
Triple Product Wavelet Integrals for All-Frequency Relighting

Ren Ng
Stanford University

Ravi Ramamoorthi
Columbia University

Pat Hanrahan
Stanford University

Abstract

This paper focuses on efficient rendering based on pre-computed
light transport, with realistic materials and shadows under all-
frequency direct lighting such as environment maps. The basic dif-
ficulty is representation and computation in the 6D space of light
direction, view direction, and surface position. While image-based
and synthetic methods for real-time rendering have been proposed,
they do not scale to high sampling rates with variation of both
lighting and viewpoint. Current approaches are therefore limited
to lower dimensionality (only lighting or viewpoint variation, not
both) or lower sampling rates (low frequency lighting and materi-
als). We propose a new mathematical and computational analysis
of pre-computed light transport. We use factored forms, separately
pre-computing and representing visibility and material properties.
Rendering then requires computing triple product integrals at each
vertex, involving the lighting, visibility and BRDF. Our main con-
tribution is a general analysis of these triple product integrals,
which are likely to have broad applicability in computer graphics
and numerical analysis. We first determine the computational com-
plexity in a number of bases like point samples, spherical harmon-
ics and wavelets. We then give efficient linear and sublinear-time
algorithms for Haar wavelets, incorporating non-linear wavelet ap-
proximation of lighting and BRDFs. Practically, we demonstrate
rendering of images under new lighting and viewing conditions in
a few seconds, significantly faster than previous techniques.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gener-
ation; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism; G.1.2 [Numerical Analysis]: Approximation—Wavelets
and Fractals, Nonlinear Approximation

Keywords: Relighting, Pre-computed Radiance Transfer, Image-
Based Rendering, Haar Wavelets, Non-linear Approximation

1 Introduction

Detailed natural lighting, realistic materials, and intricate soft shad-
owing are important effects in realistic computer graphics, as shown
in Figure 1. However, computer-generated images, especially in
interactive applications like modeling packages or electronic com-
merce, often omit view-dependent effects such as the interaction
between shadows and glossy reflections. Conventional rendering
can take hours, greatly increasing the design cycle in applications
like lighting design. In this paper we take a step towards interactive
manipulation of lighting and viewpoint, allowing creation of real-
istic images in a few seconds, which is orders of magnitude faster
than previous methods.

Our approach is based on pre-computing information about a
static scene, followed by real-time rendering with dynamically

Figure 1: A 300,000 vertex scene lit by a 6 × 64 × 64 environment map.
We render this scene in 3–5 seconds with dynamic lighting and camera po-
sition. Figure 5 illustrates shadow movement with changing view.

varying viewpoint and environment map lighting. This basic ap-
proach was originally introduced by Nimeroff et al. [1994] and
Dorsey et al. [1995], and has led to much recent work [Sloan et al.
2002; Ng et al. 2003; Sloan et al. 2003a; Sloan et al. 2003b]. Our
approach is also related to image-based rendering methods, where
the pre-computation is usually replaced by acquisition of real im-
ages. All of these methods encounter a fundamental problem, in
that they exist in a 6D space (light direction, view direction and
surface position are all 2D) that must be densely sampled for intri-
cate shadows and specularities. A sampling rate of 100 in each di-
mension would require a trillion (1012) total samples—intractable
to pre-compute, store or relight with.

A number of interactive and even real-time algorithms have been
developed in previous work. The majority address the 6D problem
by using very low sampling rates, such as the low frequency light-
ing and materials used by Sloan et al. [2002; 2003a; 2003b]. This
approach is relatively fast and compact, but it blurs lighting details
by band-limiting the illumination. A different approach is to sim-
ply ignore some of the six dimensions, to allow for high sampling.
For instance, Ng et al. [2003] eliminate view variation by fixing the
camera. Coupled with a wavelet lighting approximation, they allow
all-frequency relighting from a 6×64× 64 cubemap—a thousand
times higher resolution than the 25 term spherical harmonic approx-
imations of Sloan et al. Such a high resolution resolves lighting ef-
fects that are blurred out with low-frequency illumination, such as
sharp shadows and specularities.

In this paper, our goal is to render these rich lighting effects, but
with changing view. We develop a new mathematical and compu-
tational analysis of pre-computed light transport to overcome the
difficulties with high dimensionality and sampling rate inherent in
previous methods. Our specific contributions are:



Efficient Re-Rendering from Compact Factored Forms:
We focus on factored representations, where visibility and materi-
als (BRDF) are each pre-computed and represented separately in an
appropriate basis. Each of these datasets is 4D rather than 6D, en-
abling us to handle both lighting and view variation with essentially
the same pre-computation time and storage as previous fixed-view
approaches [Ng et al. 2003]. The conceptual notion bears similari-
ties to factorizations of the light transport operator for global illumi-
nation [Arvo et al. 1994], and has also been appreciated by Sloan
et al. [2002] who propose (but do not implement) using Clebsch-
Gordan coefficients [Inui et al. 1990] with spherical harmonics.
Factorizations have also been proposed for compression in BRDF
representation, such as in the work of Kautz and McCool [1999].

Triple Product Integral Representations: Our main con-
tribution is introducing the general study of the triple product in-
tegrals that must be computed in relighting from factored forms.
Specifically, at each vertex, we must compute an integral (over
the incident hemisphere) of three factors: the lighting, visibility
and BRDF, each of which is represented in basis functions such as
spherical harmonics or wavelets.

Similar triple product integrals also arise in many other applica-
tions in computer graphics and applied mathematics. For instance,
they arise whenever we multiply together two functions, each rep-
resented in a basis like Fourier or wavelets, and express the result
also in the same basis. Three examples in graphics are multiply-
ing two images for image processing or compositing, multiplying
illumination and reflectance spectra for high fidelity color reproduc-
tion, and multiplying texture or emission maps and irradiance in a
radiosity solver [Gershbein et al. 1994]. Our mathematical analysis
of triple products is valid for any application, domain and choice of
basis functions, and is likely to be broadly relevant to problems in
computer graphics, numerical analysis and signal processing.

Analysis and Algorithms: Double product integrals are rel-
atively simple because they reduce to a dot product of the ba-
sis coefficients, as exploited in previous work [Sloan et al. 2002;
Ng et al. 2003]. However, triple product integrals are consider-
ably more complicated. In spherical harmonics, a framework of
Clebsch-Gordan coefficients has been devised in the context of an-
gular momentum in quantum mechanics [Inui et al. 1990], but the
focus has been on analytic formulae for low orders rather than ef-
ficient evaluation of all frequency effects. One recent application
of Clebsch-Gordan coefficients is the work of Thornber and Ja-
cobs [2001]. They derive formulae for the spherical harmonic co-
efficients of glossy reflection functions, taking attached shadows
into account. We study the computational complexity of evaluating
triple product integrals in a number of bases. We then develop an
efficient sublinear computation algorithm in Haar wavelets. Finally,
we present a practical implementation of efficient rendering using
wavelet triple product integrals, allowing us to create new images
with arbitrary all-frequency lighting (up to 6 × 256 × 256 cube-
maps), materials and viewpoint in a few seconds.

Readers who are primarily interested in relighting may wish to read
about our implementation and results first (sections 7 and 8), and
return to earlier sections for mathematical detail as needed.

2 Related Work

We are not aware of any significant previous work on analyzing
general triple product integrals in graphics or applied mathemat-
ics. However, numerical analysis of their falloff in wavelet bases
is related to the multilinear operator results of Meyer et al. [1997].
Good introductions to wavelets and the non-linear approximations
that we use are given by Mallat [1999] and DeVore [1998].

In terms of our practical application, the most closely related
works are current approaches for real-time rendering using pre-
computed light transport. While these methods report higher frame
rates than we do, note that they work only at low frequencies or
for only lighting or view variation. In fact, it is impractical to scale
them to our resolutions and dimensionality. A simple extension of
Ng et al. [2003] to view variation would be to sample lighting vari-
ation for a number of views, and interpolate between the closest in
a manner analogous to Lehtinen and Kautz [2003]. However, we
would need thousands of views to capture high-frequency specu-
larities, and relighting from a single view already requires hours of
pre-computation and a significant amount of memory.

The situation is even worse for spherical harmonic meth-
ods [Sloan et al. 2002; Kautz et al. 2002]. The cost per vertex in-
creases quadratically with resolution, since both lighting and view
can vary. Since our goal is approximately a thousand to ten thou-
sand times higher resolution than Sloan et al., that approach would
become a million times slower, and require an impractical amount
of storage and pre-computation. Note that any compression algo-
rithm, such as clustered PCA [Sloan et al. 2003a] must operate on
the full dataset. For a resolution of 25,000 × 25,000, this corre-
sponds to a billion-element vector at each vertex.

Finally, there has also recently been interest in accelerating stan-
dard Monte Carlo sampling methods for environment maps. Agar-
wal et al. [2003] reduce the environment to hundreds of directional
light sources and the total rendering time to a few minutes. It is pos-
sible that our analysis could be used in future to further accelerate
Monte Carlo techniques.

3 Mathematical Framework

We introduce our framework and notation, deriving the key triple
product integrals that we analyze from the reflection equation. The
next section analyzes the complexity of estimating these integrals.

We start with the reflection equation with direct lighting,

B(x, ωo) =

∫
Ω2π

L(x, ω)ρ(x, ω, ωo)V (x, ω)(ω · n) dω, (1)

where B is the reflected light, a function of position x and outgoing
direction ωo , L is the lighting, ω is the incident direction, ρ is the
BRDF, V is the binary visibility, and n is the surface normal, with
the integral over the visible hemisphere.

We now make a number of simplifications in nomenclature.
First, we will incorporate the cosine term ω ·n in the BRDF defini-
tion. Second, we will allow the integrals to be over the full sphere,
with the BRDF set to 0 in the lower hemisphere. Third, we will
assume the lighting is distant (an environment map, as in most pre-
vious work), and so depends only on ω. Fourth, we assume a uni-
form BRDF over the surface. We can always multiply through later
by the albedo and handle a linear combination of basic BRDFs. Fi-
nally, we assume for simplicity that both ω and ωo are expressed in
a global coordinate frame. Technically, we must rotate the BRDF,
which is a local function of the surface, by the surface normal to
align with the global reference frame. For simplicity in exposition,
we will ignore this issue for now, returning to it when we discuss
our actual implementation. To clarify that the BRDF must be ro-
tated according to the surface normal, we denote it as ρ̃ and write

B(x, ωo) =

∫
S2

L(ω)ρ̃(ω, ωo)V (x, ω) dω, (2)

where the integrand is explicitly a product of three factors—the
lighting, visibility and BRDF. We now consider a given vertex, with
a fixed value for x and ωo . In that case, we obtain the simple form,

B =

∫
S2

L(ω)ρ̃(ω)V (ω) dω, (3)



where the integrand factors implicitly depend on surface location
x, normal n, and viewing direction ωo . Equation 3 corresponds to
the basic triple product integral that we will study. Note that while
we have derived it using spherical integration in the context of light
transport, the basic ideas and form of Equation 3 apply over any
domain. Before discussing it in more detail, we first review the
double product integral approximations used in previous methods.

3.1 Double Product Integral Computation

One general approach is to define a transport operator T (ω) =
ρ̃(ω)V (ω), reducing Equation 3 to a double product integral,
where the integrand is simply L(ω)T (ω). The functions L and
T are then expanded in appropriate orthonormal basis functions
Ψi(ω),

L(ω) =
∑

i

LiΨi(ω) T (ω) =
∑

j

TjΨj(ω). (4)

We also define the coupling coefficients,

Cij =

∫
S2

Ψi(ω)Ψj(ω) dω, (5)

which are simply Cij = δij , Kronecker deltas, for orthonormal
basis functions. We now write the reflection integral in terms of
basis functions,

B =

∫
S2

(∑
i

LiΨi(ω)

)(∑
j

TjΨj(ω)

)
dω

=
∑

i

∑
j

LiTj

∫
S2

Ψi(ω)Ψj(ω)dω

=
∑

i

∑
j

CijLiTj =
∑

i

∑
j

δijLiTj =
∑

i

LiTi

= T · L, (6)

i.e. simply a dot product of the coefficient vectors of T and L.
Ng et al. [2003] use Haar wavelets for Ψ, with a non-linear ap-

proximation of L, using only the 200 or so largest coefficients. This
speeds computation of the above dot product. They fix the view,
writing a matrix equation B = TL, that compactly denotes the dot
product for all image pixels. They also allow viewpoint variation,
but only for Lambertian surfaces, since in that case one can ignore
the BRDF and still treat the reflection equation as a two-term in-
tegral. Sloan et al. [2002] use spherical harmonics for Ψ instead
of wavelets, with a linear approximation of only 25 low frequency
terms, to make the dot product real time. They also use clustered
PCA over similar vertices [Sloan et al. 2003a] to compress T . This
allows one to encode the view variation (with ωo) of T as well, but
only for low frequencies.

3.2 Triple Product Integral Computation

We now return to the triple product integrals of Equation 3, with the
corresponding basis function expansions,

L(ω) =
∑

i

LiΨi(ω) V (ω) =
∑

j

VjΨj(ω) ρ̃(ω) =
∑

k

ρ̃kΨk(ω).

(7)

In analogy with the coupling coefficients for double product inte-
grals, we also define the tripling coefficients for triple product in-
tegrals,

Cijk =

∫
S2

Ψi(ω)Ψj(ω)Ψk(ω) dω. (8)

In contrast to coupling coefficients, there is no simple general for-
mula for tripling coefficients, and there has been relatively little pre-
vious work on studying them. For spherical harmonics, the Cijk

correspond to Clebsch-Gordan coefficients, whose analytic values,
forms and properties are well studied, but not in terms of com-
putational efficiency. In essence, the tripling coefficients for gen-
eral bases are generalizations of the Clebsch-Gordan coefficients
for spherical harmonics.

We now write the reflection equation in terms of basis functions,

B =

∫
S2

(∑
i

LiΨi(ω)

)(∑
j

VjΨj(ω)

)(∑
k

ρ̃kΨk(ω)

)
dω

=
∑

i

∑
j

∑
k

LiVj ρ̃k

∫
S2

Ψi(ω)Ψj(ω)Ψk(ω)dω

=
∑

i

∑
j

∑
k

CijkLiVj ρ̃k. (9)

Unlike double product integrals, which simply reduce to a dot prod-
uct of coefficients, we see that triple product integrals are substan-
tially more complicated to estimate. In essence, the rest of this
paper is devoted to computing Equation 9 efficiently.

Note that the same machinery is relevant to another basic
operation—multiplying together two functions, where both the
functions and the result are represented in orthonormal basis func-
tions Ψ. As an example, let us say we wish to compute the product
of two images, E and F , with G = E ·F , where all three images are
expanded in an orthonormal basis as in Equation 7. For instance,
they may be stored in compressed wavelet form. We can compute
the ith basis coefficient for product G by integrating against the ith

basis function as follows:

Gi =

∫∫
Ψi(x)G(x) dx =

∫∫
Ψi(x)E(x)F (x) dx

=

∫∫
Ψi(x)

(∑
j

EjΨj(x)

)(∑
k

FkΨk(x)

)
dx

=
∑

j

∑
k

EjFk

∫∫
Ψi(x)Ψj(x)Ψk(x) dx

Gi =
∑

j

∑
k

CijkEjFk. (10)

We assume that x is defined on a 2D image domain. The point here
is that the final equation is essentially the same form as Equation 9.
Note that this relation is generally valid for any application, domain
and suitable orthonormal basis expansion—only the tripling coeffi-
cients Cijk will differ.1

4 Analysis of Computational Complexity

We now analyze the computational complexity of the triple prod-
uct integral approximation, using a number of different functional
bases. Readers who are uninterested in the mathematical details
may consult the summary of our analysis in section 4.6.

Note that the actual numerical values of the tripling coefficients
Cijk can be pre-computed for a given basis (in some cases with a

1If Ψ are complex-valued, such as complex exponentials or complex
spherical harmonics, it is conventional to define coupling coefficients as
Cij =

∫
Ψ∗

i Ψj , and tripling coefficients as Cijk =
∫

Ψ∗
i ΨjΨk , where

one of the terms in the integrand has its complex conjugate taken.
If Ψ are not orthonormal, then we find Gi by integration against Ψ̃i, the

ith dual basis function. (In Equation 10, Ψ̃i ≡ Ψi because the basis is
orthonormal.) Thus, in full generality, for multiplication of signals, we are
interested in tripling coefficients Cijk =

∫
Ψ̃∗

i ΨjΨk .



simple analytic formula). The difficult part is efficiently computing
the sum on the last line of Equation 9. In this section, we will
assume a linear approximation to the original functions using N
basis functions. Section 5 will discuss a specific efficient algorithm
for Haar wavelets, and how non-linear approximation, using only
the largest n wavelet terms, can be effectively incorporated.

4.1 General Basis

We first make some general remarks, assuming an arbitrary basis,
such as one constructed using principal component analysis. In that
case, there will be no special structure to the basis functions, and
we can do little better than compute Equation 9 by brute force.
The computational complexity will be prohibitively expensive, at
O(N3), since there are N3 coefficients Cijk (each of i, j, k has N
terms). This should be contrasted with the N multiplications and
adds of the dot product used in computing double product integrals
in general orthonormal basis functions. This highlights the consid-
erably greater difficulties in computing triple product integrals. The
efficiencies in the ensuing subsections derive from the special struc-
ture of particular bases that make Cijk sparse, i.e. many tripling
coefficients are 0.

4.2 Points or pixels

Perhaps the simplest function representation is tabulation, where
values are point-sampled. Mathematically, we can think of the ba-
sis functions Ψ as being non-overlapping step functions, with Ψi

centered about ωi. The tripling coefficients Cijk are 1 only when
i = j = k. Evaluating Equation 9 reduces to a three-way dot
product of multiplying together the three functions at each of the
tabulated points and adding up the result. It is easy to see that this
is the simplest possibility, with the most efficient O(N) algorithm.

In spite of this simplicity and efficiency, it is difficult to use tab-
ulated representations, because of the size of these representations.
In numerical terms, points are a poor basis for (non-linear) approx-
imation of smooth functions, as we explore in section 6.

4.3 2D Fourier Series

While we are interested in light transport, with integration on a
spherical domain, the mathematical framework presented here is
independent of domain or application. We therefore now discuss
general Fourier series. We begin with the 1D series and, for conve-
nience, define them in complex form (I =

√−1) on an azimuthal
domain [0, 2π],

Ψl(x) =

√
1

2π
eIlx. (11)

In complex form, an expression for the tripling coefficients is

Clmn =

∫
ΨlΨmΨ∗

n = (2π)−3/2

∫ 2π

0

eIlxeImxe−Inx dx

=

√
1

2π
δl+m−n, (12)

which is nonzero if and only if n = l + m. Thus, there is spar-
sity, with n being determined uniquely by the values of l and m.
Intuitively, this shows that there are only O(N2) nonzero tripling
coefficients.

The 2D case follows directly from the fact that the 2D Fourier
basis is separable. The number of basis functions and non-zero
coefficients are both just the squares of their 1D counterparts, and
the computational complexity remains O(N2). In Appendix B.1
we show that there are exactly

1

16
(1 + 3N)2 (13)

non-zero tripling coefficients among the N lowest frequency 2D
Fourier basis functions. In summary, the computational complexity
in the Fourier basis is significantly more expensive than in the point
or pixel basis, but more efficient than in the general case.

4.4 Spherical Harmonics

The spherical harmonics in complex form are [MacRobert 1948]

Ylm(θ, φ) = αl|m|P
l
m(cos θ)eImφ, (14)

where l ≥ 0, −l ≤ m ≤ l, αl|m| is a normalizing factor, and P l
m

are associated Legendre polynomials. For l ≤ L, there are a total
of N = (L + 1)2 harmonics. The tripling coefficients are

Cl′m′,l′′m′′;lm =∫ 2π

φ=0

∫ π/2

θ=0

Yl′m′(θ, φ)Yl′′m′′(θ, φ)Y ∗
lm(θ, φ) sin θdθdφ. (15)

Note that while we use two indices as is conventional, we could
also define single index notation in the standard manner, Yp = Ylm,
with p = l2 + l + m to be consistent with the previous examples.
These tripling coefficients are well studied for spherical harmonics,
and are known as Clebsch-Gordan coefficients [Inui et al. 1990].
They satisfy two important properties. First, similarly to the Fourier
case, the nonzero coefficients satisfy a phase constraint: m = m′+
m′′. Second, to be nonzero they satisfy a triangular inequality on
the order, |l′ − l′′| ≤ l ≤ l′ + l′′. Hence, there is less sparsity
than in the Fourier case, since l is not fixed, and the number of
nonzero coefficients are O(N2L). Since N ∼ L2, L ∼ √

N .
Hence, the net computational complexity of triple product integrals
is O(N5/2). We have derived an expression for the exact number
of terms (see Appendix B.2):

9

20
N5/2 +

1

4
N3/2 +

3

10
N1/2 (16)

4.5 2D Haar Wavelets

Here we consider the 2D (nonstandard) Haar basis on the unit
square. Generalizations to more sophisticated wavelet filters are
beyond the scope of this paper (see section 9).

4.5.1 Notation

We define the Haar basis as follows [Stollnitz et al. 1996].

• The scaling basis function is of unit value over the unit square:

Φ(x, y) = 1 for (x, y) ∈ [0, 1]2 (17)

• The wavelet basis functions at level l are scales and dilations
of three Haar mother wavelets:

Ψl i j
M (x, y) = 2lΨM (2lx − i, 2ly − j) (18)

where the offsets i and j are integers in the range [0, 2l) and the type
M takes one of three values — 01, 10 or 11, corresponding to one
of the three mother wavelets for horizontal, vertical and diagonal
differencing:

Ψ01(x, y) = Ψ10(x, y) = Ψ11(x, y) =

These graphically-defined functions are +1 where white and –1
where black in the unit square shown, and implicitly zero outside
that domain.



Figure 2: Examples of triples of 2D Haar basis functions. White is positive,
black negative and gray zero. For simplicity we ignore exact magnitude in
the diagrams. Row 1: Examples having zero triple product integral because
not all basis functions overlap. Row 2: Examples of triples with non-zero
triple product integral by case 2 of the theorem. Row 3: Examples of triples
with non-zero integral by case 3 of the theorem. In the second example, the
middle square is the scaling function.

Each triplet (l, i, j) defines a wavelet square at level l and offset
(i, j). Squares at level l have area 1/4l, and are disjoint. We use the
term coarser to describe basis functions in squares at lower levels,
and finer for those at higher levels. For convenience, the scaling
function is assumed to be at the coarsest level 0.

For a square image with N pixels, there are:
• A total of log4N levels: 0, 1, . . . , (log4N − 1). There are 4l

squares at level l.
• A total of (N −1) / 3 wavelet squares, and exactly N wavelet

basis elements including the scaling function.

For example, Figure 2 illustrates some of the basis functions for an
8×8 pixel image. There are three levels (0, 1 and 2) with 1, 4 and 16
squares each. In total, there are 21 squares and 64 basis functions.

4.5.2 Haar Tripling Coefficients

The following theorem, which we prove in appendix A, character-
izes the tripling coefficients for the basis defined above.

Haar Tripling Coefficient Theorem The integral of three 2D
Haar basis functions, which we label the tripling coefficient Cuvw

for those three basis elements, is non-zero if and only if one of the
following three cases hold:

1. All three are the scaling function. In this case, Cuvw = 1.
2. All three occupy the same wavelet square and all are different

wavelet types. Cuvw = 2l, where the square is at level l.
3. Two are identical wavelets, and the third is either the scaling

function or a wavelet that overlaps at a strictly coarser level.
Cuvw = ±2l, where the third function exists at level l.

Figure 2 illustrates examples from cases 2 and 3.
In case 3, the sign of the tripling coefficient is the sign of the

coarser basis function in the quadrant that the finer pair of functions
fall into.

An implication of the theorem is that most Haar tripling coeffi-
cients are zero. The intuition for this phenomenon is the fact that
wavelets have compact support, most pairs of basis functions do not
overlap, and hence the triple product integrand is the zero function
in most cases.

In Appendix B.3 we apply the theorem to show that the exact
number of non-zero Haar tripling coefficients for the first N basis
functions is

2 − N + 3N log4N. (19)

Thus, the complexity of evaluating Equation 9 in the Haar basis is
bounded by O(N log N). In section 5, however, we show that the
structure of the sum in the Haar basis leads to an algorithm that
reduces the complexity of computing the sum to O(N), and even
less for estimating it accurately.

4.6 Summary and Comparison

The following table collects the computational complexity results
for evaluating triple product integrals via Equation 9 in the vari-
ous bases we have considered. We assume that in a general basis
or spherical harmonics, evaluating the integral takes 3 multiplies
and 1 add for each non-zero tripling term. In pixels, Fourier series
and Haar wavelets, we assume it takes only 2 multiplies and 1 add,
because the tripling coefficients are constants.

For comparison, we also present the results for the optimized,
linear-time Haar algorithm that we will derive in section 5.2.

Basis Complexity Muls and Adds for N

General O(N3) 4N3

Pixels O(N) 3N

Fourier O(N2) 3
16

(1 + 3N)2

Sph. Harmonics O(N5/2) 36
20

N5/2 + N3/2 + 12
10

N1/2

Haar O(N logN) 6 − 3N + 9N log4N

Linear Haar O(N) 13N

The main point is that efficient summation using Equation 9 exists
only for pixels and wavelets.

5 Algorithm Development

The end product of this section is a simple algorithm for estimating
triple product integrals in the Haar basis, where the order of the al-
gorithm is proportional to the number of Haar basis terms used to
approximate each of the three factors. We begin with a log-linear
algorithm by directly applying the Haar Tripling Theorem (5.1), op-
timize it to an exact linear algorithm through factorization and dy-
namic programming (5.2), and derive the final sublinear estimation
algorithm by applying non-linear approximation techniques (5.3).

In the following subsections we compute the triple product in-
tegral of functions L, V and ρ̃ defined over a unit square domain.
To compute the relighting integral of equation 3, we project each
spherical function onto a cubemap parameterization and integrate
each square face separately (applying the algorithm below 6 times).

5.1 Direct Log-Linear-Time Haar Algorithm

In the following pseudo-code, we assume that L scale is the pre-
computed scaling function coefficient for the lighting, and L[s,M]
with s = (l,i,j) is the wavelet coefficient for the basis func-
tion of type M in square (l, i, j). Similarly, the visibility and
BRDF basis coefficients are defined by V scale, p scale and
arrays V and p. The value of the integral is computed in variable
integral.

We begin by initializing integral with the contribution from
case 1 of the theorem.

integral = p_scale * L_scale * V_scale;

We add the six permutation terms corresponding to case 2:

for each wavelet square s = (l,i,j)
C_uvw = 2ˆl;
integral += C_uvw *
(p[s,01]*L[s,10]*V[s,11] + p[s,01]*L[s,11]*V[s,10]

+ p[s,10]*L[s,11]*V[s,01] + p[s,10]*L[s,01]*V[s,11]
+ p[s,11]*L[s,01]*V[s,10] + p[s,11]*L[s,10]*V[s,01]);



Finally we add the contribution from case 3.

for each wavelet (s,M)
integral += ( p[s,M] * L[s,M] * psum(V,s)

+ L[s,M] * V[s,M] * psum(p,s)
+ V[s,M] * p[s,M] * psum(L,s) );

This code snippet depends on the following helper function:

psum(X, s) for wavelet square s = (l,i,j)
sum = X_scale;
for each wavelet (os,oM), with os that overlaps s

// Compute which quadrant (qx,qy) of square
// os = (ol,oi,oj) that square s = (l,i,j) lies in
(qx,qy) = (i,j) / 2ˆ(l-ol-1) - 2 * (oi, oj);
C_uvw = sign_of_quadrant(oM,qx,qy) * 2ˆol;
sum += C_uvw * X[os,oM];

return sum;

This function computes what we call the parent sum of X at the
square (l,i,j), which is simply the sum of the coefficients of
basis functions overlapping that square, scaled by the appropriate
tripling coefficient. The form of this function mirrors the definition
of the non-zero terms in case 3 of the theorem.

Here we make the sign of the tripling coefficient explicit.
(qx,qy) contains which quadrant ((0,0), (0,1), (1,0) or
(1,1)) of the coarser wavelet that the finer wavelet overlaps. The
sign of quadrant(oM,qx,qy) helper function, whose sim-
ple definition we omit here, simply returns +1 or –1 for the sign of
the oM mother wavelet in the given quadrant.

The logarithmic complexity factor of the overall algorithm is im-
plicit in the loop of the psum function.

5.2 Linear-Time Haar Algorithm

Now we apply dynamic programming to eliminate this logarithmic
factor. The critical observation is that psum(X,(l,i,j)) can
be computed in constant time from the value of the parent square,
psum(X,(l-1,i/2,j/2)). We make this explicit by redefin-
ing psum with a recursive algorithm:

psum(X, s) where s = (l,i,j)
if (l,i,j) = (0,0,0) return X_scale;
os = (ol,oi,oj) = (l-1, i/2, j/2)
(qx,qy) = (i,j) - 2 * (oi, oj);
return psum(X, os) + 2ˆol *

( X[os,01] * sign_of_quadrant(01,qx,qy)
+ X[os,10] * sign_of_quadrant(10,qx,qy)
+ X[os,11] * sign_of_quadrant(11,qx,qy) );

We use this recursive formula and a dynamic programming ap-
proach to fill in the table of psum values for every wavelet square
in linear time. With these modifications, the overall algorithm is
O(N).2 It is worth noting that we cannot perform this dynamic
programming approach to optimize the computation of equation 9
for an arbitrary basis. The Haar basis permits this optimization be-
cause of the regularity of its tripling coefficients.

5.3 Final Sublinear-Time Haar Algorithm

So far, we have considered only mathematically exact calculation
of the triple product integral. Now we develop a sublinear wavelet

2In the table of section 4.6, we report that the linear Haar algorithm
uses approximately 13N multiplies and adds. Though this depends on the
exact implementation, we estimate this number as follows. The algorithm
performs for each square, approximately 12 multiplies and 6 adds to accu-
mulate the case 2 terms, and 3 multiplies and 3 adds to calculate the parent
sum value. Furthermore, there are 18 multiplies and 12 adds to accumulate
the case 3 terms at half the squares (there are no case 3 terms at the finest
level). This totals 8N multiplies and 5N adds.

algorithm that computes an accurate estimate of the integral much
more quickly. Our approach exploits approximate representations
of the BRDF and the lighting to accelerate the linear algorithm.

5.3.1 Non-linear Approximation

The central idea is to use what is known in the numerical literature
as non-linear approximation, where one computes N basis function
coefficients, but then chooses only the best n � N of them, usually
the largest ones. Thus, one does not determine the basis functions
to use a-priori, but adapts to the data.

It is possible to carry out non-linear approximation in any ba-
sis. However, as we discuss more fully in section 6.1, non-linear
approximation in pixels or spherical harmonics does not reliably
compress signals.

Ng et al. [2003] demonstrate the efficiency of non-linear wavelet
approximation for representing lighting. Here we use non-linear
wavelet approximations of both the lighting and the BRDF.

5.3.2 Algorithm Optimizations

The modifications are actually relatively minor, so we simply
present the full algorithm with changes highlighted:

integral = p_scale * L_scale * V_scale;

for each wavelet square s = (l,i,j) in approx of brdf
C_uvw = 2ˆl;
integral += C_uvw *
(p[s,01]*L[s,10]*V[s,11] + p[s,01]*L[s,11]*V[s,10]

+ p[s,10]*L[s,11]*V[s,01] + p[s,10]*L[s,01]*V[s,11]
+ p[s,11]*L[s,01]*V[s,10] + p[s,11]*L[s,10]*V[s,01]);

for each wavelet (s,M) in approx of brdf
integral += ( p[s,M] * L[s,M] * psum lazy(V,s)

+ p[s,M] * V[s,M] * psum lazy(L,s) );

for each wavelet (s,M) in approx of lighting
integral += V[s,M] * L[s,M] * psum lazy(p,s);

In short, we reduce the complexity of each loop by iterating just
over the chosen non-linear coefficients rather than the full number
of basis functions.

An important point to note is that the lighting is actually exact,
not approximate, in the first two for loops. This feature helps the
approximation converge more quickly.

A second point concerns the asymmetry in the last two loops.
The reason for this asymmetry is that we cannot drive efficiency
in the last loop through approximation of the BRDF, p. This is
because the psum table for p need not be sparse even if p itself
is sparse. For instance, if p scale were large then psum(p,s)
would be large for every square s even if every p[s,M] were zero.
For this reason, we approximate L in the last loop for efficiency.

Returning to the question of symmetry, we could have created a
three-way symmetric algorithm by extracting the second line of the
second loop into a separate loop over (s,M) in approx of
visibility. However, this would be less efficient because we
would have to compute and store additional non-linear approxima-
tions of the visibility.

A final point concerns the use of the psum lazy helper function
instead of psum. The algorithm would remain O(N) if we were to
use dynamic programming to fill in the entire psum tables for p, V
and L. Instead, psum lazy uses lazy evaluation to fill in the psum
table only for entries that are actually requested.

The complexity of a single call to this procedure is bounded by
log N − 1, but of course N calls can take no more than O(N)
time because that would simply reduce to the dynamic program-
ming approach. Hence if n is the number of terms chosen in the



non-linear approximation of the lighting and BRDF, then the overall
algorithm complexity is bounded above by O(n log N), and con-
verges quickly to O(n).

6 Numerical Comparison and Validation

A purely mathematical analysis in section 4 showed that frequency-
based Fourier and spherical harmonic methods are intractable be-
cause their tripling series complexity is quadratic or worse. Here
we show numerically that pixel-based methods are also intractable
because of poor compression performance. We also show that the
Haar integration algorithm of 5.3 is numerically efficient.

6.1 Compression Performance

The graphs below report accuracy in non-linear approximation of
measured lighting [Debevec and Malik 1997]. Our main focus is
comparing pixels and wavelets; harmonic data are provided for di-
dactic purposes. We compute the optimal non-linear approxima-
tion by sorting the basis coefficients by magnitude and retaining
the largest. The graphs plot the residual error as we increase the
number of terms retained. Note that the horizontal axis is plotted
on a log scale.

0

20

40

60

80

100

R
el

at
iv

e 
E

rr
or

 (
%

) 

St Peter’s Basilica Beach Scene Grace Cathedral

Fraction of
Terms Used

Haar Wavelets                    Spherical Harmonics                    Pixels                    

10-5 10-4 10-30.01 0.1 1.0 10-5 10-4 10-30.01 0.1 1.010-5 10-4 10-30.01 0.1 1.0

From a signal-processing standpoint, pixels localize only spa-
tial information and require many terms to represent low-frequency
functions, such as the bright sky in the Beach Scene. Conversely,
spherical harmonics localize only frequency information and re-
quire many terms for small bright lights, such as the small windows
in the St Peter’s Basilica environment. In contrast, wavelets con-
tain basis functions that are localized in both space and frequency
domains, enabling more reliable compression. Wavelets perform as
well as either pixels or harmonics for these two scenes (note that
the plots for wavelets and harmonics overlap in the middle graph).

As a composite example, Grace Cathedral contains broad area
illumination as well as concentrated spotlights. Both pixels and
harmonics perform poorly compared to wavelets, which converge
at least an order of magnitude faster for reasonable accuracy.

We have focused here on lighting environments, because pixels
are likely to perform best in this space of functions where the en-
ergy can be extremely concentrated. Pixels will in general perform
worse for visibility and BRDFs, where the functions are likely to
contain broad areas of significant energy.

This observation leads to the important conclusion that pixel
based methods are intractable for our application, because the raw
pre-computed visibility and BRDF datasets (see 7.1) are too large
to fit in memory. Hence, pixel relighting would require compressed
visibility and BRDF representations, and would incur the cost of
decompression in the inner loop.

Even if pre-computed dataset size were not an issue, the graphs
show that essentially all pixel terms are required for accuracy in
common datasets. A full pixel integration is slower than accurate
wavelet integration, as shown in the next section.

6.2 Numerical Performance of Haar Integration

This section measures the performance of the sublinear Haar esti-
mation algorithm. We directly implement the algorithm described

0.0001 0.001 0.01 0.1 1

Fraction of Terms Used

0

20

40

60

80

100

R
el

at
iv

e 
E

rr
or

 (
%

)

Non-linear Estimation Performance

Actual pixel integration time
(with wavelet decompress)

Baseline pixel time
(no decompress)

  Wavelet
integration time

Wavelet error decay

0.001

0.01

0.1

1

10

100

1000

Integration T
im

e (M
illiseconds)

Figure 3: Top: Error decay
and running time for triple
product integral estimation
algorithm (section 5) for one
representative set of cube-
maps. Note that the run-
ning time has unit slope on
the log-log plot, indicating
that the algorithm is linear
in the number of coefficients
used. Horizontal dashed
lines are running times for
linear pixel estimation, with
and without decompression
cost. Note that the wavelet
algorithm produces accurate
results orders of magnitude
faster than simple pixel inte-
gration. Bottom: The three
6 × 256 × 256 cubemaps
which were multiplied and
integrated in the experiment.

in section 5 to integrate one set of lighting, visibility and BRDF
cubemaps. In Figure 3, we plot on a log-log graph the running
time of our algorithm as a function of the number of approximation
terms used, n. The first feature to note is that the graph converges
to a line with slope 1, reflecting the fact that for practical use the
algorithm is O(n) as discussed at the end of section 5.3.2.

For comparison, we also plot in Figure 3 the time to compute
a full pixel integration, both with and without decompression cost.
In this experiment, decompression corresponds to an inverse trans-
form from a compressed wavelet representation. As seen in the fig-
ure, for reasonable error, wavelet integration is 10–30 times faster
than simple pixel integration. Note that it is not possible to in-
clude a meaningful plot of non-linear pixel performance, because
results vary so widely with input lighting, and because there is the
unknown cost of reading from compressed visibility and BRDF rep-
resentations.

In summary, this section shows that wavelets perform reliable
and efficient compression, and that wavelets allow efficient relight-
ing directly from the compressed representation.

7 Implementation

At a high level we relight a scene vertex by vertex by using the
algorithm in section 5.3. The major issue, addressed in 7.1, is how
we represent and pre-compute the visibility and BRDF. 7.2 deals
with final rendering given these pre-computed datastructures.

7.1 Representation and Pre-computation

7.1.1 Visibility Field

We pre-compute what we refer to as the 4D visibility field V (x, ω),
as a function of the surface location x and the global incident di-
rection ω. The visibility is computed at each vertex, x, on a model
and each incident direction on a cubemap (up to 6 × 256 × 256).

For a given, coarsely tessellated input model, we refine each
of its triangles so that we have vertices densely over all surfaces.
We then pre-compute V (x, ω) using hardware rasterization of
hemicubes at each vertex. As an important optimization, we raster-
ize the original, coarsely tessellated model. Note that this produces
exactly the same results as rasterizing the refined model.

Other than this optimization, our pre-computation is quite sim-
ilar to previous methods like Ng et al. [2003]. For the cubemap



at each vertex, we Haar transform each face, quantize to 8 bits,
and store only the non-zero coefficients. Because visibility is a bi-
nary function, our visibility cubemaps are more amenable to Haar
wavelet transforms than the full transport operator used by Ng et al.
As a result, we obtain somewhat higher compression and sparsity.

We store the coefficients for each visiblity function in a
hashtable, so that the datastructure is compact and yet provides fast
indexed lookup.

7.1.2 Material Field (BRDF)

We also pre-compute what we refer to as the material field, corre-
sponding to a particular BRDF. Correctly representing the BRDF in
global coordinates is more complicated than in the case of the vis-
ibility. In principle, one could represent the 4D BRDF (multiplied
by the incident cosine) ρ(ω, ωo) in wavelets. For each vertex, one
could then find ωo , to determine ρ(ω). However, for uniformity
with the lighting and visibility, this must be in global coordinates,
while the BRDF is usually stored in local coordinates with respect
to the local surface normal. Hence, we would need to apply a ro-
tation corresponding to the surface normal to obtain ρ̃(ω) that we
need—not a trivial operation in wavelets.

We address this challenge as follows. First, we write the BRDF
as a 6D function, ρ̃(ω, ωo ,n), where we explicitly note that it de-
pends on n, the global coordinates of the surface normal, and use
ρ̃ to emphasize that all values are now in global coordinates. Of
course, the intrinsic BRDF of the surface is only 4D, depending
only on the relative orientation of ω and ωo with respect to n.
However, it is convenient to trade storage for computation (avoid-
ing the required rotation) by explicitly representing the 6D function
ρ̃(ω, ωo ,n).

The problem is that the dataset grows too large because we must
tabulate 4D functions for a sampling of n directions. Part of the
problem is that parameterization by ω and ωo is not very compact
for most BRDFs, as noted by Rusinkiewicz [1998].

Reparameterization As such, we use a reparameterization that
makes most BRDFs low-frequency in the n parameter. Specifically,
we replace the view parameter, ωo , with the reflection vector, which
we denote ωr . The reflection vector is the reflection of ωo about
n. ρ̃ is compact in the new parameterization. In particular, Ra-
mamoorthi and Hanrahan [2002], and earlier Cabral et al. [1999],
show that a sparse sampling of normal directions (in their case actu-
ally view directions) is accurate for essentially all isotropic BRDFs,
including measured ones. This is because the ωr sampling tracks
the most common high-frequency effects, which are specular-like
lobes centered near ωr . We use resolutions in n×ωr ×ω of up to
(6 × 3 × 3) × (6 × 32 × 32) × (6 × 64 × 64).

For certain special cases like the Lambertian or Phong models,
the reparameterization reduces the 6D datasets back to 4D. Lam-
bertian shading is given by (ω · n), which is independent of ωr ,
and in Phong shading, ρ̃(ω, ωr ,n) is of the form (ω ·ωr)s, which
is independent of n. We treat these standard shading models as spe-
cial cases, handling much higher resolutions than general isotropic
BRDFs. For Lambertian BRDF, we use a resolution in n × ω of
(6 × 8 × 8) × (6 × 64 × 64). For Phong, we use resolutions in
ωr ×ω of up to (6×64×64)×(6×128×128) to handle specular
exponents up to 200.

Non-linear Approximation To reduce the storage size further,
for all sampled ωr and n, we represent ρ̃(ω) in wavelets, using
a non-linear approximation with a small number of wavelet terms.
For 99% accuracy, we find that we require only 0.1% - 1% of the
full number of terms. Once we use non-linear approximation, the
number of terms needed, while large, is a fraction of the storage
required for the visibility field.

7.2 Relighting

The following steps occur at every frame to relight under changing
lighting, view and possibly visibility and material fields.

Input Lighting Analysis The input to relighting is a distant
illumination environment cubemap (at a resolution of up to 6 ×
256 × 256). We transform the cubemap into Haar wavelets. We
also compute a non-linear approximation of the Haar coefficient
set, choosing the n wavelet squares with the largest coefficients.
This step is almost identical to that in Ng et al. [2003].

Computing Relit Mesh Colors We relight only the set of ver-
tices that contribute to final screen pixels. We calculate this set
by rendering all triangles with different colors, and marking the
corresponding vertices for all colors that appear as screen pixels.
This optimization reduces work by 60–70% for typical views of
our scenes.

For each vertex in the set, we perform the following steps to
compute its final color:

• We look up V (ω) for the current vertex directly in the pre-
computed visibility field.

• We compute ρ̃(ω) by looking up the vertex’s surface normal,
n, and computing the reflected direction, ωr given the eye
point. We use quadrilinear interpolation between the 16 near-
est sampled (n, ωr) pairs in the pre-computed material field,
to ensure that our reconstruction of ρ̃(ω, ωr ,n) is continuous
and to avoid visual blocking artifacts over the surface.

• We then directly implement the algorithm in section 5 to com-
pute the three-term integral for the current vertex, correspond-
ing to Equation 3.

Final Rendering We use graphics hardware in the standard way
to rasterize the object and interpolate vertex colors. We can also
modulate by texture maps, as shown in Figures 1 and 5.

8 Practical Results

In this section, we present some results from our system for all-
frequency relighting with changing view. We do not compare with
previous pre-computed transport algorithms in this section, since
they are impractical to implement at these resolutions for changing
both lighting and viewpoint, as already discussed in the introduc-
tion and section 6.

8.1 Accuracy

We first verify the accuracy and visual quality of the images pro-
duces by our Haar relighting algorithm (see Figure 4), when we
vary the numbers of terms used in non-linear approximation of the
lighting and BRDF. Artifact-free images are produced with as few
as 0.01% of the terms, because of the continuous reconstruction of
our BRDF representation as described in section 7. Images that are
very close to a reference (created with exact integration) require just
0.1% – 1% of the wavelet terms.

8.2 Statistics and Performance

The following tables summarize the pre-computation statistics for
our scenes. The chair and table scenes were modelled by Jeff Man-
cuso. The orange and velvet BRDFs are converted from the CURET
database [Dana et al. 1999]. The resolutions of directional parame-
ters (ω, n and ωr ) are given as the size of a single face of a cube-
map. In the case of visibility, sparsity is the fraction of terms re-
tained for exact representation of each cubemap, subject to quanti-
zation error. In the case of BRDFs, sparsity refers to the average
fraction retained for at least 95% accuracy (99% accuracy for Lam-
bertian and Phong).



0.01% L, 0.01% ρ, 2.0 s.

0.01% L, 0.1% ρ, 9.9 s.

0.01% L, 0.5% ρ, 51 s.

1.0% L, 0.01% ρ, 8.9 s.0.1% L, 0.01% ρ, 2.3 s.

0.1% L, 0.1% ρ, 10.6 s. 1.0% L, 0.1% ρ, 17.3 s.

0.1% L, 0.5% ρ, 51 s. 1.0% L, 0.5% ρ, 53 s.Reference Image

Figure 4: Comparison of accuracy with varying numbers of lighting and
BRDF terms increasing right and down. Numbers below each image are the
fraction of the total number number of lighting and BRDF wavelets used to
generate each image, and the running time (in seconds). For this compar-
ison we use a relatively high cubemap resolution (6×256×256), which
gives slightly longer render times. 1% coefficients or less in each is indis-
tinguishable from the reference, but even fewer are perceptually acceptable.
In practice, we use between 0.1% and 1%.

Visibility Fine Coarse ω res Size Sparsity Pr. Time

Single chair 143K 4K 642 816 MB 5.4% 21 min
Single chair 143K 4K 1282 1.4 GB 3.1% 45 min
Table scene 300K 23K 642 1.5 GB 6.2% 1 hr
Buddha 93K 93K 642 250 MB 3.4% 1 hr
Buddha 93K 93K 2562 1 GB 0.8% 4 hrs

Material n res ωr res ω res Size Sparsity Pr. Time

Lambertian 82 — 642 250 KB 0.12% 25 sec
Phong (64) — 82 1282 440 KB 0.05% 3 min
Phong (200) — 642 1282 19 MB 0.50% 18 min
Orange 32 82 642 16 MB 0.60% 1 hr
Orange 32 322 642 250 MB 0.60% 16 hrs
Velvet 32 82 642 18 MB 0.67% 1 hrs
Velvet 32 322 642 290 MB 0.67% 16 hrs

Note that our total pre-computation times and storage requirements,
while high, are essentially the same as those of Ng et al. [2003]. In
fact our visibility pre-computation is significantly faster than theirs
because we render coarse visibility meshes, as described in 7.1.1.
Our pre-computation times are also favorable relative to those of
Sloan et al. [2003a], when their method is scaled to our resolutions.
The pre-computation for the buddha is slowest because the original
mesh, which is used for the visibility rasterization, already exists at
the maximum resolution.

The following table presents representative rendering speeds
with BRDF and lighting qualities that produce accurate images.
Both scenes have an angular resolution of 6×64×64.

Scene BRDF (ρ) Light (L) Sp. (ρ) Sp. (L) Render Time
Table sc. Multiple Kitchen 0.1% 0.5% 3-5 s / fr.
Buddha Phong (64) Grace 0.1% 0.5% 3 s / fr.

The lighting environments are high dynamic range cubemaps from
Paul Debevec’s Light Probe gallery [Debevec and Malik 1997]. The
table scene contains Lambertian, Phong and orange BRDFs.

Even for extremely high resolutions, our method produces relit
images in a few seconds. While this is not real-time yet, it is two
to three orders of magnitude shorter than the design cycle currently
available in applications like lighting and material design, and faster
than any competing technique.

Figure 5: More images of the scene in Figure 1, at 3–5 seconds per frame.
These closely match reference images, which are omitted. Left: Two images
where we change only the viewpoint (lighting is static). We omit texture to
enhance shadow subtleties. As one of the characteristic features captured by
our technique, note that the glossy shadows in front of the right chair change
dramatically with viewpoint, but that the diffuse shadows on the table and
behind the left chair remain stationary on the surfaces. Right: Two pairs of
images where only the lighting changes.

8.3 Images

Figure 5 shows some additional images produced with our tech-
nique. Once we loaded the pre-computed data, we could create
relit images in one to ten seconds, typically with about 0.5% of
the lighting terms and 0.1% of the BRDF terms. The speed can be
controlled approximately linearly by interactively increasing and
decreasing the number of BRDF and lighting terms used.

We were able to continuously manipulate lighting and viewpoint
without restriction. We could also change materials assigned to dif-
ferent parts of the scene. Our examples focus on detailed soft shad-
ows and view-dependent glossiness that emerge at the high resolu-
tions we consider.

9 Research Directions
Haar Filter Our analysis thus far has been limited to the sim-
plest wavelet filter, Haar. The main reason that we have focused
on Haar is that its tripling coefficients have a very simple analytic
form and permit optimization through dynamic programming. Gen-
eral wavelets do not have analytically simple tripling coefficients,
nor do they obviously permit the optimizations we use. It is worth
noting that even though Haar approximation suffers from block arti-
facts in image compression applications, this is not a direct problem
here. We never see the approximate functions directly, and artifacts
largely disappear through integration in the relighting operator.

Nevertheless, smoother wavelets are crucial in other domains.
One potentially important application is multiplication of images in
the compressed domain, without decompression, via Equation 10.
Such an application would require an understanding of tripling co-
efficients for the higher order wavelets used in image compression.



Material Representation Our general BRDF representation
limits how much resolution we can afford in the reflection direction,
for the simple reason that we also tabulate normal dependence. As a
related limitation, since we tabulate rotations only for different nor-
mal directions (and not local tangent directions), we cannot handle
anisotropic BRDFs. This suggests that it would be well worth look-
ing directly for efficient algorithms to rotate wavelet representations
of spherical functions. This would allow us to store the BRDF more
compactly and precisely in local surface coordinates (where it as-
sumes its intrinsic 4D form) and compute its rotation into the global
frame at each vertex.

10 Conclusions
We have explored pre-computed light transport methods for chang-
ing illumination and viewpoint, while including all-frequency shad-
ows, reflections and lighting. We show that current techniques do
not scale effectively to the high sampling rates and dimensionality
of the problem, so we need to relight from factored representations
of visibility and materials.

This factored approach motivates our primary contribution: in-
troducing triple product integrals (here, involving the lighting, visi-
bility and the BRDF) as a mathematical object of study. We analyze
the complexity of these integrals in a number of bases, showing
why wavelets are a computationally attractive alternative, and de-
veloping efficient sublinear-time algorithms for Haar wavelets. We
demonstrate the practical utility of our framework, reducing the it-
eration cycle for applications like lighting design by orders of mag-
nitude, to near interactive rates.

Our analysis suggests broader implications for computer graph-
ics. First, the idea of using factored representations of the full 6D
transport operator might be more generally applied to image-based
rendering, where a huge number of images are required to represent
high-frequency effects with both lighting and view variation. If one
could separately measure the 4D visibility and BRDF, those could
be used for factored IBR, requiring much sparser datasets. Besides
the practical utility, we also believe factorization to be an important
theoretical idea that is worth investigating futher.

Second, the systematic study of triple product integrals and their
computational complexity is likely to have wider uses in both com-
puter graphics and applied mathematics. We believe this to be a
basic operation that is important to perform efficiently, but which
has not previously received attention. The same mathematical ma-
chinery provides a sound way to analyze another basic operation—
multiplying two functions represented with sparse basis coefficient
sets. We predict much future work and applications.

Finally, our practical application is to fast rendering of high qual-
ity images with arbitrary lighting, viewpoint and materials. We be-
lieve the use of realistic lighting, shadows, and materials to be of
increasing importance in both real-time applications and in poten-
tially interactive applications like product design. We see our work
as a step in allowing designers to interact with realistic images at
truly interactive rates, simultaneously manipulating the illumina-
tion, viewpoint and material properties.

Acknowledgments
We would especially like to thank Jeff Mancuso for modeling the
furniture scene, and Thos. Moser for allowing us to copy the like-
ness of their Continuous Arm Chair. We would also like to thank
Jeff Klingner, Pradeep Sen, and Dave Akers for their help in devel-
oping software and editing the paper and video. Thanks to David
Donoho and Doron Levy for discussions. This work was supported
by grants from the NSF (0085864-2 on Interacting with the Visual
World, and 0305322 on Real-Time Visualization and Rendering of
Complex Scenes) and Intel Corporation (Real-Time Interaction and
Rendering with Complex Illumination and Materials).

References

AGARWAL, S., RAMAMOORTHI, R., BELONGIE, S., AND JENSEN, H.
2003. Structured importance sampling of environment maps. ACM
Transactions on Graphics 22, 3, 605–612.

ARVO, J., TORRANCE, K., AND SMITS, B. 1994. A framework for the
analysis of error in global illumination algorithms. In SIGGRAPH 94,
75–84.

CABRAL, B., OLANO, M., AND NEMEC, P. 1999. Reflection space image
based rendering. In SIGGRAPH 99, 165–170.

DANA, K., GINNEKEN, B., NAYAR, S., AND KOENDERINK, J. 1999.
Reflectance and texture of real-world surfaces. ACM Transactions on
Graphics 18, 1 (January), 1–34.

DEBEVEC, P. E., AND MALIK, J. 1997. Recovering high dynamic range
radiance maps from photographs. In SIGGRAPH 97, 369–378.

DEVORE, R. 1998. Nonlinear approximation. Acta Numerica 7, 51–150.

DORSEY, J., ARVO, J., AND GREENBERG, D. 1995. Interactive design of
complex time dependent lighting. IEEE Computer Graphics and Appli-
cations 15, 2 (March), 26–36.

GERSHBEIN, R., SCHRÖDER, P., AND HANRAHAN, P. 1994. Textures
and radiosity: Controlling emission and reflection with texture maps. In
SIGGRAPH 94, 51–58.

INUI, T., TANABE, Y., AND ONODERA, Y. 1990. Group theory and its
applications in physics. Springer Verlag.

KAUTZ, J., AND MCCOOL, M. 1999. Interactive rendering with arbi-
trary BRDFs using separable approximations. In Eurographics Render-
ing Workshop 99, 247–260.

KAUTZ, J., SNYDER, J., AND SLOAN, P. 2002. Fast arbitrary brdf shading
for low-frequency lighting using spherical harmonics. In Eurographics
Rendering Workshop 2002, 291–296.

LEHTINEN, J., AND KAUTZ, J. 2003. Matrix radiance transfer. In Sympo-
sium on Interactive 3D graphics, 59–64.

MACROBERT, T. 1948. Spherical harmonics; an elementary treatise on
harmonic functions, with applications. Dover Publications.

MALLAT, S. 1999. A Wavelet Tour of Signal Processing. Academic Press.

MEYER, Y., COIFMAN, R., AND SALINGER, D. 1997. Wavelets:
Calderon-Zygmund and Multilinear Operators. Cambridge Univ. Press.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2003. All-frequency
shadows using non-linear wavelet lighting approximation. ACM Trans-
actions on Graphics 22, 3, 376–381.

NIMEROFF, J., SIMONCELLI, E., AND DORSEY, J. 1994. Efficient re-
rendering of naturally illuminated environments. In Eurographics Work-
shop on Rendering 94, 359–373.

RAMAMOORTHI, R., AND HANRAHAN, P. 2002. Frequency space envi-
ronment map rendering. ACM Transactions on Graphics (SIGGRAPH
02 proceedings) 21, 3, 517–526.

RUSINKIEWICZ, S. 1998. A new change of variables for efficient BRDF
representation. In Eurographics Rendering Workshop 98, 11–22.

SLOAN, P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency lighting envi-
ronments. ACM Transactions on Graphics 21, 3, 527–536.

SLOAN, P., HALL, J., HART, J., AND SNYDER, J. 2003. Clustered prin-
cipal components for precomputed radiance transfer. ACM Transactions
on Graphics 22, 3, 382–391.

SLOAN, P., LIU, X., SHUM, H., AND SNYDER, J. 2003. Bi-scale radiance
transfer. ACM Transactions on Graphics 22, 3, 370–375.

STOLLNITZ, E., DEROSE, T., AND SALESIN, D. 1996. Wavelets for Com-
puter Graphics: Theory and Applications. Morgan Kaufmann.

THORNBER, K., AND JACOBS, D. 2001. Broadened, specular reflection
and linear subspaces. Tech. Rep. TR#2001-033, NEC.



Appendices

A Proof of Haar Tripling Coefficient Theorem

In this section we prove the theorem stated in section 4.5.2 that
characterizes the Haar tripling coefficients. The proof is straight-
forward though somewhat long, so we adopt a terse style of proof.

Preliminaries We begin with the following observations, which
are either definitions or easily verified and stated without proof:

1. The wavelets are orthonormal:
∫∫

Ψl i j
M Ψl′ i′ j′

M′ dx dy =
δM−M′δl−l′δi−i′δj−j′

2. The wavelets have vanishing integrals:
∫∫

Ψl i j
M dx dy = 0

3. The product of the scaling function and any wavelet is simply
the wavelet: Φ · Ψl i j

M = Ψl i j
M .

4. The product of two wavelets is zero if they do not overlap.
5. The product of two different wavelets in the same wavelet

square (l, i, j), is the third wavelet in that square scaled by
2l. For example, Ψl i j

01 · Ψl i j
11 = 2lΨl i j

10 .
6. The square of a wavelet in (l, i, j) is equal to the scaling func-

tion restricted to (l, i, j) and scaled by 4l.
7. The product of two overlapping wavelets at different levels

l < l′ is the finer wavelet scaled by ±2l. The sign is made
precise in section 5.1.

We now proceed to prove the theorem through a case analysis on
the choice of the basis functions in the tripling coefficient integral
Cuvw as defined in equation 8.

A.1 All three basis functions are wavelets

For cases 1 through 3 we assume that all three functions in the in-
tegral are wavelets (not the scaling function).

Case 1: All wavelets at same level Since all Haar squares at
the same level are disjoint, observation 4 shows that all three basis
functions must be in the same square if Cuvw is non-zero.

If at least two are the same, then observation 6 shows that the
integrand of Cuvw is the third wavelet scaled by 4l, where l is the
level. In this case, observation 2 shows that the integral is zero.

As a result, if Cuvw is non-zero then all three basis functions
must be different. Applying observations 5 and 1, we calculate the
value of Cuvw as 2l. This establishes case 2 of the theorem.

Case 2: Exactly two wavelets at same level As in case 1,
observation 4 shows that the two wavelets must occupy the same
square if Cuvw is non-zero.

If the third wavelet is at a finer level, then two applications of
observation 7 shows that the integrand of Cuvw is a scaling of the
finer wavelet. Observation 2 concludes that Cuvw is zero.

Thus, the third wavelet must be at a coarser overlapping level if
Cuvw is non-zero. In this case, observation 7 and orthonormality
(observation 1) show that the two same-square wavelets must be
identical, and the integral is ±2l. This establishes part of case 3 in
the statement of the theorem.

Case 3: All three wavelets at different levels Two applica-
tions of observation 7 shows that the integrand of Cuvw is a scaling
of the finest level wavelet. This integral is zero by observation 2.

A.2 Some basis functions are the scaling function

Now we consider the cases where at least one of the factors in the
integrand of Cuvw is the Haar scaling function. If exactly one is the
scaling function, then two are wavelets. Thus, the scaling property
(observation 3) and orthonormality (observation 1) show that the
integral has value 1 if the wavelets are identical, and is zero other-
wise. This completes the proof of case 3 of the theorem statement.

If exactly two of the basis functions are the scaling function, then
observations 3 and observation 2 show that Cuvw = 0.

Finally, if all three are the scaling function we have case 1 of the
theorem statement. A trivial computation shows that Cuvw = 1.
This concludes the case analysis and the proof of the theorem.

B Details of Computational Complexity Analysis

This section provides details on calculating the number of non-zero
tripling coefficients in section 4.

B.1 Fourier Series

First for 1D, assume that Ψl is bandlimited with |l| ≤ M . In sum-
mary from section 4.3, our constraints for Clmn to be non-zero are:
n = l + m and |l, m, n| ≤ M . Thus, the total number of non-zero
coefficients is given by

∑M
l=−M

∑M
m=−M

∑M
n=−M δl+m−n. It is

easy to verify that this summation is equal to 1 + 3M + 3M2, and
we omit these details.

This completes the 1D analysis. Since the 2D Fourier basis
is separable, the number of non-zero coefficients is simply the
square of the 1D case. Precisely, for bandlimited 2D Fourier series,
Ψlk(x, y) = 1/2π eIlxeIky where |l, k| ≤ M , the total number of
non-zero tripling coefficients is (1 + 3M + 3M2)2. This formula
is specified in terms of the bandlimit, M , however, rather than the
number of basis functions N . In the 2D case, N = (2M + 1)2,
and so simple substitution and algebra show that the total number
of non-zero terms is 1/16 (1 + 3N)2, as stated in section 4.3.

B.2 Spherical Harmonics

We have derived a polynomial for the number of non-zero harmonic
tripling coefficients as a function of the order. This polynomial
is a fifth degree expression that can be verified using a symbolic
mathematical program like Mathematica to predict the number of
nonzero Clebsch-Gordan terms. The exact expression is 9/20L5 +
9/4L4+19/4L3+21/4L2+33/10L+1, where L is the maximum
harmonic order. Since the number of basis functions is N = (L +
1)2, the number of non-zero coefficients relative to the basis size is
9/20 N5/2 + 1/4 N3/2 + 3/10 N1/2.

B.3 Haar Wavelets

We calculate the exact number of non-zero coefficients, by counting
the contributions from each of the three cases of the Haar Tripling
Coefficient Theorem (section 4.5.2). Case 1 contributes exactly one
non-zero coefficient.

Case 2 contributes a linear number of terms because the only
overlaps of Haar basis functions at the same level are the three
mother wavelets occupying the same square. Precisely, case 2 con-
tributes 3! (N−1) / 3 = 2(N−1) coefficients, where the 3! term is
due to permutation choices in assigning the three types to the basis
functions, and (N − 1) / 3 is the total number of wavelet squares.

Case 3 contributes, in total, a log-linear number of terms from the
basis functions that overlap at a coarser level because each square
is covered by a log number of squares at coarser levels. To be pre-
cise, case 3 contributes exactly

∑L
l=0 NS [l] ·NM ·NO[l] non-zero

tripling coefficients; in this equation L = (log4N − 1) is the finest
wavelet level, NS [l] = 4l is the total number of wavelet squares
at level l, NM = 3 is the number of wavelets in each square, and
NO[l] = (3l + 1) is the number of basis functions overlapping
each square at level l (3 for each overlapping square plus the scal-
ing function). With these substitutions, it can be verified that the
summation evaluates to 3 (1−N+N log4N) non-zero coefficients.

Adding the contributions from the three cases of the theorem, the
number of non-zero Haar tripling coefficients for the first N basis
functions is 2−N+3N log4N , as stated at the end of section 4.5.2.


