree and triangle boundaries to progressively improve the

result.

These works and the frustum proxy methods in Section 2.1.2 circumvent beam inter-

section methods based on the assumption that calculating beam–geometry intersections is

more expensive than tracing many extra rays. While this has been true in the past, my work

removes this assumption, and enables one to explore the full power provided by precise area

sampling over point sampling.

2.2 My Beam Tracing Algorithm

For simplicity of exposition, I describe the general beam tracing algorithm in the context of

primary visibility. The same ideas extend to secondary shadow beams (see Figure 2.1 top

and bottom).
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Split beam at the first 
visible triangle edge

Split beam recursively at 
all visible triangle edges

End with the visible surface 
of the scene (blue).  
Often, the beams cover

many image pixels
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First beam is the
view frustum

Primary Beams

Shadow Beams

Beam connects surface point
to area light vertices to 

integrate visibility

Figure 2.1: (Top) Beam tracing for primary visibility. (Bottom) Beam tracing for soft
shadows.

As shown in Figure 2.1(top), I start with one large pyramidal beam representing a volume

of perspective parallel rays. This beam is recursively split at geometry primitive boundaries

(triangle edges) into a list of beams which is the visible surface of the scene.

As with other recent work on fast ray tracing, I use scenes that are built strictly with

triangle primitives, and use a kd-tree for acceleration. Beams traverse the scene’s kd-tree in

a method somewhat similar to standard ray tracing. Visible triangles found in the kd-tree’s

leaf nodes will split the beam into two lists of sub-beams: hit beams and miss beams. The

miss beams continue scene traversal until they either hit a triangle or exit the scene. As the

beams split, they form a beam tree (not to be confused with that generated by reflected and

refracted beams in [33]).

The primary challenges in making beam tracing efficient are (1) fast beam-triangle

intersection routines, and (2) fast methods to traverse the kd-tree acceleration structure. In
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this section, I give a high-level overview of my novel algorithms for these tasks. Appendix A

provides more low-level details and pseudocode—interested readers will wish to follow it in

parallel with this section.

2.2.1 Beam Representation

I represent my beams by 3 or 4 corner rays emanating from a common origin. Operations

on these corner rays can be performed in parallel using SIMD instructions available on most

modern processors (similar to Wald et al. [76]). Pseudocode for my beam representation is

in Appendix A.1. It is important to note that I represent the ray directions as points on some

plane as this helps with the efficient triangle intersection algorithm described below. For

primary beams, I use the image plane. For secondary point light beams, I use the plane of

the hit triangle, and for area light beams, I can use a plane on or near the light source. This

ensures that accuracy is measured in the relevant space.

2.2.2 Beam–Triangle Intersection

Algorithm Overview: When intersecting a beam and a triangle, we seek to split the beam

into two parts: that which hits, and that which misses. The beam is split by planes defined

by the beam origin and the triangle edges. Most beam tracing methods do not provide

details on their beam-triangle intersection tests, and generally use standard geometry set

operations [33] or off-the-shelf polygon clipping algorithms. My algorithm is unique and

specifically optimized for beam tracing.

High Level Decisions: My design is based on two decisions:

1. Mirror, as closely as possible, ray–triangle intersection, diverging only where neces-

sary. This is aimed at keeping my algorithm as simple as possible, while benefitting

from most published ray-triangle intersection optimizations.
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a) b) c) d)

e) f) g) h)

i) j) k) l)

Trivial Cases Needs Split

Split Procedure

Other Split Cases

Figure 2.2: Beam–triangle intersection. The initial beam is green, the initial triangle is blue,
miss beams are red, and hit beams are yellow. (a)-(c) are trivial cases (step 2). In (d), the

beam must split (step 3). (e)-(g) split along each edge of the triangle. In (h), the beam needs
an extra split to maintain a maximum of 4 vertices per beam. (i)-(l) show several other

possible beam–triangle splits discussed in the text.

2. Parallelize through the use of SIMD SSE instructions. While this is not usually viewed

as a high-level decision, in this case it fundamentally impacts all levels in the beam

tracer, leading to an algorithm quite distinct from its serial counterpart.

Note that (2) reinforces (1) by operating on the corners of the beam as if they were a

single ray. This leads to an algorithm that is as fast as ray–triangle intersection in the most

common cases, and only as slow as generating 1 − 5 new rays (in a conventional ray tracer)

in the worst cases.

Step 1–Triangle Projection: As with ray tracing, I make the problem easier by solving

it in 2D. However, instead of projecting the beam to the triangle’s plane (the common ray

approach), I project the triangle onto the image plane. This is mostly to avoid numeri-
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cal problems introduced by solving each beam–triangle intersection on a different plane:

intersections with neighboring triangles will not precisely agree on their shared edge’s

location. When I project, I must clip some triangles at a near plane parallel to the image

plane, because some triangle vertices may be behind the camera’s focal point. The vertices

are then orthographically projected onto either the xy, xz, or yz plane depending on the

image plane’s normal. As noted above, the beam’s corner ray directions are points on the

image plane, so they need not be projected.

Step 2–Handle Trivial Cases: Figure 2.2 provides an illustration of the 2D beam–triangle

intersection problem. There are 3 trivial cases as shown in Figs. 2.2a-c. In case (a), one of

the triangle edges completely separates the triangle and the beam, so the beam misses the

triangle. In case (b), one of the beam edges is a separating edge. Case (c) shows a beam

completely contained by the triangle, since all points of the beam are inside all three edges

of the triangle. Cases (a) and (c) behave the same as for rays—I use SSE to test all 3 or 4 of

the beam’s corner rays in parallel, such that handling these cases is similar (and as efficient)

for a beam as for a single ray. Similarly, I handle the 4 beam edges in parallel for case (b).

Step 3–Beam Splitting: The rest of the cases fall into Figure 2.2d, where some of the

beam is inside the triangle and some is outside. The beam now needs to split along triangle

edges. I do this using a method similar to Sutherland and Hodgman [67], who clip one

edge at a time. The splitting process is shown in Figs. 2.2e-h. The first edge (e) splits the

beam into 2 sub-beams: one which misses the triangle, and one which partially hits and

needs further processing. The second edge (f) splits the remainder into a miss sub-beam,

and partial hit. After splitting along the third edge (g), I am left with a beam completely

inside the triangle, and three beams which miss.

The splitting requires finding intersection points between beam edges and triangle edges.

The standard Sutherland–Hodgman algorithm processes vertices one at a time. I use a

parallel SSE based algorithm which handles all beam vertices at once for each triangle edge
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(See Appendix A.2 for details). Computationally, finding the two intersection points for

each triangle edge is equivalent to simply generating one new ray in a conventional ray

tracer.

All splits are guaranteed to generate beams with convex cross-section. But as the beam

splits, the cross section may become more complex, requiring more than the 4 corner rays I

can handle with SSE instructions. In these cases, I perform an extra split (shown as a dashed

line in Figure 2.2h), generating one 4-corner beam, and one 3-corner beam. The 3-corner

beam has a triangular cross-section. I still use 4 corner rays with one being degenerate. Note

that Figure 2.2d shows a relatively simple situation where the triangle lies fully inside the

beam. Figures 2.2i-l show several other beam–triangle interactions. Note that all of them

can be handled in the exact same way, but not all of them are split by all 3 triangle edges.

Again, any extra splits added to keep the beams down to 3-4 corners are shown as dashed

lines.

Robust Splitting: Robustness is a major issue for beam tracers. Precision errors in ray

tracers are highly localized to the individual ray and are evidenced by black pixels and

seams between triangles. Errors in beam tracers accumulate down the beam tree possibly

leading to the misclassification of entire image regions. There are two enhancements I use

to combat precision errors. First, I perform all intersection tests in the same plane, otherwise

the same edge belonging to the different triangles may give different results even when

tested against the same beam. Second, I use “fuzzy” logic tests throughout my beam tracer

(See Appendix A.2 for details) to use all of the beam’s corner rays to inform any decision.

Performance: The triangle intersection algorithm is relatively fast by itself. For simple

scenes (those less than 2000 or so triangles) I render primary visibility in real time (10-40

FPS) without using any acceleration structure. However, as with ray tracing, beam tracing

slows down very quickly without an acceleration structure. Therefore, I next introduce my

beam–kd-tree traversal algorithm.
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Figure 2.3: (Left) The large red plane is the current kd split plane. (Right) the split plane is
isolated, the beam is in blue, and the viewpoint is down the axis of the beam pyramid. In

this case, the beam’s corner rays only want to traverse the far cell, but, clearly, we also need
to visit the near cell.

2.2.3 KD-Tree Traversal

Ray–kd-tree Traversal: The standard ray–kd-tree traversal algorithm as introduced by

Whitted [78] maintains a minimum and maximum distance along the ray. The minimum

distance is where the ray enters the current kd cell’s bounding box, and the maximum is

where it exits. These distances multiplied by the ray’s direction give intersection points with

the kd cell’s bounding box. At each inner kd cell, the distance to its split plane is tested. If

the distance is less than the minimum distance, the ray only needs to traverse the far cell. If

it is greater than the maximum distance or the plane lies behind the ray origin, the ray need

only traverse the near cell. If it is in between, the ray must visit both cells.

Extending to Beams: The frustum shaped beam’s near and far planes are analogous to

the ray’s minimum and maximum distances. However, simply using the beam’s four corner

rays to decide the path of all its rays can be inaccurate. This is shown in Figure 2.3 where a

corner of a kd split plane pierces a face of the beam. All corner rays believe they only need

traverse the far cell, when clearly some of the rays in the pierced face also need to visit the

near cell (Reshetov et al. [57] also describe this situation).

Figures 2.4a-c show my solution to this problem in 2D. The “active” portion of the beam

(the portion which is traversing the current kd cell) is dark gray. The near plane is tmin (red)
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Figure 2.4: (a) The minimum and maximum distances for all of a beam’s rays cannot be
represented by single near and far planes. If we just used the corner rays’ far distances, we
wouldn’t be including the green portion of the beam. (b)We could split the beam with a new
far plane. (c) Or we can use multiple (3 for 3D) near and far planes. (d) The large yellow

triangle will be intersected before the small purple triangle even though the purple is closer.
The hit beam for the yellow triangle must continue traversal.

and far plane tmax (blue). The next kd split plane is shown as a dashed line. If we attempted

to use just the corner rays’ maxima, we don’t have enough information to represent the

green portion of the beam. While this doesn’t cause a problem in 2D, it leads to situations

like the one in Figure 2.3 for 3D. One possible solution would be to split the beam where

the kd planes split the far plane as in Figure 2.4b. This approach is precise in that it traverses

all of and only the cells which intersect the beam. I tried this approach with positive results,

but there is significant overhead in the beam splitting operations so it does not scale well

with larger kd-trees, and dramatically reduces available coherence.

My Solution: Instead, I use the much simpler approach in Figure 2.4c inspired by frustum

proxy methods like MLRT [57] and LCTS [32]. I maintain 3 near and 3 far planes, one
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for each axis. This is like keeping track of 3 beams, where the “active” ray volume is their

intersection. If the beam’s corner rays’ distances to the current split plane are all less than

the distances to either of the other axes’ near planes, the beam traverses only the far node.

Likewise, if the distances are all further than either of the other axes’ far planes or lie behind

the beam’s origin, the beam traverses only the near node. Otherwise, the beam must visit

both nodes. This leads to only two extra comparisons in the traversal code (see pseudocode

in Appendix A.3).

Handling Hit Beams: My algorithm for walking a beam through a kd-tree is not much

different from that for a ray, with some notable exceptions. The biggest difference, shown

in Figure 2.4d, is how hits are handled. Once a ray finds a hit in a leaf node that is closer

than its maximum exit distance from the leaf node’s bounding box, that hit is guaranteed to

be closer along the ray than any triangle in any other leaf node. A beam hit, on the other

hand, may include a triangle that is not wholly contained by the current kd cell (the yellow

triangle in Figure 2.4d). There may be another triangle (the purple triangle) inside the beam

which occludes the hit triangle but resides in a further leaf cell. While we could clip all hit

beams to the planes of the kd cell to assure that we get only the parts of the triangles that are

guaranteed to be closest, this leads to excessive fragmentation of the beam. Instead I keep

the full hit beam which must continue kd-tree traversal until it reaches a kd cell which is

wholly further than the hit beam.

Comparison to Frustum Proxies: Once the beam is split, the sub-beams continue scene

traversal from the leaf node where they are generated. This is an important distinction from

frustum proxies for ray tracing, such as Reshetov et al. [57]. Those methods merely find a

deep sub-tree within the kd-tree from which to start shooting rays. Each ray or ray packet

must start from the root of this sub-tree leading to more redundant kd steps. Moreover, the

frusta must often visit even more nodes to find a suitably deep one.

It is possible that one of the sub-beams may start from a leaf node that it would not
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have visited if it had not been led there by its parent. However, in practice, this is quite rare

because I split exactly at geometry boundaries. This substantially reduces redundant kd

steps, increases memory coherence, and thus minimizes my performance dependence on

absolute scene size.

2.2.4 Miscellaneous Acceleration Techniques

Since we expect to visit far fewer kd leaf nodes than for ray tracing (or at least visit them

much less frequently), we can expend a little more time there to reap some benefits.

Leaf Cell Optimizations: Upon reaching a leaf node, I do one processing pass on the

triangles before performing any intersection tests. It is during this pass that I project the

triangles and split ones that don’t fully project to the image plane. Since each triangle vertex

only needs to be projected once per frame, I maintain a list of projected triangle vertices.

I mark triangles that are either backfacing or fully behind the beam’s near plane so that I

needn’t bother accessing them with later beams in the same frame. I also found that sorting

the triangles in the leaf nodes according to surface area, with larger triangles first, leads to

less splitting and better performance. I perform this sorting during the kd-tree build.

Mailboxing For Beams: Wald et al. [74] observe that while mailboxing often adds more

overhead than benefit for a ray tracer, it becomes increasingly valuable for ray bundles and

frusta. However, mailboxing is also more complicated for my beams since a triangle may

have been previously tested against the current beam or any of its parents. To deal with

this, I maintain a hierarchical mailboxing structure (I call it the Post Office) where each

node is just an integer pointing to its parent node. Each level of the Post Office represents

the new beams generated at a kd-tree leaf. Each beam contains its own mailbox ID, and

each triangle is marked with the current beam’s ID. The mailbox test checks whether the

triangle’s mailbox ID matches either the current beam’s ID or any of its parents’ IDs. It turns
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out that it is excessive to test every parent ID since it is much more likely that a triangle was

intersected with one of the 3 or 4 immediate parents of the current beam. I test against the

current beam and its 3 parents. Mailboxing gives us a speed improvement between 10% and

50%.

2.3 Beam Tracing Analysis–Primary Rays

I now study the performance of beam tracing for real-time primary visibility and point

lighting, which is very useful in understanding its overall performance characteristics. Those

readers more interested in my application to soft shadows are referred to Section 2.4.

For my beam tracer, I trace primary visibility, then send the hit beams to the GPU as

a list of quads for final rasterization. Since I send full area elements, I can render with 6×

antialiasing and shade with a general per-pixel programmable shader. These area elements

exactly represent the visible surface of the scene, most often with many fewer elements

than the total number of triangles in the scene. As such, even at 1024x1024 resolution with

antialiasing and per-pixel shading, the GPU portion of my algorithm uses almost negligible

time. By contrast, optimized ray-tracing techniques return point samples and can show as

much as 10%-33% overhead just for cosine shading [57]. To focus my comparisons on

visibility computation rather than shading, in this section I use only (antialiased) diffuse

shading and one light positioned at the camera.

I compare Beams to both my own optimized ray tracer (Rays, Section 2.3.1) as well as

MLRT [57] (Section 2.3.2), the fastest current method. I use MLRT’s kd-tree builder (with

settings tuned specifically for MLRT’s performance) for beam tracer, ray tracer, and MLRT

alike. I don’t use antialiasing for either my ray tracer or MLRT as this would slow down the

performance of those systems. All images are generated at 1024 × 1024 resolution on a 3.0

GHz Pentium 4 processor with 1.5 GB of memory and an ATI Radeon 9800 graphics card.



CHAPTER 2. BEAM TRACING FOR ANTIALIASING AND SOFT SHADOWS. 24

S cene
# T riangles
Thumbnail

Average Meas urements

E rw6
(816)

S oda Hall Conference Armadillo

Beams

Beams

R ays

Beams

R ays

Beams

R ays

Beams

R ays

MLR T

Beams

150 4,6021,536 25,647Visible Tris./Frame

KD Steps/Pixel

Intersections/Pixel

Hits/Pixel

Frames/Sec.

Visible Tris./Sec.

.0085 .13 .30 1.07

13.86 25.6742.36 46.46

.0033 .064 .48 .6

6.81 16.344.29 5.67

.95 .98 .91 .99

.00096 .0097 .027 .14

169.49

.99 .52 .52

1.72

.44

21.28 5.56

12.99 5.56 7.14 5.99

25,424 32,686 25,587 44,113

180 FPS 25 FPS 4 FPS 0.35 FPS

(2,195K) (282K) (345K)

Figure 2.5: Comparison of statistics for beams and my optimized ray tracer. The numerical
values are averages over a large number of views, all rendered with diffuse shading and a
single point light at the camera. (The fps numbers on the thumbnails on top correspond to

that particular view.)

2.3.1 Beams vs. Rays

Comparison Setup: I compare to my own optimized one-at-a-time ray tracer which uses

cache coherent data structures and optimized kd-tree traversal and triangle intersection.

While it doesn’t use ray bundles and frustum proxies, it is competitive with other fast one-

at-a-time ray tracers—I will verify this by comparing timings with MLRT in Section 2.3.3.

I also use this ray tracer later for my comparisons with secondary soft shadow rays in

Section 2.4.

The table in Figure 2.5 shows several statistics for both beams and rays on several scenes.

The values in the table represent averages taken over many viewpoints in the scene. The

number of kd-tree steps and intersection tests are the total for rendering a single frame,

divided by the image resolution (1024x1024).
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Performance Comparison: For the simplest scene (Erw6), my beam tracer performs

several orders of magnitude fewer kd steps and intersection tests leading to framerates well

into the hundreds. More impressively, beams achieve high framerates on the soda hall model

with over 2 million triangles. While my average framerate is about 21 FPS, it often stays in

the hundreds while on the inside.

Even for the highly tesselated conference model, beams perform one to two orders of

magnitude fewer kd steps and intersection tests, maintaining real-time performance. The

heavily tesselated Armadillo model is a worst case scenario for my beam tracer with many

small triangles which are often smaller than a pixel. Even so, this model shows that my

beam tracer is robust enough to handle even highly complex models.

Analysis: There is some worry that the beam splitting process could lead to exponentially

more beams than the number of visible triangles, leading to an exponential decay in perfor-

mance as we move to larger scenes. In Figure 2.6, I plot visible triangles versus hit beams to

show that this is not the case. The ratio of hit beams to visible triangles stays fairly constant

at around 5.5–6.5.

Figure 2.7 plots visible triangles per frame versus wall-clock time. Performance is

almost perfectly linear in the number of visible triangles (or hit beams), but is relatively

insensitive to absolute scene size. (The slope of the conference model graph is steeper

showing some connection to scene depth complexity.) Indeed, my beam tracer is faster on

the 2 million triangle soda hall model than on the 280K conference model. For soda hall,

only the first beam needs to walk all the way to the leaves of the kd-tree and the rest spend

most of their time at the leaves, which is where we want them to be.

2.3.2 Beams vs. MLRT

Comparison Setup: I now compare timings against MLRT [57], which is currently the

fastest known ray tracer. MLRT uses a frustum proxy mechanism to find deep kd-tree entry
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Figure 2.6: Number of visible triangles vs. number of hit beams, showing a simple linear
relationship. The data points correspond to different views.
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Figure 2.7: Number of visible triangles vs. seconds per frame. Running time is proportional
to the number of visible triangles for my beam tracer. Different data points correspond to

different views of the scenes.

points from which it sends 4x4 packets of rays.

To get closer to a direct algorithmic comparison, I set MLRT to use only one thread and

turn off quad generation (MLRT aggressively groups axis-aligned triangles into large quads

allowing the use of a greatly simplified intersection test). I believe beam tracing would

benefit equally from these two optimizations, and that the complexity in implementing them
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would be comparable. Image tiling for parallelization is as easy for beams as rays, and

MLRT needs to implement the quad optimizations for multiple ray types (frusta, 4x4 packets,

4x1 packets, etc.) whereas I deal only with beams. I summarize how these optimizations

affect MLRT’s performance in Figure 2.8.

Timing comparisons are shown at the bottom of Figure 2.5. Note that these are averages

over many views as usual. (They are similar but not exactly the same as in Figure 2.8, since

the latter were taken from rendering a single view, to enable easier comparison to published

MLRT results.) I wasn’t able to measure the number of kd steps and intersection tests for

MLRT, but it is possible to estimate these numbers by taking my ray tracer’s measurements

(Figure 2.5), and adjusting them downward to account for the known improvement MLRT

provides. Specifically, to estimate MLRT’s kd steps, divide my ray tracer’s measurements in

Figure 2.5 by about 10, and for the intersection tests, divide by about 4. This gives a fairly

accurate estimate, agreeing with MLRT’s published results. Since MLRT traces four rays at

a time, the number of intersection tests and kd steps should be divided by 3 or 4. Beyond

this, the kd steps should be further divided by 2.5 - 3.5 to account for MLRT’s frustum

traversal. These adjustment factors are taken from Reshetov et al. [57].

Performance Comparison: From Figure 2.5, I am over an order of magnitude faster than

MLRT for Erw6. My most impressive result is on soda hall, where I am 4× faster. The

absolute size of the model slows MLRT down in the kd-tree’s inner nodes, while my beams

keep to the leaves. While speed is comparable to MLRT for the highly tesselated conference

model, I still perform an order of magnitude fewer kd-steps and intersection tests. I perform

fewer such tests even on the armadillo where the beam tracer is slower.

Point Light Hard Shadows: The true power of the ray tracing body of algorithms is high

quality secondary effects such as shadows. However, gathering the primary pixels into large

enough coherent groups for either ray packets or frustum proxies to be efficient is a difficult

task. For my beam tracer, I simply connect my primary hit beams, which often contain
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Figure 2.8: Impact of multi-threading, quad optimizations, shading and rendering on MLRT.
The timings were taken from rendering a single view. To make a fair algorithmic

comparison for rendering and displaying diffuse shaded images, I consider the last line for
my tests.

10s to 1000s of pixels, to the point source with another beam. When I trace this beam,

the resulting hit list represents obstructed portions of the beam, while the miss list is fully

unobstructed.

The images in Figure 2.9 were rendered with my beam tracer at 1024x1024 inside

the soda hall model at 21 FPS. MLRT renders this view at only 5 FPS. The left image

shows the beam tracer’s high quality shadows, while the right image shows the beams

which created it—notice that the beam tracer produces a perfect shadow cut-out for high

quality antialiasing. I display a close-up of the yellow highlighted region for both beam

tracing and MLRT in Figure 2.10. The MLRT image (right) clearly shows jagged object and

shadow edges along with spurious black pixels. The beam tracer’s image is rendered with

6× antialiasing with almost no performance penalty.

2.3.3 Rays vs. MLRT

Before moving on to soft shadows, I take a moment to compare MLRT to my own ray tracer,

since I use the latter for comparisons in Section 2.4. From the bottom of Figure 2.5, MLRT

is consistently about 10×–14× faster. This is as expected since both ray packets and frustum

traversal introduce a multiplicative factor of about 3–3.5 each, and MLRT is also strongly

optimized for memory efficiency.

I therefore conclude that my ray-tracer is quite well optimized for a one-at-a-time tracer.
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21FPS

Anti-aliased Point Light Shadows Wireframe Beams

Figure 2.9: Real-time antialiased point light shadows. (Left) This image was rendered at 21
frames per second at 1024x1024 resolution with 6× antialiasing inside the 2 million triangle

soda hall model. (Right) The wireframe beams which generated the top-left image: all
geometry and shadows are cut out exactly providing for high-quality antialiasing

(Figure 2.10).

Beam Tracing (Anti-aliased) MLRT (Aliased)

Figure 2.10: (Left) close-up of highlighted region from Figure 2.9. I render with 6×
antialiasing with almost no performance penalty. (Right) same region with MLRT clearly

displaying jagged edges and spurious black pixels.

Moreover, MLRT’s speedups are specific to primary visibility. It is unclear as to how these

methods perform for secondary effects like area lighting, and it is expected that the speedup

will be much smaller (a brief discussion of the arguments for this are given in Section 2.5.1).

Therefore, I use my heavily optimized ray tracer as the comparison method in Section 2.5.

2.4 Soft Shadows

I now describe the main application of my beam tracer, to efficiently compute accurate soft

shadows. To compute soft shadows from an area source, we need to solve the area lighting
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equation

B(x, ωo) =

∫
A

V(x,p)L(ωi)ρ(ωi, ωo) cos θi cos θl dp, (2.1)

which gives the exitant radiance at a point x. V(x,p) is the visibility from x to a point on the

light p, and ρ(ωi, ωo) is the BRDF. θl is the angle made by the incoming ray with the surface

normal at the light, and we integrate over the area A of the light source.

The most difficult part of solving this equation is the determination of the visibility

V(x,p), between each image point and all points on the light source, and this is where beam

tracing can be most useful. For a simple triangle or square light source, I simply create a

beam whose apex is the image point and base is a triangle or quad of the light source (See

Figure 2.1 (bottom)).

After shooting the beam, the beam trace’s hit list represents obstructed polygons on

the light source while the miss list is visible polygons on the light source. There are two

options for calculating the irradiance from the visible portion of the light. We can add up

the contribution from each of the polygons in the miss list, or first calculate the lighting as if

the entire light were visible and subtract the contribution of the polygons in the hit list. Both

methods are equivalent, and I choose one based on which list is smaller.

For simplicity of comparisons in Section 2.5, I integrate the lighting using the common

approximation also used by Soler and Sillion [63] and Agrawala et al. [1]. I modulate the

irradiance of a point source at the center of the light with the fractional visibility of the

entire area light. This allows us to pull the lighting and BRDF terms as constants outside

the integral and focus on visibility,

B(x, ωo) = Lρ(ωi, ωo) cos θi cos θl

∫
A

V(x,p)dp, (2.2)

Note that this still requires integrating over the entire visibility function to find the average

attenuation of the area light source.

It is also possible to integrate the lighting exactly using either Hart et al.’s method [29]
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Figure 2.11: Beam tracing vs. ray tracing. Beam tracing (center row) provides an exact
lighting solution in seconds. Ray tracing requires 256 samples or shadow rays (bottom) to
reduce noise within tolerance. Attempting to ray trace with few enough samples to match

the speed of beam tracing (top) leads to severe noise. All images are rendered at a
resolution of 512 × 512 pixels.

for Lambertian surfaces or Arvo’s [4] for specular. However, I found that equation 2.2

works well for small area lights with diffuse objects. It also reduces noise in the ray tracing

comparison method by removing the samples’ shading dependence on light location.

2.5 Results

Comparison Setup: To render an area lit image, I first need to trace primary visibility for

which I use my ray tracer. All timings include time to cast primary rays, as well as shadow

casting and calculation. All tests were run on a PC with a 3.0 GHz Pentium 4 processor, 1.5
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GB RAM, and an image resolution of 512x512 (for soft shadows, timings for both beams

and rays scale linearly with image resolution, and their ratio remains relatively unchanged).

My beam tracer consistently produces noise-free results regardless of scene complexity

and sample density so it is difficult to directly compare to ray traced solutions. I do so here

to provide a context to measure performance. As such, determining the correct number of

samples and sampling strategy for “comparable quality” results is somewhat arbitrary. I

use 256 samples on a jittered grid as this is often considered the minimum requirement to

produce reasonable quality soft shadows.

I compare to my own optimized ray tracer. As demonstrated in Section 2.3.3, it is well

optimized for a one-at-a-time ray tracer. I do not use MLRT because it does not provide a

suitable area lighting implementation. Besides, as described in Section 2.5.1, it is unclear

whether it would provide significant benefits. Since I seek to study the effectiveness of

secondary visibility determination, I use Lambertian materials and a single square light in

all comparisons. I use my own kd-tree builder (with the same tree for beams and rays) for

all scenes except soda hall. It is constructed using the most basic form of the surface area

heuristic construction algorithm as described in Havran’s thesis [31], and the nodes use a

cache optimized layout as in Wald et al. [76].

Scenes: The plant scene has 5245 triangle faces. Almost every edge is a silhouette edge

making it difficult for edge based methods such as Laine et al. [40] and Lehtinen et al. [41].

The soda hall model, with well over 2 million triangles, would require occlusion culling in

order for these methods to handle this scene efficiently. The Sponza Atrium (76154 triangles)

and conference (282801 triangles) represent mid to large sized scenes. The light source size

and camera viewpoint were selected to show interesting configurations for generating soft

shadows.

Image Comparison: Figure 2.11 compares image quality and wall clock time using my

beam tracer vs. ray tracing. The center row, generated using the beam tracer, serves as the
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Figure 2.12: Beam tracing performance for soft shadows. I show several statistics for
generating the images in Figure 2.11. I compare the performance of my beam tracer with
my ray tracer (the latter with 256 shadow rays). The beam tracer uses significantly less kd

steps and intersection tests leading to at least an order of magnitude improvement.

reference result since I always obtain an exact solution for the visibility. A minimum of 256

shadow rays, bottom row, are required to reduce noise to acceptable levels. As can be seen

in all examples in the top row, reducing the sample count leads to severe noise. For the plant

image, I also include a close-up without jittering, to show alternative banding artifacts—the

noise from jittering is generally considered less disturbing than banding. In these examples,

the beam tracer achieves a 10×–40× improvement over ray tracing for “comparable” image

quality.

Quantitative Comparison: Figure 2.12 shows several statistics for beam tracing and ray

tracing (with 256 shadow rays). I divide all statistics by the image resolution (512x512) to

give per pixel measurements. I also include the number of visible triangles seen from each

pixel by my beam tracer for the shadow beams, since the number of visible triangles was

identified as a primary scene component relating to my performance in Section 2.3.

I am clearly operating well into the region where beam tracing offers its greatest impact.

With an average of less than ten visible triangles from each pixel for these scenes, my beam

tracer can operate on hundreds of thousands of image pixels per second with high accuracy.
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Figure 2.13: Beam tracing scalability with light source size. The beam tracer’s results are
nearly linear in the light source size.

Also note that secondary beams are able to process many more triangles per second than

primary beams (compare visible triangles per second in Figs. 2.5 and 2.12). Recall that for

primary visibility, the number of hit beams was about 6× the number of visible triangles

(Figure 2.6). This is no longer the case for secondary visibility. It is around 2 and often

less. This is because we no longer care about the nearest hit, but rather any hit between the

primary hit point and the light source. Since the triangles are sorted by size within the leaves,

I can directly conclude much larger light source areas as occluded. This constant is a key for

measuring beam splitting efficiency, and it is clear that beams are particularly efficient for

secondary visibility. So, while rays benefit from fewer rays and a first hit criterion, I benefit

even more by being able to quickly eliminate more of the light source.

Light Source Area vs. Time: Figure 2.13 shows light source area versus wall clock

performance using my beam tracing method in the sponza scene. Even the smallest light

source in the figure generates a visible penumbra region, requiring many rays to trace

accurately in a ray tracer. My results are nearly linear in the light source size. (It is difficult
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to compare this graph to the behavior of other shadow algorithms with light source size,

since most previous work does not report this vital statistic.)

Note that my ray tracer renders these images in around 94-98 seconds with 256 shadow

rays, so even for a large light source, the beam tracer is more than 2× faster. Note also that

as the light source size (and penumbra region) grows, more shadow rays than 256 would

likely be needed to achieve the same level of accuracy with jittering, or reduce banding

artifacts without jittering. On the other hand, the beam tracer always produces exact results,

never needing to point sample the light source.

2.5.1 Comparison to Other Methods and Limitations

MLRT: Although results on MLRT applied to area lighting haven’t been published, it

is easy to envision a simple extension of it. While I showed that MLRT can be 10×–14×

faster than my ray tracer for primary visibility, I don’t believe it would be as efficient for

soft shadows. When calculating primary visibility, I am dealing with hundreds of thousands

to millions of samples where MLRT’s frustum proxies can accelerate much larger (32x32 –

128x128) groups of rays deep into the kd-tree. With only 16x16 rays, it is hard to imagine

getting much more than the 3×–4× provided by tracing 4-ray packets, not the 10×–40×

improvement that I demonstrate.

Limitations: My method takes advantage of all geometric coherence available leading to

fast render times when the triangles are large relative to the sample resolution. Unfortunately,

this can also become a problem when there is little geometric coherence. If the scene is

highly tesselated, i.e. if the visible triangles to sample density ratio is high enough (such

as scenes with millions of visible triangles), standard Monte-Carlo ray tracing or the soft

shadow volume method in Lehtinen et al. [41] may provide faster results, but cannot

guarantee the same quality since I produce exact shadows without noise. Also, sampling

based methods can handle more general situations (textured light sources, complex BRDFs,
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...).

In practice, level of detail could be used (and my approach gives it even greater impor-

tance) to avoid scenes where triangles are small relative to the required sample density. This

presents an application specific choice: to ray trace with reduced sampling density or beam

trace with reduced geometric detail. In the future, I plan to evaluate LOD methods, and

some approaches for falling back on standard ray tracing when the beam’s cross-section

gets too small or for evaluating more complex materials and/or lights.

2.6 Conclusions and Future Work

I have introduced a new beam tracing algorithm, making this historically slow method

competitive with the fastest ray tracers for determining primary visibility for scenes with

moderate complexity. Using this beam tracer, I compute exact and noise-free soft shadows

in a matter of seconds.

I have only begun to optimize my beam tracing implementation. The results in Figure 2.5

give us hope that beam tracing will eventually be faster than the best ray tracing methods for

all scenes except those for which the triangle size is close to sampling density.

Instead of only exploiting angular coherence from each pixel for soft shadow generation,

I would also like to exploit image space coherence. I have already started exploring

connecting the area light source and the image space area elements by specific beams, to

exactly determine visibility obstructions between the two. The result is a discontinuity

mesh relating the light source and the visible triangles. This intuitively extends to global

illumination.

Beam tracing has the potential to efficiently create a variety of high quality visual effects,

beyond soft shadows. Generating specular reflections and caustics is one promising direction.

In fact, the work of Liu et al. [43], developed concurrently with mine, extends beams to

nonlinear reflection and refraction transformations. Caustics often require millions of rays
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to get a sampling density high enough to remove noise from the image. Just as for soft

shadows, beams may be relatively insensitive to this problem.

Beam tracing has largely been ignored by the rendering community recently due to its

perceived poor performance characteristics. My work proves that this perception is largely

undeserved, and I have only provided a peek into the true potential for high speed beam

tracing. I hope this work encourages more attention in this promising direction.



Chapter 3

Large Ray Packets for Real-time

Whitted Ray Tracing

While a beam tracer is a powerful tool for many scenes, a ray tracer is still preferred for

more general rendering problems. As shown in Chapter 2, beam tracing may be slow when

there are very many small geometric primitives. Moreover, certain light transport effects –

such as refractions and reflections from curved surfaces – generate non-linear ray volumes,

which are difficult for a beam tracer. In these cases, it may be necessary fall back to a ray

tracer.

In order to take advantage of coherence with rays instead of beams, current research

suggests to use bundles of coherent rays, called ray packets. Recent approaches, such as

Reshetov et al. [57], Wald et al. 2006 [74], and Wald et al. 2007 [72], allow algorithmic

amortization across large packets of 16–256 rays by using new algorithms for scene traversal

and bounding frusta to cull away expensive per-ray operations.

In this chapter, I aim to employ large ray packet algorithms to achieve real-time Whitted

ray tracing, but ray coherence is much less reliable in this domain. Beyond primary visi-

bility, Whitted ray tracing requires secondary rays for point-light shadows, reflections, and

refractions. According to Mansson et al. [45], ray coherence degrades for these secondary

38
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Masked Traversal Ranged Traversal Partition Traversal FrustumCulling

Introduced
By

[76] [72] New Primary+Shadows: [72]
Reflections+Refractions: New

Ray Packet
Size

Only good for up to 4×
4 packets.

Usually best for up to
8×8 packets and some-
times 16 × 16.

Good for all packet
sizes.

Benefits tend to increase with
packet size.

Scene
Complexity

Only good for simple
scenes.

Best for simple to mod-
erate scenes.

Best for complex
scenes.

Benefits decrease with scene
complexity.

Ray
Recursion
Complexity

Bad for secondary ef-
fects.

Best for primary and
shadow rays. Okay for
low recursion. Bad for
deep recursion.

Best for deep reflec-
tions and refractions.

Up to 2× performance benefit
for primary and shadow rays and
1.2×–1.3× for reflections and re-
fractions.

Summary Superseded by Ranged
and Partition traversal.

Best for packet sizes
≤ 8 × 8, simple to
moderate scenes, and
moderate ray recursion
complexity.

Best for large packet
sizes ≥ 16 × 16, com-
plex scenes, and high
recursion complexity.

Best for primary rays and shadow
rays. Helpful for reflection and re-
fraction rays.

Table 3.1: Conclusions from the study of large ray packet algorithms in Section 3.4.

effects, and I expect a corresponding drop in performance for large ray packet algorithms.

I study the two fundamental approaches for accelerating large ray packets: ray packet

acceleration structure traversal algorithms and frustum culling. In Section 3.2, I will describe

two old algorithms for traversing a Bounding Volume Hierarchy (BVH) as well as one new

one. I call the two existing algorithms Masked traversal (introduced by Wald et al. 2001 [76]

and used in Reshetov et al. [57]) and Ranged traversal (introduced by Wald et al. 2007 [72]).

I introduce a new algorithm called Partition traversal which is robust to degradation in ray

coherence. In Section 3.3, I review methods to generate frustum bounds around primary and

shadow rays and introduce a new method to create frustum bounds around reflection and

refraction rays. I believe this is the first published work to demonstrate frustum culling for

reflections and refractions in a ray packet tracer.

In Section 3.4, I examine how the large ray packet algorithms for acceleration structure

traversal and frustum culling respond to changing the three primary variables which affect

ray casting performance: ray packet size, scene complexity, and ray recursion complexity.

Larger ray packets provide more opportunity for algorithmic amortization, but can also lead

to greater divergence during scene traversal. Scene complexity involves a combination of the

gross number of scene triangles, relative triangle sizes and distribution, and surface variations.

Ray recursion complexity is the degradation in ray coherence caused by secondary rays and
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Toasters
(11,141 Triangles)

Fairy
(172,669 Triangles)

6.7 FPS11.8 FPS

BART Museum
(10,384 Triangles)

BART Kitchen
(110,561 Triangles)

8.5 FPS 4 FPS

Figure 3.1: Real-time Whitted ray tracing on a single, affordable workstation is now
possible. All images were rendered at 1024 × 1024 on a dual quad-core system (8 cores

total) with 2.0 GHz Intel Xeon processors.

increases from primary rays to shadow rays to refraction rays to reflection rays and also

increases with the depth of reflection and refraction recursion. I summarize my conclusions

in Table 3.1.

Based on the results of Section 3.4, Section 3.5 combines the best algorithms to create

my fully real-time Whitted ray tracing system which consistently provides performance

benefits of 3×–6× over 2 × 2 SIMD ray packets (see Table 3.2). With affordable multi-core

CPU technology multiplying almost another order of magnitude, real-time Whitted ray

tracing on commodity hardware using a single workstation is now fully realized. The images

in Figure 3.1 were all generated with my system. From left to right, the first image has a

reflective floor and point-light shadows and runs at 11.8 FPS. The fairy in the second image

has refractive wings. Her eyes and the gold and jeweled components on her wand as well as

the forest floor all reflect the scene. Even on this complex scene, I achieve 6.7 FPS. The

frame from the BART museum in the third image is an example of deep reflections using 3

bounces of reflection at 8.5 FPS. Lastly, the frame from the kitchen scene at the far right

puts it all together, using 1-bounce reflections, 4-deep refractions, and point-light shadows

at an interactive rate of 4 FPS.
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3.1 Background

I introduce the algorithms I will be studying in Sections 3.2 and 3.3. First, I review previous

work and provide some background for understanding large ray packet algorithms.

3.1.1 SIMD Ray Packets

SIMD ray packets were first used by Wald et al. 2001 [76] and allow 4 rays to traverse

the scene as if they were one by taking advantage of the Single Instruction Multiple Data

units available on modern CPUs. 4-wide SIMD ray packets consistently provide a 2×–3×

performance improvement over single rays.

In my system, I use 2 × 2 SIMD ray packets as my smallest ray primitive and will refer

to a 2 × 2 ray packet as an individual SIMD ray to emphasize this fact.

3.1.2 Large Ray Packets

The work of Wald et al. 2001 [76] also demonstrates that tracing multiple rays together

offers benefits beyond the extra floating point computation performance afforded by SIMD.

Indeed larger ray packets of n × n with n = 8 or n = 16 provide up to an order of magnitude

improvement over SIMD rays when used for primary visibility. However, the acceleration

structure traversal algorithms must change in order to allow for such large packets.

Large ray packets have been demonstrated on kd-trees [57], grids [74], and BVHs [72].

See the recent STAR report [75] for an overview of the build and traversal algorithms for

these structures and others. My work focuses on BVHs because they currently exhibit the

best combination of build and ray casting performance. However, traversal and frustum

culling algorithms are similar between structures, and I believe my results can benefit these

other structures as well.

All of these works and their performance numbers target primary visibility, treating point-

light shadows as an added bonus. None of them provide in-depth performance comparisons
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for ray traced reflections or refractions.

3.1.3 Frustum Bounds for Ray Packets

Tight bounding frusta around coherent ray packets can cull away many ray–Axis-Aligned

Bounding Box (AABB) and ray–triangle intersection queries. Frustum culling has been

demonstrated for primary rays in Reshetov et al. [57] and for both primary rays and point-

light shadows in Wald et al. 2006 [74] and Wald et al. 2007 [72]. To my knowledge, mine is

the first ray tracer to use frustum culling for reflection and refraction rays.

3.1.4 Whitted Ray Tracing using Ray Packets

I know of two other works which apply large ray packets to Whitted ray traced effects: Bou-

los et al. [9] and Mansson et al. [45]. Boulos et al. [9] only study the singular combination

of traversal and culling algorithms used in Wald et al. 2007 [72]. Mansson et al. [45] restrict

their study to 4 × 4 ray packets using only the traversal algorithm from Reshetov et al. [57].

I explore a broader range of traversal and culling algorithms and up to 32 × 32 packets.

Both works demonstrate a 2×–3× hardware performance benefit by using SIMD rays.

Boulos et al. [9] only achieve about a 1.5× performance benefit by using large ray packets

of 8 × 8–16 × 16 over SIMD rays in a Whitted ray tracer. My analysis in Section 3.4

demonstrates that their traversal algorithm can be significantly slower for some scenes when

using multiple bounce reflections and refractions. Moreover, I often see 3×–6× performance

benefits when using my combination of large ray packet traversal and culling algorithms

over SIMD rays.

Mansson et al. [45] explore the possibility of regrouping rays based on various measures

of coherence. Their results demonstrate that it is difficult to impossible to efficiently collect

more ray coherence beyond what is provided by the image raster. As such, I always group

ray packets into n×n groups as determined by the screen space coordinates of their ancestral

camera rays.
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3.2 Traversal Algorithms for Large Ray Packets

In this section, I introduce the large ray packet BVH traversal algorithms that I will compare

in Section 3.4. I review two existing algorithms, Masked traversal in Subsection 3.2.1 and

Ranged traversal in Subsection 3.2.2, and introduce my new algorithm, Partition traversal,

in Subsection 3.2.3. Appendix B is provided as a supplement to this section and provides

expanded pseudocode for the Ranged and Partition traversal algorithms.

In the descriptions that follow, I use R = (r0, r1, r2, ..., rn) to denote the set of all SIMD

rays in the large ray packet. Using an index i, I can retrieve the ith ray: R[i] == ri. I also

differentiate between the concepts of a ray being active and alive. At any step in the BVH

traversal, a ray is active if the ray traversal algorithm assumes that the ray overlaps the cell’s

AABB. A ray is alive if it actually does overlap the AABB. All active rays are tested against

the triangles at the BVH leaves whether or not they are alive.

3.2.1 Masked Traversal

I call the first large ray packet algorithm Masked traversal because it uses an array of boolean

values to mask out dead rays at the BVH leaves. It is the first and simplest large ray packet

algorithm used by Wald et al. 2001 [76] and Reshetov et al. [57] for traversing kd-trees.

The pseudo-code for Masked traversal in Figure 3.2 provides a basis for introducing all

of the large ray packet algorithms in this Section. At each step, all rays are tested against the

current cell. If any ray hits at line 10, then all rays continue through the tree together. At a

leaf cell, lines 21– 27, I check if the bounding frustum culls the triangle at line 24, and if

not, all alive (unmasked) rays are tested against the triangle. This algorithm can have many

extra ray–AABB tests especially deep in the tree.
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1: // Traverse a Ray packet, R, through theBVH
2: void traverseBVH( Rays R, Frustum F, BVH theBVH )
3: BVHCell curCell = theBVH.root;
4: Stack<StackNode> traversalStack;
5: bool rayMasks[size( R )];
6: while ( true )
7: bool anyHit = false ;
8: if ( frustumIntersectsAABB( F, curCell.AABB() ))
9: for ( Index i=0; i < size( R ); ++i )
10: rayMasks[i] = rayIntersectsAABB( R[i], curCell.AABB() ))
11: if ( rayMasks[i] )
12: anyHit = true ;
13: if ( isInner( curCell )) break ;
14: if ( anyHit )
15: if ( isInner( curCell ))
16: StackNode node;
17: node.cell = curCell.farChild( R );
18: traversalStack.pushBack( node );
19: curCell = curCell.nearChild( R );
20: continue ;
21: else // isLeaf( curCell ) == true
22: Triangles T = curCell.triangles();
23: for ( Index j = 0; j < size( T ); ++ j )
24: if ( frustumIntersectsTriangle( F, T [ j] ))
25: for ( Index i = 0; i < size( R ); ++i )
26: if ( rayMasks[i] )
27: rayIntersectTriangle( R[i], T [ j] );
28: // END if ( anyHit )
29: if ( traversalStack.empty() )
30: break ;
31: StackNode node = traversalStack.pop();
32: curCell = node.cell;
33: // END while ( true )...
34:// END void traverseBVH(...

Figure 3.2: Pseudo-code for Masked BVH traversal.
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3.2.2 Ranged Traversal

Ranged traversal, introduced for use with BVHs in Wald et al. 2007 [72], attempts to avoid

many of the ray–AABB tests in Masked traversal by tracking the first alive SIMD ray in

R. Let ia be the index to that SIMD ray. At a BVH cell, I find ia using the getFirstHit()

function:

Index getFirstHit( Rays R, Frustum F, AABB B, Index ia )

if ( rayIntersectsAABB( R[ia], B )) return ia;

if ( !frustumIntersectsAABB( F, B )) return size( R );

for ( Index i = ia + 1; i < size( R ); ++i )

if ( rayIntersectsAABB( R[i], B ))

return i;

return size( R );

A call to getFirstHit() replaces the AABB tests on lines 8– 13 in Figure 3.2.

I track ia by adding it to the traversal stack’s nodes:

struct StackNode

BVHCell cell;

Index ia; // Index to the first alive ray

At the BVH leaves, I perform the reverse operation and find ie, the index to the last alive

ray in R:

Index getLastHit( Rays R, AABB B, Index ia )

for ( Index ie = size( R )-1; ie > ia; ---ie )

if ( rayIntersectsAABB( R[I[ie]], B ))

return ie + 1;
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return ia + 1;

I place a call to getLastHit() right after line 21 in Figure 3.2. All rays in the interval [ia,ie)

are active and are tested against the triangles in the leaf cell.

By tracking ia and finding ie at the leaves, I avoid many ray–AABB intersection tests at

the inner cells, but add more ray–triangle intersections at the leaves. For coherent rays, this

is acceptable and is a large improvement over Masked, but Ranged traversal can still end up

with many extra active rays deep in the BVH leading to potential overhead.

3.2.3 Partition Traversal

My new traversal algorithm, which I call Partition traversal, partitions the rays into strictly

alive and dead subsets. My approach is similar to the algorithm in Wald et al. 2007 [73], who

aim to increase SIMD utilization for wide (> 4) SIMD units. Distinct from their method,

my algorithm is real-time, using an efficient approach to filter out dead rays, and treats the

SIMD ray as the smallest ray primitive.

I maintain a separate set of SIMD ray indices, I = (i0, i1, i2, ..., in) with n = size(R). This

list is initialized to I = (0, 1, 2, ..., n) at the start of traversal, and instead of tracking the

first active SIMD ray as I did in Ranged traversal, I use ia to track one past the last active

SIMD ray. I filter out SIMD rays which miss the current BVH cell’s AABB with a call to

partRays():

1: Index partRays( Rays R, Frustum F, AABB B, Indices I, Index ia )

2: if ( !frustumIntersectsAABB( F, B )) return size( R );

3: Index ie = 0 ;

4: for ( Index i = 0; i < ia; ++i )

5: if ( rayIntersectsAABB( R[I[i]], B ))

6: swap( I[ie++], I[i] );
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7: return ie;

A call to partRays() replaces the AABB tests on lines 8– 13 in Figure 3.2.

partRays() performs the frustum–AABB test first, then loops through the indices in I,

testing each indexed SIMD ray against the cell’s AABB. By swapping the elements in I

and incrementing ie at line 6, I is split in-place into two subsets with the indices to the alive

SIMD rays in front of ie. By the end of partRays(), ie is one past the index to the last alive

SIMD ray, and the rest of the SIMD rays indexed by I[ie: size(I)-1] are inactive.

I store the result of partRays() in ia, and, just as for Ranged traversal, I need to add only

this one integer to the traversal stack’s nodes. As the ray packet traverses down the tree,

the list of alive rays gets smaller. As it pops back up the tree, the SIMD ray ids in I will be

re-ordered, but ia will still point to the end of the alive SIMD ray indices.

In order to test only the alive rays against the triangles at the BVH leaves, I replace the

more expensive mask branches in the the loop at lines 25– 27 in Figure 3.2 with a simple

indirection:

22: for ( Index i = 0; i < ia; ++i )

23: rayIntersectTriangle( R[I[i]], T [ j] );

Partition traversal is designed to gracefully handle degradation in ray coherence, and

there is nothing limiting the ray packet’s size beyond memory bandwidth. However, if the

rays in R are truly coherent, then Ranged traversal may avoid more ray–AABB intersection

tests.

3.3 Frustum Bounds for Large Ray Packets

In this section, I first review frustum culling basics, and then describe the construction of tight

bounding frusta for primary rays in Subsection 3.3.1 and shadow rays in Subsection 3.3.2. I
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end with my new approach for bounding reflection and refraction rays in Subsection 3.3.3.

A bounding frustum culls AABBs and triangles using either its 4 bounding corner rays,

its 4 side planes, or both. The corner rays cull a triangle when all 4 rays lie outside of the

same triangle edge, and they cull an AABB if all 4 rays are separated by the same slab (see

Reshetal et al. [57] and Reshetov [56]).

The side planes cull any convex polyhedron (either a triangle or AABB) when all of the

polyhedron’s vertices lie outside of the same side plane. Let ~ni and bi with 0 ≤ i < 4 be

the plane normals and offsets for the 4 bounding frustum plane equations, and let pk be the

polyhedron’s vertices, then:

Hi = ~ni · ~pk − bi. (3.1)

If Hi > 0 then pk is outside the plane defined by (~ni, bi), and if all pk are outside the same

plane, then this plane culls the polyhedron. Reshetov et al. [57] show a version of this test

optimized for AABBs using SSE instructions.

Given 4 corner rays, I find the frustum’s side planes. Let ~oi and ~di with 0 ≤ i < 4 be the

corner rays’ origins and directions respectively, then:

~ni = ~di × ~d(i+1)%4 (3.2)

bi = ~oi · ~ni (3.3)

3.3.1 Frustum Bounds for Primary Rays

The task of generating a bounding frustum starts with finding the frustum’s 4 corner rays.

For primary rays through a pinhole camera, the corner rays are simply the rays at the corners

of the n × n ray packet, and the frustum planes are retrieved directly from Equations 3.2

and 3.3.
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Reflection Rays’ 
Bounding Corner Rays

Shadow Rays’ 
Bounding Corner Rays

Figure 3.3: Finding bounding frustum corner rays for point-light shadow rays (left) and
reflection rays (right).

3.3.2 Frustum Bounds for Point-Light Shadow Rays

For shadow rays, the 4 corner rays defined by the raster are no longer guaranteed to bound

the ray volume. Instead, I use an alternate approach as described by Boulos et al. [11] and

illustrate this method on the left of Figure 3.3.

I first choose a dominant axis for the ray directions which I call k̂. I use the sum

~ds =
∑n×n

i
~di and take the axis of the max component: k̂ = AxisO f (max(ds

x, d
s
y, d

s
z )). Let

the other two axes be û and v̂. I place an imaginary plane orthogonal to k̂ at a distance of

1 in front of the rays’ origin. This plane is the vertical dashed line in Figure 3.3. I find

the (u, v)–coordinates of the intersection between the ray and the plane which are simply

(u = dud−1
k , v = dvd−1

k ) (I multiply by d−1
k instead of dividing by dk to emphasize the fact that

d−1
k is usually precomputed for each ray for efficient BVH traversal).

Let umin and umax be the minimum and maximum u–coordinates, and accordingly vmin

and vmax the minimum and maximum v–coordinates. The (u, v)–coordinates of directions of

the bounding corner rays will then be (umin, vmin), (umax, vmin), (umax, vmax), and (umin, vmax),

with a 1 or −1 for the k–coordinate, and the origin for all 4 corner rays is simply the location

of the point-light. Both the computation of the frustum planes in Equations 3.2 and 3.3

as well as the frustum–AABB and frustum–triangle culling tests based on Equation 3.1
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simplify given that the k–coordinate will be 1 or −1, and the common (u, v) values between

the neighboring corner ray directions. See Boulos et al. [11] for details.

3.3.3 Frustum Bounds for Reflections and Refractions

The approach in Subsection 3.3.2 only works for rays that meet at a point and so doesn’t

apply to reflection or refraction rays. Here I introduce a new method which extends to

general ray packets, and illustrate my algorithm on the right of Figure 3.3 which shows

reflection rays bouncing off of a curved surface.

I start by choosing a dominant axis, k̂, exactly as I did in Subsection 3.3.2, but this time,

instead of a single imaginary plane, I pick two planes. In order to provide conservative

bounds, these planes must bound the paths of all rays in the packet. Therefore, I choose a

far plane at k f ar from the scene’s AABB in the +k̂ direction and a near plane at knear in the

−k̂ direction from the AABB bounding the ray origins. I then find the (u, v)–coordinates of

the rays’ intersections with both planes, resulting in the intervals [unear
min , u

near
max ], [vnear

min , v
near
max ] at

knear and [u f ar
min, u

f ar
max], [v f ar

min, v
f ar
max] at k f ar.

The corner ray origins are the extremal intersection points with the near plane: (unear
min , v

near
min , k

near),

(unear
max , v

near
min , k

near), (unear
max , v

near
max , k

near), and (unear
min , v

near
max , k

near). The corner ray directions are the

difference between the extremal intersection points with the far plane and these origins.

As in Subsection 3.3.2, the frustum planes come from the corner rays using simplified

versions of Equations 3.2 and 3.3, and the culling tests are based on simplified extensions of

Equation 3.1. My algorithm generates frusta with equivalent characteristics to the frusta used

by Reshetov [56] to cull triangles at acceleration structure leaf cells. See Reshetov [56] for

details on optimizing construction and intersection tests using this form of frustum bounds.
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Figure 3.4: The scenes used for evaluating the traversal algorithms from Section 3.2 and the
frustum culling algorithms from Section 3.3. All images were rendered at 1024 × 1024.

3.4 Results–Comparison

In this Section, I analyze the performance characteristics of the ray packet traversal algo-

rithms from Section 3.2 and frustum culling algorithms using frusta generated by the methods

from Section 3.3. I first give an overview of the comparison setup in Subsection 3.4.1, I

then study traversal algorithms in Subsection 3.4.2 and frustum culling in Subsection 3.4.3.

I examine how these algorithms respond to changes in scene complexity, ray recursion

complexity, and ray packet size and summarize the results in Subsection 3.4.4. I use the best

combination of algorithms to create my real-time Whitted ray tracer in Section 3.5.

3.4.1 Comparison Setup

Hardware Configuration: All tests in this Section (except where otherwise noted) gener-

ate images at 1024 × 1024 resolution on a dual quad-core system (for a total of eight cores)

with 2.0GHz Intel Xeon processors. While faster processors and more cores are available,

my system is an example of an affordable hardware package. As of the time of writing this

chapter, such a system was commonly available for around $2000. The timings include all



CHAPTER 3. LARGE RAY PACKETS FOR WHITTED RAY TRACING. 52

0
20
40
60
80

100

4x48x8 16x16 32x32 0
50

100
150
200
250

0

50

100

150

200
4x48x8 16x16 32x32

4x48x8 16x16 32x32

0

50

100

150

200

0

100

200

300

400
4x48x8 16x16 32x32

0

100

200

300

400

4x48x8 16x16 32x32

4x48x8 16x16 32x32

0
100
200
300
400
500

0

200

400

600

4x48x8 16x16 32x32 4x48x8 16x16 32x32

0
100
200
300
400
500

0
50

100
150
200
250

4x48x8 16x16 32x32

0

500

1000

1500

4x48x8 16x16 32x32

4x48x8 16x16 32x320

200

400

600
0

500

1000

1500

2000

0
100
200
300
400
500

4x48x8 16x16 32x32

0

500

1000

1500

2000
4x48x8 16x16 32x32

4x48x8 16x16 32x32

0

1000

2000

3000

4000
4x48x8 16x16 32x32

4x48x8 16x16 32x32

Primary

Ray Packet Size

ERW6
(804 Triangles)

Toasters
(11,141 Triangles)

Rings
(217,812 Triangles)

Fairy
(172,669 Triangles)

Scene 
Complexity

Recursion
Complexity

Ranged
Filtered
Masked

Ti
m

e
(M

ill
io

n 
C

P
U

 C
yc

le
s)

Ray Packet Size Ray Packet Size Ray Packet Size

Ti
m

e
(M

ill
io

n 
C

P
U

 C
yc

le
s)

Ti
m

e
(M

ill
io

n 
C

P
U

 C
yc

le
s)

Ti
m

e
(M

ill
io

n 
C

P
U

 C
yc

le
s)

Primary
+

Shadows

Primary
+

2-Deep 
Refractions

Primary
+

2-Bounce 
Reflections

Figure 3.5: Plots of Masked, Ranged, and Partition traversal times for rendering one
1024 × 1024 image with varying ray packet size, scene complexity, and ray recursion

complexity. Masked and Ranged traversal degrade relative to Partition traversal as any of
scene complexity, ray recursion complexity, and/or ray packet size increase.

costs related to ray casting and shading. I leave out time to send the image to the graphics

card as this adds anywhere from 10% more CPU cycles for the slower renders to 50% for

the faster renders. For multi-threaded ray casting, I use the standard approach of tiling the

image canvas and dealing out tiles to each thread.

Scenes: I use the scenes shown in Figure 3.4, each of which was chosen for specific

qualities. The ERW6 scene is extremely simple, having only 804 triangles and all flat

surfaces and presents an ideal environment for a coherent ray packet tracer. The Toasters

scene, with 11,141 triangles, targets the lower end of the level of visible complexity in a

typical video game scene. The Fairy scene has 172,669 triangles. It is a realistic, high

complexity scene, perhaps a future video game scene with both large and tiny objects. The

grass at the fairy’s knees and the base of the tree is particularly difficult for a packet tracer.

The Rings scene from the SPD [28] is specifically intended as a worst case scenario for
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reflection and refraction rays. The small and tangled rings serve to disperse secondary rays

in all directions.

Acceleration Structure: As previously noted, I use a BVH as the acceleration structure.

I use a single-threaded binned SAH build which has previously been shown by Wald [71]

to be interactive to real-time even for complex scenes, but is about an order of magnitude

slower than state-of-the-art BVH builds using either a grid pre-build as by Wald [71] or a

pre-existing scene hierarchy as by Hunt et al. [35] or Yoon et al. [80]. While I focus on ray

casting performance, I also include the time to build the BVH from scratch in Figure 3.4 to

demonstrate that my acceleration structures are of interactive quality.

Whitted Effects: In order to best evaluate performance for reflection and refraction rays,

I set all scene materials to be reflective or refractive. This makes for some very difficult

situations for my ray packet tracer. The detailed geometry in the Fairy and Rings scenes

create some highly incoherent ray packets. I investigate some more reasonable rendering

configurations in Section 3.5.

3.4.2 Masked vs. Ranged vs. Partition Traversal

I compare Masked, Ranged, and Partition traversal in the collection of plots in Figure 3.5.

Each plot shows time to render one image in millions of CPU cycles (lower values on the

y-axis mean faster render times) versus ray packet size. Along the x-axis, I use 4 × 4, 8 × 8,

16 × 16, and 32 × 32 ray packets. The plots themselves are organized in a table with scene

complexity increasing along the x-axis, and ray recursion complexity along the y-axis. From

top to bottom, I display ray recursion complexity using primary visibility, primary visibility

with point-light shadows, 2-deep refractions, and 2-bounce reflections. I use frustum culling

for all results in this Subsection.
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Masked traversal, in yellow (or light gray for gray-scale prints), is consistently slower

than Ranged traversal, and is slower than Partition in most cases. It was found to work

consistently only up to 4 × 4 ray packets in Wald et al. 2001 [76] and Reshetov et al. [57],

and my results agree with these earlier findings. Render times explode with increased packet

size for higher scene complexities to the right and deeper levels of ray recursion to the

bottom.

As noted in Section 3.2.1, Masked traversal keeps all rays active at the inner cells which

can lead to large overheads. If even one packet ray decides to visit a BVH leaf, then all

packet rays will be tested against the leaf’s AABB. Less coherent packets will have many

extra ray–AABB intersection tests leading to poorer performance with increased scene

complexity, ray recursion complexity, and packet size.

Ranged traversal, in dark blue (dark gray), behaves significantly better than Masked

traversal, and provides the best results on up to 16× 16 ray packets for most cases. The most

notable exception to this are the three high-lighted plots in the lower right corner with higher

scene complexity and higher ray recursion complexity. While Ranged traversal performs

much better for the other configurations, a downward trend is clearly visible as I increase

scene complexity, ray recursion complexity, and ray packet size.

Partition traversal, in magenta (medium gray), is the most robust to the degrading

coherence for higher scene complexity, reflection and refraction rays, and larger ray packets.

Both Masked and Ranged traversal reach a breaking point as ray packet size increases.

Partition traversal, on the other hand, consistently improves with increased packet size

regardless of scene and ray recursion complexity, and is limited only by memory bandwidth

and cache coherence which degrades slightly for 32 × 32 packets.

Partition vs. Ranged traversal: A Closer Look

Ranged traversal and Partition traversal each have their own strengths and weaknesses,

and Figure 3.6 shows why. These graphs compare the number of ray–AABB tests and
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Figure 3.6: Histograms (top) and bar charts (bottom) counting the number of ray–AABB
tests and ray–triangle tests required for rendering the Fairy scene at 512 × 512 using 16 × 16
ray packets. Ranged traversal is better for primary rays, but Partition traversal is better for

reflection rays.

ray–triangle tests because these dominate the ray casting time in my system.

Partition traversal, in yellow (light gray), generates a peak in both histograms higher

in the tree, closer to the root, while Ranged traversal, in blue (dark gray), is more peaked

at the deeper cells. As described in Subsection 3.2.3, Partition traversal always tests every

alive ray against every BVH cell which leads to more ray–AABB tests higher in the tree.

Deeper in the tree, most of the rays have been filtered out, so there are fewer ray–AABB

tests.

Ranged Traversal, as described in Subsection 3.2.2, can avoid many ray–AABB tests

by only testing rays until it finds ia, the index to the first alive packet ray. The key to

success is the probability that most active rays after ia are also alive deeper in the BVH,

particularly at the BVH leaves. This tends to happen for primary visibility resulting in fewer

total ray–AABB in the bottom left of Figure 3.6 and faster render times in the top row of

Figure 3.5.

However, if the active rays after ia aren’t truly alive, Ranged traversal may suffer big

overheads. An incoherent ray packet may avoid some ray–AABB tests higher in the tree
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Figure 3.7: Times for rendering one 1024 × 1024 image with and without frustum culling
with varying packet size, scene complexity, and ray recursion complexity. Frustum culling
works best for primary rays and point-light shadow rays, and mostly helps reflections and

refractions off of flat and smooth surfaces.

only to have to perform them deep in the tree where there are exponentially more BVH cells,

causing the higher peak at deeper BVH cells in the histograms in Figure 3.6. Even worse, if

dead rays reach the leaves, there will be many more expensive ray–triangle tests as shown at

the bottom of Figure 3.6. For the more coherent primary ray packets on the left, these extra

ray–triangle tests are acceptable since ray–AABB tests dominate ray casting time, but the

less coherent secondary ray packets on the right lead to many extra ray–triangle tests and

slower render times in the highlighted plots in Figure 3.5.

3.4.3 Frustum Culling for Whitted Ray Tracing

In this Subsection, I evaluate frustum culling for all ray types in a Whitted ray tracer using

the algorithms in Section 3.3 to construct tight bounding frusta. All results in this Subsection

were generated using Partition traversal since this presents the most stable baseline.

Figure 3.7 demonstrates the benefits of frustum culling. As in Subsection 3.4.2, each
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plot shows time to render one image versus ray packet size, and the plots are organized left

to right in order of increasing scene complexity and top to bottom in order of increasing ray

recursion complexity.

In general, frustum culling works best for primary visibility and point-light shadows

(the top two rows in Figure 3.7). There is some benefit for frustum culling on reflection and

refraction rays for the relatively simple ERW6 and Toasters scene, but barely any noticeable

benefit for the more complex Fairy and Rings scene. We will see in Section 3.5 that the

results for the Toasters scene is more representative of most rendering configurations where

not all surfaces are reflecting and/or refracting.

We expect good results for primary rays from a pinhole camera, but it is less clear why

culling for point-light shadow rays is more effective than for reflection and refraction rays.

Point-light shadow rays converge at the light source which leads to tighter ray packets and

hence tighter ray bounds. Reflections and refractions, on the other hand, tend to diverge

making it significantly more difficult to generate tight bounding frusta.

3.4.4 Packet Traversal and Frustum Culling: Summary

I summarize my conclusions for ray packet traversal and frustum culling in Table 3.1.

Masked traversal is superseded by Ranged and Partition traversal. Ranged traversal is

the best for primary visibility on packets of up to 16 × 16. For secondary rays, Ranged

traversal tends to be the best on packets of up to 8 × 8, but runs the risk of falling to the

pressure of increased scene and ray recursion complexity. Partition traversal should be

used for secondary rays in systems that require large ray packets, complex scenes, or where

ray–geometry intersection tests dominate ray casting time. Alternatively, Partition traversal

can be used for all secondary rays as a conservative measure to avoid the pitfalls of Ranged

traversal.

Frustum culling works well for primary visibility and point-light shadows providing up

to 2× benefit. The results for reflection and refraction rays are less impressive, speeding
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up ray casting times mostly for relatively flat and smooth surfaces. Frustum culling does

help, generally by about 1.2×–1.3×, but it should not be relied upon to achieve real-time

performance.

3.5 Results–Performance

In this Section, I construct my real-time Whitted ray tracer and evaluate its performance.

I find that the analysis in Section 3.4 leads to robust real-time performance, and large ray

packets offer significant benefits over SIMD rays for Whitted ray tracing.

Based on the recommendations from Section 3.4 and Table 3.1, my ray tracer uses

16 × 16 ray packets with Ranged traversal for primary rays, and I choose between Partition

and Ranged traversal for reflection, refraction, and shadow rays based on the scene and ray

recursion complexity. I use frustum culling for all ray packets. All hardware configurations

used to generate results in this Section are the same as in Section 3.4.

Figure 3.1 shows several scenes and ray recursion configurations rendered with my

real-time Whitted ray tracer. These images tend to render significantly faster than those from

Section 3.4 because only select surfaces are set to be reflective or refractive. The Toasters

scene is the same scene from Section 3.4, but I have set 1-bounce reflections for the floor

and turned on point-light shadows. The Fairy scene is also used in Section 3.4, but I have

set 1-deep refractions on the wings, and 1-bounce reflections on the forest floor making it

appear as if the fairy is sitting on water. While it isn’t particularly noticeable from this view,

reflections are turned on for the fairy’s eyes as well as the gold and jewels on her wand.

Figure 3.1 also includes two scenes from the BART [42] collection. I render only the

first keyframe from these sequences. The museum image demonstrates deep reflections with

3-bounces. The kitchen scene uses 1-bounce reflections, 4-deep refractions, and point-light

shadows from one point-light. Notice the refractions through the bowls and glasses on the

table as well as the dragon model under the table. Light even refracts through the dragon’s
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Toasters Fairy BART Museum BART Kitchen
2 × 2 SIMD
Ray Packets

1.9 FPS 2.1 FPS 2.4 FPS 1.2 FPS

16 × 16
Ray Packets

11.8 FPS 6.7 FPS 8.5 FPS 4 FPS

Performance
Benefit 6.1 × 3.2× 3.5× 3.3×

Reflect+Refract
Traversal

Ranged Partition Partition Partition

Culling Benefit 1.35× 1.19× 1.18× 1.19×

Table 3.2: Comparison of my large ray packet tracer using 16 × 16 packets against 2 × 2
SIMD ray packets for rendering the images in Figure 3.1.

reflection.

I compare to 2×2 SIMD ray packets in Table 3.2. This table presents times for rendering

the images in Figure 3.1 for SIMD rays and my large ray packet tracer and whether secondary

rays use Partition or Ranged traversal. In all examples, large ray packets provide at least 3×

faster render times over SIMD Rays and up to 6× for the simpler Toaster scene.

In the last row of Table 3.2, I include the performance benefit due solely to frustum

culling. For these configurations, frustum culling improves performance by about 18%–35%

which is significantly more than reported in Section 3.4 for the Fairy and Rings scene with

reflection and refraction rays. As is usually the case in Whitted ray traced scenes, the

reflective and refractive surfaces used in this Section tend to be significantly flatter and

smoother leading to better culling performance.

3.6 Conclusion

This chapter introduces a fully real-time CPU-based Whitted large ray packet tracer. Entering

this new domain required serious analysis of large ray packet algorithms for scene traversal

and frustum culling. It also required the new Partition traversal algorithm and a new approach

for generating frustum bounds around reflection and refraction rays. The result is a real-time
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Whitted large ray packet tracing system which is robust to degrading coherence.

I thoroughly evaluated ray packet algorithms for frustum culling and three BVH traversal

algorithms in the context of real-time Whitted ray tracing. There are a large number of

possible combinations of these algorithms, and in the process of this work, I evaluated many

of them which are not presented. I found that the simple solutions work best and believe the

algorithms presented here most concisely encompass the results of my research.

Distributed ray traced effects are also likely to benefit from my work. Here I focus on

Whitted ray traced effects to push them into real-time, but real-time results remain out of

reach for distributed ray tracing. Based on the results in this chapter, I believe this class of

effects requires new algorithms beyond ray coherence based techniques to join the interactive

domain.



Chapter 4

Adaptive Wavelet Rendering for

High-Dimensional Effects

4.1 Introduction

The previous chapters focus on accelerating specific light transport effects. Chapter 2

focuses on soft shadows from rectangular light sources, and Chapter 3 targets reflections and

refractions. However, photorealism requires many other effects and general combinations of

them.

Rendering photorealistic images with effects such as depth of field, area lighting, motion

blur and global illumination requires the evaluation of a complex high-dimensional integral

at every pixel. Each effect adds one or more dimensions to the integral, and each dimension

adds another potential source of variance. Monte Carlo integration is a robust approach for

estimating this integral, but requires many samples to reduce variance to tolerable levels.

The beam tracer from Chapter 2 can be used in lieu of Monte Carlo integration for relatively

simple integrals, such as soft shadows from polygonal area light sources. However, it is

significantly easier to solve general high-dimensional integrals with the point samples from a

ray tracer rather than the area samples from a beam tracer. The packet ray tracing algorithms

61
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Antialiasing + Depth of Field Antialiasing + Depth of Field + Motion Blur
Antialiasing + Depth of Field 
+ Environment Lighting

Antialiasing + Depth of Field 
+ Area Lighting 
+ 1-Bounce Di�use Interre�ections

average 32 samples per pixel
5.05 minutes

average 32 samples per pixel
16.23 minutes
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34.27 minutes
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a.) b.) c.) d.)

Figure 4.1: All images were rendered at 1024 × 1024 on a single core of a 2.8GHz Core2
Extreme laptop. By adaptively sampling and reconstructing in a smooth wavelet basis, we
get near-reference quality noise-free images with only 32 samples per pixel, with general

high-dimensional combinations of rendering effects. The insets show the Monte Carlo
sample distributions that generated the images.

from Chapter 3 can be used to accelerate Monte Carlo integration, but the number of rays

required can still make brute force integration prohibitive. Fortunately, natural images have

smooth regions either in the image domain, over the other dimensions, or both. We should

therefore adapt to this smoothness rather than performing an exhaustive sampling.

However, most adaptive algorithms sparsely sample either smoothly varying image

regions, or slow variation in other dimensions, but not both. This leads to noise and artifacts

at low sample counts, as seen in Figure 4.2. A recent adaptive multidimensional sampling

method [27] addresses these issues, but it scales poorly to general higher-dimensional

integrals involving multiple effects. Even in low-dimensional situations, there can be

computational and memory overheads in both its sampling and reconstruction stages that

are particularly costly for recent optimized ray-tracers [76, 57].

I propose adaptive wavelet rendering to directly estimate the image in the wavelet

domain, and thus robustly handle all forms of variance. As opposed to pixels, wavelets

present a multi-scale view of the image, and so provide a good representation for both

image edges and smooth image features [44, 66]. This characteristic has made wavelets

one of the most popular formats for image and video compression, and also for accelerating

finite element methods such as radiosity [23] and PRT [49]. Despite their proven benefits
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Figure 4.2: Each pixel in this image is a 6 dimensional integral (2D image-space for
antialiasing, 2D lens for depth of field, and 2D for an area light). My method computes a
reference-quality image using an average of only 32 samples per pixel. To the right are

close-ups along with sample distributions generated using 4 different algorithms. The top
row shows a smooth region of the image that has high variance from the other integral

dimensions. The bottom row shows image-space edges that are smooth over the integral
dimensions. My method performs well in both regions. The pixel adaptive algorithm 1 has

considerable noise in the smooth image areas on top, due to variance in the integral
dimensions. The grid interpolation algorithm 2 has artifacts in the bottom row at edges, and
it must exhaustively sample the integral dimensions. In the sample density images, note that
adaptive wavelet rendering gives samples both to image-space edges and regions that are
smooth in the image but have high variance in other integral dimensions. Samples also

cluster at nodal points for wavelet interpolation.

elsewhere, wavelets have rarely been used to speed up Monte Carlo sampling (with the

notable exception of Bolin and Meyer [8]), and I am inspired by recent work that shows

their benefit for importance sampling [13].

Because the wavelet reconstruction of the image is hierarchical, coarse-scale wavelets

are better at reconstructing large, smooth regions of the image, whereas finer-scale wavelets

resolve small details, such as detailed texture and edges. I exploit this property in my

algorithm to obtain an optimal hierarchical sample distribution.

As I describe in Section 4.4, my algorithm is composed of two simple stages: adaptive

sampling and image reconstruction. In the first stage, I iteratively measure the variance of
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the wavelet basis’ scale coefficients. Since high frequency details cause high amplitude

wavelet coefficients, I use the wavelet magnitude to locate small-scale features, such as

edges. The algorithm further samples those coarse-level scale coefficients that have high

variance but do not have high wavelet magnitudes, i.e., do not have strong edges. These are

image regions with high variance from the other dimensions. Finer scale coefficients receive

samples to resolve the remaining high-frequency image features. New samples are drawn

from the coefficients’ scale function via importance sampling to reconstruct a smooth image

in the reconstruction stage. Hence, my algorithm naturally adapts to both image-space

edges as well as smooth regions with variance from the other integral dimensions.

In the second stage (image reconstruction), I use the wavelet basis to smooth away any

remaining noise. I consider all of the wavelets (as opposed to standard truncation of small

values), and simply subtract the measured variance from the wavelet coefficient magnitudes.

This is conceptually similar to choosing the smoothest image that fits the measured statistics.

In smooth regions, this allows the adaptive sampler to send more samples to the coarser

scale functions, effectively sampling the image at a lower resolution. Thus, the adaptive

sampling stage cooperates with the image reconstruction to efficiently compute a relatively

noise-free image even with minimal sample budgets.

Adaptive wavelet rendering has the following key features:

Low Sample Counts: As seen in Figure 4.1, my results are relatively free of noise with

an average of only 32 samples per pixel. In fact, because of the variance-reducing image

reconstruction stage, visually consistent results are usually obtained even for 16 samples per

pixel (see Figure 4.9).

Efficiency: My algorithm has low computational and memory overheads. Moreover,

it is conceptually simple and easy to implement. I have implemented it within a SIMD

optimized packet ray tracer, and have found it to perform significantly faster than standard

Monte Carlo path tracing [38] and multidimensional adaptive sampling [27]. All of the

images in Figure 4.1 were rendered in a matter of minutes, and Figure 4.2 in only 61
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seconds, both using a single core on a 2.8GHz Core2 Extreme processor. Images such as

these often take several hours to generate using traditional methods.

Generality: The wavelet representation is only over the 2D image domain, and my

algorithm directly considers only image-space values and variance. Thus, the method handles

general combinations of effects, and does not suffer from the curse of dimensionality. Note

that the scene in Figure 4.1d includes antialiasing, depth of field, area lighting, and diffuse

global illumination for an 8D integral. My method is most powerful when used to simulate

effects that produce a smooth result, such as depth of field, which are particularly difficult

for Monte Carlo algorithms.

4.2 Previous Work

4.2.1 Parametric Integration and Curse of Dimension

For solving a single integral, Bahvalov’s theorems (see Haber [26] which references Bah-

valov [5]) state that the best-case performance benefit of any numerical integration algorithm

over standard Monte Carlo decreases exponentially with the number of dimensions. Fortu-

nately, rendering is an instance of “parametric integration” with many correlated integrals.

Based on this insight, Keller [39] builds on the work of Heinrich and Sindambiwe [34]

to develop a multi-level Monte Carlo algorithm, with interpolation used to solve multiple

integrals at once and make up for the curse of dimensionality. However, they note artifacts,

such as smearing across discontinuities. I also choose to focus on image-space interpolation,

rather than chase diminishing returns in the integral dimensions. My work differs in that

I include the image-space dimensions in both the parametric interpolation problem and

the integral, and I use wavelets to distinguish image-space discontinuities from smooth

variation.
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Multidimensional Adaptive Sampling: The recent multidimensional adaptive algorithm

in Hachisuka et al. [27] also takes advantage of smoothness in the parametric image-space

dimensions to produces high-quality images with very low sample densities. However, it

is affected by the curse of dimensionality in two places. The adaptive sampling portion of

the algorithm provides diminishing returns as the dimensionality increases (as predicted

by Bahvalov’s theorems) and the computational cost of the signal reconstruction stage is

exponential in the dimensionality. I also find that this method introduces blocky artifacts

for higher dimensional problems (see Figure 4.7o and t). As such, this solution is effective

mostly for low dimensional problems with expensive shading costs (d <= 4).

4.2.2 Basic Adaptive Techniques

Most traditional adaptive sampling approaches fall into one of two categories. Some rely on

a purely local measure of variance, usually within a single pixel, to adaptively determine

the number of samples for the Monte Carlo integral [78, 48]. This works well for edges,

but tends to provide uneven samples over smooth regions and so either generates artifacts

or requires many more samples to reproduce a smooth result. Alternatively, algorithms in

the second category exhaustively sample the integral at specific points, often the vertices

of a grid. They then attempt to interpolate between these nodal points to reconstruct

smooth features, while locating high-frequency image-plane regions to focus more samples

upon. This approach can smear discontinuities or fail to locate small features. More recent

advances [25, 6] better locate edges and other key image features but still must oversample

the nodal points, and so do not take advantage of regions of low variance.

Figure 4.2 shows examples of these algorithms. Algorithm 1 is a simple example

of the first category, while Algorithm 2 is a simple example of the second. The sample

distributions depicted to the right are characteristic of such algorithms, and so are the

corresponding artifacts. My algorithm’s distribution exhibits the best qualities of the two

strategies. Similar to the first category, it spreads samples across the image, which is best
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for finding edges. More like the second category, the samples cluster at nodal points which

are used to interpolate smooth results.

Veach and Guibas [70] apply a variant of Metropolis Monte Carlo to simulating light

transport. This algorithm is intended for rare event simulation to bring out highly focused

local effects such as caustics or indirect light leaking through a small opening. It may be

best to use my adaptive sampler for a baseline sampling, then Metropolis to capture the rare

events, and lastly my wavelet reconstruction to remove the noise.

Perceptually Based Adaptive Sampling: Of particular note is the work of Bolin and

Meyer [8] who develop a sophisticated visual error metric and use it for adaptive sampling.

Their work emphasizes that adapting to variance in a multiscale wavelet hierarchy corre-

sponds more closely to the human visual system. However, their sampling algorithm still

resorts to distributing samples to the leaves of the wavelet hierarchy and so is in a similar

category as Algorithm 1 above. In smooth regions, my wavelet reconstruction removes the

error at the finer wavelet levels, so I can send more samples to the coarse level scale coeffi-

cients, effectively sampling at a lower resolution while more accurately capturing smooth

effects. Moreover, their sampling algorithm does not work for wavelets with overlapping

support, and so can only use the Haar wavelet basis. The sampling stage of my algorithm

is an efficient framework for working with arbitrary discrete wavelet bases, such as the

smoother Daubechies 9/7 and LeGall 5/3. Note that Bolin and Meyer’s advanced visual

error metric can be used in place of the simple contrast metric in Section 4.4.1

Multidimensional Lightcuts: A recent method is Multidimensional Lightcuts (MDLC) [77].

Their method is not an adaptive sampling approach in the same sense as my work and so is

not directly comparable. For input, MDLC takes a constant number of primary shade points

(gather points) and a constant number of light points. MDLC is an elegant approach for

reducing the number of gather-point vs. light-point pairings. However, it does not adapt the

number of gather-points or light-points, and so must start with an oversampling of both to
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guarantee high-quality convergence. Also, this method only considers gather-points within

a pixel, and does not share information between neighboring pixels. As such, it may be best

to combine their approach with mine. MDLC may help in situations where there are many

spatially coherent light sources, while my algorithm can be used to adaptively introduce

gather-points and interpolate the regions of smooth variation.

4.2.3 Adaptive Noise Removal

There has been significant work in adaptive post-production noise reduction filters. Wavelets

are commonly used for noise reduction, using either hard thresholding or soft thresholding

on the fine-scale wavelets [66]. Hard thresholding simply clamps wavelets to a low value.

Soft thresholding subtracts a constant value from the wavelet magnitudes. My wavelet

reconstruction improves on soft thresholding by subtracting a measure of the wavelet

variance from the wavelet magnitude.

Besides wavelets, other bases may be used. The work of Meyer and Anderson [47], for

example, removes noise in animated sequences by projecting the image sequence onto a

compressed PCA basis.

Two other directions of research derive from anisotropic diffusion introduced by Perona

and Malik [53] and bilateral filtering from Tomasi and Manduchi [69]. Anisotropic diffusion

is an iterative approach, and as such may be subject to instabilities. Moreover, it is often

slower than either bilateral filtering or my reconstruction stage. Solutions based on bilateral

filtering often suffer from objectionable ringing around image edges.

All of these methods focus on image reconstruction alone. Despite significant research

dedicated to preserving image features [46, 79, 58], it remains difficult for standalone post-

processing noise removal algorithms to distinguish features from noise. This is because

there is often simply not enough statistical information at the pixels to construct an accurate

result.

My work demonstrates the benefit of connecting adaptive sampling to reconstruction, and
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tailoring the adaptive sampling algorithm to the specific attributes of the reconstruction stage.

By doing so, I am able to sample large smooth regions at an effectively lower resolution

(see closeups in the top row of the right side of Figure 4.2) while also sending more focused

samples to edges and other discontinuous image features (see bottom row of the right side

of Figure 4.2).

4.2.4 Interactive Ray-Tracing

The works of Wald et al. [76] and Reshetov et al. [57] exploit coherence between ray

samples to amortize ray-tracing and shading costs across packets of 16–256 rays and achieve

interactive rates on simple scenes. Although the rays for multidimensional effects are

incoherent (see Boulos et al. [9] and Overbeck et al. [52]), brute force rendering with an

optimized ray-tracer is in some cases as effective as an expensive adaptive technique (see

right two columns of Figure 4.7). In light of such benefits, I believe a valuable aspect of my

algorithm is that it allows for use with a packet ray-tracer, since I adapt to image regions

rather than only individual pixels. In addition, my method has low overhead even when used

with a highly optimized ray-tracer.

4.2.5 Frequency Analysis

Recent work has also studied light transport in the frequency domain [18, 19, 64], leading

to simple image-space sampling heuristics based on local frequency content. My work is in

some ways the logical extreme of this approach, creating the image directly in the wavelet

basis. Note however that general phenomena can be addressed, without needing to analyze

or compute multidimensional space-angle Fourier spectra. Moreover, by using wavelets I

can better localize both spatial (edges) and low-frequency (smooth) effects simultaneously.
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4.3 Background: Wavelets and the DWT

Before describing the details of my algorithm, I provide a brief introduction to wavelets and

the discrete wavelet transform (DWT).

A 1D wavelet basis is defined by the translates and dilates of a scale basis function φ, and

a wavelet basis function ψ. Following the JPEG 2000 image compression standard [61], I

use Daubechies 9/7 wavelets [14] (also referred to as Cohen-Daubechies-Feauveau wavelets)

for all examples in this chapter, and I also found LeGall 5/3 wavelets to be effective. Their

precise forms are given in Appendix C.1, and profiles of their analysis scale functions are

shown later in Figure 4.5.

The entire 2D wavelet basis is defined as

Φk,i j(x, y) = Φ(2−kx − i, 2−ky − j),

Ψα
k,i j(x, y) = Ψα(2−kx − i, 2−ky − j),

with



0 ≤ α < 3,

1 ≤ k ≤ n,

0 ≤ i < ik,

0 ≤ j < jk.

In this expression, k indexes the “level” of the wavelet, with k = n the coarsest or most

dilated level, and k = 1 the finest level. I reserve k = 0 to refer to the original pixels. I use i

and j for the translations, with ik = jk = 2n−k for square images of size 2n.

The process of transforming a pixel image into a multi-scale wavelet basis is called

analysis, and the inverse process back to pixels is called synthesis. The most general form

of wavelet analysis computes the inner product between image B(x, y) and wavelets:

S k,i j =
〈
B,Φk,i j

〉
=

∫ ∫
B · Φk,i jdxdy, (4.1)

Wα
k,i j =

〈
B,Ψα

k,i j

〉
=

∫ ∫
B · Ψα

k,i jdxdy. (4.2)

The S k,i j are referred to as scale coefficients and the Wα
k,i j are the wavelet coefficients.
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In practice, I perform a discrete wavelet transform (DWT), for both analysis and syn-

thesis, with cost linear in the number of pixels. For both analysis and synthesis, the DWT

applies two filters, one low-pass and one high-pass, which together form a “filter bank”. I

use the so-called “non-standard” DWT, where I alternate between applying the 1D DWT on

the image rows, and then on the columns. In my application I use the DWT for its efficiency,

but for the rest of the chapter, I will be using the inner product form in Equations 4.1 and 4.2

for notational convenience.

4.4 Wavelet Rendering Algorithm

Rendering a single pixel with anti-aliasing and high-dimensional effects requires the evalua-

tion of an integral at every pixel:

B(x, y) =

∫ y+1

y

∫ x+1

x

∫
S

F(u, v, s)dsdudv, (4.3)

where s compactly denotes all the high-dimensional effects, such as depth of field (lens

aperture), motion blur (time), and/or soft shadows (area light). The function F is evaluated

by Monte Carlo sampling, and is treated as a black box by my method. The goal is to

compute all B(x, y) using as few samples, i.e., evaluations of F, as possible.

The adaptive sampling portion of my algorithm (Section 4.4.1) tightly cooperates with

the reconstruction stage (Section 4.4.2) to produce a smooth result. Both stages use the

wavelet basis to identify high variance regions of the integral. So rather than directly

computing Equation 4.3, my algorithm keeps track of the scale and wavelet coefficients in

the wavelet basis. To compute the scale coefficients, I estimate:

S k,i j =

〈∫
Fds,Φk,i j

〉
=

∫ ∫ ∫
F · Φk,i jdsdxdy. (4.4)

The adaptive sampler iteratively distributes samples to achieve a low variance estimate of
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Equation 4.4 for all scale coefficients. The reconstruction stage then subtracts the remaining

estimated error from the wavelet coefficients to synthesize a smooth image.

4.4.1 Adaptive Wavelet Sampling

The key to the adaptive sampling process is determining which scale coefficient receives

new samples at each iteration. Coarse-scale high variance image features (like the blur

from an out-of-focus lens) will cause high variance at all levels in the wavelet hierarchy.

However, if the final result is smooth, then the scale functions at the coarser levels may

predict a more accurate result than the noisy wavelet functions at the finer levels. In these

situations, we would like the adaptive sampler to compute an accurate result for the coarse

scale coefficients, and rely on the reconstruction phase to remove the noisy wavelets. On the

other hand, to handle more isolated fine-scale image features like edges, we prefer a more

focused sample distribution.

Definitions: Before I detail my approach to meeting the above requirements, I must first

define the variables I use to compute image variance and wavelet coefficients. I accumulate

the Monte Carlo samples F(u, v, s) at the image pixels, and maintain estimates of the pixel

mean B̃ and the variance of these samples, σ2(F). There are many methods to approximate

the functional variance from a set of samples. I use the square of the contrast metric used by

Mitchell [48]:

σ2(F) = (Imax − Imin)2/(Imax + Imin)2, (4.5)

where Imax and Imin are the maximum and minimum sample intensity respectively. The

numerator provides an upper bound estimate of the pixel variance, and the denominator

weights the adaptive sampler towards the darker image regions, where the human eye is

more sensitive to error. Given these definitions, the estimator variance of the pixel mean is

σ2(B̃) = N−1σ2(F), (4.6)
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Figure 4.3: The process of computing Equation 4.8, for the priority values of different scale
coefficients. Smooth regions have higher priority at coarse scales. Edges have higher

priority at finer scales.

Step 1—Initialization: Coarsely sample the entire image, inserting scale coeffi-
cients at levels 0 ≤ k ≤ 5 into a priority queue.

Step 2—Priority Computation: Update the priority of each scale coefficient in
the queue.

Step 3—Sampling: Pop the next scale coefficient from the priority queue and
importance sample it.

Step 4—Iterate: If samples remain, Goto 2, else finish.

Figure 4.4: Steps of the adaptive sampling stage. My algorithm starts with a fixed sample
budget, and iteratively distributes samples to high variance scale coefficients until the

samples are depleted.

where N(x, y) is the number of samples that land in pixel (x, y). I later show how to compute

the variance of the scale coefficients using this information. The wavelet coefficients are

computed simply by performing a DWT analysis on the pixel means:

W̃α
k,i j =

〈
B̃,Ψα

k,i j

〉
. (4.7)

The Algorithm: Now, given a fixed budget of samples, the adaptive sampling stage

proceeds according to the steps in Figure 4.4.



CHAPTER 4. ADAPTIVE WAVELET RENDERING FOR HIGH-DIM. EFFECTS. 74

Step 1—Initialization: I generally start by coarsely sampling the image with 4 samples

per pixel. I now insert scale coefficients from levels 0 ≤ k ≤ 5 (including the pixels, which

we may recall are the finest-level scale functions) into the priority queue.

Step 2—Priority Computation: The priority function or oracle P(S k,i j) determines

which coefficients require more samples. A number of oracles have been proposed in

other contexts, for instance for refinement of links in wavelet radiosity [23]. My heuristic

is designed to send more samples to coarse scale coefficients in smooth regions of high

variance, and so it prioritizes coefficients that have a large functional variance over their

support. However, when a high-frequency and non-oscillating image feature like an edge

exists, it is better to allocate samples to finer scales, where the edge is resolved clearly.

Since the wavelet coefficients are (by definition) equal to the error due to image edges

and other high-frequency features, simply subtracting the wavelet magnitudes from the scale

variance results in the desired heuristic:

P(S k,i j) = σ2(S̃ k,i j) − (W̃k,i j)2 (4.8)

I use the average of the 3 wavelets squared for the wavelet magnitude: (W̃)2 = 1
3

∑
α(W̃α)2.

To estimate σ2(S̃ k,i j), I perform a wavelet analysis on the per-pixel variance, using the square

of the scale function:

σ2(S̃ k,i j) ≈
〈
σ2(B̃),Φ2

k,i j

〉
. (4.9)

I derive this equation in Appendix C.2. The inner product in Equation 4.9 is an unbiased

estimator (as long as the pixel samples are uncorrelated). Since the DWT is more efficient

to compute, I perform a DWT analysis on the per-pixel variances (σ2(B̃)) using the squares

of the filter bank coefficients. This biases my estimate of σ2(S̃ k,i j) when using filters with

overlapping support, but it works well in practice. Note that this bias only affects the priority

values in Equation 4.8 and not the final result. For efficiency, I only use the low-pass portion
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of the filter bank, since we only require the resulting scale coefficients.

Discussion: The heuristic in Equation 4.8 distinguishes between two types of image-space

variance: 1) smooth regions of high variance (like the blur from an out-of-focus lens or

the penumbra of a soft shadow), and 2) edges and other nonsmooth image features. For

the smooth regions, we should send more samples to the coarse scale functions, and my

wavelet reconstruction will interpolate the result across the smooth region. For edge regions,

we need more focused samples to resolve the feature, so samples should go to the finer

scale functions. In the far left image in Figure 4.3, observe that for smooth regions (like the

penumbra from one of the toasters’ shadows), the scale variance increases from fine scale to

coarse scale. Thus, the scale variance correctly prioritizes these regions. For edge regions

(like the edges on the floor), the variance is about the same across levels, and so will not

necessarily target the finer scale functions. However, observe that the values of the squared

wavelet coefficient magnitudes (the second image from the left in Figure 4.3) tend to grow

from fine to coarse for edge regions, and stay the same across levels for smooth regions.

Thus by simply subtracting the squared wavelet magnitudes from the scale variance, as in

Equation 4.8, we achieve a heuristic which correctly handles both regions.

The images on the right of Figure 4.3 are close-ups of an edge region and a smooth

region from the priority image. I have rescaled the color maps to highlight the different

priority values between levels. Note that the priorities for the smooth region are higher at

the coarser level 4 than level 1. Alternatively, the priorities for the edges are higher at the

finer level 1 than level 4.

Implementation Details: The estimator in Equation 4.9 can be tuned to target samples

toward coarser or finer levels by renormalizing the Φ2
k,i j filters to sum to a value > 1. I found

empirically that renormalizing to 1.05 works well in most situations and tends to target

levels 0 ≤ k ≤ 4.

Computing Equation 4.8 requires 2 DWT analyses: one standard analysis for the wavelet

coefficients W̃α
k,i j, and one with the squared low-pass filter for σ2(S̃ k,i j). To make these
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analyses efficient, I perform them locally over an affected image area as new samples

are added. This requires that I keep track of some amount of information that is usually

discarded during a wavelet transform. Specifically, I must keep all scale coefficients, and the

intermediate wavelet coefficients that result from applying the non-standard 2D DWT in one

dimension before applying it in the other dimension. Despite this extra memory requirement,

the performance benefit from updating only the affected coefficients greatly outweighs this

minor expense.

Step 3—Sampling: In Step 3, the highest priority scale coefficient is taken from the

priority queue. These scale coefficients cover regions rather than individual pixels, so I

allocate multiple samples at a time to amortize the overheads introduced in Step 2. For

the examples in this chapter, I allocate 64 × 2k samples at each iteration, but tuning this

parameter offers a trade between speed and quality of adaptation. This also allows us to

amortize the costs of ray casting and shading by using SIMD accelerated ray packets [76]. I

use the partition traversal algorithm in [52] throughout my system to operate on large groups

of (possibly incoherent) rays and shade samples.

The sample locations in the image plane are determined by importance sampling the

shape of the scaling function, while samples in other dimensions are chosen via random

sampling. The right images in Figure 4.5 show the sample distributions for LeGall 5/3 and

Daubechies 9/7 wavelets. The importance sampling requires precomputing a cumulative

distribution function (CDF) once for each scale basis function. Note that I only need the

CDF for the 1D basis function φ, since I importance sample each dimension independently.

The plots on the left of Figure 4.5 show the 1D basis functions that I use to compute the

CDF for each dimension. After the coefficient is sampled, it is re-inserted in the priority

queue, so that it can receive more samples in later iterations if needed.

Step 4—Iterate: If there are more samples in the budget, the algorithm returns to Step 2.

There, the priorities P(S k,i j) will be updated (in general, the priority for the scale coefficient
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1D Scale
Functions

LeGall 5/3
Wavelet Basis

Daubechies 9/7
Wavelet Basis

2D Sample 
Distributions

Figure 4.5: The tables used to compute the CDFs for Step 3 and the resulting sample
distributions for LeGall 5/3 and Daubechies 9/7 scale functions. On the left, blue values are

positive and red are negative. These are scale functions from level k = 4.

just chosen will decrease since its variance is reduced—other scale coefficients that overlap

its support will also be affected). Then, the algorithm moves to Step 3, sampling the new

highest-priority scale function.

In its current design, my algorithm operates with a fixed sample budget, and is finished

when this budget is depleted. It would also be possible to use a quality metric as a stopping

criteria, such as stopping when there is no measured variance greater than some epsilon.

However, since any measure of variance is only approximate, it may be better for the user to

visually inspect the results and incrementally add more samples until visual convergence is

achieved.

4.4.2 Adaptive Wavelet Reconstruction

At the conclusion of the sampling phase, we have reduced the variance for the coarse

scale coefficients in smooth regions of high variance, as well as the fine scale coefficients

near edges. The variance that remains is noise, and should be removed by my wavelet

reconstruction.
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Noise from undersampled Monte Carlo integration appears as fine-grained jump dis-

continuities in the image, and so should be captured by the fine-scale wavelet coefficients.

Therefore, to reduce noise, we can simply reduce the magnitude of the fine-scale wavelet

coefficients. One simple approach would be to just ignore coefficients with low magnitudes,

as in standard image compression, or threshold the wavelet magnitudes [66]. The sampling

stage, however, provides more information on the expected reconstruction error in the form

of the variance in each coefficient:

∆α
k,i j =

√〈
σ2(B̃),

(
Ψα

k,i j

)2
〉
. (4.10)

The square root above is necessary to convert a variance measure to a standard deviation

error.

The inner product
〈
σ2(B̃),

(
Ψα

k,i j

)2
〉

is computed similarly to
〈
σ2(B̃),Φ2

k,i j

〉
in Step 2

(Equation 4.9) of the adaptive sampling stage, with two exceptions. First, I perform a

full DWT using the squares of both high-pass and low-pass filters. Second, the functional

variance is computed as the squared difference of the maximum and minimum sample

intensities: σ2(F) = (Imax − Imin)2. This is used instead of the squared Mitchell contrast in

Equation 4.5. While the sampler should be weighted towards darker regions to reduce error

there, the reconstruction should smooth both dark and bright regions equally.

The standard deviation in Equation 4.10 provides a range of statistically valid values for

the wavelet coefficients. Whereas standard Monte Carlo integration uses the middle of this

range, or the average of the samples, I instead take the value of smallest magnitude. This is

equivalent to choosing the smoothest image which fits the chosen rendering samples.

Subtracting the standard deviation from the magnitude of the wavelet coefficients gives

this result:

Wα
k,i j = sign(W̃α

k,i j) ·max
(
0, |W̃α

k,i j| − cs · ∆
α
k,i j

)
, (4.11)

where W̃ are the wavelet coefficients from the pixel means, and cs (the smoothing constant)
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Variance

Noisy Input Smooth Output

Figure 4.6: Wavelet image reconstruction takes a noisy image and a variance image (σ2(B̃)
in Equation 4.10) as input, and produces a smooth image as output. Here I show close-ups

of the out-of-focus gargoyle in Figure 4.1.

is a user-supplied constant that provides a trade-off between noise and wavelet artifacts.

Larger values of cs make smoother images but may introduce ringing around edges or

produce a blocky reconstruction. The specific form of the wavelet artifacts depends on the

particular wavelet basis used. To avoid coarse scale artifacts, i damp out the smoothing by

renormalizing the
(
Ψα

k,i j

)2
filters to sum to a value < 1. This is analogous to how wavelet

compression methods allocate more bits to coarser scale coefficients. For all of the examples

in this chapter, i renormalize to 2−1/2, and i set cs = 1, but it may be possible to tune these

values for smoother or sharper results.

As shown in Figure 4.6, my wavelet reconstruction simply requires the noisy results

from the adaptive sampling stage and a per-pixel and per-color-channel variance image as

input, and successfully removes almost all noise. Note that the entire image reconstruction

phase requires at most 2 DWTs (for Equation 4.10 and synthesis from Equation 4.11), and

is therefore very efficient.
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Reference
Monte Carlo MDAS

512 samples per pixel average 16 samples per pixel
2835 secs.

56 samples per pixel

Monte Carlo

310 secs.

Our Method

average 32 samples per pixel
303 secs. 1414 secs. (Samp.: 849s * / Recons.: 568s)

Our Method

average 32 samples per pixel
303 secs.

4D: Antialiasing + DOF b.)a.) c.) d.) e.)

Reference
Monte Carlo MDAS

512 samples per pixel average 32 samples per pixelaverage 48 samples per pixel

Mitchell (PBRT) Our Method

average 32 samples per pixel

Our Method

average 32 samples per pixel

5D: Antialiasing + DOF 
+ Motion Blur

g.)f.) h.) i.) j.)

Our Method Low Discrepancy Sampling (PBRT)
Reference

Monte Carlo MDASOur Method

average 32 samples per pixel
61 secs.

64 samples per pixel
491 secs.

512 samples per pixel average 32 samples per pixel
5299 secs. (Samp.: 3480s * / Recons.: 1819s)

average 32 samples per pixel
61 secs. 1214 secs.  *

6D: Antialiasing + DOF + Area Light

l.)k.) m.) n.) o.)

8676 secs. (Samp.: 5650s * / Recons.: 3027s)974 secs.974 secs. 9749 secs. * 12791 secs.

Our Method Monte Carlo
Reference

Monte Carlo MDASOur Method

average 32 samples per pixel
2056 secs.

32 samples per pixel
22152 secs.

512 samples per pixel average 32 samples per pixel
6553 secs. (Samp.: 4562s* / Recons.: 1991s)

average 32 samples per pixel
2056 secs. 1396 secs.

6D: Antialiasing + DOF 
+ Environment Light q.)p.) r.) s.) t.)

* Times are from the slower (but more general) PBRT system.

Figure 4.7: All images were rendered at 1024x1024. The problem dimensionality increases
from 4D in the top row to 6D in the bottom row. Top row is a 4D scene with antialiasing

and depth of field. The middle row is a 5D scene with antialiasing, depth of field, and
motion blur, and the bottom row is a 6D scene with antialiasing, depth of field, and area
lighting. My method consistently achieves near reference quality images with only 32
samples per pixel for all of these examples. MDAS’s results degrade as the problem

dimensionality increases, and other methods generate noisy results at low sample counts.

4.5 Results

All results in this chapter were generated on a laptop with a 2.8 GHz Core2 Extreme

processor and 3 GB of RAM using one thread, and all images were rendered at 1024× 1024.
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The five scenes I use are intended to represent a broad range of applications. The

“toasters” scene in Figures 4.2 and 4.7 is a simple scene with only 11k triangles, a single

rectangular area light, and Phong shading to reduce ray-tracing and shading costs and

highlight my system’s low overhead. The “chess” scene in the top row of Figure 4.7 has

50k triangles and 9 point lights. The black queen and pawn in the foreground use more

complex shaders with bump-mapping, gloss-mapping, mip-mapping, and PBRT’s “substrate”

material. The “pool” scene in the second row of Figure 4.7 has 57k triangles, 9 point lights,

complex shaders, and includes time-varying motion blur effects. The “chess” scene and the

“pool” scene (without depth of field) were originally used for the multidimensional adaptive

sampling paper [27] using PBRT [54]. The “plants” scene in the third row of Figure 4.7

is from the PBRT distribution and has very high geometric complexity. With over 12k

instanced plants and trees, it effectively has over 19 million triangles, many of which are

smaller than a pixel. My packet ray tracer is slower on this scene due to the incoherence of

the rays relative to the complex geometry. Finally, I added a gargoyle statue to the “sibenik”

scene in order to create Figures 4.1d and 4.6. This scene has a total of 251k triangles with

1 point light and 1 area light. It uses purely Lambertian materials to demonstrate diffuse

interreflections. I added a small red ambient component to the red rug to exaggerate the

red color-bleed onto the walls and the gargoyle. I did not include this scene in Figure 4.7

because MDAS is not built to run on this higher dimensional scene. While this chapter is

focused on still image rendering, I also include a video of the “chess” scene with animated

camera view in the supplementary material which shows the temporal coherence of my

method.

4.5.1 Comparisons to Monte Carlo, LDS, Mitchell, MDAS

I have already compared to basic adaptive sampling algorithms in Figure 4.2. In Fig-

ure 4.7, I compare my adaptive algorithm to Monte Carlo, low discrepancy sampling (LDS),

Mitchell’s adaptive sampler [48], and multidimensional adaptive sampling (MDAS) [27].
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The implementations I have for these algorithms are in the PBRT system which focuses

more on generality than ray casting speed, while I use a speed optimized packet ray tracer

for my system and Monte Carlo. Therefore the ray casting times for these systems should

not be directly compared to mine. The scenes increase in dimensionality from the top row to

the bottom. The chess scene in the top row antialiases the image dimensions and simulates

camera depth of field for a 4-dimensional rendering problem. Refer to [27] for comparisons

to the Mitchell adaptive sampling algorithm using this scene. The middle row is a 5D

problem with antialiasing, depth of field, and motion blur. The scenes in the bottom two

rows are 6D with both scenes using antialiasing and depth of field. The “toasters” scene

uses a rectangular area light, and the “plants” scene uses environment map lighting.

Out Method: With an average of only 32 samples per pixel (Figure 4.7a,c, f ,h,k,m,p,

and r), my method faithfully reproduces the out-of-focus areas that require considerable

integration over the camera aperture (and over the time dimension for Figure 4.7 f and h,

and over the light source for Figure 4.7k,m,p, and r). In these smooth but high variance

areas, my adaptive sampling delivers more samples to the coarser scale coefficients. With a

low variance estimate at the coarse scale coefficients, the wavelet reconstruction synthesizes

a noise-free result.

Monte Carlo: My basic Monte Carlo renderer, without adaptivity, requires at least 512

samples in Figures 4.7d, i, n, and s to achieve comparable results. I use 56 samples in

Figure 4.7b to provide a comparable time comparison, and 32 samples in Figure 4.7q to

compare at the same sample count. At these low sample densities, Monte Carlo introduces

significant noise. For the “chess” scene, my algorithm’s overhead is low enough that it is as

fast with 32 samples per pixel as Monte Carlo using 56 samples, even though I use SIMD

optimized packet ray-tracers.
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Low Discrepancy Sampling: LDS generates noisy results in Figure 4.7l with 64 samples

per pixel. As predicted by Bahvalov’s theorems, LDS’s benefits over basic Monte Carlo are

significantly reduced for this higher dimensional example. Note that I use LDS from the

PBRT system which focuses more on generality and accuracy than speed. For the “toasters”

scene, I expect a speed optimized version may achieve comparable time to my system at

about 64 samples.

Mitchell: Mitchell’s adaptive sampler [48] is a popular image-space adaptive technique.

It produces noisy results for the motion blurred region in Figure 4.7g. Similar to Algorithm

1 in Figure 4.2, it adapts to only fine-scale per-pixel variance, and may therefore sample

unevenly in regions that should be smooth. Also, it only uses two passes of adaptivity, and

will not iteratively continue to provide samples to this high variance region.

Multidimensional Adaptive Sampling: MDAS is the state-of-the-art adaptive sampling

method, and produces a high quality result with only 16 samples per pixel in Figure 4.7e. It

uses a sophisticated reconstruction algorithm, and therefore requires fewer samples than

my method for this example. However, it introduces significant overhead and takes about

4.7× longer than my system at 32 samples per pixel. 849 seconds are spent in MDAS’s

sampling stage, and 568 seconds in image reconstruction, for a total of 1414 seconds. This

is only 2× faster than my Monte Carlo renderer with 512 samples per pixel (2835s vs.

1414s). This disparity is partially due to the fact that I use a speed optimized ray-tracing and

shading system, and MDAS uses PBRT, which is optimized for generality rather than speed.

However, this only accounts for some of the time spent in MDAS’s sampling stage, and

my method’s full rendering pipeline is almost 2× faster than MDAS’s reconstruction stage

alone. Thus, my method requires significantly less overhead independent of the particular

rendering architecture used.

Moreover, MDAS’s results degrade as the problem dimensionality increases. Blocky

artifacts begin to appear for the 5D image in Figure 4.7 j, and are significantly more apparent
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in the 6D image in Figure 4.7o. It is difficult to use MDAS with more samples per pixel,

because MDAS requires 400 bytes per sample (about 12GB for a 1024×1024 image at 32

samples per pixel). My system does not need to store the samples, and so scales better to

higher sample densities. I tiled the image to 8 × 8 in order to render Figure 4.7o with 32

samples per pixel. MDAS employs best-candidate sampling for better sample distributions

and performs a per-sample k-nearest neighbors search for high quality reconstruction. These

approaches work well for 4D scenes like Figure 4.7e, but they both run in time exponential

in the number of dimensions while their benefit in accuracy decreases exponentially. This

explains why MDAS takes 4× longer to render the 6D scene in Figure 4.7o at only 2× the

number of samples than in Figure 4.7e.

4.5.2 Generality, Efficiency, and Visual Consistency

Generality: Due to my algorithm’s insensitivity to the problem dimensionality, my algo-

rithm is 5× faster at rendering the 6D scene in Figure 4.7k than the 4D scene in Figure 4.7a

because of the simpler geometry and shaders in the “toasters” scene. To further emphasize

the point I removed all but one of the point lights in Figure 4.7a, added an area light, and

rendered Figure 4.8a. With fewer lights overall, it takes less time for my system to render

this image than Figure 4.7a (211s vs. 303s).

The “plants” scene in the bottom row of Figure 4.7 and in Figure 4.1c, and the “sibenik”

scene in Figure 4.1d present a stress test for my system by introducing large amounts of

variance throughout the scene. For the “plants” scene, variance is introduced by environment

lighting and sub-pixel geometry. In Figure 4.7r, my algorithm captures the out-of-focus

wisps of grass, and produces smooth reflections in the water which are noisy even for Monte

Carlo with 512 samples per pixel in Figure 4.7s. The “sibenik” scene uses Monte Carlo path

tracing for one-bounce diffuse interreflections. Note the red color-bleed onto and around the

gargoyle statue in the middle as well as the region under the archway on the right that is lit

only by indirect illumination.
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Figure 4.8: A 6D render with depth of field and area lights rendered with an average of 32
samples per pixel. Different wavelet bases offer different speed vs. quality. Haar is the

fastest but produces blocky artifacts. LeGall is also fast, and offers reasonable quality. The
Daubechies 9/7 filter bank generates the smoothest images.

Variance is high everywhere in the “plants” and “sibenik” scenes, so the adaptive sampler

cannot identify local regions to adapt to. Nonetheless, my algorithm still seeks out the

regions of smooth variance, and samples these at a lower resolution. Note the multi-scale

grid patterns in the sample distributions in the insets of Figure 4.1c and d. So I still achieve

high-quality results with an average of only 32 samples per pixel. Standard Monte Carlo

path tracing using my optimized ray tracer requires at least 512 samples per pixel to generate

a comparable quality image. This takes over 2 hours for the sibenik scene and over 7 hours

for the “plants” scene. At 512 samples, Monte Carlo is still noticeably noisier, but my result

with 32 samples has some perceptible wavelet artifacts.

Efficiency: Table 4.1 breaks down the overheads of my algorithm for rendering Figure 4.8

with the Daubechies 9/7 filter bank. Ray-tracing (including the initial sparse sampling

and shading) takes 176.5s and my algorithm takes only 34.5s of the total 211s. Thus, my

overhead is low, even though I use an optimized packet ray-tracer and shading system. All

overhead costs can be adjusted by increasing the amortization (sending more rays for each
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Algorithm Component Time
(Seconds)

Sampling: Step 1. Sparse RT and Shading 14.5s
Sampling: Step 2. Update Wavelets 12.2s
Sampling: Step 2. Update Variance 10.6s
Sampling: Step 2. Update Priorities 10.7s
Sampling: Step 3. Adaptive RT and Shading 162s
Reconstruction < 1s
Total 211 s

Memory Overheads Memory
(MBytes)

Intensity Images for Wavelet Updates (4 float) 16 MB
Intensity Images for Variance Updates (2 float) 8 MB
Image for per-pixel mean (1 RGB) 12 MB
Min/Max Images for per-pixel contrast (2 RGB) 24 MB
Image for per-pixel sample count (1 int) 4 MB
Images for priority queue (2 float, 4 int) 24 MB
Total 88 MB

Table 4.1: A breakdown of the timings and memory overheads for generating Figure 4.8
with Daubechies 9/7 wavelets. The time is mostly dominated by ray-tracing and shading

costs, and my memory overheads are low.

coefficient in Step 3) or changing the wavelet basis to a simpler basis such as LeGall. The

wavelet reconstruction takes less than 1 second, and is dependent on the size of the image

alone. I also include all significant memory overheads required by my system. In today’s

scenes, with 100s of megabytes worth of texture data, 88MB is relatively minor. This size is

only dependent on the size of the rendered image so will not change with increased sample

densities, scene complexity, or problem dimensionality.

Comparing Wavelet Bases: The close-ups in Figure 4.8b compare results using 3 popular

wavelet bases. The Haar 2/2, LeGall 5/3, and Daubechies 9/7 filter banks offer different

levels of speed and quality. Note in the sample count images in Figures 4.5 and 4.8b that

the Daubechies filter bank has a more circular and smoother 2D projection as compared to

LeGall and Haar. Thus Daubechies provides the smoothest results, but is also slower due to

its wide filters. In general, smooth symmetric wavelet bases appear to work best.
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Figure 4.9: Close-ups of a difficult region in Figure 4.7 f . The cue ball is motion blurred and
out-of-focus. At an average of 16 samples, my method produces a mostly smooth result

with only minor wavelet artifacts. At 32 samples, my result is essentially converged. Monte
Carlo results are noisy by comparison. In the top row, I include scaled up images of

variance after the adaptive sampling stage to illustrate the coarse sampling strategy used in
smooth regions.

Visual Consistency: Figure 4.9 contains close-ups of the cue ball in Figures 4.1b and 4.7 f ,

and demonstrates the progression from initial sampling to convergence. After my initial

sampling of the image at 4 samples per pixel, I have a high variance estimate, as shown

in the variance image in the top left. Even at this low sample count, my result looks quite
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Figure 4.10: My wavelet sampler and reconstruction may be used independently, but are
more powerful together. In a.), I use a bilateral filter on the output from my adaptive

sampling stage on the “chess” scene. My adaptive samples reduce the variance significantly,
but the bilateral filter is unable to remove the noise in the top images, and loses important
detail in the bottom images. In b.), I use my wavelet reconstruction on the output from pure
Monte Carlo on the “pool” scene. The wavelet reconstruction removes almost all noise, but

without my adaptive samples, it introduces some subtle artifacts.

reasonable, with only moderate noise and some wavelet artifacts. At an average of 8 samples

per pixel, my algorithm has iteratively distributed samples, and the grid structure of a coarse

wavelet level appears in the variance image. At this point, I have a relatively low variance

estimate at this coarse level, and so after removing the variance at the finer levels, I achieve

a mostly smooth result. At 16 samples per pixel, the grid of a finer wavelet level appears

around the structure of the cue ball, and the highlight at the top, and most of the artifacts are

gone. Finally, at an average of 32 samples per pixel, my result is essentially converged even

though I only have an accurate estimate at the low-resolution wavelet grid. My adaptive

sampler leaves most of the pixels with high variance, which is subtracted by my wavelet

image reconstruction. Monte Carlo, by comparison, is noisy even with 32 samples.
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Sampling vs. Reconstruction It is also possible to use my adaptive sampler and my

wavelet reconstruction independently. While each stage has many benefits, in its own right,

they work best together. Figure 4.10a shows results of my adaptive sampler used with a

bilateral filter, and Figure 4.10b uses standard Monte Carlo with my wavelet reconstruction.

My adaptive sampler significantly reduces the variance of the difficult out-of-focus regions

in Figure 4.10a, and the bilateral filter can smooth some of the remaining noise. However,

some noise remains because the filter cannot take advantage of the fact that my sampler

provides more precise results around coarser wavelet nodal points. Also, this bilateral filter

does not differentiate between noise from variance and oscillating texture detail which can

resemble noise, so some surface detail is washed away.

My variance-based wavelet reconstruction can be a powerful tool when used with non-

adaptive Monte Carlo samples. It removes most of the noise in Figure 4.10b. However, the

coarse wavelet coefficients are not as precise as if they were computed with my adaptive

sampler, so some low-frequency noise remains. This low-frequency noise appears as wavelet

artifacts in the smooth regions.

4.5.3 Discussion

Quality/Speed Settings: There are several key points of my algorithm that allow tuning

of quality and speed parameters. However, we should emphasize that I didn’t change any

of these settings for the results in this chapter. To reiterate, I use the Daubechies 9/7 filter

bank, I set number of rays cast per adaptive iteration to 64 × 2k, I set the reconstruction

smoothing constant cs = 1, and I renormalize the sampling variance filters to sum to 1.05

and the reconstruction variance filters to sum to 2−1/2. It may be possible to tune for better

results in specific situations.

Limitations: My method uses the wavelet basis to adapt to different sources of variance,

including edges and smooth image features, and also to reconstruct a smooth image even
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in regions of high variance. When used for image compression, different wavelet bases

can exhibit different forms of artifacts, including blockiness and ringing around edges. At

low sample densities with too few samples to provide a precise result, I assume a smooth

result, and my reconstruction algorithm effectively performs a wavelet compression on the

results. For piece-wise smooth natural images, this is generally a reasonable assumption.

However, when my assumption is incorrect, some wavelet artifacts may appear. Most of the

results in this chapter are essentially converged and so do not exhibit significant artifacts.

Figure 4.11 show two examples of wavelet artifacts in the two most difficult scenes, the

“plants” scene and the “sibenik” scene. Figure 4.11a is an edge in the middle of a smooth

high variance region, and my wavelet reconstruction produces some ringing along this

edge. The grass under the shadow of the tree in Figure 4.11b is somewhat overly smoothed.

These cases are difficult for Monte Carlo approaches, and require more samples to model

accurately. Nonetheless, these subtle artifacts affect only a small region of the image, are

largely imperceptible when looking at the full picture, and the benefits with respect to

Monte Carlo are shown clearly in Figure 4.7. Moreover, these artifacts are less distracting

than the systemic noise introduced by an equally undersampled Monte Carlo simulation in

Figure 4.11. It may also be possible to use depth and normal information in an approach

similar to the coherence maps used in McCool [46] to get better statistical data for these

regions.

4.6 Conclusions and Future Work

I have presented adaptive wavelet rendering, a new method to adapt to both edges and

smooth regions of high-dimensional variance. My method is general, and renders complex

effects like depth of field, area lighting, motion blur, and global illumination. The technique

is simple to implement and efficient, with timings often an order of magnitude faster than

previous adaptive algorithms, or optimized Monte Carlo ray-tracers.
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b.)Our Method Monte Carlo Our Method Monte Carloa.)

Figure 4.11: Without enough samples (32 samples per pixel in this figure), difficult high
variance regions may have artifacts. a.) an edge in the middle of a high variance region. My
result has some ringing at the edge. b.) sub-pixel geometry under environment lighting. My
method is unable to differentiate variance from visibility and variance from lighting, so my

result becomes overly smoothed.

My algorithm currently makes no effort to sample optimally in any dimension other

than the image plane. By doing so, I avoid the curse of dimension. However, even scenes

with high-dimensional effects are often locally low-dimensional. For example, a stationary

object doesn’t need motion blur. While my algorithm handles this example well, and will

not spend a lot of samples for this event, it may be worthwhile to use an approach that can

take better advantage of these locations of low-dimensionality.

In this chapter, I focus on rendering still images, and reserve animated scenes for

future work. Preliminary results demonstrate that my method produces smooth animations

without temporal artifacts (see video in the supplementary material). Moreover, the time

dimension offers extra opportunities for further adaptive sampling and reconstruction. One

simple approach would be to expand to a 3D wavelet basis for faster rendering of animated

sequences.

I believe my algorithm may be relevant to applications beyond rendering, given the

very successful use of wavelets in other domains. It should be emphasized that the only

part of my method that may be specific to graphics is the assumption that the image signal

is locally smooth. However, many signals studied in other applied sciences have similar

characteristics, and my algorithm should be viewed as a general method for high quality

parametric integration.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis and related published works [51, 52, 50] offer several methods to extend coherent

ray tracing to complex light transport effects.

The beam tracer in Chapter 2 is considerably faster than a one-at-a-time ray tracer for

coherent rendering situations. In some cases, where the scene’s geometry is large relative to

the target sample density, the beam tracer is faster than an optimized packet ray tracer. It

also offers qualitative benefits beyond a traditional ray tracer: efficient anti-aliased primary

visibility as well as analytic, noise-free soft shadows.

Chapter 3 introduces new algorithms to robustly accelerate the incoherent secondary

rays required by a Whitted ray tracer. Specifically, I present partition traversal, a new

BVH traversal algorithm which is more robust than other packet traversal algorithms to

incoherent ray packets. I also introduce a new method to generate tight bounding frusta

around general ray packets. I provide a thorough empirical evaluation of these and other

coherent ray tracing techniques within a fully interactive Whitted ray tracer.

Finally, in Chapter 4, I propose a new adaptive Monte Carlo sampling and reconstruction

algorithm to handle general combinations of high-dimensional effects, such as depth of field,

92
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motion blur, global illumination, and area lighting. The algorithm is specifically designed

with coherent ray tracing in mind. It measures variance in a multi-scale wavelet basis,

and by adapting to regions of variance, rather than individual pixels, it allows algorithmic

amortization using coherent ray tracing. Moreover, the novel wavelet reconstruction makes

it possible to sample at an effectively lower resolution in regions of smooth variance, like

the blur from a camera lens, and sample more densely near image edges. Adaptive wavelet

rendering achieves smooth, near reference quality results with only 32 samples per pixel for

many difficult high-dimensional light transport effects.

5.2 Future Work

The diverse nature of these works indicates the broad potential for future work in coherent

ray tracing. My work provides a solid base for several directions of future research.

The beam tracer in Chapter 2 proves that beam tracing is a viable option when there

are many highly coherent ray queries. This work focuses on primary visibility, point-light

shadows, and soft shadows from area light sources, but there are many other effects which

are prone to aliasing and noise. For example, beam tracing may be used for noise-free depth

of field, by tracing a camera aperture shaped beam for each image pixel. Similar to the

algorithm for soft shadows, the blurry image pixels could be computed analytically. Also, in

order for beam tracing to reach more mainstream appeal, it needs to be optimized for more

finely tessellated geometry.

The Whitted ray tracer in Chapter 3 will benefit from the increased instruction-level and

data-level parallelism available on future hardwares. However, many attributes change with

each new hardware generation, from the structure of memory hierarchies to the instruction

set architecture. Already, SSE is being replaced by AVX, and some future highly parallel

architectures, such as Intel’s Larrabee, have much smaller memory caches than the standard

general purpose CPU. Ray packet algorithms will need to change with the hardware, or (as
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ray packet algorithms reach broader adoption) the hardware will have to change with the

algorithms. Also, thorough empirical evaluation of coherent ray tracing should be extended

to include more rendering algorithms, such as distributed ray tracing, path tracing, and

photon mapping. Perhaps it is time for a new standardized test suite, similar in spirit to

BART [42], to evaluate ray tracing algorithms under various stresses in a verifiable way.

My research into adaptive wavelet rendering in Chapter 4 demonstrates the power of

rendering directly to a wavelet basis, and suggests multiple avenues for future research. In

my work, only the image-space dimensions are considered for adaptation and noise removal.

It would be interesting to extend to a 3D basis and incorporate time, since there should be

significant coherence in that dimension as well. Also, consider that the wavelet basis is a

powerful tool for image and video compression. By rendering directly to a compressed basis,

it may be possible to perform remote interactive rendering. High quality images could be

simultaneously computed and compressed on a server (or cluster of servers) and transmitted

via broadband to a mobile client.

In general, now is an exciting time for coherent ray tracing research, and the future

appears bright. The algorithms have matured and are ready for inclusion into commercial

systemsm, and industries are betting heavily on coherent ray tracing. Both Intel and

NVidia are tuning coherent ray tracing algorithms to run on their newer hardwares [59, 2].

Production rendering companies, like Pixar and Dreamworks Animation, are relying more

on ray tracing and are looking to ray coherence to make complex rendering tractable [12, 7].

With the increased commercial appeal, the need for new research should grow as well.

My work and the recent interest from industry suggests that the impact of coherent ray

tracing should be a higher priority consideration in all future rendering research. There is a

wealth of algorithms that were designed specifically with a one-at-a-time ray tracer in mind.

There are few that directly map to coherent ray tracing, and there are few more that have

been adjusted to be more amenable to coherent ray tracing. In order to get the most from

coherent ray tracing algorithms, they should be incorporated from the start of algorithm
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design.

It would seem that truly interactive photorealistic rendering may be just around the

corner. The algorithms presented in this thesis help bring us closer to this goal. With

the rapid pace of coherent ray tracing research and the promise of future hardwares with

dizzying amounts parallelism, it seems possible that we will soon be visiting and interacting

with virtual worlds that are indistinguishable from reality.
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analysis and sheared reconstruction for rendering motion blur. ACM TOG (SIGGRAPH 09), 28(3):93,
2009.

[20] Thomas Funkhouser, Ingrid Carlbom, Gary Elko, Gopal Pingali, Mohan Sondhi, and Jim West. A beam
tracing approach to acoustic modeling for interactive virtual environments. In ACM SIGGRAPH 98,
pages 21–32, 1998.

[21] Thomas A. Funkhouser, Patrick Min, and Ingrid Carlbom. Real-time acoustic modeling for distributed
virtual environments. In ACM SIGGRAPH 99, pages 365–374, 1999.

[22] Djamchid Ghazanfarpour and Jean-Marc Hasenfratz. A beam tracing method with precise antialiasing
for polyhedral scenes. Computers and Graphics, 22(1):103–115, 1998.
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Appendix A

Beam Tracing Algorithm Details

This appendix is complementary to Section 2.2. The following sections provide low-level
details and pseudocode for beam–triangle intersection and kd-tree traversal, the two key
components of our beam tracing algorithm.

A.1 Beam Representation
A 3D ray is defined by an origin, a direction, and a maximum distance along the ray (the
hit distance once a hit is found for a primary ray). We represent a beam as four corner rays.
In our work, we exploit the SSE intrinsics, a library of macros, for ease of implementation.
The atomic datatype used by these macros is the m128 structure, which packs 4 32–bit
single precision floating point values together into one variable. Most standard floating point
operations can be performed on all four variables in parallel. In the following pseudocode
examples we will replace these intrinsics with more intuitively meaningful terminology
( m128 ≡ float4) and operators.

Instead of representing a beam as an array of four rays (Array of Structures or AOS), it
is more efficient to interleave the rays’ members into Structures of Arrays (SOA):

// SOA representation of 4 3D vectors

struct soavec3 {

float4 x,y,z;

};

// A 3D Beam is defined by 4 corner rays which meet at a point.

struct Beam {

soavec3 Origin; // Beam origin

soavec3 Dirs; // Beam corner’s directions

soavec3 InvDirs; // Inverse of directions

float4 MinDist; // Min distance along corner rays

float4 MaxDist; // Max distance along corner rays

int Signs[3]; // Signs of Dir

int pad; // Keep the structure aligned

};
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a) b)

Figure A.1: A difficult intersection test case requiring fuzzy logic. Does the infinitesimally
small ray in (a) (green) lie inside or outside the triangle (blue) as determined by its left edge
(red)? Clearly the beam in (b) (green) misses the triangle, but floating point accuracy may

tell us otherwise.

A.2 Triangle Intersection
In the image plane, the beam’s 3 or 4 corner points can all lie on one side of a triangle edge
or be split in two. Using SSE2 instructions, we can simultaneously test the 4 beam points
against the triangle edge, and store the result in a 4-bit mask:

soavec2 diff = BeamPoints2D - triPoint2D;

float4 dotval = dot( diff,triPerp2D );

bool4 mask = (dotval < 0);

This mask tells us on which side of the plane each of the 4 points resides. If all 4 bits are
zeros, all points lie on the outside of the plane, and if all are ones, they lie on the inside. Any
other result indicates that the plane splits the 4 points, and more than that, exactly which
edges the plane splits. There will be either 2 or 0 intersected edges, and finding the actual
intersection points requires two line–plane intersection tests.

We use a switch statement on the mask from the plane test, to split based on the 15
different possible orientations of the points relative to the edge (in reality there are only 11
possible orientations as 0 and 15 are the no split cases and 5 and 10 aren’t possible as long
as the beam’s cross section is convex). We then shuffle the beam points and edges such
that we can find the two intersection points in parallel. Computationally, finding these two
intersection points is about as expensive as generating one new ray in a conventional ray
tracer. However, the branching and the shuffling do add some overhead. Once we have
determined the intersection points, it is a simple matter to shuffle the beam’s members with
the intersection points to generate the new beams.
Robust Splitting With Fuzzy Intersection Tests: What happens when a plane passes
through beam corner points as in Fig. A.1b? If we were dealing with rays (Fig. A.1a), this is
a difficult question to answer, but when dealing with beams (Fig. A.1b), the other corner
points should determine the result. If we’re not careful, numerical imprecision could lead us
to split this beam when no split is really necessary. Corner points which are within some
distance epsilon from the plane shouldn’t affect the determination of which side the beam is
on and whether to split. These points can be masked out using a fuzzy mask:

bool4 fuzzyMask = (Epsilon < abs(dotval));
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This assures that only the points which can definitively decide the result come into play.
Similar fuzzy logic is used throughout our beam tracer.

A.3 KD-Tree Traversal
Below we include pseudocode for our beam–kd-tree traversal algorithm. Note that it is quite
similar to the standard ray–kd-tree traversal algorithm. In the actual implementation, there
is also a test to see if the plane passes through the origin, and we must visit the left or right
child node determined by the signs of the beam’s directions.

When the beam must visit both child nodes, we must push a KDStackNode onto the
KDStack to be retrieved later by GetNextBeam(). Each KDStackNode must hold a pointer
to the far KDNode, the bounding box of the far node, and the current size of the MissStack.
All new beams pushed onto the MissStack during triangle intersection must continue down
the kd-tree as the current beam would. GetNextBeam()(not shown here) must determine
the next KDNode to be visited as well as the next beam for that node and the new TMin and
TMax values for that beam.

void Traverse( Beam * CurBeam, KDTree & Tree ) {

const int mod[] = {1,2,0,1};

// Current bounding box relative to beam’s origin

AABBox CurBox = KDTree.Box - CurBeam->Origin;

soavec3 TMin; // Entry distances for each beam ray and axis

soavec3 TMax; // Exit distances for each beam ray and axis

// Check if the CurBeam hits the scene’s bounding box,

// and initialize TMin and TMax.

if ( !BeamVsAABBox(CurBeam,CurBox,TMin,TMax) ) return;

KDNode* CurKDNode = KDTree.Root;

while( CurBeam ) {

while( !CurKDNode->IsLeaf() ) {

int Axis = CurKDNode->GetAxis();

float4 Split = CurKDNode->GetSplit();

float4 SplitSubO = Split - CurBeam->Origin;

float4 Dist = CurBeam->InvDirs[axis] * SplitSubO;

bool4 ltZeroMask = (Dist < 0);

if ( ! ˜ltZeroMask ) {

// Plane passes behind Origin

CurKDNode = GetNearChild(CurKDNode,CurBeam);

} else if(!(Dist < TMax[mod[Axis]]) || !(Dist < TMax[mod[Axis+1]])) {

// Traverse near node only

CurKDNode = GetNearChild(CurKDNode,CurBeam);

} else if(!(TMin[mod[Axis]] < Dist) || !(TMin[mod[Axis+1]] < Dist)) {

// Traverse far node only

CurKDNode = GetFarChild(CurKDNode,CurBeam);

} else {

// Traverse both nodes

int which = CurBeam->Signs[Axis];
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AABBox FarBox = CurBox;

KDNode* FarNode = GetFarChild(CurKDNode,CurBeam);

// Save the far kd-node for later.

FarBox[which][Axis] = SplitSubO;

KDStack.push( KDStackNode( FarNode, FarBox, MissStack.size() ));

// Traverse the near node.

CurBox[1-which][Axis] = SplitSubO;

TMax[Axis] = Dist;

CurKDNode = GetNearChild(CurKDNode,CurBeam);

}

}

// Intersect with the triangles in this leaf node.

int NumTris = CurKDNode->GetNumTris();

if ( NumTris )

BeamVsTriList(CurBeam,CurKDNode->GetTriListPtr(),NumTris);

// Get the next beam and KDNode from the stack

(CurBeam, CurKDNode) = GetNextBeam(KDStack,CurBeam,TMin,TMax);

}

}



Appendix B

Real-time Whitted Ray Tracing
Pseudocode

This appendix provides pseudocode for the Ranged traversal and Partition traversal algo-
rithms in Chapter 3. Pseudocode for Masked traversal can be found in Subsection 3.2.1.

B.1 Ranged Traversal
1: // Traverse a Ray packet, R, through theBVH using Ranged Traversal
2: void rangedTraverseBVH( Rays R, Frustum F, BVH theBVH )
3: BVHCell curCell = theBVH.root;
4: Stack<StackNode> traversalStack;
5: Index ia = 0;
6: while ( true )
7: ia = getFirstHit( R, F, curCell.AABB(), ia );
8: if ( ia < size(R) )
9: if ( isInner( curCell ))
10: StackNode node;
11: node.cell = curCell.farChild( R );
12: node.ia = ia;
13: traversalStack.pushBack( node );
14: curCell = curCell.nearChild( R );
15: continue ;
16: else // isLeaf( curCell ) == true
17: Index ie = getLastHit( R, curCell.AABB(), ia );
18: Triangles T = curCell.triangles();
19: for ( Index j = 0; j < size( T ); ++ j )
20: if ( frustumIntersectsTriangle( F, T [ j] ))
21: for ( Index i = ia; i < ie ; ++i )
22: rayIntersectTriangle( R[i], T [ j] );
23: // END if ( ia < size(R) )
24: if ( traversalStack.empty() )
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25: break ;
26: StackNode node = traversalStack.pop();
27: curCell = node.cell;
28: ia = node.ia;
29: // END while ( true )...
30:// END void traverseBVH(...

B.2 Partition Traversal
1: // Traverse a Ray packet, R, through theBVH using Partition Traversal
2: void partitionTraverseBVH( Rays R, Frustum F, BVH theBVH )
3: BVHCell curCell = theBVH.root;
4: Stack<StackNode> traversalStack;
5: Index I[size( R )];
6: for ( Index i = 0; i < size(R); ++i ) I[i] = i;
7: Index ia = 0;
8: while ( true )
9: ia = partRays( R, F, curCell.AABB(), I, ia );
10: if ( ia > 0 )
11: if ( isInner( curCell ))
12: StackNode node;
13: node.cell = curCell.farChild( R );
14: node.ia = ia;
15: traversalStack.pushBack( node );
16: curCell = curCell.nearChild( R );
17: continue ;
18: else // isLeaf( curCell ) == true
19: Triangles T = curCell.triangles();
20: for ( Index j = 0; j < size( T ); ++ j )
21: if ( frustumIntersectsTriangle( F, T [ j] ))
22: for ( Index i = 0; i < ia ; ++i )
23: rayIntersectTriangle( R[I[i]], T [ j] );
24: // END if ( ia > 0 )
25: if ( traversalStack.empty() )
26: break ;
27: StackNode node = traversalStack.pop();
28: curCell = node.cell;
29: ia = node.ia;
30: // END while ( true )...
31:// END void traverseBVH(...



Appendix C

Adaptive Wavelet Rendering Companion

This appendix serves as a companion to Chapter 4. Section C.1 details the Daubechies
9/7 and LeGall 5/3 wavelet filter banks which I found to work best for adaptive wavelet
rendering. Section C.2 derives Equation 4.9 which is used to compute the variance at the
wavelet basis’ scale and wavelet coefficients.

C.1 Daubechies 9/7 and LeGall 5/3 Filter Banks
We found the Daubechies 9/7 and LeGall 5/3 wavelets to work better for our algorithm
than the simpler Haar wavelet basis or various other filter banks that we tested. They are
both symmetric biorthogonal filter banks. The quality of a wavelet is often measured by
the number of vanishing moments: the lowest degree polynomial for which the results of
applying the high-pass filter are non-zero. The Daubechies 9/7 filter bank has 4 vanishing
moments, so can exactly fit polynomials of cubic degree or lower. LeGall 5/3 has 2
vanishing moments. These are the highest theoretically possible for their support widths.
The Daubechies 9/7 wavelet is used for high quality lossy encoding in JPEG 2000 because
it is very smooth. LeGall 5/3 is an instance of a binlet, a filter bank that can be implemented
as all integer values, so it is used for efficient lossless encoding in JPEG 2000.

Since they are both symmetric, we list only half of the coefficients. The rest can be
obtained by reflecting about the first coefficient.

Daubechies 9/7
Analysis Low-Pass:

(
√

2) ×{0.602949, 0.266864, -0.078223, -0.016864, 0.026749}
Analysis High-Pass:

(1/
√

2) ×{1.115087, -0.591272, -0.057544, 0.091272}
Synthesis Low-Pass:

(1/
√

2) ×{1.115087, 0.591272, -0.057544, -0.091272}
Synthesis High-Pass:

(
√

2) ×{0.602949, -0.266864, -0.078223, 0.016864, 0.026749}

LeGall 5/3
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Analysis Low-Pass: (
√

2) ×(1/8)×{6, 2, -1}
Analysis High-Pass: (1/

√
2) ×(1/2)×{-2, 1}

Synthesis Low-Pass: (1/
√

2) ×(1/2)×{2, 1}
Synthesis High-Pass: (

√
2) ×(1/8)×{-6, 2, 1}

C.2 Derivation of Equation 4.9
Equation 4.9 accumulates the approximate variance at the scale coefficients from an estimate
of variance at the pixels. Equation 4.4 states that the scale coefficients are equal to the inner
product of the pixel values with the scale function. For a discrete wavelet basis, this inner
product is a weighted sum:

S =
〈
B̃,Φ

〉
=

∑
i

B̃iΦi, (C.1)

where the Φi are the discrete scale function’s filter coefficients, and the B̃i are the pixel
means. Note that we have dropped the wavelet translation and dilation subscripts from S
and Φ for simplicity. We seek the variance of the scale coefficient: σ2(S ) = σ2

(∑
i B̃iΦi

)
.

This can be computed using the identity:

σ2

∑
i

cixi

 =
∑

i

c2
iσ

2(xi) +
∑

i

∑
j>i

2cic jcov(xi, x j), (C.2)

which holds for any set of constants ci and random variables xi. If the xi are uncorrelated
random variables, then the covariance term tends to zero, and we have:

σ2

∑
i

cixi

 ≈∑
i

c2
iσ

2(xi). (C.3)

Finally, this gives us:

σ2

∑
i

B̃iΦi

 ≈∑
i

Φ2
iσ

2
(
B̃i

)
. (C.4)

The right side of Equation C.4 is equivalent to the right side of Equation 4.9.
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