
Creating Generative Models from Range Images

Ravi Ramamoorthi
Stanford University∗

ravir@graphics.stanford.edu

James Arvo
California Institute of Technology

arvo@cs.caltech.edu

Abstract

We describe a new approach for creating concise high-level gener-
ative models from range images or other approximate representa-
tions of real objects. Using data from a variety of acquisition tech-
niques and a user-defined class of models, our method produces a
compact object representation that is intuitive and easy to edit. The
algorithm has two inter-related phases:recognition, which chooses
an appropriate model within a user-specified hierarchy, andparam-
eter estimation, which adjusts the model to best fit the data. Since
the approach is model-based, it is relatively insensitive to noise and
missing data. We describe practical heuristics for automatically
making tradeoffs between simplicity and accuracy to select the best
model in a given hierarchy. We also describe a general and efficient
technique for optimizing a model by refining its constituent curves.
We demonstrate our approach for model recovery using both real
and synthetic data and several generative model hierarchies.

CR Categories: I.3.5 [Computer Graphics]: Ob-
ject Modeling—Curve, surface, solid, and object representations,
Object hierarchies, Splines; I.4.8 [Image Processing and Computer
Vision]: Scene Analysis—Object Recognition, Surface Fitting

Keywords: Generative Models, Range Images, Curves and Sur-
faces, Procedural Modeling

1 Introduction

It has recently become feasible to acquire reasonably accurate
point-clouds orrange datafrom 3D objects [5, 26]. For graph-
ics applications, these point-clouds are usually transformed into
polygonal meshes [5, 12], or spline patches [14]. However, these
approaches often provide an unintuitive representation that is diffi-
cult to manipulate once generated. In addition, a large amount of
data is required since the meshes usually contain thousands of tri-
angles. For modeling many man-made objects,generative models
proposed by Snyder [21, 22] provide an attractive alternative. A
generative model is a generalization of a swept surface in which

∗Address: Gates Wing 3B-372, Stanford University, Stanford, Ca 94305.

Figure 1: Generative models recovered from actual range data. Objects
were scanned individually, modeled using our algorithm, then composed in
this scene with artificial color and shading. A smooth compact represen-
tation was generated for each object from a few simple model hierarchies,
despite noisy and incomplete data. See figure 7 for a comparison of range
data and recovered models.

the generating curve can be continuously transformed by one or
more arbitrary curves. For instance, a banana-like shape is speci-
fied parametrically by translating a cross-section while scaling and
rotating it. The cross-section, scaling function, and rotation are
all described by curves. The modeled object is analytically repre-
sented by a tree of operators that provides a logical description of
its structure. Designers can easily construct, examine, and modify
such a model.

We describe a method for inverting this process to recover gen-
erative models from range data or other approximate representa-
tions of object geometry. This method requires the user to specify
a universe of possible objects by providing a hierarchy of shape op-
erators defining a class of generative models. Given a user-defined
hierarchy, such as the ones shown at the bottom of figure 2 and
in figure 8, the system automatically selects a parametric model
within this hierarchy, and adjusts its parameters to best match data
acquired from an actual object. Several models recovered in this
way are shown in figure 1.

Our approach for model construction has a number of benefits:

Simplicity: Range data may be obtained by several methods,
including theshadowapproach of Bouguet and Perona [2], that re-
quires only a lamp, pencil and checkerboard apart from the camera.

Robustness: By exploiting redundancies in the data, accurate
models can often be recovered from incomplete and noisy data.
Our model-based approach is thus much less sensitive to noise than
mesh creation. Many of our examples use only one noisy and in-
complete range image, while creation of a polygon mesh generally
requires many accurate and properly aligned range images.

construction of
generative model

shadow method

structured light

3D point cloud

model hierarchy

best approximation

modified object

model
recognition

parameter
estimation

mechanical probe

curve editor

generative
model

3D point cloud acquisition

root

shape benddepth

shape
+bend +bend

depth
+depth
shape

Spoon
laser scanner

Figure 2:Overview of generative model creation. The algorithm takes range data in the form of a point-cloud and a generative model hierarchy as input. An
appropriate model is then chosen, and parameters are optimized to output an accurate and concise generative model that can subsequently be edited.

Compactness: Generative models provide a concise represen-
tation; we need only store an algebraic model description, and con-
trol points of the model’s parametric curves. This representation
can be orders of magnitude smaller than a triangle mesh.

Intuitiveness: Since the model is expressed in terms of para-
metric curves corresponding to logical features of the object, it is
easy to understand, manipulate, and edit.

Related Work

Many methods have been explored, especially in computer vision,
for recovering object shape for specific primitives such as gener-
alized cylinders [1, 15], superquadrics [16, 23] and blended de-
formable models [7]. Terzopoulos and Metaxas [24] have proposed
a computational physics framework for shape recovery in which
globally deformed superquadrics model coarse shape and local de-
formations add fine detail. Superquadrics have also been used for
model-based segmentation [9, 11], and for recognition of “geons”
using relationships between superquadric parameters [19, 27]. De-
Carlo and Metaxas [8] introduced shape evolution with blending to
recover and combine superquadrics and supertoroids into a unified
model. Debevec et a. [6] considered architectural scenes and devel-
oped a system for recovering polyhedral models from photographs.

Our approach is somewhat more general than these previous al-
gorithms in that it is based on a general user-specified generative
hierarchy rather than a particular parametric model. This allows
automatic construction of more complex and varied shapes, with-
out segmentation, than is possible with current computer vision al-
gorithms. Further, many standard primitives used in computer vi-
sion can be recovered using our method since generative models
are a superset of traditional shape representations such as globally
deformed superquadrics, straight homogeneous generalized cylin-
ders, and blended deformable models, all of which have been re-
covered using our system. Our method is also automatic, with no
user intervention required. However, model-specific algorithms,
especially those that allow user-intervention, may out-perform our
algorithm on the shapes to which they apply by exploiting model-
specific information. For instance, by considering only polyhedral
models, and having the user manually specify the edges of interest,
Debevec et al. [6] are able to work with only photographs, while
we require range data.

This paper deals primarily with shapes represented by a sin-
gle generative model. At present, we do not add local detail [24],
nor address automatic model-based segmentation [8, 9, 11] or im-
age interpretation [3]. However, our results suggest that generative
models may be useful for these tasks in lieu of superquadrics or
generalized cones.

In contrast to some object recognition methods [19, 27],which
estimate specific model parameters to classify an object as a mem-
ber of some class, our method first determines which degrees of
freedom in the model hierarchy are most suitable for the acquired
data, and then refines the associated parameters.

Recent work on simplifying polygonal meshes shares one of
our objectives—providing a more compact representation. For ex-
ample, Hoppe et al. describe techniques to optimize meshes [13],
while Eck and Hoppe [10] and Krishnamurthy and Levoy [14] fit
spline surfaces to dense meshes. However, mesh-based methods do
not yield compacthigh-levelmodels.

The rest of this paper is organized as follows: Section 2 gives
an overview of our algorithm and describes our framework for re-
covering the appropriate model within a user-specified hierarchy.
In section 3, we discuss our methods for optimization. Section 4
briefly outlines the various models used in our tests. In section 5,
we discuss our results and section 6 presents our conclusions and
directions for future work.

2 Algorithm Framework

In this section, we give a high-level overview of the entire algo-
rithm, pictured in figure 2, and describe our method for automati-
cally choosing the appropriate generative model from within a user-
defined class. This is essentially a recognition task as it requires
the measured data to be classified as one of the models in the user-
specified hierarchy. The recognition process is based on a simple
tradeoff between accuracy and simplicity. For efficiency, agreedy
algorithm is employed that starts with the simplest model in the
input hierarchy, and then considers more complex models at the
next level in the hierarchy. The system selects the model provid-
ing the greatest benefit, and repeats the process in a greedy fashion,
moving through the hierarchy from simple to more complex mod-
els. The process stops when none of the more complex models
significantly improves the accuracy, or the most complex model is
reached. Although the first model that is fit to the data is trivial, the
algorithm thenbootstrapsitself by using information obtained in

fitting previous models, improving at each stage until an accurate
and suitably complex model is recovered. For illustrative purposes,
we will often refer to the specific hierarchy shown at the bottom of
figure 2 and on the left of figure 8, which is inspired by the spoon
model created by Snyder [21, p. 83].

The model hierarchy has several levels. For our class of mod-
els, the root node of the hierarchy is level zero, which consists of
a “half-cylinder” with two global parameters controlling width and
depth. This object essentially defines a bounding volume for the
data. Deeper levels consist ofrefining one or more of the param-
eters by representing them as curves instead of global values. In
general, one curve is added at each level so the number of curves
corresponds to the level. For example, the edge to the “depth” node
in figures 2 and 8 corresponds torefining the depth parameter by
representing it as a curve. The hierarchy can also be thought of as
a tree; going from parent to child corresponds to adding a single
curve. For instance, theroot is theparent, while the model with
refined depth is thechild. The tree representation implies an order
in which curves are added. The curve providing the most benefit
is added first, and a child node inherits initial parameter estimates
from optimized results for the parent node.

Input to the System: Part of specifying the model hierarchy is
to supply functions that perform the following tasks.

• Initial Guess for Root Model: Starting values must be sup-
plied for the parameters of the root model, which typically
consists of a simple primitive object. The initial values for
both the intrinsic parameters and the extrinsic parameters
(translation, rotation, and scale) of the root model may be
very crude, since they merely provide a starting point for sub-
sequent refinement and optimization. Parameter estimates
for more complex models are obtained automatically from
those of the parent model in the tree.

• Model Evaluation: A function must be supplied to evalu-
ate any model in the input hierarchy at givenuv-parameters.
Efficient routines can be automatically generated from an al-
gebraic model description.

• Curve Constraints: The model hierarchy may optionally
contain additional constraints on the curves in the final
model, such as fixing their values at specific points, or
penalty terms to ensure, for instance, that a particular curve
remains positive everywhere.

This information is encapsulated as user-supplied functions along
with the code that defines the model hierarchy. Thus, the algorithm
may proceed without any manual user intervention.

A summary of our algorithm is shown in figure 3. Below, we
discuss each step in detail. The reader may wish to refer to the
results in figure 8 and the left of figure 9 for examples of applying
the algorithm.

Step 1. Acquire Range Data: We have used a number of dif-
ferent methods to acquire range data for our experiments, including
two structured light techniques—a method which uses a sequence
of alternating dark and light patterns projected onto the object [25],
and the highly portable method described by Bouguet and Perona,
in which shape is inferred from the shadow of a rod swept over the
object [2]. We have also used a mechanical probe and a laser range
scanner. This variety of sources demonstrates that our algorithm is
amenable to a wide assortment of data acquisition methods.

Overview of the Algorithm

Set current model
to child with minimal
total cost.

Acquire range data and
supply a model hierarchy.

1.

Set current model to root node
of hierarchy, optimize parameters,
and calculate error.

2.

For each child of current model,
optimize parameters, calculate
error, and compute total cost
accounting for model complexity.

3.

Is the total cost of any
child less than that of
the current model?

4.

Further refine the curves and
impose all curve constraints.

5.

Add smoothness constraints
and optimize.

6.

Yes

No

Figure 3: Overview of the algorithm with the greedy algorithm used for
recognition highlighted.

Step 2. Fit to root model:

• Initialize: Let ρ denote our current model—initially the root
node of the hierarchy. The root node’s intrinsic and extrinsic
parameters are initialized using a user-specified function.

• Optimize: An error-of-fit functionφ is computed based on
the spatial deviation between the data and the model as de-
fined in equation 4. Optimization is used to adjust the root
node to minimize the error-of-fit. Details are given in the
next section.

• Cost: After minimization,φ is used to compute the deviation
D which represents the RMS distance between model and
data as defined in equation 5. The total costC is initialized
to this deviation.

Step 3. Fit children to Data: For each child of the current
modelρ, denoted byγi(ρ), we calculate the deviationD(γi) after
optimization. For instance, ifρ = root, the children areγ1 =
shape, γ2 = depth, γ3 = bend. We then calculate a cost function
for each child:

C(γi) = D(γi) +4(γi), (1)

where4 is a penalty for model complexity. We use a very sim-
ple but effective heuristic to assess the complexity of a model:
4(N) = NQ whereN is the level in the hierarchy of a specific
model andQ is a constant that allows the user to control the trade-
off between simplicity and accuracy.

In progressing from the current modelρ to a childγ, we add a
single curve. The entire process is explained in detail with results
in subsection 3.3 on curve refinement. The steps are:

• Initialize: Initial parameter estimates forγ are set to param-
eter values of its parentρ. The new curve to be added is
initialized to a constant inherited fromρ, and control points
are added at the ends.

• Optimize: A first optimization step yields a coarse curve
estimate. In all optimization steps, all model parameters are
simultaneously varied to minimize the objective function in
equation 4.

• Refine: A few interior control points are automatically added
based on the heuristic defined in equation 16.

• Optimize: Optimization is repeated with the additional con-
trol points added, which improves the quality of the new
model.

• Cost: We compute the deviationD using equation 5 as in
step 2, and use equation 1 to compute the total cost ofγ.

Step 4. Resetρ: The previous stage calculated the cost function
for all the children ofρ. If the child with lowest costC(γi(ρ)) has
a lower cost thanρ, we make it the new best fit (ρ = γi) and go
back to step 3. Otherwise, exit to step 5.

For efficiency, we use agreedy algorithm to choose the best
model. We consider only the descendants of the current modelρ to
choose the next model. Conversely, a node is considered only if it
is linked to the best guessρ at some point. Thus, curves are added
in order of importance, with the one reducing the objective function
the most added first. This approach works best when a particular
curve is clearly more important than other choices, or when curves
may be refined in any order with similar results. In cases where
two curves produce similar results early on, but one branch later
proves to be clearly superior, a more exhaustive search algorithm
with backtracking would achieve better results.

Steps 2-4 constitute theRecognition Phaseof the algorithm
where an appropriate model is chosen by identifying a path through
the model hierarchy as shown in figure 8. The goal is to quickly
choose the appropriate model in the hierarchy i.e: to identify which
curves and deformations are required to model the data. Since this
process merely chooses a suitable model, it is appropriate to repre-
sent the curves at a coarse level of detail. However, since we wish
to eventually recover an accurate final model, we further refine the
“recognized” modelρ in the next step.

Step 5. Refine curves further and add curve constraints:

• Refine: Using the heuristic in equation 16, control points are
automatically added where necessary. More control points
are added than in therefine phase of step 3 above, as this
allows the curve to be represented at a finer resolution; the
number of control points used is given by equation 19.

• Curve Constraints: We then add user-specified constraints
to the curves such as fixing the values at the end-points. Typ-
ically, these constraints improve the visual accuracy of the
final model, but have little impact on the overall shape.

• Optimize: Optimization is used to get a refined model.

Step 6. Smoothness: Finally, we add a term given by equa-
tion 21 to the objective function, which enforces smoothness of the
curves, and repeat the optimization process. This reduces kinks in
the model that result from over-fitting noisy input data.

3 Optimization

In this section, we describe our optimization techniques for fitting
a model to measured data. First, we define an objective function to
assess the deviation between data and model, and describe a pro-
cedure for efficiently computing the gradient of this function. We
then describe methods for refining local features of the model.

3.1 Error of Fit

To define a practical measure of fit between a model and the corre-
sponding data, we begin with the notion of such a measure for two
arbitrary surfaces. For any pointx ∈ R3 and subsetS ⊆ R3, let

χ(x, S) = inf
y∈S
||x− y || , (2)

where|| · || is the Euclidean 2-norm, which is the distance fromx
to the surfaceS. If S1 andS2 are two integrable surfaces inR3,
we define a symmetric measure of closeness by

φ(S1, S2) =

∫
S2

χ2(x, S1) dx +

∫
S1

χ2(x, S2) dx, (3)

which is zero if and only ifS1 = S2. This function imposes an
equal penalty for either surface deviating from the other, or for ei-
ther surface covering too little of the other. IfS′1 andS′2 are discrete
point sets with unit weight, this becomes

φ(S′1, S
′
2) =

∑
x∈S′2

χ2(x, S′1) +
∑
x∈S′1

χ2(x, S′2). (4)

Moreover, ifS′1 ⊂ S1 andS′2 ⊂ S2 are sets of discrete samples
from the respective surfaces, thenφ(S′1, S

′
2) can be used to ap-

proximateφ(S1, S2). To determine how well a generative model
matches an actual object, we employ two point sets in exactly this
manner, as equation 3 is typically impossible to evaluate exactly1.
One point set is obtained from direct measurement, such as a range
image, and the other by sampling the parameter space of a model.
By optimizing with respect to this objective function, we in effect
minimize the RMS deviation of the two surfaces:

D(S′1, S
′
2) =

√
φ(S′1, S

′
2)

|S′1|+ |S′2|
, (5)

where|S| denotes the number of elements in the setS.

3.2 Computing the Gradient

Since a generative model is typically a nonlinear function of its
constituent curves, we use a general optimization technique to esti-
mate the model’s shape parameters. For simplicity and ease of im-
plementation, we use a conjugate gradient method [18] to minimize
the functionalφ(S′d, S

′
m) with respect to the model parameters. Let

S′d denote the fixed data, andS′m the model samples, which depend
on intrinsic shape parameters as well as extrinsic parameters con-
trolling translation, scale, and pose. Specifically,

S′m = S′m(c0, c1, . . . , ck, t,q),

wherec0, c1, . . . ck are model parameters, such as global deforma-
tions and they-components of curve control points,t ∈ R3 is the

1Simple analytic formulae forχ are seldom known, and numerical evaluation,
though precise, is typically too slow for the inner loop of an optimization algorithm.

global translation, andq is a quaternion encoding global scale and
rotation. Thus, optimization is guided by gradients of the form

∇φ =

[
∂φ

∂c0
,

∂φ

∂c1
, . . . ,

∂φ

∂ck
,
∂φ

∂t
,
∂φ

∂q

]
. (6)

To compute this gradient, first observe that

∂φ

∂cj
(S′d, S′m) =

|S′m|∑
i=1

∂φ

∂xi

∂xi

∂cj
, (7)

where x1,x2, . . . are elements ofS′m. Because∂φ/∂xi and
∂xi/∂cj are row and column vectors of dimension three, respec-
tively, the summation is over inner products. We next express the
partial derivatives ofφ in equation 7 in terms of thenearest neigh-
bor functionηd : S′m → S′d, whereηd(x) is the element ofS′d
nearest tox ∈ S′m. The functionηm : S′d → S′m is defined analo-
gously. Then, equation 4 becomes

φ(S′d, S′m) =
∑

x∈S′m

||x− ηd(x) ||2 +
∑
y∈S′

d

||y − ηm(y) ||2 . (8)

Since the nearest neighbor functions are piecewise constant, their
derivatives are zero almost everywhere. Hence

1

2

∂φ

∂x
= [x− ηd(x)]T +

∑
y∈η−1

m (x)

[x− y]T , (9)

for all x ∈ S′m, where the inverse relationη−1
m (x) denotes the set

of points inS′d whose nearest neighbor inS′m is x. The nearest-
neighbor correspondences are efficiently computed using akd-tree
updated at each major iteration of the conjugate-gradient solver.

Suppose now thatc is a control point of a curveΓ. Then, to
compute∂x/∂c, we must account for the composition of nonlinear
transformations that may be applied to the curve as part of the cur-
rent model. For example, suppose that the pointx is obtained by
evaluating the model at the parameter valuesu andv. Then

x(u, v) = F(u, v, Γ(u; c1, . . . , cq)), (10)

where,F(u, v, ·) : R → R3 is the parametric mapping defined by
previous levels in the model hierarchy and applied to curveΓ; we
assumeΓ to be a function of the parameteru as well as the control
pointsc1, . . . , cq . It follows that

∂x(u, v)

∂c
=

∂x(u, v)

∂Γ(u)

∂Γ(u)

∂c
, (11)

where∂x/∂Γ(u) is the3×1 Jacobian matrix ofF at the parameter
valuesu andv. The partial derivative on the right of equation 11
is easily evaluated, given thatΓ is simply a spline curve. The par-
tial ∂x/∂Γ(u) can be evaluated symbolically by differentiating the
current model. We have found that numerical approximation by a
finite difference is equally effective, and may be simpler to com-
pute. Thus, we can also use

∂x(u, v)

∂Γ(u)
≈ F(u, v, Γ(u) + h)− F(u, v, Γ(u)− h)

2h
, (12)

whereh is a suitably small step. Whenc is a global parameter,
controlling a bending deformation for example,∂x/∂c is obtained
directly from the algebraic model specification using either sym-
bolic or numeric differentiation, and the second factor on the right
of equation 11 is no longer necessary.

The extrinsic parameterst andq map canonical model coordi-
nates, in which the computations are initially performed, into the
world-space coordinates of the measured data, in which the gradi-
ent∇φ is computed. More precisely,

x = t + M(q)x0, (13)

where the pointx0 is in canonical coordinates, andM is a scale
and rotation matrix parametrized byq. All partials of x are also
transformed by

∂x

∂Γ(u)
= M(q)

∂x0

∂Γ(u)
. (14)

Finally, to compute∂φ/∂t and∂φ/∂q in equation 6, we substitute
partials ofx with respect tot andq in place of∂x/∂c in equation 7,
where

∂x

∂t
= I and

∂x

∂q
=

dM

dq
x0. (15)

HereI is the3 × 3 identity matrix, and the derivative of each ele-
ment in the matrixM with respect toq is itself a quaternion. Equa-
tion 7 becomes a summation over row vectors or quaternions after
the respective substitutions.

procedureComputeGradient
Use new point correspondences.

1 P ← ∅
2 for all x ∈ S′m andy ∈ S′d do
3 add(x, ηd(x)) toP
4 add(ηm(y),y) toP
5 endfor

ComputeE, extrinsic & global partials.
6 g← 0; E ← 0
7 for all (x,y) ∈ P do
8 (u, v)← parameters ofx
9 w← 2(x− y)T Eq. 9
10 p←w [∂x/∂c0] Eq. 7
11 g← g + [p 0 w wṀx0] Eq. 7, 15
12 Eu ← Eu + w [∂x/∂Γ(u)] Eq. 16
13 endfor

Fill in partials wrt control points.
14 for all u samplesdo
15 for eachcj affectingΓ(u) do
16 gj ← gj + Eu [∂Γ(u)/∂cj] Eq. 17
17 endfor
18 endfor
19 return g

Figure 4: Computing the gradientg of the objective functionφ. We as-
sume a single curveΓ with control pointsc1, c2, . . . ,ck, parametrized with
respect tou. The parameterc0 is assumed to be a global shape parameter.
The model is sampled at discrete parameter values inu andv.

Efficiency: From equations 6, 7 and 9, it appears that the gra-
dient computation requiresO(nk) time per curve, wheren is the
number of sample points, andk is the number of shape parame-
ters controlling a curve. By exploiting sparsity, we can reduce the
time to essentiallyO(n) since each sample point of the model is
affected by only a small number of shape parameters. In particular,
whenc1, c2, . . . are control points, their effects are very localized,
so each∂Γ(u)/∂c in equation 11 is nonzero only for a small num-
ber of shape parametersc.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

Figure 5:The process of curve refinement.Left: Depth curve of spoon model as control points are added in recognition phase. The straight blue dotted line
is the global value at root node, and the blue dotted curve is the initial coarse version. The red dashed curve results after adding four control points shown by
circles, which greatly improves the approximation. For comparison, the final curve is shown by a black solid curve.Middle: Further refinement of the depth
curve. Constraints force the curve to be0 at the end-points and additional control points increase the accuracy of the curve, but also introduce undesirable
kinks. These are essentially eliminated in the smoothed version shown with a solid line on the left.Right: The blue dash-dot curve indicates the initial error
heuristic before any interior control points are added and the red solid line indicates the error after refinement and optimization. The optimized version has a
much lower and flatter error according to the heuristic.

The pseudo-code in figure 4 summarizes the gradient computa-
tion. Here,g denotes the gradient, which is a row vector,w is a
contribution to the row vector∂φ/∂x, as defined in equation 9, and

Eu =
∂φ

∂Γ(u)
=

∑
v

∂φ

∂x(u, v)

∂x(u, v)

∂Γ(u)
(16)

is a scalar associated with the parameter valueu. The summation
in equation 16 is over the discrete samples ofv. Finally, we have

∂φ

∂cj
=

∑
u

Eu
∂Γ(u)

∂cj
, (17)

where the summation is over discrete samples of theu parame-
ter. The computation is broken down in this way for efficiency.
Note that the first element of the gradient vectorg is a partial with
respect to global parameterc0, while the nextk elements of the
gradient are partials with respect to curve control points. The con-
struct [p 0 w wṀx0] in line 11 of the pseudocode denotes the
concatenation of the elements into a single row vector, where the
zero vector0 hask entries, andṀ is the derivative of the scale and
rotation matrix with respect to the quaternionq.

In this algorithm, we recompute the point correspondences us-
ing akd-tree2. We then loop through all the point pairs computing
the contributions toEu, the partial with respect to the global pa-
rameterc0, and the partials with respect to the extrinsic parameters
t andq. Rather than explicitly computing the setη−1

m (x), as shown
in equation 9, we simply accumulate the contribution of each data
point in a single pass through the point set.

Discussion: The objective functionφ described above is fairly
crude as it depends on the distribution of sample points, and the
nearest neighbor function may fail to make the most meaningful
correspondences. Further, we do not interpolate between sample
points for greater accuracy, nor do we use connectivity information
available in the model. While physically-based heuristics such as
momentum and inertia can improve the situation somewhat [24],
our simple objective function suffices to guide the traversal of the
model hierarchy for the examples described in this paper.

2Actually, this is done earlier as a result of evaluating the objective function.

3.3 Curve Refinement

Each curve is adaptively refined during optimization. Refinement
in this context differs from previous curve-fitting approaches in sev-
eral ways. First, generative models are composed of spline curves
with local control, whereas optimization techniques typically used
in computer vision entail global shape parameters. Secondly, the
curves of a generative model describe characteristics of a 3-D sur-
face rather than approximating sets of 2-D points [17]. Our ap-
proach to curve refinement most closely resembles the techniques
for optimizing trajectories used in animation [4, 20].

When a curve is added during the recognition phase in step 3 of
figure 3, it is initialized to a constant with a global parameter inher-
ited from the parent node in the model hierarchy. Multiple control
points are added at the ends to construct a valid spline curve. After
the first optimization pass, four or five additional interior control
points are added and optimization is repeated. See figure 5. During
recognition, a coarse approximation of the curve suffices, as it is
used only to choose a suitable model in the hierarchy.

Our approach to curve refinement is to add control points gradu-
ally, and only where needed. We useEu, as defined in equation 16,
as an error term for a curveΓ, and insert new control-points that
equidistribute the error; that is, we select the points so segments
between them have equal net error.

Since∇φ = 0 at a minimum,∂φ/∂c = 0 for all c. As the num-
ber of control-points increases,Eu approaches∂φ/∂c for some
control pointc, and is therefore0 when the curves are represented
exactly. A large|Eu| indicates that the approximating curve needs
refinement. We can also use a variational argument. Sinceφ at
a minimum should be0 to first order for variations in the curve
Γ, |Eu| is equivalent to the Euler-Lagrange [20, 28] error, which
should be0 when the curve is represented precisely. The errorφ
by itself does not necessarily indicate where curves need refining,
as the model may be fundamentally incapable of representing the
data; this is especially so for simpler models in the hierarchy.

Producing the Final Curves: In step 5 of the algorithm
shown in figure 3, we refine the curves further and add constraints.
First, we compute the total error normalized by the size of the data
set separately for each curve:

E =

∑
u
|Eu|

|S′d ∪ S′m|
(18)

Based on this total error, we calculate the number of control-points
we wish to add to each curve using the heuristic

Nc =
E

ε
, (19)

which adds one control point for eachε of error. We have found
that a value ofε = 10−3 is suitable for objects of unit dimensions.
The control points are again added to equidistribute the error. Then,
user-specified constraints such as curve end conditions are added.
Refer to the middle of figure 5 for an example. The objective func-
tion is minimized again to yield a high-accuracy solution satisfying
the constraints.

In the final stage, step 6 in figure 3, we ensure that noise in the
data does not lead to extraneous kinks in the model. We do this by
introducing a penalty based on the integrated curvatureβ given by

β =

∫
u

|κ(u)| du, (20)

whereκ(u) is the curvature ofΓ at the parameter valueu. We esti-
mateβ using numerical quadrature and approximate the derivatives
of β with respect to the curve control points using finite differences.
These values are summed over all curves in the model. The objec-
tive function is then augmented with an extra term

φ̂ = φ + aβ, (21)

wherea is a positive weight chosen so that the smoothness term
and the original objective function are of approximately the same
magnitude. Thus,

a = K
φ0

β0
, (22)

where the subscript0 denotes the value after step 5 in the algorithm
framework, but before optimizing with respect to the augmented
objective function. Here,K is a constant that controls the relative
importance of the two terms, which was fixed at 10 in our tests.

4 Model Hierarchies Used

This section briefly reviews the model hierarchies used in our ex-
periments. The hierarchy for the spoon is patterned after the model
given by Snyder [21, p. 83]. The generative modeling equation is

spoon(u, v) =

 sx(v)

arcx(sy(v),dy(v), u)

by(v) + arcy(sy(v),dy(v), u)

 ,

wheres is the width or shape curve,d is the depth curve, andb
is the bend, parametrized sosx = dx = bx. arc(a, b, u) defines
a parametric arc passing through(−a, 0), (0, b), and(a, 0) in the
xy-pane. The above equation is obtained at the deepest level of the
hierarchy, regardless of the path, since all the operators commute.
In the root model,s andd are global parameters andb is 0. As
more complex models are reached, these constants are replaced by
curves. Curves are constrained for this model so thats andd are 0
at the end-points, wheres is also perpendicular to thex-axis; since
the model is symmetric about thex-axis, this last constraint avoids
introducing a kink. To complete the representation, we also require
a thickness. Since the thickness is typically small and difficult to
discern from range data, we use a constant value derived from the
projection of the acquired data in theyz-plane.

For a ladle-like shape, the arcs are translated by the bend only
after first rotating them about they-axis by an angle equal to that of
the bend curve from the horizontal. This forces the arcs to remain
perpendicular to the bend curve. A shape suitable for a cup handle
is obtained by making the circular cross-sectionarc rectangular.3

We also used arotating generalized cylinder—the “banana”
model defined by Snyder [21, p. 69]—to represent many differ-
ent objects. This model rotates a cross-section while scaling and
translating it, and generalizes common primitives in computer vi-
sion known as profile products or simple homogeneous generalized
cylinders. The parametric equation is

banana(u, v) = yrot(R(v))

 S(v)Cx(u)

S(v)Cy(u)

Z(v)


whereyrot(θ) is a rotation ofθ about they-axis,R is the para-
metric rotation angle,S the scale, andC the 2D cross-section. The
root model is a right circular cylinder with unit radius and no ro-
tation. The curvesR, S, andC are added at more complex levels
in the hierarchy. This class of models can also be used to represent
surfaces of revolution, such as the bowl example that is shown.

As the previous model hierarchy demonstrates, our approach
subsumes some common primitives used in computer vision such
as simple homogeneous generalized cylinders. We have also recov-
ered globally deformed superquadrics with our approach.

Figure 6:Fitting of a blended model [7] to synthetic randomly perturbed
samples of a sphere/torus blend with variable cross-section. This example
shows how blended models fit directly into our framework, with the blend
curve being treated like any other generative curve. It also shows that non-
spherical and variable topology can be handled. The model eliminates most
of the noise in the data without introducing significant errors. The leftmost
image is the initial model, which is simply a sphere. To the right are two
views of the rough input data and the smooth final model.

DeCarlo and Metaxas [7] present a method for using blended
deformable models. Models of variable topology can be created us-
ing their method. Their ideas fit directly into our framework since
theblend curveis just another curve in the generative model. Since
our objective function does not directly consider topology at all,
no effort is needed to incorporate variable topology. We note that
DeCarlo and Metaxas require certain constraints on the blending
function to obtain a consistent model, which are naturally incorpo-
rated into the curve constraints phase of our algorithm. The general
formula for a blended model [7] is

blend(u, v) = Γ(u)b1(u, v) + (1− Γ(u))b2(u, v),

3The actual handle is not exactly rectangular, leading to the overlysquaredresults.
The data is also too sparse to reliably estimate the cross-section from scratch.

whereΓ is the blending curve that can be treated just as any other
curve in the generative model. Hereb1 andb2 are simply con-
stituents of the generative model, which can be any shape at all, in-
cluding as a special case, the superquadrics and supertoroids used
in [7]. Figure 6 shows an example of recovering blended models
with our approach.

Although this paper deals primarily with shapes that can be rep-
resented by a single generative model, we have carried out some
experiments on simple articulated objects. The watering-can in
figure 1 was modeled by first manually segmenting it into body,
handle and spout, and then fitting a rotating generalized cylinder
to each part. Minor imperfections are primarily due to errors in
segmentation. We may also define a single composite generative
model by combining existing parts, each controlled by separate ex-
trinsic and intrinsic parameters. The cup in figure 1 is an example.
If the extrinsic transformations of the individual parts are left free—
and not constrained to ensure correct connectivity—the user may
need to make some minor adjustments at the end to ensure the parts
connect properly. While the user-supplied initial guess function can
still be crude, it needs to be more accurate for an articulated object
since a data point can otherwise be incorrectly associated with the
wrong model part.

5 Results

Parameters: For our tests, the complexity constantQ defined
below equation 1 was set to a deviation of.01 after scaling the
models to have a major axis range from−1 to +1. Thus,Q cor-
responds to a percentage error of approximately.5%. The results
demonstrate that the algorithm is not very sensitive to the precise
value ofQ. We report the percentage error using a64×64 tessella-
tion of the model. For illustrative purposes only, both range images
and the model were meshed to create the final images for display
and colors are artificial. Snyder [21] describes alternate methods to
image generative models without mesh creation, but at the cost of
loss of interactivity.

Data: The range data used in our experiments was obtained from
a variety of sources. Of the objects in figure 7, the spoon and bowl
data are single range images obtained using structured light [25],
while 6 cylindrical scans are aligned for the cup data. The ladle
is a single range image obtained using the method of Bouguet and
Perona [2]. Data for the banana and candle-holder were obtained
using a mechanical probe, and the watering-can data is a cylindri-
cal scan obtained from a laser range-scanner. For the data obtained
from the probe, connectivity information was not available, so the
meshes for the figures were obtained using the approach of Hoppe
et al. [12]. Our algorithm operated directly on the range data, and
the results demonstrate the benefit of recovering a model as op-
posed to a mesh, especially in cases of noisy and incomplete data.

Recognition Trees: Figure 8 shows recognition trees for two
objects—a spoon acquired using structured light, and synthetic data
for a banana-like object. Data on errors are given in figure 9. The
root models are trivial, and the user-supplied initial guess func-
tions need not specify accurate initial estimates; nonetheless the
algorithm is able tobootstrapitself to produce an accurate final
model. Paths that are not ultimately selected can sometimes pro-
duce strange and interesting results as a curve is trying to adjust
to match data that it is incapable of matching. This effect will be
especially noted in the tree for the banana.

Accuracy and Robustness: A visual comparison indicates
that the method produces a good match to the data, even when the

data is noisy and/or incomplete. As a confirmation of the accuracy
of the method, on the synthetic data of the banana shown in fig-
ure 8, the technique produces results accurate to within.4%. As
shown in the left of figure 10, even if the input hierarchy is unable
to adequately represent the object, the algorithm does the best it
can, producing a simple model that conveys some of the dominant
aspects of the shapes.

Finally, we demonstrate the robustness of the technique by run-
ning it on a sparse sampling of the spoon data; after removing90%
of the spoon data, a visually appealing reasonably accurate model
is still obtained as shown in figure 9.

Compactness: Our models typically had fewer than a hundred
parameters, primarily curve control points. This is at least two or-
ders of magnitude smaller than the corresponding meshes.

Editing: An example of editing a recovered spoon model into a
ladle-like shape is shown on the right of figure 10, demonstrating
how easily new models can be constructed by simple and intuitive
curve editing from shapes already recovered.

Computation Time: The entire algorithm took between 20
and 30 minutes on a 150 MHz SGI MIPS R4400, depending on
model complexity and the size of the data set. Each iteration of
the conjugate gradient took 1-2 seconds, with each optimization
pass taking about 50 iterations. The process was entirely automatic;
no manual intervention was required. The total number of points
(range data and tessellated model) was typically about15000.

6 Conclusions and Future Work

We have presented a new method for creating concise generative
models from incomplete range data, given a user-supplied model
hierarchy. Advantages of our approach are simplicity, robustness to
noise, and creation of an intuitive compact model. We extend tradi-
tional computer vision algorithms for recovery of specific shapes in
that curves of a user-supplied generative model are estimated; the
user can supply a model of their choice and immediately obtain an
automatic recovery algorithm.

Our work currently has many limitations. The fits obtained are
not perfect, especially when the model inadequately describes the
real object. Even for the synthetic banana-like data used in fig-
ure 8, there is some residual error. Our method also does not pre-
serve local detail, and there may be artifacts from under- or over-
smoothing, such as the squaring near the ends of the spoon model.
Further, the algorithm requires the user to specify an appropriate
model hierarchy, and currently does not allow different hierarchies
to be combined. If the wrong hierarchy is input, a simple model
that mimics the original to the extent possible will be output as
shown on the left of figure 10, but those results may not always be
useful. Also, while the models shown are complex compared to
single parametric models previously used in computer vision, they
are still fairly simple for graphics as we do not provide automatic
segmentation for recovery of complex articulated objects.

Solving the above problems defines some important directions
for future work. Improvements could also be made in using more
complex objective functions and minimization algorithms, more
flexible tradeoffs between accuracy and simplicity, and more ex-
haustive non-greedy methods for traversing the input hierarchy. Fi-
nally, the model hierarchy used could be learned from examples or
created automatically from a model database.

While many challenges remain, we believe that algorithms for
recovering high-level models are an important direction of research
for both computer vision and computer graphics.

Figure 7:Data (above) and models (below) for the objects in the scene of figure 1. The models are robust to noise and incomplete data, and are a smooth compact representation.

Acknowledgements: Special thanks to Jean-Yves Bouguet for
reviewing early drafts, and for help with data acquisition. Pre-
liminary discussions with Al Barr were of immense help. We are
also grateful to the anonymous Siggraph reviewers (especially #2)
and committee for their helpful comments, and to members of the
graphics groups at Caltech and Stanford, for their support.

This work was supported by the NSF Science and Technology
Center for Computer Graphics and Scientific Visualization (ASC-
8920219), an Army Research Office Young Investigator award
(DAAH04-96-100077), the Alfred P. Sloan Foundation, and a
Reed-Hodgson Stanford Graduate Fellowship. All opinions, find-
ings, conclusions or recommendations expressed here are those of
the authors only and do not necessarily reflect the views of the
sponsoring agencies and individuals.

References

[1] T. O. Binford. Visual perception by computer. InProceedings of the IEEE
Conference on Systems Science and Cybernetics, 1971.

[2] Jean-Yves Bouguet and Pietro Perona. 3D photography on your desk. InICCV
98 proceedings, pages 43–50, 1998.

[3] R. A. Brooks. Model-based three-dimensional interpretations of two-
dimensional images.IEEE Transactions on Pattern Analysis and Machine In-
telligence (PAMI), 5(2):140–150, 1983.

[4] M.F. Cohen. Interactive spacetime control for animation. InSIGGRAPH 92
proceedings, pages 293–302, 1992.

[5] Brian Curless and Marc Levoy. A volumetric method for building complex mod-
els from range images. InSIGGRAPH 96 proceedings, pages 303–312, 1996.

[6] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and rendering
architecture from photographs: A hybrid geometry- and image-based approach.
In SIGGRAPH 96 proceedings, pages 11–20, 1996.

[7] D. DeCarlo and D. Metaxas. Blended deformable models.PAMI, 18(4):443–
448, Apr 1996.

[8] D. DeCarlo and D. Metaxas. Shape evolution with structural and topological
changes using blending.PAMI, 20(11):1186–1205, Nov 1998.

[9] S.J. Dickinson, D. Metaxas, and A. Pentland. The role of model-based segmen-
tation in the recovery of volume parts from range data.PAMI, 19(3):259–267,
Mar 1997.

[10] Matthias Eck and Hugues Hoppe. Automatic reconstruction of B-Spline surfaces
of arbitrary topological type. InSIGGRAPH 96 proceedings, pages 325–334,
1996.

[11] F. Ferrie, J. Lagarde, and P. Whaite. Darboux frames, snakes, and super-quadrics:
Geometry from the bottom up.PAMI, 15(8):771–784, 1993.

[12] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner
Stuetzle. Surface reconstruction from unorganized points. InSIGGRAPH 92
proceedings, pages 71–78, 1992.

[13] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner
Stuetzle. Mesh optimization. InSIGGRAPH 93 proceedings, pages 19–26, 1993.

[14] Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to dense poly-
gon meshes. InSIGGRAPH 96 proceedings, pages 313–324, 1996.

[15] R. Nevatia.Structured Descriptions of Complex Curved Objects for Recognition
and Visual Memory. PhD thesis, Stanford, 1974.

[16] A. Pentland. Toward an ideal 3-D CAD system. InProc. SPIE Conf. Machine
Vision Man-Machine Interface, 1987. San Diego, CA.

[17] Michael Plass and Maureen Stone. Curve-fitting with piecewise parametric cu-
bics. InSIGGRAPH 83 proceedings, pages 229–239, 1983.

[18] W. Press, S. Teukolsky, W. Vetterling, and P. Flannery.Numerical Recipes in C:
The Art of Scientific Computing (2nd ed.). Cambridge University Press, 1992.

[19] N. Sriranga Raja and A. K. Jain. Obtaining generic parts from range images
using a multi-view representation.Computer Vision, Graphics, and Image Pro-
cessing. Image Understanding, 60(1):44–64, July 1994.

[20] R. Ramamoorthi and A. H. Barr. Fast construction of accurate quaternion splines.
In SIGGRAPH 97 proceedings, pages 287–292, 1997.

[21] J. Snyder.Generative Modeling for Computer Graphics and CAD. Academic
Press, 1992.

[22] John M. Snyder and James T. Kajiya. Generative modeling: A symbolic system
for geometric modeling. InSIGGRAPH 92 proceedings, pages 369–378, 1992.

[23] F. Solina and R. Bajcsy. Recovery of Parametric Models from Range Images:
The Case for Superquadrics with Global Deformations.PAMI, 12(2):131–147,
February 1990.

[24] D. Terzopoulos and D. Metaxas. Dynamic 3D models with local and global
deformations: Deformable superquadrics.PAMI, 13(7):703–714, July 1991.

[25] Marjan Trobina. Error model of a coded-light range sensor. Technical Report
BIWI-TR-164, ETH, Zurich, 1995.

[26] Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In
SIGGRAPH 94 proceedings, pages 311–318, 1994.

[27] K. Wu and M. D. Levine. Recovering parametric geons from multiview range
data. InCVPR, pages 159–166, June 1994.

[28] D. Zwillinger. Handbook of Differential Equations. Academic Press, 1989.

Shape Depth Bend

Spoon

B

0
S D B

S

After Smoothing (Final Model)

Refine

Root Input Data

Refined Model

B Depth + Bend
Shape + Depth

3

1

2

Cross Section
C

Root (Cylinder)

SR

Refined ModelAfter Smoothing (Final Model)

Refine

Original Input Data

Scale
Rotation

C S

C

Banana

Cross Section Rotation + Scale Rotation +

Figure 8:Recognition trees for the spoon (left) and banana (right). Highlighted nodes (lighter background) indicate the best guess at some level, and only nodes reachable from a
highlighted node are generated. The algorithm is able tobootstrapitself, starting from very crude initial conditions, improving at each stage and finishing with an accurate model.

D

C

D

C2.43

D

C

1.93

ROOT

2.56
2.56

C

D

DEPTH

REFINED

C

D

C

D 0.51

SPOON

SMOOTH

1.60

0.60

1.51

B

1.53

BEND

1.79

1.29

SHAPE

2.03
BS

B

D

S

2.23

1.23

C

D

B+D

C

D

D

C 1.61

0.61

S+D

0.54

S+D+B

2.04

0.34

REFINED

C 1.34

S

D

1.35

0.35
C

D

SMOOTH

BANANA

R

ROOT (CYL)

4.71
4.71

C
S

4.02

3.52

Cross-Section

C

C

D

C

D

C

SCALE

4.00

3.50
C

1.85
C

D

C

D 1.85

ROTATION

2.35

D D

1.87

C 1.52

0.52

R+S

0.37

C+R

2.85

C+R+S

D

C

Figure 9:Left: Percentage deviation errors (D) and total costs (C) for the spoon (left) and banana (right).Middle: Fitting of model to very sparse data. On top is a pointcloud
with fewer than 900 points. The middle shows the recovered model while the bottom is a mesh obtained from Hoppe’s [12] algorithm on the same data. A comparison indicates the
robustness of our approach.Right: The top shows a superquadric fit to the banana data while the bottom shows our model, indicating the benefit of generative models.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Figure 10:Left: Models recovered using a model hierarchy that was a poor match for the actual data since it did not possess the appropriate degrees of freedom to adequately
represent the object. The two objects on the left are the banana and bowl recovered using the spoon hierarchy, while the two objects on the right are the ladle and spoon recovered
using the rotating generalized cylinder hierarchy. The algorithm did the best that it could, and managed to convey some of the dominant aspects of the shapes.Middle: Editing a
recovered spoon model into a ladle. Only a few control points need to be moved to get a radically different shape.Middle Top: Edited shape curve before (blue) and after (red)
editing. Control points are shown as circles.Middle Bottom:A similar plot for the depth curve.Right: A view of the edited model.

