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ABSTRACT

We consider the flatland or 2D properties of the light field generated when a homogeneous convex curved surface
reflects a distant illumination field. Besides being of considerable theoretical interest, this problem has applications
in computer vision and graphics—for instance, in determining lighting and bidirectional reflectance distribution
functions (BRDFs), in rendering environment maps, and in image-based rendering. We demonstrate that the integral
for the reflected light transforms to a simple product of coefficients in Fourier space. Thus, the operation of rendering
can be viewed in simple signal processing terms as a filtering operation that convolves the incident illumination with
the BRDF. This analysis leads to a number of interesting observations for computer graphics, computer vision, and
visual perception.

Keywords: Light Field, BRDF, Fourier analysis, Convolution, Radiance, Irradiance, Inverse rendering, Environment
Maps

1. INTRODUCTION

This paper considers the theoretical properties of the light field generated when a homogeneous convex curved surface
reflects a distant illumination field. Besides being of considerable theoretical interest, this problem has applications
in computer vision and graphics—for instance, in determining lighting and bidirectional reflectance distribution
functions (BRDFs) from photographs, in rendering environment maps, and in image-based rendering. The utility
of curved surfaces and a distant light source in an image-based BRDF measurement system has been demonstrated
recently for the planar case by Lu et al.10 in measuring the plane-of-incidence BRDF of velvet, and by Marschner et
al.12 for image-based measurement of general isotropic BRDFs.

We seek to put future work in inverse rendering on a sound mathematical foundation by analyzing the structure
of the light field, thereby giving insight into the well-posedness and conditioning properties of many inverse problems.
The work is also likely to have application in traditional computer graphics, since an ill-posed inverse problem is
likely to have a corresponding forward problem where accurate initial conditions are relatively unimportant, and
may therefore be simplified to allow for more efficient algorithms.

In this paper, we restrict ourselves to the flatland case, assuming all illumination and measurements occur in the
same plane. We have chosen to report on the flatland case because the mathematics is much simpler, while capturing
most of the important insights. A subsequent paper will generalize these results to 3D.

We analyze the reflected light field generated by a convex curved surface. For our analysis, we construct the
Fourier transform of both the input lighting and the BRDF. We demonstrate that the integral for the reflected light
transforms to a simple product of Fourier coefficients. Thus, the operation of rendering can be viewed in simple
signal processing terms as convolving the lighting with the BRDF. This Fourier analysis of the structure of the light
field leads to a number of interesting observations. In particular, inverse problems such as recovering the lighting
or BRDF can be seen as problems in deconvolution, and the conditions for this deconvolution to be well-posed and
well-conditioned can be derived.

For instance, in general, the BRDF can be completely determined in theory, given the input lighting and the
complete output radiance function. This can be viewed as a problem of filter estimation, since we are estimating a
filter (BRDF) given the output (radiance) and the input (lighting). The problem is unsolvable when terms in the
Fourier expansion of the lighting are zero, corresponding to the signal having no amplitude for certain modes of the
BRDF filter. Furthermore, this explains the use of a point light source for image-based BRDF measurement—the
Fourier transform of a delta function is constant and nonzero everywhere. We can also think of this as determining the
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BRDF filter by considering its impulse-response. This theoretical result may have practical applications in efficiently
recovering BRDFs under uncontrolled illumination conditions.

A similar result holds for the lighting, viz. we can recover the lighting given the BRDF and the output radiance.
Similarly as above, this becomes impossible when terms in the Fourier transform of the BRDF are zero. The theory
allows us to easily derive a closed-form formula for the action of distant illumination on a Lambertian object, an
important special case. We will show that inverse lighting from a Lambertian object is in general ill-conditioned,
allowing only the lowest-order modes of the lighting to be recovered. On the other hand, this result may allow us to
efficiently prefilter and render environment maps in computer graphics, since only a very low frequency representation
of the environment need be used.

Our work may also have applications in visual perception. We demonstrate that lighting effects from a dis-
tant illumination field—without considering shadowing and interreflection—can usually only induce low-frequency
variation in the intensity of a Lambertian surface. Therefore, all high-frequency variation with respect to surface
orientation is because of texture. This explains why we can perceive—high-frequency or rapidly varying—texture
on surfaces independently of lighting effects, but find it difficult to distinguish lighting effects from a slowly varying
texture. We also demonstrate that if reciprocity is taken into account, we can, in general, factor the light field into
a product of BRDF and lighting terms, without knowing either. Besides obvious applications in computer vision
and graphics, this accords with our perceptual ability to ascertain the BRDF (or degree of shininess) of a surface,
independently of the lighting conditions.

The rest of this paper is organized as follows. In section 2, we briefly discuss some previous work. In section 3,
we introduce the mathematical and physical preliminaries. In section 4, we obtain the Fourier space equation for
the light field. Section 5 discusses the implications of these results with several examples. Section 6 briefly discusses
applications to visual perception and extensions to 3D. We conclude the paper in section 7.

2. PREVIOUS WORK

The light field3 or plenoptic function1 is a fundamental quantity in light transport and therefore has wide applicability
for both forward and inverse problems in a number of fields. Inverse problems in radiative transfer and transport
theory have been studied in many areas such as hydrologic optics16 and neutron scattering. See McCormick13 for a
review. Until recently, computer vision has focused on shape recovery assuming a simple model for the lighting and
BRDF. However, recently there has been work on so-called inverse rendering problems, notably by Marschner11,12

where lighting and optical properties are estimated and used to render novel images. Light fields have also been used
directly for rendering images from photographs in computer graphics, without considering the underlying geometry,4,9

or by parameterizing the light field on the object surface.21

There has been some previous work on the specific research problems we discuss in this paper as possible applica-
tions of our methods—inverse lighting, BRDF estimation, light field factorization, and environment map prefiltering
and rendering. Marschner and Greenberg11 have considered the inverse lighting problem, assuming Lambertian sur-
faces. BRDF15 measurement has a fairly long history,6,20 but image-based methods utilizing surface curvature to
rapidly recover the BRDF have only recently been proposed.10,12 While an explicit general factorization into lighting
and BRDF has not been undertaken, various constrained partial factorizations or separations have been performed.
Klinker et al.8 and Sato et al.18 have used color-space methods to separate diffuse and specular components. Sato et
al.17 use shadows to recover the lighting in a scene, and also estimate the reflectance parameters of a planar surface.
Efficient methods to prefilter and render environment maps are discussed by Miller and Hoffman,14 Greene,5 and
more recently by Cabral et al.2 and Kautz et al.7 Our paper attempts to offer insights into all of these areas, helping
to intuitively explain successes and failures of earlier methods, and to suggest the way towards more efficient and
general algorithms.

3. PRELIMINARIES

For the purposes of this paper, we will deal exclusively with the 2-dimensional or flatland case, wherein all surfaces
(effectively, curves) and light sources are constrained to lie in a single plane. We will assume the illuminating light
sources are distant, so the illumination does not depend upon surface position, but only on surface orientation. Also,
surfaces will be assumed to be homogeneous, i.e. there is a single bi-directional reflectance distribution function
(BRDF) for the surface. Since we are considering flatland, the BRDF will be two dimensional with arguments being



B Outgoing radiance
Bp,q Fourier coefficients of outgoing radiance
B̃ Outgoing radiance multiplied by cosine of exitant angle
B̃p,q Fourier coefficients of B̃
L Incoming radiance
Lp Fourier coefficients of incoming radiance
ρ The BRDF
ρ̂ BRDF multiplied by cosine of incident angle
ρ̂p,q Fourier coefficients of ρ̂
ρ̃ BRDF multiplied by cosines of incident and outgoing angles
ρ̃p,q Fourier coefficients of ρ̃
θi Incident angle in global coordinates
θ′i Incident angle in local coordinates
θo Outgoing angle in global coordinates
θ′o Outgoing angle in local coordinates
x Surface position
α Surface normal parameterization by angle
I
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Figure 1. Notation used in the paper
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Figure 2. Diagram showing the geometry, with local and global coordinate angles marked. Note that angles are signed; in
particular, θ′

i is negative. The fact that α is nearly a right angle has no significance and is only for convenience in illustration.

a single incident and reflected angle. We will further assume that the surfaces under consideration are convex, so that
interreflection and shadowing can be ignored. This allows us to parameterize the surface by the surface orientation
only, as specified by the surface normal (α). Notation used in the paper is listed in figure 1. A diagram of the
geometry of the situation is shown in figure 2.

Local and Global coordinates, Rotations We will use two types of coordinates. Unprimed global coordinates
denote angles with respect to a global reference frame. On the other hand, primed local coordinates denote angle
with respect to the local reference frame (i.e. surface normal). The two are related by

θ′ = θ − α (1)

where θ′ is the (signed) local angle, related to the (signed) global angle θ by subtracting out the orientation of the
surface (α). This subtraction is merely the rotation operator in the plane; we go from local to global coordinates by
a rotation corresponding to the surface normal.



The Reflection Equation In local coordinates, we can relate the outgoing radiance to the incoming radiance by

B(x, θ′o) =
∫ π/2

−π/2

L(x, θ′i)ρ(θ
′
i, θ

′
o) cos(θ

′
i) dθ

′
i (2)

The limits of integration correspond to the visible half-circle—the 2D analogue of the upper hemisphere in 3D.
B is the output light field caused by the input light field L and BRDF ρ.

We will often want to consider the cosine term in the integral together with the BRDF, and we can define a new
transfer function for this purpose.

ρ̂(θ′i, θ
′
o) = ρ(θ

′
i, θ

′
o) cos(θ

′
i) (3)

For further analysis, we will want to treat the incoming illumination L in global coordinates, but we would like to
keep the BRDF in local coordinates, and it will be simpler to also keep the outgoing radiance B in local coordinates.
By combining equations 1 and 2, noting that L(x, θ′i) = L(θi) = L(α+ θ

′
i), and by incorporating the cosine into the

transfer function using equation 3, we obtain

B(α, θ′o) =
∫ π/2

−π/2

L(α+ θ′i)ρ̂(θ
′
i, θ

′
o) dθ

′
i (4)

Physical BRDFs must be reciprocal i.e. symmetric with respect to incoming and outgoing directions. In certain
cases, it will be desirable to preserve the reciprocity of the BRDF with respect to the incident and outgoing angle
in the newly defined transfer function. We may multiply both the outgoing radiance and the transfer function by
cos(θ′o), to obtain

B̃(α, θ′o) = B(α, θ′o) cos(θ
′
o)

ρ̃(θ′i, θ
′
o) = ρ(θ′i, θ

′
o) cos(θ

′
i) cos(θ

′
o)

B̃(α, θ′o) =
∫ π/2

−π/2

L(α+ θ′i)ρ̃(θ
′
i, θ

′
o) dθ

′
i (5)

where the newly defined function ρ̃ preserves reciprocity i.e. ρ̃(θ′i, θ
′
o) = ρ̃(θ

′
o, θ

′
i).

Equations 4 and 5 are simple equations for direct illumination. The outgoing radiance is an integral of the incident
illumination with the BRDF (which incorporates the cosine term). The only interesting feature is the rotation of the
global incoming illumination field corresponding to the surface normal α, in order to align it with local coordinates.
For a given θ′o, each observation with a different value of α corresponds to a different orientation of the surface
normal, but can also be viewed as corresponding to a different rotation of the incident light field. Although we are
dealing with rotations, and not translations, the equation above shows that the reflected light field is a convolution
of the incident illumination and the transfer function. This will be crucial for the Fourier series development in the
next section.

4. FOURIER ANALYSIS

The goal of this section is to carry out a Fourier analysis of equation 4. For this purpose, we will form the Fourier
series of a function.

f(θ) =
∑

k

fke
Ikθ

fk =
1
2π

∫ π

−π

f(θ)e−Ikθd θ (6)



Decomposition into Fourier Series: For the term L from equation 4, the Fourier series coefficients become

L(θi) =
∑
m

Lme
Imθi

L(α+ θ′i) =
∑
m

Lme
Im(α+θ′

i)

=
∑
m

Lme
ImαeImθ′

i (7)

This result indicates that the effect of rotating the lighting to align it with the local coordinate system is simply to
multiply the Fourier frequency coefficients by eImα.

Since no rotation is applied to the terms B and ρ̂, their decomposition into a Fourier series is straightforward.

B(α, θ′o) =
∑

p

Bp(θ′o)e
Ipα

ρ̂(θ′i, θ
′
o) =

∑
n

ρ̂n(θ′o)e
Inθ′

i (8)

Note that the domain of the basis functions here is [−π, π], so we develop the series for ρ̂ by assuming function values
to be 0 outside the range for θ′i of [−π

2 ,
π
2 ].

We are now ready to write equation 4 in terms of frequency coefficients.

∑
p

Bp(θ′o)e
Ipα =

∑
m

∑
n

Lmρ̂n(θ′o)e
Imα

∫ π

−π

eImθ′
ieInθ′

i dθ′i (9)

This can be simplified using orthogonality of the exponentials with respect to θ′i in the integral. Setting n = −m
(other terms vanish by orthogonality), we obtain

∑
p

Bp(θ′o)e
Ipα = 2π

∑
m

Lmρ̂−m(θ′o)e
Imα (10)

Now, it is a simple matter to equate coefficients for α. This sets m = p, and we obtain

Bp(θ′o) = 2πLpρ̂−p(θ′o) (11)

It is also possible to perform another Fourier series expansion of the θ′o dependence. Again, since the Fourier
series is defined over [−π, π], the function values are treated as 0 outside the range for θ′o of [−π

2 ,
π
2 ]. Equation 8

becomes

B(α, θ′o) =
∑

p

∑
q

Bp,qe
IpαeIqθ′

o

ρ̂(θ′i, θ
′
o) =

∑
n

∑
s

ρ̂n,se
Inθ′

ieIsθ′
o (12)

Alternatively,

Bp(θ′o) =
∑

q

Bp,qe
Iqθ′

o

ρ̂n(θ′o) =
∑

s

ρ̂n,se
Isθ′

o (13)

It is now possible to rewrite equation 11 by using linear independence of exponentials to set n = −p and s = q
in order to equate similar terms with respect to θ′o. We thus obtain our fundamental equation:



Bp,q = 2πLpρ̂−p,q (14)

Equation 14 is remarkable in that it states that the standard direct illumination integral in equation 4 can be
viewed instead as a simple product in Fourier space. This is not really surprising, considering that equation 4 shows
that the reflected light field is a convolution of the incident illumination and the transfer function, with different
observations B for given θ′o corresponding to different rotations of the incident light field. Since equation 14 is in
terms of Fourier coefficients, it can be viewed in signal processing terms as a filtering operation; the output light
field can be obtained by filtering the input lighting using the BRDF. As is made explicit in equation 11, the filtering
operation in equation 14 takes place only over the index p corresponding to the output radiance parameter α, and
the BRDF parameter θ′i. The two are joined together by the lighting parameter θi = α + θ

′
i. Note the symmetry

between the BRDF and the lighting. In signal processing terms, we can view either as the input, with the other being
viewed as the filter. We believe these novel viewpoints can lead to many new insights and algorithms for problems
in computer vision and graphics. The remaining sections of this paper are devoted to exploring the implications of
this result.

As presented so far, the transfer function does not preserve symmetry with respect to the incident and outgoing
angles. If we wish to preserve this property of the BRDF, we may make the transformations in equation 5 and
rewrite the above equation:

B̃p,q = 2πLpρ̃−p,q (15)

The condition ρ̃(θ′i, θ
′
o) = ρ̃(θ

′
o, θ

′
i) expressing the symmetry between incident and outgoing angles can be expressed

as a corresponding symmetry of the Fourier coefficients ρ̃p,q = ρ̃q,p. This follows from inspection of equation 12, and
is also intuitively understood as symmetry between indices for expansion in terms of incoming and outgoing angles.

5. APPLICATIONS

This section explores the implications of equation 14 with reference to several applications in computer vision,
graphics and visual perception. We start by considering inverse problems, i.e recovering the lighting and/or the
BRDF knowing the output light field. We have already seen that the reflected light field can be viewed as being
generated by convolving the incident light field with the BRDF transfer function. Therefore, the inverse problems
can be viewed as problems involving deconvolution. Besides giving explicit formulas or algorithms, our goals will
be to understand which problems are well-posed versus ill-posed and which problems are well-conditioned versus
ill-conditioned. This understanding can likely be carried forward as a guide to practical algorithms for real 3D
surfaces.

5.1. Inverse Lighting

Our goal here is to recover the lighting, given the BRDF and the output light field. From equation 14, it is easy to
read off the lighting coefficients as

Lp =
1
2π
Bp,q

ρ̂−p,q
(16)

In theory, this problem is well-posed unless the denominator vanishes∗ for each q i.e. ∀q : ρ̂−p,q = 0. In practice,
however, the problem is ill-conditioned if ρ̂−p,q is small. As we will see, the Fourier spectrum of most BRDFs will
have declining higher-order terms. This indicates that numerically, the higher frequencies of the lighting will be
difficult to recover.

In signal processing terms, this is a deconvolution problem of estimating the input, knowing the filter (the BRDF)
and the output. When the BRDF filter truncates certain frequencies in the input lighting signal to 0 (for instance, if
it were a low-pass filter), we cannot determine the corresponding frequencies of the lighting from the output signal.

∗Note that by physical considerations, if the denominator of equation 16 vanishes, the numerator must also vanish, leaving
the right-hand side indeterminate, but not infinite. Since we can use any value of q to find Lp, the problem is ill-posed only
if the denominator is 0 for all q.



Mirror BRDF: An important special case to consider is that of a perfectly reflective object or mirror. In this
case, the BRDF involves a delta function† of the sum of the (signed) incident and reflected angles. The Fourier series
is obtained simply by integrating using the definition in equation 6, and reflects the fact that the Fourier transform
of a delta function is a constant.

ρ̂(θ′i, θ
′
o) = δ(θ′i + θ

′
o)

ρ̂p,q =
δp,q

2π
(17)

Plugging this into equation 16, we obtain

Lp =
1
2π
Bp,q

δ−p,q

2π

Lp = Bp,−p (18)

This is just the Fourier series form of the identity for a mirror BRDF:

L(α− θ′o) = B(α, θ′o) (19)

Equation 18 indicates that we can obtain the lighting terms simply by reading off coefficients of the output light
field. Therefore, this is a well posed and well conditioned problem. These results explain in Fourier space why a
mirrored sphere is so often used in graphics to obtain an estimate of the lighting in a scene. In fact, as expected, the
mirrored sphere is the ideal BRDF for lighting estimation since its frequency spectrum remains constant.

Lambertian BRDF: Another important case is when the BRDF is Lambertian. Then, the transfer function
for a Lambertian object with reflectance 1 is given by ρ̂(θ′i, θ

′
o) =

1
2 cos(θ

′
i). The factor of 1/2 comes from energy

conservation. Using the alternative form of equation 11 instead of equation 14 and dropping the dependence on θ′o
since the surface is Lambertian, we obtain the analogue to equations 11 and 16 for Lambertian surfaces.

Bp = 2πLpρ̂−p

Lp =
1
2π
Bp

ρ̂−p
(20)

It remains to determine the form of the Fourier series for the Lambertian transfer function ρ̂ = 1
2 cos(θ

′
i). Note that

since the BRDF is nonzero only over the visible halfcircle, the range of integration is [−π/2, π/2], instead of the
interval [−π, π] over which the Fourier series is defined.

ρ̂−p =
1
2π

∫ π/2

−π/2

1
2
cos(θ′i)e

Ipθ′
id θ′i (21)

This evaluates to 1/8 when p = ±1 and is 0 for all other odd values of p. When p is even, the value is given by

ρ̂−2p =
(−1)p+1

2π(4p2 − 1) (22)

Note that the magnitude of the Fourier coefficient falls off as 1/p2.

There are several noteworthy points here. Firstly, for p odd and not equal to ±1, Bp and ρ̂−p are both 0, and the
value of Lp cannot be determined. Thus, there is a fundamental theoretical obstacle to the inverse lighting problem
from a Lambertian surface.

As an example, consider perturbing some existing incoming lighting distribution by a term proportional to
cos(3θi). This term must be a perturbation, and not the entire lighting, since it includes negative regions. Our goal

†Actually, the BRDF is 0 when | θ′
i |> π/2. For a mirror only, the definition below does not change the output light field

where defined—when | θ′
o |≤ π/2. For other BRDFs, we must explicitly zero them when | θ′

i |> π/2.



is to show that this perturbation of the initial lighting does not change the output light field. We can directly use
equation 4 to compute the perturbation in the light field:

�B(α, θ′o) =
∫ π/2

−π/2

(cos[3(α+ θ′i)] cos(θ
′
i)) d θ

′
i

=
∫ π/2

−π/2

(cos(3α) cos(3θ′i) cos(θ
′
i)− sin(3α) sin(3θ′i) cos(θ′i)) d θ′i

=
1
2

∫ π/2

−π/2

(cos(3α)[cos(4θ′i) + cos(2θ
′
i)]− sin(3α)[sin(4θ′i)− sin(2θ′i)]) d θ′i

= 0 (23)

A second interesting point about the frequency spectrum of the Lambertian BRDF in equation 22 is the rapid
falloff with increasing |p|. This means that the inverse-lighting problem is ill-conditioned even for coefficients for
which it is well-posed. In practice, we cannot hope to recover more than the lowest order terms of the lighting. This
observation helps explain the results of Marschner and Greenberg.11 In that paper, an attempt was made to solve
the inverse lighting problem, treating the surfaces as Lambertian. The authors noted that the problem appeared
ill-conditioned, and not amenable to accurate solution. Therefore, they had to rely heavily on a regularizing term
that preserved the smoothness of the solution. The preceding arguments show why the problem is ill-conditioned, and
suggest a different regularization scheme. We can assume the high-frequency lighting coefficients to be inaccurate,
so we do not attempt to recover them, and merely set them to 0. This indicates that a Fourier basis is ideal for
recovering the lighting.
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Figure 3. Plot of magnitude of Fourier coefficient versus frequency p for a phong BRDF model when θ′
o = 0. The solid line

is for a Lambertian object with β = 0. The coefficients rapidly diminish and there are zeros for odd coefficients greater than
1. The dashdot line below it is for β = 8 which has a more gradual decay of coefficients, but we would still be able to recover
only the first few lighting terms. The lowest dashed line is for β = 128 which shows a much more gradual decay of coefficients,
making inverse lighting better conditioned. In general, we can only recover lighting coefficients up to order approximately

√
β.

Phong BRDF: The Phong BRDF has a specular lobe of the form (R · L)β where β is the Phong exponent, L is
the light vector and R is the reflection of the viewing vector about the surface normal. Two extremes of the Phong



BRDF are the Lambertian surface and mirror, both of which we have just dealt with. For the Lambertian surface,
β = 0, while β = ∞ for a mirror surface. The appendix lists Fourier series expansions of general Phong BRDF
functions, and figure 3 shows plots of the magnitudes of the coefficients.

In flatland, the Phong BRDF can be written in terms of the signed incident and outgoing angles as cosβ(θ′i+ θ
′
o).

Thus, the transfer function ρ̂ would be of the form cos(θ′i) cos
β(θ′i+θ

′
o). In the appendix, we show that for | p |≥ β+3,

the Fourier coefficient is either 0 or falls off sharply with increasing p. Furthermore, for large β, the Fourier coefficients
coefficients decay like a gaussian of width approximately

√
2(β + 3). Therefore, for large β, only lighting coefficients

up to order
√
β, corresponding to the square-root of the Phong exponent, can be reliably recovered. In terms of signal-

processing, the BRDF is viewed as a low-pass filter that truncates to zero, or severely diminishes, all high-frequency
terms in the lighting. Therefore, these terms cannot be recovered by observing the output light field.

For a Lambertian surface, β = 0, and we expect that lighting coefficients with | p |≥ 3 cannot be easily recovered.
As seen from the plot in figure 3, the Fourier coefficient for the Lambertian BRDF is 0 when |p| = 3 and falls off
sharply for higher frequencies. For a mirror surface, β = ∞, indicating that we should be able to recover all the
lighting coefficients, which is indeed the case.

Microfacet BRDFs: For microfacet BRDF models such as the Torrance-Sparrow model,19 the specular term is
of the form F · G · D where F is the Fresnel term, G is a geometric term, and D depends on the distribution of
the microfacets. We will focus here on D, the distribution term. In general, D will be a function of (N ·H) where
N is the surface normal and H is the bisector of light and viewing directions—the half angle, given in flatland by
(θ′i + θ

′
o)/2. A typical form for D would be exp[−{(θ′i + θ′o)/2}2/2α2] where α is a measure of the surface roughness

and corresponds to the width of the distribution. Because the distribution has a Gaussian form, the Fourier series
will also have a Gaussian-like form with the width of the Gaussian being of the order 1/α. Therefore, the higher α
is, or the rougher and more Lambertian the surface becomes, the faster the Fourier coefficients will diminish, making
inverse lighting ill-conditioned. On the other hand, if α is very small, corresponding to a smooth mirror-like surface,
the Fourier series coefficients will decrease slowly, and the inverse lighting problem will be well-conditioned.

5.2. Inverse BRDF computation

This subsection addresses the problem of recovering the BRDF, knowing the output light field and the incoming
illumination field. The BRDF is a fundamental quantity, so the solution of this problem is of considerable practical
interest. Recently, Lu et al.10 and Marschner et al.12 have addressed this problem for a controlled point light source.
We wish to work out the general case for uncontrolled illumination conditions. Because of the near-symmetry of
the BRDF and lighting in our formulation, this problem can essentially be viewed as a dual to the inverse lighting
problem, and gives essentially the same results.

The analogue to equation 16 is

ρ̂p,q =
1
2π
B−p,q

L−p
(24)

This equation says that BRDF recovery is well posed when no terms in the Fourier expansion of the lighting are 0.
It is well conditioned when the Fourier expansion of the lighting does not decay rapidly with increasing frequency.
In signal processing terms, the lighting can be viewed as the input signal, and the BRDF filter cannot reliably be
estimated if certain frequencies in the signal are near zero. We will now consider several special cases for the input
lighting and see how well-posed and well-conditioned the BRDF recovery problem is.

Single Directional Source: Consider a single directional light source at θi = 0, so the lighting is of the form:

L(θi) = δ(θi)

L−p =
1
2π

(25)

Plugging into equation 24, we see that
ρ̂p,q = B−p,q (26)



which is simply the Fourier series expansion of

B(α, θ′o) = ρ̂(−α, θ′o) (27)

Therefore, for a directional source, the BRDF recovery problem is well-conditioned and well-posed in analogy with
the inverse lighting problem for a mirror BRDF. Again, we are effectively estimating the BRDF filter by considering
its impulse response. Therefore, BRDF measurement methods10,12 will give accurate results.

Uniform Lighting: We next consider lighting that is uniform everywhere i.e. L(θi) = 1/2π. It can easily be
verified that L0 = 1 and that Lp = 0 for p �= 0. Therefore, only the first (constant) term in the BRDF expansion
over the incident angle can be recovered i.e. the only recoverable coefficients are

ρ̂0,q = B0,q

ρ̂0(θ′o) = B0(θ′o) (28)

Nothing can be said about higher-order terms‡. The lighting is a constant input signal, so only the constant term
of the BRDF filter can be estimated. It can be easily verified that under constant lighting, a mirror surface and a
Lambertian surface will both have the same output radiance regardless of the location and direction viewed, and it
will be impossible to distinguish the two.

In between the two extremes of a single directional source and uniform lighting, the accuracy of BRDF recovery
will depend on the frequency spectrum of the lighting. If the coefficients decay quickly, BRDF recovery will be
ill-conditioned. Therefore, we want a nearly flat frequency spectrum, which is best achieved using a single directional
source. However, our results indicate that it should still be possible to recover the BRDF even in the presence of an
extraneous area source of relatively low magnitude, as might be expected, for instance, under skylight and sunlight.

5.3. Light Field Factorization

We now consider the problem of factorizing the light field i.e recovering both the lighting and BRDF when both
are unknown. The output light field is two-dimensional while the lighting is one-dimensional and the BRDF is
two-dimensional, but has half its parameters determined by symmetry between incident and outgoing angles. This
seems to indicate that factorization is tractable, since we have more outputs than unknowns.

This problem is of theoretical interest and also has applications in a number of areas. It would be useful to have a
passive method to recover the BRDF under uncontrolled conditions when we cannot measure the lighting. Similarly,
it would be useful to be able to recover the lighting from an object of unknown BRDF. Reducing the dimensionality is
very useful in compression when we seek to compress light fields that are usually very large. Further, understanding
the structure of the light field can lead to novel intuitive ways to edit photographs.

For the purposes of this subsection, the reciprocity of the BRDF will prove to be crucial. Therefore, we use the
reciprocal form of the transfer function given in equation 5, defining

ρ̃(θ′i, θ
′
o) = ρ(θ′i, θ

′
o) cos(θ

′
i) cos(θ

′
o)

B̃(α, θ′o) = B(α, θ′o) cos(θ
′
o)

The condition of reciprocity or symmetry in the BRDF implies that ρ̃p,q = ρ̃q,p. We can then use equation 15,
reproduced below.

B̃p,q = 2πLpρ̃−p,q

There is a global scale factor that we cannot recover. That is, if we multiply the lighting everywhere by this
factor, and simultaneously divide the BRDF everywhere by the same factor, we obtain an identical reflected light
field. We are therefore allowed to arbitrarily set any one nonzero term in order to fix the scale factor. We will choose
L0 = 1. L0 is simply the coefficient of the DC term in the Fourier expansion of the lighting, i.e. a measure of the

‡If reciprocity of the BRDF is considered, we are able to determine the corresponding terms with θ′
i and θ′

o exchanged,
giving us slightly more information. The transfer function above is not reciprocal but can be made so using equation 5.



total energy of the incident illumination. Note that since the lighting is everywhere non-negative, L0 cannot be 0
unless the lighting is 0 everywhere, an uninteresting case. It is now easy to use the condition of reciprocity ρ̃p,q = ρ̃q,p

to explicitly write

L0 = 1

ρ̃0,q =
B̃0,q

2π

Lp =
B̃p,q

2πρ̃−p,q
=

B̃p,0

2πρ̃−p,0
=

B̃p,0

2πρ̃0,−p
=
B̃p,0

B̃0,−p

ρ̃p,q =
B̃−p,q

2πL−p
=

B̃−p,q

2π B̃−p,0

B̃0,p

=
B̃0,pB̃−p,q

2πB̃−p,0

(29)

If none of the terms above vanishes, this gives an explicit formula for the lighting and BRDF in terms of coefficients
of the output light field.

The fact that this factorization is possible is likely to have important implications; it shows that lighting and
BRDF can be factored, at least in principle, if the entire reflected light field is known. Of course, the results will be
more and more ill-conditioned, the closer the output light field coefficients in the denominators come to 0, and so,
in practice, there is a maximum frequency up to which the recovery process will be possible. Note that assuming
reciprocity of the BRDF is critical. Without it, we would not be able to relate ρ̃−p,0 and ρ̃0,−p above, and we would
need a separate scale factor for each p (the index over which the lighting and BRDF interact, or filtering occurs) i.e.
we would effectively need to know the lighting, or an equivalent set of information regarding the BRDF.

It should be noted that even if some of the ρ̃0,q terms vanish in equation 29, by using a different q in the recovery
formula for Lp, we may still be able to factor the light field. Thus, Lp remains indeterminate only if for all q, ρ̃−p,q

and ρ̃q,−p are both 0 or cannot be determined. Similarly, ρ̃p,q is undetermined only if both Lp and Lq cannot be
determined or are 0.

5.4. Environment Map Prefiltering and Rendering

Since computing an image by calculating the outgoing radiance for each point on the surface in real time is often too
computationally intensive, environment maps are often prefiltered.5 For instance, for a Lambertian convex surface,
we prefilter to obtain an intensity for each of a set of discretized directions of the surface normal. Once prefiltering
has been done, the environment can be viewed in real time.

Prefiltering remains an expensive operation, which means dynamic lighting or lighting design applications are
difficult to support. However, equation 14 or equation 11 can be used to efficiently prefilter and render environment
maps in Fourier space. For smooth BRDFs, only a few terms of the Fourier expansion need be considered. This
method will not work well for highly specular or otherwise peaked BRDF distributions. As in much of the previous
work on environment map prefiltering, we can separate these into diffuse and specular components, treating both
separately. The smooth or near-diffuse component is well handled by a few terms of the Fourier expansion and
is treated much more efficiently in Fourier space than conventionally, where an integral over the entire incoming
hemisphere must be performed. On the other hand, the Fourier coefficients for specular terms will not decay
rapidly and many terms will be needed to approximate their effect correctly. However, they are well handled in the
conventional way, since only a very small region of the incoming illumination must be considered. Thus, we can
choose angular or Fourier space, depending on whether we want to consider a near-diffuse or near-specular BRDF
component. This follows from the well-known observation that the Fourier transform of a localized function is highly
non-local and near-constant while the Fourier transform of a near-constant non-local function is localized.

Consider the special case of a Lambertian surface, for which equation 11 becomes—using equation 22 for even p,
and dropping the dependence on exitant angle:

B2p = L2p

(
(−1)−p+1

4p2 − 1

)
(30)



This falls off rapidly as 1/p2, so a handful of terms will suffice to give accurate results. The most computationally
intensive part is converting to and from the Fourier representation, but the Fourier basis functions can be precomputed
and stored as images, so graphics hardware can be used to perform the multiplications and additions required.

6. DISCUSSION

This section discusses some applications to visual perception, and some issues involved in extending this work to
concave surfaces and full 3D light fields.

Implications for Visual Perception: From equation 30, we know that the Lambertian BRDF acts as a low pass
filter. This means that regardless of the lighting distribution, the output light field will not include high-frequency
terms in the absence of shadows. Therefore, neglecting shadowing effects, when we perceive high-frequency variation
in a curved surface, this can only be due to specularity or gloss of the surface, or a surface texture. This may
help explain why we can determine the shininess of a (textureless) surface independently of the lighting. From a
single image, texture and shininess are fundamentally ambiguous and cannot be distinguished; the visual system
probably employs heuristics—for instance, specularities are often much brighter than any surrounding texture—to
disambiguate the two. From multiple images from different viewpoints, however, the strong view-dependence of
specularity allows it to be distinguished from texture variations. This suggests, that at least in theory, one should be
able to separate texture, lighting and the BRDF from the output light field. In practice, the separation of lighting and
texture-related effects appears to be ill-conditioned—humans are not easily able to distinguish slow subtle texture
variations from lighting-related effects. Of course, the visual system also makes various heuristic assumptions to aid
in factorization, but we believe that our results will help clarify where assumptions are and are not needed. For
well conditioned inverse problems, extraneous assumptions are not needed, while for ill-conditioned or fundamentally
ambiguous problems, it is likely that strong heuristics must be employed.

Concave Surfaces: Our treatment has considered only convex surfaces. For a concave surface, we must also
consider self-shadowing and interreflection. Therefore, the surface orientation is no longer sufficient to determine all
characteristics of the incident and outgoing radiance. We can no longer parameterize using the surface normal only,
and must explicitly consider location on the surface x as well as orientation. The shadowing function is a binary
term that must be included in the integral in equation 3. Since the shadowing function is highly discontinuous, it
makes the kernel of the integral much less smooth. This makes the forward problem (for instance, environment map
rendering) significantly harder. However, it makes inverse problems better conditioned (albeit potentially harder
computationally and much less tractable to mathematical analysis). Sato et al.17 have exploited this in order to
solve an inverse lighting problem using shadowing information on a plane—a surface without any curvature at all.
Interreflection is much harder to consider and is usually ignored. A notable exception is the work of Yu et al.22

Extension to 3D: The theory presented here is limited to planar configurations. By restricting ourselves to 2D,
we have been able to present the key ideas while keeping the mathematics more familiar and straightforward. In
real-world applications, we must deal with a full three-dimensional world. We have worked out the generalization to
3D, and will report on this in a future paper. The 3D case is conceptually a fairly straightforward extension of the 2D
case, with most of the key insights transferring with only minor modifications, but is mathematically somewhat more
involved. In particular, the rotation operator is much more complicated in 3D. The 3D treatment can be unified
conceptually with the treatment presented in this paper by considering the structures of the respective rotation
groups—SO(2) in 2D and SO(3) in 3D—and their associated representations. The analogue of the 2D Fourier basis
in 3D is the spherical harmonic series, and the simple rotation of the lighting in 2D is replaced with convolution using
representations of SO(3). We emphasize that while somewhat more complex, the 3D theory leads to essentially the
same conclusions and observations as those reported in this paper for 2D.

7. CONCLUSIONS

We have presented a theoretical analysis in flatland of the structure of the reflected light field from a convex homoge-
neous object under a distant illumination field. We have shown that the direct illumination integral can be viewed in
signal processing terms as a filtering operation between the lighting and the BRDF to produce the output light field.



This result provides a novel viewpoint for many forward and inverse rendering problems. We have demonstrated
the implications for inverse problems such as lighting recovery, BRDF recovery, light field factorization, and forward
rendering problems such as environment map prefiltering and rendering.

With the aid of our theory, we have been able to determine the well-posedness and conditioning of many inverse
problems. This serves as a guide to future endeavors in inverse rendering for computer vision and graphics. In a few
cases, we have been able to show in signal processing terms why approaches taken by other researchers fail to perform
as expected. In other cases, we have shown the optimality of commonly-used methods such as using a mirrored sphere
and point light sources. We hope that in the future, the theory can guide us toward efficient algorithms and help
explain the success or failure of various methods.
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Appendix: Fourier Series for Phong BRDFs

This appendix considers the Fourier series representations for Phong BRDFs, giving analytic formulae in support of
the discussion regarding Phong BRDFs in subsection 5.1. For simplicity, and ease of plotting, we restrict ourselves §

to the case of θ′o = 0 i.e. normal viewing angle.

For exponent β, ignoring normalization, the Phong BRDF is given by cosβ(θ′i + θ
′
o). We set θ

′
o = 0 for normal

viewing angle, and find the Fourier coefficients

ρ̂−p(0) =
1
2π

∫ π/2

−π/2

cos(θ′i)
β+1eIpθ′

id θ′i (31)

which evaluates to
ρ̂−p(0) =

Γ(2 + β)
(4 · 2β)Γ(3−p+β

2 )Γ(3+p+β
2 )

(32)

where Γ is Euler’s Gamma function, which is the factorial function for positive integers: Γ(n) = (n − 1)!, and is
infinite for non-positive integers. It should be noted that the above formula is symmetric about p = 0.

We observe that when p = ±(β + 3 + 2k) for a non-negative integer k, the corresponding Fourier coefficient
ρ̂∓p(0) vanishes. This is because the argument of one of the gamma functions in the denominator becomes a negative
integer, causing the denominator to become infinite. This is why odd frequencies with | p |> 1 vanish for the case of
a Lambertian surface, where β = 0.

We may also observe that for | p | β+3, the asymptotic behavior of the Fourier coefficients will depend on the
asymptotic behavior of the gamma functions in the denominator. The asymptotic behavior of the Fourier coefficients
goes as 1/[Γ(a + x)Γ(a − x)] where a = (β + 3)/2 and x = p/2. The asymptotic behavior of this quantity can be
shown to depend on x/x2a which implies that for large | p |,

| p |> 3 + β ⇒ ρ̂±p(0) ∼| p |−(2+β) (33)

which explains the 1/p2 falloff for Lambertian surfaces.

For | p |� β, 1/[Γ(a + x)Γ(a − x)] for a = (β + 3)/2 and x = p/2 goes as exp[−x2(1/a − 1/2a2)]. Thus, the
coefficients fall off like a gaussian with width

√
2(β + 3).

As far as practical issues are concerned, this means inverse lighting is ill-conditioned for | p |∼
√
β, and ill-posed

for | p |≥ β + 3. As far as possible, specular surfaces with larger values of β should be used. Plots of the coefficients
for some of these BRDFs are shown in figure 3.

§If we ignore boundary effects, this can be shown to be equivalent to reparameterizing by the reflection vector instead of
the surface normal, and using a transfer function with exponent β + 1.


