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We present a signal-processing framework for analyzing the reflected light field from a homogeneous convex curved surface
under distant illumination. This analysis is of theoretical interest in both graphics and vision and is also of practical importance
in many computer graphics problems—for instance, in determining lighting distributions and bidirectional reflectance distribu-
tion functions (BRDFs), in rendering with environment maps, and in image-based rendering. It is well known that under our
assumptions, the reflection operator behaves qualitatively like a convolution. In this paper, we formalize these notions, showing
that the reflected light field can be thought of in a precise quantitative way as obtained by convolving the lighting and BRDF, i.e.
by filtering the incident illumination using the BRDF. Mathematically, we are able to express the frequency-space coefficients of
the reflected light field as a product of the spherical harmonic coefficients of the illumination and the BRDF. These results are of
practical importance in determining the well-posedness and conditioning of problems in inverse rendering—estimation of BRDF
and lighting parameters from real photographs. Furthermore, we are able to derive analytic formulae for the spherical harmonic
coefficients of many common BRDF and lighting models. From this formal analysis, we are able to determine precise conditions
under which estimation of BRDFs and lighting distributions are well posed and well-conditioned. Our mathematical analysis
also has implications for forward rendering—especially the efficient rendering of objects under complex lighting conditions spec-
ified by environment maps. The results, especially the analytic formulae derived for Lambertian surfaces, are also relevant in
computer vision in the areas of recognition, photometric stereo and structure from motion.

Categories and Subject Descriptors: I.3.0 [Computer Graphics]: General; I.4.0 [Image Processing and Computer Vision]:
General

General Terms: Theory

Additional Key Words and Phrases: BRDF, environment maps, Fourier analysis, illumination, inverse rendering, reflection, signal
processing, spherical harmonics

1. INTRODUCTION

The study of reflection is of fundamental importance in both computer graphics and vision. In computer
graphics, the interaction between the incident illumination and the BRDF (bidirectional reflectance
distribution function) is a basic building block in most rendering algorithms. In computer vision, we
often want to undo the effects of the reflection operator: to invert the interaction between the BRDF and
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lighting. In other words, we often want to perform inverse rendering—the estimation of material and
lighting properties from real photographs. It should be noted that inverse rendering is also of increasing
importance in graphics, where we wish to obtain accurate input models for (forward) rendering. The goal
of this article is to fill some of the gaps in the formal analysis of reflection, thereby putting algorithms
for both forward and inverse rendering on a sounder mathematical foundation.

In computer vision, previous theoretical work has mainly focussed on the problem of estimating
shape from images, with relatively little work on estimating material properties or lighting. In com-
puter graphics, the theory for global illumination calculations has been fairly well developed. The
foundation for this analysis is the rendering equation [Kajiya 1986], which has subsequently been ana-
lyzed extensively [Arvo 1995]. However, there has been relatively little theoretical work on the simpler
reflection equation, which deals with the direct illumination incident on a surface. We believe that this
lack of a formal mathematical understanding of the properties of the reflection equation is one of the
reasons why complex, realistic lighting environments and reflection functions are rarely used either in
forward or inverse rendering.

It should be noted that there is a significant amount of qualitative knowledge regarding the prop-
erties of the reflection operator. For instance, for environment map prefiltering and rendering, we
usually represent the diffuse reflection map at low resolutions [Miller and Hoffman 1984] since the
reflection from a Lambertian surface blurs the illumination. Similarly, we realize that it is essentially
impossible to accurately estimate the lighting from an image of a Lambertian surface; instead, we
use mirror surfaces like gazing spheres. The goal of this paper is to formalize these observations and
present a mathematical theory of reflection for general complex lighting environments and arbitrary
BRDFs.

Specifically, we describe a signal-processing framework for analyzing the reflected light field from a
homogeneous convex curved surface under distant illumination. Under these assumptions, we are able
to derive an analytic formula for the reflected light field in terms of the spherical harmonic coefficients
of the BRDF and the lighting. Our formulation leads to the following theoretical results:

Signal-Processing Framework for Reflection as Convolution: It has been observed qualitatively
by Miller and Hoffman [1984], Cabral et al. [1987, 1999], Nayar et al. [1990], D’Zmura [1991] and
others that the reflection operator behaves like a convolution. We are able to formalize these notions
mathematically. The reflected light field can therefore be thought of in a precise quantitative way as
obtained by convolving the lighting and BRDF, or filtering the incident illumination using the BRDF.
Mathematically, we are able to express the frequency-space coefficients of the reflected light field as a
product of the spherical harmonic coefficients of the illumination and the BRDF. We believe this is a
useful way of analyzing many forward and inverse problems. In particular, forward rendering can be
viewed as convolution and inverse rendering as deconvolution.

Well-posedness and Conditioning of Forward and Inverse Problems: Inverse problems can be ill-
posed—there may be several solutions. They are also often numerically ill-conditioned, which may make
devising practical algorithms infeasible. From our theory, we are able to analyze the well-posedness and
conditioning of a number of inverse problems, explaining many previous empirical observations. This
analysis can serve as a guideline for future research in inverse rendering. We expect fruitful areas of
research to be those problems that are well-conditioned. Additional assumptions will likely be required
to address ill-conditioned or ill-posed inverse problems. This analysis is also of interest for forward
rendering. An ill-conditioned inverse problem corresponds to a forward problem where the final results
are not sensitive to certain components of the initial conditions. This often allows us to approximate the
initial conditions—such as the incident illumination—in a principled way, giving rise to more efficient
forward rendering algorithms.
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Recently, there has been considerable theoretical and practical work based on some of these results,
both by ourselves and by other authors. For instance, we have demonstrated the practical applica-
tions to both forward [Ramamoorthi and Hanrahan 2001b, 2002] and inverse rendering [Ramamoorthi
and Hanrahan 2001d], as well as theoretical results for analytically constructing the principal compo-
nents of the space of images of a Lambertian object for lighting-insensitive recognition [Ramamoorthi
2002a]. Sloan et al. [2002, 2003] have demonstrated real-time rendering with low-frequency lighting
and complex light transport. In computer vision, Basri and Jacobs [2003] have applied these ideas
to lighting-insensitive recognition and photometric stereo [Basri and Jacobs 2001b]. Subsequently, a
number of other computer vision researchers have also extended our results, developing new practi-
cal algorithms for recognition, shape reconstruction and structure from motion [Nillius and Eklundh
2003a, 2003b, 2004; Sato et al. 2003; Lee et al. 2001; Ho et al. 2003; Zhang and Samaras 2003; Simakov
et al. 2003; Zhang et al. 2003].

Therefore, we feel that it is worthwhile to present a complete, detailed and unified account of the
theoretical framework for archival purposes, fully describing the mathematical foundation underlying
these previous articles. This paper builds on and extends previous theoretical work by us [Ramamoorthi
and Hanrahan 2001a, 2001c, 2001d]. As discussed at the end of the next section, we have included a
significant amount of new material and detail that has not previously appeared.

2. PREVIOUS WORK

In this section, we briefly discuss previous work. Since the reflection operator is of fundamental interest
in a number of fields, the relevant previous work is fairly diverse.

Forward Rendering by Environment Mapping: The theoretical analysis in this article employs es-
sentially the same assumptions typically made in rendering with environment maps: distant
illumination—allowing the lighting to be represented by a single environment map—incident on curved
surfaces. Blinn and Newell [1976] first used environment maps to efficiently find reflections of distant
objects. The technique was greatly generalized by Miller and Hoffman [1984] and Greene [1986] who
precomputed diffuse and specular reflection maps, allowing for images with complex realistic lighting
and BRDFs to be synthesized. Cabral et al. [1987] later extended this general method to computing
reflections from bump-mapped surfaces, and to computing environment-mapped images with more gen-
eral BRDFs [Cabral et al. 1999]. Similar results for more general BRDFs were also obtained by Kautz
et al. [2000] and Kautz and McCool [2000], building on previous work by Heidrich and Seidel [1999].
It should be noted that both Miller and Hoffman [1984], and Cabral et al. [1987, 1999] qualitatively
described the reflection maps as obtained by convolving the lighting with the BRDF. Kautz et al. [2000]
actually used convolution to implement reflection, but on somewhat distorted planar projections of
the environment map, and without full theoretical justification. In this article, we will formalize these
ideas, making the notion of convolution precise, and derive analytic formulae.

Inverse Rendering: We now turn our attention to the inverse problem—estimating BRDF and light-
ing properties from photographs. Inverse rendering is one of the main practical applications of, and
original motivation for, our theoretical analysis. Besides being of fundamental interest in computer
vision, inverse rendering is important in computer graphics since the realism of images is nowadays
often limited by the quality of input models. Inverse rendering yields the promise of providing very
accurate input models since these come from measurements of real photographs.

Perhaps the simplest inverse rendering method is the use of a mirror sphere to find the lighting,
first introduced by Miller and Hoffman [1984]. A more sophisticated inverse lighting approach is that
of Marschner and Greenberg [1997], who try to find the lighting under the assumption of a Lambertian
BRDF. D’Zmura [1991] proposes estimating spherical harmonic coefficients of the lighting.
ACM Transactions on Graphics, Vol. 23, No. 4, October 2004.
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Most work in inverse rendering has focused on BRDF [Nicodemus et al. 1977] estimation. Recently,
image-based BRDF measurement methods have been proposed in 2D by Lu et al. [1998] and in 3D by
Marschner et al. [2000]. If the entire BRDF is measured, it may be represented by tabulating its values.
An alternative representation is by low-parameter models such as those of Ward [1992] or Torrance
and Sparrow [1967]. Parametric models are often preferred in practice since they are compact, and are
simpler to estimate. A number of methods [Dana et al. 1999; Debevec et al. 2000; Sato et al. 1997; Yu
et al. 1999] have been proposed to estimate parametric BRDF models, often along with a modulating
texture.

However, it should be noted that all of the methods described above use a single point source. One
of the main goals of the theoretical analysis in this paper is to enable the use of inverse rendering
with complex lighting. Recently, there has been some work in this area [Dror et al. 2001; Love 1997;
Nishino et al. 2001; Sato et al. 1999; Sato and Ikeuchi 1994; Yu and Malik 1998], although many of
those methods are specific to a particular illumination model. Using the theoretical analysis described
in this article, we [Ramamoorthi and Hanrahan 2001d] have presented a general method for complex
illumination, that handles the various components of the lighting and BRDF in a principled manner
to allow for BRDF estimation under general lighting conditions. Furthermore, we will show that it is
possible in theory to separately estimate the lighting and BRDF, up to a global scale.

Frequency-Space Representations: We show reflection to be a convolution and analyze it in fre-
quency space. Since we will be primarily concerned with analyzing quantities like the BRDF and distant
lighting, which can be parameterized as a function on the unit sphere, the appropriate frequency-space
representations are spherical harmonics [Inui et al. 1990; Jackson 1975; MacRobert 1948]. The use of
spherical harmonics to represent the illumination and BRDF was pioneered by Cabral et al. [1987].
D’Zmura [1991] analyzed reflection as a linear operator in terms of spherical harmonics, and discussed
some resulting ambiguities between reflectance and illumination. We extend his work by explicitly de-
riving the frequency-space reflection equation (i.e. convolution formula), and by providing quantitative
results for various special cases. Our use of spherical harmonics to represent the lighting is similar
in some respects to previous methods such as that of Nimeroff et al. [1994] that use steerable linear
basis functions. Spherical harmonics have also been used before in computer graphics for representing
BRDFs by a number of other authors [Sillion et al. 1991; Westin et al. 1992].

Formal Analysis of Reflection: This article presents a formal study of the reflection operator. As
such, our approach is similar in spirit to mathematical methods used to study inverse problems in
other areas of radiative transfer and transport theory such as hydrologic optics [Preisendorfer 1976]
and neutron scattering. See McCormick [1992] for a review.

Within computer graphics and vision, the closest previous theoretical work lies in the object recogni-
tion community, where there has been a significant amount of interest in characterizing the appearance
of a surface under all possible illumination conditions, usually under the assumption of Lambertian
reflection. For instance, Belhumeur and Kriegman [1998] have theoretically described this set of images
in terms of an illumination cone, while empirical results have been obtained by Hallinan [1994] and
Epstein et al. [1995]. These results suggest that the space spanned by images of a Lambertian object
under all (distant) illumination conditions lies very close to a low-dimensional subspace. We will see
that our theoretical analysis will help in explaining these observations, and in extending the predictions
to arbitrary reflectance models. In independent work on face recognition, simultaneous with our own,
Basri and Jacobs [2001a] have described Lambertian reflection as a convolution and obtained similar
analytic results for that particular case.

This article builds on previous theoretical work by us on planar or flatland light fields [Ramamoorthi
and Hanrahan 2001a], on the reflected light field from a Lambertian surface [Ramamoorthi and
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Hanrahan 2001c], and on the theory for the general 3D case with isotropic BRDFs [Ramamoorthi
and Hanrahan 2001d]. The goal of this article is to present a unified, complete and more detailed ac-
count of the theory in the general case. In this article, we describe a unified view of the 2D and 3D
cases, including general anisotropic BRDFs, a number of alternative forms of the convolution formula,
and the relationship to the theory of Fredholm integral equations of the first kind, which have not been
discussed in earlier work. Some further details can be found in chapters 2 and 3 of the PhD thesis of
the first author [Ramamoorthi 2002b].

3. REFLECTION EQUATION

In this section, we introduce the mathematical and physical preliminaries, and derive a version of
the reflection equation. After a discussion of the physical assumptions made, we first introduce the
reflection equation for the simpler flatland or 2D case, and then generalize the results to 3D. In the
next section, we will analyze the reflection equation in frequency-space.

3.1 Assumptions

We will assume curved convex homogeneous reflectors in a distant illumination field. Below, we detail
each of the assumptions.

Curved Surfaces: This article is concerned with the reflection of a distant illumination field by curved
surfaces. Specifically, we are interested in the variation of the reflected light field as a function of surface
orientation and exitant direction. Our theory will be based on the fact that different orientations of a
curved surface correspond to different orientations of the upper hemisphere and BRDF. Equivalently,
each orientation of the surface corresponds to a different integral over the lighting.

Distant Illumination: The illumination field will be assumed to be generated by distant sources,
allowing us to use the same lighting function anywhere on the object surface, represented by a single
environment map indexed by the incident angle.

Convex Objects: The assumption of convexity ensures there is no shadowing or interreflection. There-
fore, the incident illumination is only because of the distant illumination field. Convexity also allows
us to parameterize the object simply by the surface orientation. For isotropic surfaces, the surface ori-
entation is specified uniquely by the normal vector. For anisotropic surfaces, we must also specify the
direction of anisotropy: the orientation of the local tangent frame.

It should be noted that our theory can also be applied to concave objects, simply by using the surface
normal (and the local tangent frame for anisotropic surfaces). However, the effects of self-shadowing
(cast shadows) and interreflections will not be considered.

Homogeneous Surfaces: We assume untextured surfaces with the same BRDF everywhere.

Discussion: Our assumptions are very similar to those made in most interactive graphics applications,
including environment map rendering algorithms such as those of Miller and Hoffman [1984] and
Cabral et al. [1999]. Our assumptions also accord closely with those usually made in computer vision
and inverse rendering. The only significant additional assumption is that of homogeneous surfaces.
However, this is not particularly restrictive since spatially varying BRDFs are often approximated in
practical graphics or vision applications by using a spatially varying texture that simply modulates
one or more components of the BRDF. This can be incorporated into the ensuing theoretical analysis
by merely multiplying the reflected light field by a texture dependent on surface position. We believe
that our assumptions are a good approximation to many real-world situations, while being simple
enough to treat analytically. Furthermore, it is likely that the insights obtained from the analysis in
ACM Transactions on Graphics, Vol. 23, No. 4, October 2004.



A Signal-Processing Framework for Reflection • 1009

B Reflected radiance
Blp Coefficients of Fourier expansion of B in 2D
Blmpq, Blmnpq Coefficients of isotropic, anisotropic basis-function expansion of B in 3D
L Incoming radiance
Ll Coefficients of Fourier expansion of L in 2D
Llm Coefficients of spherical-harmonic expansion of L in 3D
ρ Surface BRDF
ρ̂ BRDF multiplied by cosine of incident angle
ρ̂lp Coefficients of Fourier expansion of ρ̂ in 2D
ρ̂lpq, ρ̂ln;pq Coefficients of isotropic, anisotropic spherical-harmonic expansion of ρ̂

θ ′
i , θi Incident elevation angle in local, global coordinates

φ′
i , φi Incident azimuthal angle in local, global coordinates

θ ′
o, θo Outgoing elevation angle in local, global coordinates

φ′
o, φo Outgoing azimuthal angle in local, global coordinates

x Surface position
α Surface normal parameterization—elevation angle
β Surface normal parameterization—azimuthal angle
γ Orientation of tangent frame for anisotropic surfaces
Rα Rotation operator for surface orientation α in 2D
Rα,β , Rα,β,γ Rotation operator for surface normal (α, β) or tangent frame (α, β, γ ) in 3D
Fk Fourier basis function (complex exponential)
F ∗

k Complex Conjugate of Fourier basis function
Ylm Spherical Harmonic
Y ∗

lm Complex Conjugate of Spherical Harmonic
Dl

mm′ Representation matrix of dimension 2l + 1 for rotation group SO(3)
�l Normalization constant,

√
4π/(2l + 1)

I
√−1

Fig. 1. Notation.

this article will be applicable even in cases where the assumptions are not exactly satisfied. We have
already demonstrated [Ramamoorthi and Hanrahan 2001d] that in practical applications, it is possible
to extend methods derived from these assumptions to be applicable in an even more general context.

We now proceed to derive the reflection equation for the 2D and 3D case under the assumptions
outlined above. Notation used in the article is listed in Figure 1. We will use two types of coordinates.
Unprimed global coordinates denote angles with respect to a global reference frame. On the other hand,
primed local coordinates denote angles with respect to the local reference frame, defined by the local
surface normal and a tangent vector. These two coordinate systems are related simply by a rotation.

3.2 Flatland 2D Case

In this subsection, we consider the flatland or 2D case. This is equivalent to assuming that all surface
normals, measurements, and illumination are restricted to a single plane (which can be thought of
as normal to the axis of a cylindrical surface). Considering the 2D case allows us to explain the key
concepts clearly, and show how they generalize to 3D. A diagram illustrating the key concepts for the
planar 2D case is in Figure 2.

In local coordinates, we can write the reflection equation as

B(x, θ ′
o) =

∫ π/2

−π/2
L(x, θ ′

i )ρ(θ ′
i , θ ′

o) cos θ ′
i dθ ′

i . (1)

ACM Transactions on Graphics, Vol. 23, No. 4, October 2004.
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Fig. 2. Schematic of reflection in 2D. On the left, we show the situation with respect to one point on the surface (the north pole
or 0◦ location, where global and local coordinates are the same). The right figure shows the effect of the surface orientation α.
Different orientations of the surface correspond to rotations of the upper hemisphere and BRDF, with the global incident direction
θi corresponding to a rotation by α of the local incident direction θ ′

i . Note that we also keep the local outgoing angle (between N
and B) fixed between the two figures.

Here, B is the reflected radiance, L is the incident radiance (illumination) and ρ is the BRDF, which in
2D is a function of the local incident and outgoing angles (θ ′

i , θ ′
o). The limits of integration correspond

to the visible half-circle—the 2D analogue of the upper hemisphere in 3D.
We now make a number of substitutions in Equation 1, based on our assumptions. First, consider

the assumption of a convex surface. This ensures there is no shadowing or interreflection; this fact has
implicitly been assumed in Equation 1. The reflected radiance therefore depends only on the distant
illumination field L and the surface BRDF ρ. Next, consider the assumption of distant illumination. This
implies that the reflected light field depends directly only on the surface orientation, as described by the
surface normal N, and does not directly depend on the position x. We may therefore reparameterize the
surface by its angular coordinates α, with N = [sin α, cos α]; B(x, θ ′

o) → B(α, θ ′
o) and L(x, θ ′

i ) → L(α, θ ′
i ).

The assumption of distant sources also allows us to represent the incident illumination by a single
environment map for all surface positions using a single function L regardless of surface position. In
other words, the lighting is a function only of the global incident angle, L(α, θ ′

i ) → L(θi). Finally, we define
a transfer function ρ̂ = ρ cos θ ′

i to absorb the cosine term in the integrand. With these modifications,
Equation 1 becomes

B(α, θ ′
o) =

∫ π/2

−π/2
L(θi)ρ̂(θ ′

i , θ ′
o) dθ ′

i . (2)

It is important to note that in Equation 2, we have mixed local (primed) and global (unprimed)
coordinates. The lighting is a global function, and is naturally expressed in a global coordinate frame
as a function of global angles. On the other hand, the BRDF is naturally expressed as a function of
the local incident and reflected angles. When expressed in the local coordinate frame, the BRDF is the
same everywhere for a homogeneous surface. Similarly, when expressed in the global coordinate frame,
the lighting is the same everywhere, under the assumption of distant illumination. Integration can be
conveniently done over either local or global coordinates, but the upper hemisphere is easier to keep
track of in local coordinates.

Rotations—Converting between Local and Global coordinates: To do the integral in Equation 2,
we must relate local and global coordinates. One can convert between these by applying a rotation
corresponding to the local surface normal α. The up-vector in local coordinates, 0′, is the surface normal.
The corresponding global coordinates are clearly α. We define Rα as an operator that rotates θ ′

i into global
coordinates, and is given in 2D simply by Rα(θ ′

i ) = α + θ ′
i . To convert from global to local coordinates,
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we apply the inverse rotation: R−α. To summarize,

θi = Rα(θ ′
i ) = α + θ ′

i

θ ′
i = R−1

α (θi) = −α + θi. (3)

It should be noted that the signs of the various quantities are taken into account in Equation 3. Specif-
ically, from the right of Figure 2, it is clear that | θ ′

i |=| θi | + | α |. In our sign convention, α is positive
in Figure 2, while θ ′

i and θi are negative. Substituting | θ ′
i |= −θ ′

i and | θi |= −θi, we verify Equation 3.
With the help of Equation 3, we can express the incident angle dependence of Equation 2 in either

local coordinates entirely, or global coordinates entirely. It should be noted that we always leave the
outgoing angular dependence of the reflected light field in local coordinates in order to match the BRDF
transfer function.

B(α, θ ′
o) =

∫ π/2

−π/2
L(Rα(θ ′

i ))ρ̂(θ ′
i , θ ′

o) dθ ′
i (4)

=
∫ π/2+α

−π/2+α

L (θi) ρ̂
(
R−1

α (θi), θ ′
o

)
dθi. (5)

By plugging in the appropriate relations for the rotation operator from Equation 3, we can obtain

B(α, θ ′
o) =

∫ π/2

−π/2
L(α + θ ′

i )ρ̂(θ ′
i , θ ′

o) dθ ′
i (6)

=
∫ π/2+α

−π/2+α

L (θi) ρ̂ (−α + θi, θ ′
o) dθi. (7)

Interpretation as Convolution: Equations 6 and 7 (and the equivalent forms in Equations 4 and 5)
are convolutions. The reflected light field can therefore be described formally as a convolution of the
incident illumination and the BRDF transfer function. Equation 5 in global coordinates states that the
reflected light field at a given surface orientation corresponds to rotating the BRDF to that orientation,
and then integrating over the upper half-circle. In signal processing terms, the BRDF can be thought
of as the filter, while the lighting is the input signal. The reflected light field is obtained by filtering
the input signal (i.e. lighting) using the filter derived from the BRDF. Symmetrically, Equation 4 in
local coordinates states that the reflected light field at a given surface orientation may be computed by
rotating the lighting into the local coordinate system of the BRDF, and then doing the integration over
the upper half-circle.

It is important to note that we are fundamentally dealing with rotations, as is brought out by
Equations 4 and 5. For the 2D case, rotations are equivalent to translations, and Equations 6 and 7 are
the familiar Equations for translational convolution. The main difficulty in formally generalizing the
convolution interpretation to 3D is that the structure of rotations is more complex. In fact, we will need
to consider a generalization of the notion of convolution in order to encompass rotational convolutions.

3.3 Generalization to 3D

The flatland development can be extended to 3D. In 3D, we can write the reflection equation, analogous
to Equation 1, as

B(x, θ ′
o, φ′

o) =
∫

	′
i

L(x, θ ′
i , φ′

i)ρ(θ ′
i , φ′

i, θ ′
o, φ′

o) cos θ ′
i dω′

i. (8)
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Fig. 3. Diagram showing how the rotation corresponding to (α, β, γ ) transforms between local (primed) and global (unprimed) co-
ordinates. The net rotation is composed of three independent rotations about Z, Y, and Z, with the angles α, β, and γ corresponding
directly to the Euler angles.

Note that the integral is now over the 3D upper hemisphere, instead of the 2D half-circle, and that we
must now also consider the (local) azimuthal angles φ′

i and φ′
o.

We can make the same substitutions as we did in 2D. We reparameterize the surface position x by
its angular coordinates (α, β, γ ). Here, the surface normal N is given by the standard formula N =
[sin α cos β, sin α sin β, cos α]. The third angular parameter γ is important for anisotropic surfaces, and
controls the rotation of the local tangent-frame about the surface normal. For isotropic surfaces, γ has
no physical significance. Figure 3 illustrates the rotations corresponding to (α, β, γ ). We may think
of them as essentially corresponding to the standard Euler-angle rotations about Z , Y , and Z by
angles α, β, and γ . As in 2D, we may now make the substitutions, B(x, θ ′

o, φ′
o) → B(α, β, γ , θ ′

o, φ′
o) and

L(x, θ ′
i , φ′

i) → L(θi, φi), and define a transfer function to absorb the cosine term, ρ̂ = ρ cos θ ′
i . We now

obtain the 3D equivalent of Equation 2,

B(α, β, γ , θ ′
o, φ′

o) =
∫

	′
i

L(θi, φi)ρ̂(θ ′
i , φ′

i, θ ′
o, φ′

o) dω′
i. (9)

Rotations—Converting between Local and Global Coordinates: To do the integral above, we
need to apply a rotation to convert between local and global coordinates, just as in 2D. The rotation
operator is substantially more complicated in 3D, but the operations are conceptually very similar to
those in flatland. The north pole (0′, 0′) or +Z axis in local coordinates is the surface normal, and the
corresponding global coordinates are (α, β). It can be verified that a rotation of the form Rz (β)R y (α)
correctly performs this transformation, where the subscript z denotes rotation about the Z axis and the
subscript y denotes rotation about the Y axis. For full generality, the rotation between local and global
coordinates should also specify the transformation of the local tangent frame, so the general rotation
ACM Transactions on Graphics, Vol. 23, No. 4, October 2004.
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operator is given by Rα,β,γ = Rz (β)R y (α)Rz (γ ). This is essentially the Euler-angle representation of
rotations in 3D. We may now summarize these results, obtaining the 3D equivalent of Equation 3,

(θi, φi) = Rα,β,γ (θ ′
i , φ′

i) = Rz (β)R y (α)Rz (γ ){θ ′
i , φ′

i}
(θ ′

i , φ′
i) = R−1

α,β,γ (θi, φi) = Rz (−γ )R y (−α)Rz (−β) {θi, φi} . (10)

It is now straightforward to substitute these results into Equation 9, transforming the integral either
entirely into local coordinates or entirely into global coordinates, and obtaining the 3D analogue of
Equations 4 and 5,

B(α, β, γ , θ ′
o, φ′

o) =
∫

	′
i

L(Rα,β,γ (θ ′
i , φ′

i))ρ̂(θ ′
i , φ′

i, θ ′
o, φ′

o) dω′
i

=
∫

	i

L(θi, φi)ρ̂
(
R−1

α,β,γ (θi, φi), θ ′
o, φ′

o

)
dωi.

(11)

As we have written them, these equations depend on spherical coordinates. It might clarify matters
somewhat to also present an alternate form in terms of rotations and unit vectors in a coordinate-
independent way. We simply use R for the rotation, which could be written as a 3 × 3 rotation matrix,
while ωi and ωo stand for unit vectors (3×1 column vectors) corresponding to the incident and outgoing
directions (with primes added for local coordinates). Equation 11 may then be written as

B(R, ω′
o) =

∫
	′

i

L(Rω′
i)ρ̂(ω′

i, ω′
o) dω′

i (12)

=
∫

	i

L(ωi)ρ̂(R−1ωi, ω′
o) dωi, (13)

where Rω′
i and R−1ωi are simply matrix-vector multiplications.

Interpretation as Convolution: In the spatial domain, convolution is the result generated when a
filter is translated over an input signal. However, we can generalize the notion of convolution to other
transformations Ta, where Ta is a function of a, and write

( f ⊗ g )(a) =
∫

t
f (Ta(t))g (t) dt. (14)

When Ta is a translation by a, we obtain the standard expression for spatial convolution. When Ta is a
rotation by the angle a, the above formula defines convolution in the angular domain, and is a slightly
simplified version of Equation 11.

4. FREQUENCY-SPACE ANALYSIS

Since the reflection equation can be viewed as a convolution, it is natural to analyze it in frequency-space.
We will first consider the 2D reflection equation, which can be analyzed in terms of the familiar Fourier
basis functions. We then show how this analysis generalizes to 3D, using the spherical harmonics.
Finally, we discuss a number of alternative forms of the reflection equation, and associated convolution
formulas, that may be better suited for specific problems.
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4.1 Fourier Analysis in 2D

We now carry out a Fourier analysis of the 2D reflection equation. We will define the Fourier basis
functions Fk (with complex conjugates F ∗

k = F−k) by

Fk(θ ) = 1√
2π

eIkθ . (15)

It is easy to see that the basis functions are orthonormal over the domain [−π, π ].

Decomposition into Fourier Series: We now consider the reflection equation, in the form of
Equation 6. We will expand all quantities in terms of Fourier series.

We start by forming the Fourier expansion of the lighting, L, in global coordinates,

L(θi) =
∞∑

l=−∞
Ll Fl (θi).

To obtain the lighting in local coordinates, we may rotate the above expression,

L(θi) = L(α + θ ′
i ) =

∞∑
l=−∞

Ll Fl (α + θ ′
i )

=
√

2π

∞∑
l=−∞

Ll Fl (α)Fl (θ ′
i ). (16)

The last line follows from the form of the complex exponentials, that is, Fl (α + θ ′
i ) = (1/

√
2π ) exp

(Il (α + θ ′
i )). This result shows that the effect of rotating the lighting to align it with the local coordinate

system is simply to multiply the Fourier frequency coefficients by exp(Ilα).
Since no rotation is applied to B and ρ̂, their decomposition into a Fourier series is simple,

B(α, θ ′
o) =

∞∑
l=−∞

∞∑
p=−∞

Blp Fl (α)Fp(θ ′
o)

ρ̂(θ ′
i , θ ′

o) =
∞∑

l=−∞

∞∑
p=−∞

ρ̂lp F ∗
l (θ ′

i )Fp(θ ′
o). (17)

Note that the domain of the basis functions here is [−π, π ], so we develop the series for ρ̂ by assuming
function values to be 0 outside the range for θ ′

i and θ ′
o of [−π

2 , π
2 ]. Also, in the expansion for ρ̂, the complex

conjugate used in the first factor is to somewhat simplify the final result.

Fourier-Space Reflection Equation: We are now ready to write Equation 6 in terms of Fourier
coefficients. For the purposes of summation, we want to avoid confusion of the indices for L and ρ̂. For
this purpose, we will use the indices Ll and ρ̂l ′ p. We now simply multiply out the expansions for L and
ρ̂. After taking the summations, and terms not depending on θ ′

i outside the integral, Equation 6 now
becomes

B(α, θ ′
o) =

√
2π

∞∑
l=−∞

∞∑
l ′=−∞

∞∑
p=−∞

Ll ρ̂l ′ pFl (α)Fp(θ ′
o)

∫ π

−π

F ∗
l ′ (θ ′

i )Fl (θ ′
i ) dθ ′

i . (18)

Note that the limits of the integral are now [−π, π ] and not [−π
2 , π

2 ]. This is because we have already
incorporated the fact that the BRDF is nonzero only over the upper half-circle into its Fourier coef-
ficients. Further note that by orthonormality of the Fourier basis, the value of the integrand can be
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given as ∫ π

−π

F ′∗
l (θ ′

i )Fl (θ ′
i ) dθ ′

i = δll ′ . (19)

In other words, we can set l ′ = l since terms not satisfying this condition vanish. Making this substi-
tution in Equation 18, we obtain

B(α, θ ′
o) =

√
2π

∞∑
l=−∞

∞∑
p=−∞

Ll ρ̂lp Fl (α)Fp(θ ′
o). (20)

Now, it is a simple matter to equate coefficients in the Fourier expansion of B in order to derive the
Fourier-space reflection equation,

Blp =
√

2π Ll ρ̂lp. (21)

This result reiterates that the reflection equation can be viewed as a convolution of the incident illu-
mination and BRDF, and becomes a simple product in Fourier space, with an analytic formula being
given by Equation 21.

An alternative form of Equation 21 that may be more instructive results from holding the local
outgoing angle fixed, instead of expanding it also in terms of Fourier coefficients, replacing the index p
by the outgoing angle θ ′

o,

Bl (θ ′
o) =

√
2π Ll ρ̂l (θ ′

o). (22)

Note that a single value of θ ′
o in B(α, θ ′

o) corresponds to a slice of the reflected light field, which is not
the same as a single image from a fixed viewpoint—a single image would instead correspond to fixing
the global outgoing angle θo.

4.2 Spherical Harmonic Analysis in 3D

To extend our frequency-space analysis to 3D, we must consider the structure of rotations and vectors
in 3D. In particular, the unit vectors corresponding to incident and reflected directions lie on a sphere of
unit magnitude. The appropriate signal-processing tools for the sphere are spherical-harmonics, which
are the equivalent for that domain to the Fourier series in 2D (on a circle). These basis functions arise
in connection with many physical systems such as those found in quantum mechanics and electrody-
namics. A summary of the properties of spherical harmonics can therefore be found in many standard
physics textbooks [Inui et al. 1990; Jackson 1975; MacRobert 1948].

Key Properties of Spherical Harmonics: The spherical harmonic Ylm is given by

Nlm =
√

2l + 1
4π

(l − m)!
(l + m)!

Ylm(θ , φ) = Nlm Plm(cos θ )eImφ , (23)

where Nlm is a normalization factor. In the above equation, the azimuthal dependence is expanded in
terms of Fourier basis functions. The θ dependence is expanded in terms of the associated Legendre
functions Plm. The indices obey l ≥ 0 and −l ≤ m ≤ l . Thus, there are 2l + 1 basis functions for given
order l . They may be written either as trigonometric functions of the spherical coordinates θ and φ or
as polynomials of the cartesian components x, y and z, with x2 + y2 + z2 = 1. In general, a spherical
harmonic Ylm is a polynomial of maximum degree l . Another useful relation is that Yl−m = (−1)mY ∗

lm.
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Fig. 4. Depiction of Equation 25 as a matrix equation. Note the block-diagonal nature of the matrix, with only spherical harmonics
of the same order (i.e. l = 0, 1, 2) mixed. The matrix elements D are functions of the angles of rotation.

The first 3 orders (we give only terms with m ≥ 0) may be written as

Y00 =
√

1
4π

Y10 =
√

3
4π

cos θ =
√

3
4π

z

Y11 = −
√

3
8π

sin θeIφ = −
√

3
8π

(x + Iy)

Y20 = 1
2

√
5

4π
(3 cos2 θ − 1) = 1

2

√
5

4π
(3z2 − 1)

Y21 = −
√

15
8π

sin θ cos θeIφ = −
√

15
8π

z(x + Iy)

Y22 = 1
2

√
15
8π

sin2
θe2Iφ = 1

2

√
15
8π

(
x + Iy

)2
.

(24)

The rotation formula for spherical harmonics is

Ylm(Rα,β,γ (θ , φ)) =
l∑

m′=−l

Dl
mm′ (α, β, γ )Ylm′ (θ , φ). (25)

The important thing to note here is that the m indices are mixed—a spherical harmonic after rotation
must be expressed as a combination of other spherical harmonics with different m indices. However,
the l indices are not mixed; rotations of spherical harmonics with order l are composed entirely of other
spherical harmonics with order l . For given order l , Dl is a matrix that tells us how a spherical harmonic
transforms under rotation: how to rewrite a rotated spherical harmonic as a linear combination of all
the spherical harmonics of the same order. In terms of group theory, the matrix Dl is the (2l + 1)-
dimensional representation of the rotation group SO(3). A pictorial depiction of Equation 25 as a matrix
multiplication is found in Figure 4.
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The matrices Dl therefore satisfy the formula,

Dl
mm′ (α, β, γ ) =

∫ 2π

φ=0

∫ π

θ=0
Ylm(Rα,β,γ (θ , φ))Y ∗

lm′ (θ , φ) sin θ dθ dφ. (26)

An analytic form for the matrices Dl can be found in standard references, such as Inui et al. [1990]. In
particular, since Rα,β,γ = Rz (β)R y (α)Rz (γ ), the dependence of Dl on β and γ is simple, since rotation
of the spherical harmonics about the z-axis is straightforward,

Dl
mm′ (α, β, γ ) = dl

mm′ (α)eImβeIm′
γ , (27)

where dl is a matrix that defines how a spherical harmonic transforms under rotation about the y-axis.
For the purposes of the exposition, we will not generally need to be concerned with the precise formula
for the matrix dl , and numerical calculations can compute it using a simplified version of Equation 26
without the z rotations (i.e. β = γ = 0),

dl
mm′ (α) =

∫ 2π

φ=0

∫ π

θ=0
Ylm(R y (α)(θ , φ))Y ∗

lm′ (θ , φ) sin θ dθ dφ. (28)

For completeness, we give below the relatively complicated analytic formula, as derived in Equation 7.48
of Inui et al. [1990],

ξ = sin2 α

2

N (l , m, m′) = (−1)m−m′

√
(l + m)!

(l − m)!(l + m′)!(l − m′)!

dl
mm′ (α) = N (l , m, m′) × ξ−(m−m′)/2(1 − ξ )−(m+m′)/2

(
d
dξ

)l−m

ξ l−m′
(1 − ξ )l+m′

, (29)

as well as analytic formulae for the the first three representations (i.e. dl
mm′ with l = 0, 1, 2),

d0(α)= 1

d1(α)=




cos2 α

2
sin α√

2
sin2 α

2

−sin α√
2

cos α
sin α√

2

sin2 α

2
−sin α√

2
cos2 α

2




d2(α)=




cos4 α
2 2 cos3 α

2 sin α
2

1
2

√
3
2 sin2

α 2 cos α
2 sin3 α

2 sin4 α
2

−2 cos3 α
2 sin α

2 cos2 α
2 (−1 + 2 cos α)

√
3
2 cos α sin α (1 + 2 cos α) sin2 α

2 2 cos α
2 sin3 α

2

1
2

√
3
2 sin2

α −
√

3
2 cos α sin α 1

2 (3 cos2 α − 1)
√

3
2 cos α sin α 1

2

√
3
2 sin2

α

−2 cos α
2 sin3 α

2 (1 + 2 cos α) sin2 α
2 −

√
3
2 cos α sin α cos2 α

2 (−1 + 2 cos α) 2 cos3 α
2 sin α

2

sin4 α
2 −2 cos α

2 sin3 α
2

1
2

√
3
2 sin2

α −2 cos3 α
2 sin α

2 cos4 α
2




.

(30)
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To derive some of the quantitative results, we will require two important properties of the represen-
tation matrices Dl , which are derived in the appendix,

Dl
0m′ (α, β, 0) = dl

0m′ (α) =
√

4π

2l + 1
Y ∗

lm′ (α, π )

Dl
m0(α, β, γ ) = dl

m0(α) eImβ =
√

4π

2l + 1
Ylm(α, β). (31)

Decomposition into Spherical Harmonics: As for the 2D case, we will now expand all the quantities
in terms of basis functions. We first expand the lighting in global coordinates,

L(θi, φi) =
∞∑

l=0

l∑
m=−l

LlmYlm(θi, φi). (32)

To obtain the lighting in local coordinates, we must rotate the above expression, just as we did in 2D.
Using Equation 25, we get,

L(θi, φi) = L(Rα,β,γ (θ ′
i , φ′

i)) =
∞∑

l=0

+l∑
m=−l

l∑
m′=−l

Llm Dl
mm′ (α, β, γ )Ylm′ (θ ′

i , φ′
i). (33)

We now represent the transfer function ρ̂ = ρ cos θ ′
i in terms of spherical harmonics. As in 2D, we

note that ρ̂ is nonzero only over the upper hemisphere, when cos θ ′
i > 0 and cos θ ′

o > 0. Also, as in 2D,
we use a complex conjugate for the first factor, to simplify the final results.

ρ̂(θ ′
i , φ′

i, θ ′
o, φ′

o) =
∞∑

l=0

l∑
n=−l

∞∑
p=0

p∑
q=−p

ρ̂ln,pqY ∗
ln(θ ′

i , φ′
i)Ypq(θ ′

o, φ′
o) (34)

Spherical Harmonic Reflection Equation: We can now write down the reflection equation, as given
by Equation 11, in terms of the expansions just defined. As in 2D, we multiply the expansions for the
lighting and BRDF. To avoid confusion between the indices in this intermediate step, we will use Llm
and ρ̂l ′n, pq to obtain

B(α, β, γ , θ ′
o, φ′

o) =
∞∑

l=0

l∑
m=−l

l∑
m′=−l

∞∑
l ′=0

l ′∑
n=−l ′

∞∑
p=0

p∑
q=−p

Llmρ̂l ′n, pq Dl
mm′ (α, β, γ )Ypq(θ ′

o, φ′
o)Tlm′l ′n

Tlm′l ′n =
∫ 2π

φ′
i=0

∫ π

θ ′
i=0

Ylm′ (θ ′
i , φ′

i)Y
∗
l ′n(θ ′

i , φ′
i) sin θ ′

i dθ ′
idφ′

i

= δll ′δm′n. (35)

The last line follows from orthonormality of the spherical harmonics. Therefore, we may set l ′ = l and
n = m′ since terms not satisfying these conditions vanish. We then obtain

B(α, β, γ , θ ′
o, φ′

o) =
∞∑

l=0

l∑
m=−l

l∑
n=−l

∞∑
p=0

p∑
q=−p

Llmρ̂ln,pq
(
Dl

mn(α, β, γ )Ypq(θ ′
o, φ′

o)
)
. (36)

This result suggests that we should expand the reflected light field B in terms of the new basis functions
given by Clmnpq = Dl

mn(α, β, γ )Ypq(θ ′
o, φ′

o). The appearance of the matrix Dl in these basis functions is
quite intuitive, coming directly from the rotation formula for spherical harmonics. These basis functions
are mixed in the sense that they are a product of the matrices Dl and the spherical harmonics Ypq. This
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can be understood from realizing that the reflected direction is a unit vector described by two parameters
(θ ′

o, φ′
o), while the surface parameterization is really a rotation, described by three parameters (α, β, γ ).

Finally, we need to consider the normalization of these new basis functions. The spherical harmonics
are already orthonormal. The orthogonality relation for the matrices Dl is given in any standard text
on group theory (for instance, Equation 7.73 of Inui et al. [1990]). Specifically,

∫ 2π

γ=0

∫ 2π

β=0

∫ π

α=0

(
Dl

mn(α, β, γ )
)∗(Dl ′

m′n′ (α, β, γ )
)

sin α dα dβ dγ = 8π2

2l + 1
δll′δmm′δnn′ . (37)

In the above equation, the group-invariant measure dµ(g ) of the rotation group g = SO(3) is sin α dα
dβ dγ . The integral of this quantity µ(g ) = 8π2 which can be easily verified. Therefore, to obtain an
orthonormal basis, we must normalize appropriately. Doing this, we get

Clmnpq =
√

2l + 1
8π2

Dl
mn(α, β, γ )Ypq(θ ′

o, φ′
o)

B =
∞∑

l=0

l∑
m=−l

l∑
n=−l

∞∑
p=0

p∑
q=−p

BlmnpqClmnpq(α, β, γ , θ ′
o, φ′

o)

Blmnpq =
∫ 2π

φ′
o=0

∫ π

θ ′
o=0

∫ 2π

γ=0

∫ 2π

β=0

∫ π

α=0
B(α, β, γ , θ ′

o, φ′
o)C∗

lmnpq(α, β, γ , θ ′
o, φ′

o) sin α sin θ ′
o dα dβ dγ dθ ′

o dφ′
o. (38)

Although this appears rather involved, it is a straightforward expansion of the reflected light field in
terms of orthonormal basis functions. As written, since we are assuming anisotropic surfaces for full
generality, the reflected light field is a function of five variables, as opposed to being a function of only
two variables in 2D. We should note that it is generally impractical to have the full range of values
for the anisotropic parameter, the tangent frame rotation, γ for every surface orientation. In fact, γ

is often a function of the surface orientation (α, β). However, our goal here is to write the completely
general formulae. In the next subsection, we will derive an alternative form for isotropic surfaces that
corresponds more closely to observable quantities.

Finally, we can write down the frequency space reflection equation by comparing Equations 36 and 38
and equating coefficients. This result is comparable to its 2D counterpart, given in Equation 21, and as
in 2D, is a convolution. In frequency-space, the reflected light field is obtained simply by multiplying
together coefficients of the lighting and BRDF—by convolving the incident illumination with the BRDF,

Blmnpq =
√

8π2

2l + 1
Llmρ̂ln,pq. (39)

As in 2D, an alternative result without expanding the output dependence may be more instructive,

Blmn(θ ′
o, φ′

o) =
√

8π2

2l + 1
Llmρ̂ln(θ ′

o, φ′
o). (40)

We reiterate that the fixed local outgoing angle in the above equation does not correspond to a single
image, but to a more general slice of the reflected light field. In a single image, the local viewing angle
is different for different points in the image, depending on the relative orientation between the surface
normal and viewing direction. On the other hand, a single image corresponds to a single global viewing
direction, and hence a single global outgoing angle.
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4.3 Alternative Forms

For the analysis of certain problems, it will be more convenient to rewrite Equation 39 in a number of
different ways. We have already seen one example, of considering the outgoing angle fixed, as shown
in Equation 40. In this subsection, we consider a few more alternative forms.

4.3.1 Isotropic BRDFs. Isotropic BRDFs are those where rotating the local tangent frame makes
no difference: they are functions of only 3 variables, ρ̂(θ ′

i , φ′
i, θ ′

o, φ′
o) = ρ̂(θ ′

i , θ ′
o, | φ′

o − φ′
i |). With respect

to the reflected light field, the parameter γ , which controls the orientation of the local tangent frame,
has no physical significance.

To consider the simplifications that result from isotropy, we first analyze the BRDF coefficients ρ̂ln,pq.
In the BRDF expansion of Equation 34, only terms that satisfy isotropy, that are invariant with respect
to adding an angle 
φ to both incident and outgoing azimuthal angles, are nonzero. From the form
of the spherical harmonics, this requires that n = q. Furthermore, since we are considering BRDFs
that depend only on |φ′

o − φ′
i|, we should be able to negate both incident and outgoing azimuthal angles

without changing the result. This leads to the condition that ρ̂lq,pq = ρ̂l (−q), p(−q). Finally, we define a
3-index BRDF coefficient by

ρ̂lpq = ρ̂lq,pq = ρ̂l (−q), p(−q). (41)

Note that isotropy reduces the dimensionality of the BRDF from 4D to 3D. This is reflected in the
fact that we now have only three independent indices. Furthermore, half the degrees of freedom are
constrained since we can negate the azimuthal angle.

Next, we remove the dependence of the reflected light field on γ by arbitrarily setting γ = 0. It can be
verified that for isotropic surfaces, γ mathematically just controls the origin or 0-angle for φ′

o and can
therefore be set arbitrarily. Upon doing this, we can simplify a number of quantities. First, the rotation
operator is now given simply by

Rα,β = Rα,β,0 = Rz (β)R y (α). (42)

Next, the representation matrices can be rewritten as

Dl
mn(α, β) = Dl

mn(α, β, 0) = dl
mn(α)eImβ. (43)

It should be noted that removing the dependence on γ weakens the orthogonality condition
(Equation 37) on the representation matrices, since we no longer integrate over γ . The new orthonor-
mality relation for these matrices is given by∫ 2π

β=0

∫ π

α=0

(
Dl

mn(α, β)
)∗(Dl ′

m′n(α, β)
)

sin α dα dβ = 4π

2l + 1
δll′δmm′ . (44)

In particular, the orthogonality relation for the index n no longer holds, which is why we have used the
index n for both D and D′ instead of using n and n′, as in Equation 37. The absence of an integral over γ

leads to a slight weakening of the orthogonality relation, as well as a somewhat different normalization
than in Equation 37. For the future discussion, it will be convenient to define normalization constants by

�l =
√

4π

2l + 1
. (45)

We now have the tools necessary to rewrite Equation 39 for isotropic BRDFs. Since we will be using
the equations for isotropic BRDFs extensively in the rest of this article, it will be worthwhile to briefly
review the representations of the various quantities, specialized to the isotropic case.
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First, we define the expansions of the lighting in global coordinates, and the results from rotating
this expansion,

L(θi, φi) =
∞∑

l=0

l∑
m=−l

LlmYlm(θi, φi)

L(θi, φi) = L(Rα,β(θ ′
i , φ′

i)) =
∞∑

l=0

+l∑
m=−l

l∑
m′=−l

Llm Dl
mm′ (α, β)Ylm′ (θ ′

i , φ′
i). (46)

Then, we write the expansion of the isotropic BRDF,

ρ̂(θ ′
i , θ ′

o, | φ′
o − φ′

i |) =
∞∑

l=0

∞∑
p=0

min(l , p)∑
q=− min(l , p)

ρ̂lpqY ∗
lq(θ ′

i , φ′
i)Ypq(θ ′

o, φ′
o). (47)

The reflected light field, which is now a 4D function, can be expanded using a product of representation
matrices and spherical harmonics.

Clmpq(α, β, θ ′
o, φ′

o) = �−1
l Dl

mq(α, β)Ypq(θ ′
o, φ′

o)

B(α, β, θ ′
o, φ′

o) =
∞∑

l=0

l∑
m=−l

∞∑
p=0

min(l , p)∑
q=− min(l , p)

BlmpqClmpq(α, β, θ ′
o, φ′

o)

Blmpq =
∫ 2π

φ′
o=0

∫ π

θ ′
o=0

∫ 2π

β=0

∫ π

α=0
B(α, β, θ ′

o, φ′
o)C∗

lmpq(α, β, θ ′
o, φ′

o) sin α sin θ ′
o dα dβ dθ ′

o dφ′
o. (48)

It should be noted that the basis functions Clmpq are orthonormal in spite of the weakened orthogonality
of the functions Dl

mq, as expressed in Equation 44. Note that the index q in the definition of Clmpq is the
same (coupled) for both factors Dl

mq and Ypq. This is a consequence of isotropy, and is not true in the
anisotropic case. Therefore, although the representation matrices Dl no longer satisfy orthogonality
over the index q (corresponding to the index n in Equation 44), orthogonality over the index q follows
from the orthonormality of the spherical harmonics Ypq.

Finally, we can derive an analytic expression (convolution formula) for the reflection equation in
terms of these coefficients.

Blmpq = �l Llmρ̂lpq (49)

Apart from a slightly different normalization, and the removal of γ and the corresponding index n, this
is essentially the same as Equation 39. We will be using this equation for isotropic BRDFs extensively
in Section 5 of this article, where we quantitatively analyze the reflection equation for many special
cases of interest.

We may also try to derive an alternative form, analogous to Equation 40, by holding the outgoing
elevation angle θ ′

o fixed. Since the isotropic BRDF depends only on |φ′
o − φ′

i|, and not directly on φ′
o, we

do not hold φ′
o fixed, as we did in Equation 40. We first define the modified expansions,

ρ̂(θ ′
i , θ ′

o, | φ′
o − φ′

i |) =
∞∑

l=0

l∑
q=−l

ρ̂lq(θ ′
o)

(
1√
2π

Y ∗
lq(θ ′

i , φ′
i) exp(Iqφ′

o)
)

B(α, β, θ ′
o, φ′

o) =
∞∑

l=0

l∑
m=−l

l∑
q=−l

Blmq(θ ′
o)

(
1√
2π

�−1
l Dl

mq(α, β) exp(Iqφ′
o)

)
. (50)
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Fig. 5. Reparameterization involves recentering about the reflection vector. BRDFs become more compact, and in special cases
(Phong) become 1D functions.

Then, we may write down the isotropic convolution formula corresponding to Equation 40.

Blmq(θ ′
o) = �l Llmρ̂lq(θ ′

o) (51)

4.3.2 Reciprocity Preserving. One of the important properties of physical BRDFs is that they are
reciprocal: symmetric with respect to interchange of incident and outgoing angles. However, the transfer
function ρ̂ = ρ cos θ ′

i as defined by us, does not preserve this reciprocity of the BRDF. To make the
transfer function reciprocal, we should multiply it by cos θ ′

o also. To preserve correctness, we must then
multiply the reflected light field by cos θ ′

o as well. Specifically, we define

ρ̃ = ρ̂ cos θ ′
o = ρ cos θ ′

i cos θ ′
o

B̃ = B cos θ ′
o (52)

With these definitions, all of the derivations presented so far still hold. In particular, the convolution
formulas in Equations 39 and 49 hold with the replacements B → B̃, ρ̂ → ρ̃. For example, Equation 49
for isotropic BRDFs becomes

B̃lmpq = �l Llmρ̃lpq (53)

The symmetry of the transfer function ensures that its coefficients are unchanged if the indices cor-
responding to incident and outgoing angles are interchanged, i.e. ρ̃lpq = ρ̃plq. In the more general
anisotropic case, ρ̃ln,pq = ρ̃pq,ln. We will use the frequency-space reflection formula, as given by Equa-
tion 53, whenever explicitly maintaining the reciprocity of the BRDF is important.

4.3.3 Reparameterization by Central BRDF Direction. Consider first the special case of radially
symmetric or 1D BRDFs, where the BRDF consists of a single symmetric lobe of fixed shape, whose
orientation depends only on a well-defined central direction �C. In other words, the BRDF is given by
a 1D function u as ρ̂ = u( �C · �L). Examples are Lambertian ρ̂ = �N · �L and Phong ρ̂ = ( �R · �L)s models.
If we reparameterize the BRDF and reflected light field by �C, the BRDF becomes a function of only
1 variable (θ ′

i with cos θ ′
i = �C · �L) instead of 3. Refer to Figure 5 for an illustration. Further, the reflected

light field can be represented simply by a 2D reflection map B(α, β) parameterized by �C = (α, β). In
other words, after reparameterization, there is no explicit exitant (outgoing) angular dependence for
either the BRDF or reflected light field.
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We may now write the BRDF and equations for the reflected light field as

ρ̂(θ ′
i ) =

∞∑
l=0

ρ̂l Yl0(θ ′
i )

ρ̂l = 2π

∫ π/2

0
ρ̂(θ ′

i )Yl0(θ ′
i ) sin θ ′

i dθ ′
i

(54)

B(α, β) =
∞∑

l=0

l∑
m=−l

l∑
q=−l

ρ̂l Llm Dl
mq(α, β)

∫ 2π

0

∫ π

0
Ylq(θ ′

i , φ′
i)Yl0(θ ′

i ) sin θ ′
i dθ ′

idφ′
i

=
∞∑

l=0

l∑
m=−l

ρ̂l Llm Dl
m0(α, β).

In computing ρ̂l , we have integrated out the azimuthal dependence, accounting for the factor of 2π . In
the last line, we have used orthonormality of the spherical harmonics. Now, we use the second property
of the matrices D from Equation 31, i.e. Dl

m0(α, β) = �l Ylm(α, β). Therefore, the reflected light field can
be expanded simply in terms of spherical harmonics,

B(α, β) =
∞∑

l=0

l∑
m=−l

BlmYlm(α, β). (55)

The required convolution formula now becomes

Blm = �l ρ̂l Llm . (56)

In the context of Lambertian BRDFs (for which no reparameterization is required), it has been noted
by Basri and Jacobs [2001a, 2003] that Equation 56 is mathematically an instance of the Funk-Hecke
theorem (as stated, for instance in Groemer [1996], page 98). However, that theorem does not generalize
to the other relations previously encountered. With respect to Equation 49, we have essentially just
dropped the indices p and q corresponding to the outgoing angular dependence. It is important to
remember that the reflected light field is now expanded in terms of spherical harmonics. B is simply a
filtered version of L, with each frequency l being attenuated by a different amount, corresponding to
the BRDF transfer function ρ̂l .

For general BRDFs, the radial symmetry property does not hold precisely, so they cannot be reduced
exactly to 1D functions, nor can B be written simply as a 2D reflection map. Nevertheless, a reparame-
terization of the specular BRDF components by the reflection vector (or other central BRDF direction)
still yields compact forms. To reparameterize, we simply recenter the BRDF (and the reflection inte-
gral) about the reflection vector �R, rather than the surface normal, as shown in Figure 5. The reflection
vector now takes the place of the surface normal, i.e. �R = (α, β), and the dependence on the surface nor-
mal becomes indirect (just as the dependence on �R is indirect in the standard parameterization). The
angles θ ′

i and θ ′
o are now given with respect to �R by cos θ ′

i = �R · �L and cos θ ′
o = �R · �V , with B(α, β, θ ′

o, φ′
o)

a function of �R = (α, β) and ωo = (θ ′
o, φ′

o). Once we have done this, we can directly apply the general
convolution formulas, such as Equation 49.

5. IMPLICATIONS

This section discusses the implications of the theoretical analysis developed in the previous section.
Our main focus will be on understanding the well-posedness and conditioning of inverse problems, as
well as the speedups obtained in forward problems. First, we make some general observations. Then,
we quantitatively analyze a number of special cases of interest.

ACM Transactions on Graphics, Vol. 23, No. 4, October 2004.



1024 • R. Ramamoorthi and P. Hanrahan

We will deal here exclusively with the 3D case, since that is of greater practical importance. A prelim-
inary analysis for the 2D case can be found in an earlier paper [Ramamoorthi and Hanrahan 2001a].
The quantitative results in 2D and 3D are closely related, although the fact that the 3D treatment is
in terms of spherical harmonics, as opposed to the 2D treatment in terms of Fourier series, results in
some important differences. For simplicity, we will also restrict the ensuing discussion to the case of
isotropic BRDFs. The extension to anisotropic surfaces can be done using the equations derived earlier
for the general anisotropic case.

5.1 General Observations

In this subsection, we briefly discuss the key ideas resulting from the theory, as applied to general
lighting conditions and BRDF models.

5.1.1 Forward Rendering with Environment Maps. We first consider the problem of rendering
with environment maps: general lighting distributions. For the purposes of rendering, it is convenient
to explicitly write the formula for the reflected light field as

B(α, β, θ ′
o, φ′

o) =
∞∑

l=0

l∑
m=−l

∞∑
p=0

min(l , p)∑
q=− min(l , p)

Llmρ̂lpq
(
Dl

mq(α, β)Ypq(θ ′
o, φ′

o)
)
. (57)

If either the lighting or the BRDF is low frequency, the total number of terms in the summation will be
relatively small, and it may be possible to use Equation 57 directly for shading a pixel. We have already
demonstrated the practicality of this approach for Lambertian BRDFs [Ramamoorthi and Hanrahan
2001b], where we can set p = q = 0, and use l ≤ 2—only 9 spherical harmonic terms.

In the general case, frequency space analysis allows for setting sampling rates accurately, and enables
compact frequency domain representations. Further, just as image convolutions are often computed in
the Fourier rather than the spatial domain, computing the reflected light field is more efficient in
frequency space, using Equation 57, rather than in angular space. We have already demonstrated the
practical implementation of these ideas [Ramamoorthi and Hanrahan 2002].

5.1.2 Well-Posedness and Conditioning of Inverse Lighting and BRDF. In this subsubsection, we
briefly discuss how to apply ideas from the theoretical analysis to determine which inverse problems
are well-posed, or solvable, versus ill-posed, that is unsolvable, and also determine the numerical con-
ditioning properties. We note that the inverse problems we consider here differ from much work in
computer vision in the sense that we assume known shape, estimating lighting and material prop-
erties, as opposed to solving for shape, given simple models of the lighting and materials (such as
Lambertian reflectance). Later, we will also relate these results to the general theory of linear integral
equations. An important duality should be noted here. Forward problems for which an efficient fre-
quency domain solution is possible, such as those involving diffuse surfaces and/or soft lighting, have
corresponding inverse problems that are ill-conditioned. Turned around, ill-conditioned inverse prob-
lems allow us to get a very good solution to the forward problem by using very coarse low-frequency
approximations of the initial conditions. For instance, Lambertian surfaces act as low-pass filters, the
precise form of which we will explore later in this section, blurring the illumination. Therefore, high-
frequency components of the lighting are not essential to rendering images of diffuse objects, and we can
make very coarse low-frequency approximations to the lighting without significantly affecting the final
image.

Inverse BRDF: We first address the question of BRDF estimation. Our goal is to consider BRDF estima-
tion under general illumination conditions, and understand when the BRDF can be recovered—BRDF
estimation is well posed—and when the BRDF cannot be recovered—estimation is ill-posed. We would
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also like to know when BRDF recovery will be well-conditioned—numerically robust. An understanding
of these issues is critical in designing BRDF estimation algorithms that work under arbitrary light-
ing. Otherwise, we may devise algorithms that attempt to estimate BRDF components that cannot be
calculated, or whose estimation is ill-conditioned.

For isotropic surfaces, a simple manipulation of Equation 49 yields

ρ̂lpq = �−1
l

Blmpq

Llm
. (58)

In general, BRDF estimation will be well-posed, or unambiguous, as long as the denominator on the
right-hand side does not vanish. Of course, to be physically accurate, the numerator will also become 0
if the denominator vanishes, so the right-hand side will become indeterminate. From Equation 58, we
see that BRDF estimation is well posed as long as for all l , there exists at least one value of m such
that Llm �= 0. In other words, all orders in the spherical harmonic expansion of the lighting should have
at least one coefficient with nonzero amplitude. If any order l completely vanishes, the corresponding
BRDF coefficients cannot be estimated.

In signal processing terms, if the input signal (lighting) has no amplitude along certain modes of the
filter (BRDF), those modes cannot be estimated. BRDF recovery is well conditioned when the spherical
harmonic expansion of the lighting does not decay rapidly with increasing frequency—when the lighting
contains high frequencies like directional sources or sharp edges—and is ill-conditioned for soft lighting.
Equation 58 gives a precise mathematical characterization of the conditions for BRDF estimation to
be well-posed and well-conditioned. These results are similar to those obtained by D’Zmura [1991]
who states that there is an ambiguity regarding the BRDF in case of inadequate illumination. In our
framework, inadequate illumination corresponds to certain frequencies l of the lighting completely
vanishing.

Inverse Lighting: A similar analysis can be done for estimation of the lighting. Manipulation of
Equation 49 yields

Llm = �−1
l

Blmpq

ρ̂lpq
. (59)

Inverse lighting will be well-posed so long as the denominator does not vanish for all p, q for some
l—so long as the spherical harmonic expansion of the BRDF transfer function contains all orders.
In signal processing terms, when the BRDF filter truncates certain frequencies in the input lighting
signal (for instance, if it were a low-pass filter), we cannot determine those frequencies from the output
signal. Inverse lighting is well-conditioned when the BRDF has high-frequency content, or its frequency
spectrum decays slowly. In physical terms, inverse lighting is well-conditioned when the BRDF contains
sharp specularities, the ideal case of which is a mirror surface. On the other hand, inverse lighting from
matte or diffuse surfaces is ill-conditioned. Intuitively, highly specular surfaces act as all-pass filters,
so the resulting images have most of the high frequency content in the lighting, and the lighting can
be estimated. On the other hand, diffuse surfaces act as low-pass filters, blurring the illumination and
making it difficult or impossible to recover the high frequencies.

Analysis in terms of theory of Fredholm Integral equations: We now briefly put our results on the well-
posedness of inverse lighting and BRDF problems into a broader context with respect to the theory
of Fredholm integral equations. Inverting the reflection equation to solve for the lighting or BRDF is
essentially a Fredholm integral equation of the first kind. By contrast, the (forward) global illumination
problem typically considered in rendering is a Fredhom integral equation of the second kind. Fredholm
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integral equations of the first kind may be written generally as

b(s) =
∫

t
K (s, t) f (t) dt, (60)

where b(s) is the known quantity (observation), K (s, t) is the kernel or operator in the equation, and f (t)
is the function we seek to find. To make matters concrete, one may think of f as the incident illumination
L, with the kernel K as corresponding to the (rotated) BRDF operator, and b(s) as corresponding to the
reflected light field. Here, t would represent the incident direction, and s would represent the surface
orientation and outgoing direction.

The theory of linear integral equations, as for instance in Cochran [1972], analyzes Equation 60 based
on the structure of the kernel. In particular, assume we may find a basis function expansion of the form

b(s) =
n∑

i=1

biui(s)

K (s, t) =
n∑

i=1

Kiui(s)v∗
i (t) (61)

f (t) =
∞∑

i=1

fivi(t),

where each of the sets of functions ui and vi (with v∗
i being the complex conjugate) is linearly indepen-

dent. Here, n is the number of terms in, or rank of the kernel, K . If n is finite, the kernel is referred to as
degenerate. It should be noted that if the function sets u and v were orthonormal, then we would have
a result of the form bi = Ki fi. In effect, we have constructed an expansion of the form of Equation 61
using orthonormal basis functions involving group representations and spherical harmonics, thereby
deriving the convolution result.

As long as the kernel has finite rank n, it annihilates some terms in f , (for i > n), and the integral
equation is therefore ill-posed (has an infinity of solutions). If the kernel has numerically finite rank,
the integral equation is ill-conditioned. Our analysis can be seen as trying to understand the rank of
the kernel and its degeneracies in terms of signal processing, thereby determining up to what order the
function f can be recovered. In the future, it may be possible to directly apply the theory of integral
equations to analyze the well-posedness and conditioning of inverse problems for which simple analytic
formulae such as our convolution relation are not readily available.

5.1.3 Light Field Factorization. Having analyzed estimation of the BRDF and lighting alone, we
now consider the problem of factorizing the light field: simultaneously recovering the lighting and BRDF
when both are unknown. An analysis of this problem is very important theoretically in understanding
the properties of the light field. There is also potential for practical applications in many different areas.
Within BRDF estimation, being able to factor the light field allows us to estimate BRDFs under un-
controlled unknown illumination, with the lighting being recovered as part of the algorithm. Similarly,
it would be useful to be able to recover the lighting from an object of unknown BRDF. Factorization
reveals the structure of the light field, allowing for more intuitive editing operations to be carried out in
order to synthesize novel images for computer graphics. Factorization also reduces the dimensionality,
and is therefore useful in compressing light fields that are usually very large.

We first note that there is a global scale factor that we cannot recover. Multiplying the lighting
everywhere by some constant amount and dividing the BRDF uniformly by the same amount leaves
the reflected light field, which is a product of the two, unchanged. Of course, physical considerations
bound the scale factor, since the BRDF must remain energy preserving. Nevertheless, within this
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general constraint, it is not possible to estimate the absolute magnitudes of the lighting and BRDF.
However, we will demonstrate that apart from this ambiguity, the light field can indeed be factored,
allowing us to simultaneously determine both the lighting and the BRDF.

An important observation concerns the dimensionality of the various components. The isotropic BRDF
is defined on a 3D domain, while the lighting is a function of 2D. On the other hand, the reflected light
field is defined on a 4D domain. This indicates that there is a great deal of redundancy in the reflected
light field. The number of knowns, that is coefficients of the reflected light field, is greater than the
number of unknowns, that is coefficients of the lighting and BRDF. This indicates that factorization
should be tractable. Indeed, for fixed order l , we can use known lighting coefficients Llm to find unknown
BRDF coefficients ρ̂lpq and vice-versa. In fact, we need only one known nonzero lighting or BRDF
coefficient for order l to bootstrap this process, since inverse lighting can use any value of (p, q) and
inverse-BRDF computation can use any value of m.

It would appear from Equation 49 however, that there is an unrecoverable scale factor for each order l ,
corresponding to the known coefficient we require. In other words, we may multiply the lighting for each
order l by some amount (which may be different for different frequencies l ) while dividing the BRDF
by the same amount. However, there is an important additional physical constraint. The BRDF must
be reciprocal: symmetric with respect to incident and outgoing angles. The corresponding condition in
the frequency domain is that the BRDF coefficients must be symmetric with respect to interchange of
the indices corresponding to the incident and outgoing directions. To take advantage of this symmetry,
we will use the reciprocal form of the frequency-space equations, as defined in Equation 53.

We now derive an analytic formula for the lighting and BRDF in terms of coefficients of the reflected
light field. Since we cannot recover the global scale, we will arbitrarily scale the DC term of the lighting
so L00 = �−1

0 =
√

1/
(
4π

)
. Note that this scaling is valid unless the DC term is 0, corresponding to no

light—an uninteresting case. Using Equations 53, 58, and 59, we obtain

L00 = �−1
0 : Global Scale

ρ̃0p0 = B̃00p0 : Equation 58 (l = q = 0)

Llm = �−1
l

B̃lmpq

ρ̃lpq
: Equation 59

= B̃lm00

ρ̃l00
: Set p = q = 0

(62)
= B̃lm00

ρ̃0l0
: Reciprocity, ρ̃0l0 = ρ̃l00

= �−1
l

B̃lm00

B̃00l0
: Plug in from 2nd line

ρ̃lpq = �−1
l

B̃lmpq

Llm
: Equation 58

= B̃lmpq B̃00l0

B̃lm00
: Substitute from above for Llm.

Note that in the last line, any value of m may be used. If none of the above terms vanishes, this gives an
explicit formula for the lighting and BRDF in terms of coefficients of the output light field. Assuming
reciprocity of the BRDF is critical. Without it, we would not be able to relate ρ̃0l0 and ρ̃l00 above, and
we would need a separate scale factor for each frequency l .
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Therefore, up to global scale, the reflected light field can be factored into the lighting and
the BRDF, provided the appropriate coefficients of the reflected light field do not vanish, that is the
denominators above are nonzero. If the denominators do vanish, the inverse-lighting or inverse-BRDF
problems become ill-posed and consequently, the factorization becomes ill-posed. Note that the above
relations are one possible factorization formula. We may still be able to factor the light field even if
some of the ρ̃l00 terms vanish in Equation 63, by using different values of ρ̃lpq with p �= 0.

5.2 Analytic Formulae for Common Examples

We now illustrate these general ideas with several important special-cases. We consider a number of
lighting distributions and BRDFs, deriving analytic formulae and approximations for their spherical
harmonic spectra. From this analysis, we quantitatively determine the well-posedness and conditioning
of inverse problems associated with these illumination conditions and BRDFs. Below, we first consider
two lighting conditions: a single directional source, and uniform lighting. Then, we consider four BRDF
models: a mirror surface, a Lambertian surface, the Phong BRDF, and a microfacet model. A more
detailed exposition of some parts can be found in Chapter 3 of the PhD thesis of the first author
[Ramamoorthi 2002b].

5.2.1 Directional Source. Our first example concerns a single directional source. The lighting is
therefore described by a delta function in spherical coordinates. Let (θs, φs) refer to the angular coordi-
nates of the source. Then,

L(θi, φi) = δ (cos θi − cos θs) δ (φi − φs)

Llm =
∫ 2π

0

∫ π

0
δ (cos θi − cos θs) δ (φi − φs) Y ∗

lm(θi, φi) sin θi dθidφi (63)

= Y ∗
lm(θs, φs).

Note that in the above equation, the delta function has the correct form for spherical coordinates. The
same form will be used later to study mirror BRDFs.

It will simplify matters to reorient the coordinate system so that the source is at the north pole or
+Z; θs = 0. It is now straightforward to write

Llm = Y ∗
lm(0)

= �−1
l δm0

(64)
Blmpq = δm0ρ̂lpq

ρ̂lpq = Bl0pq .

In angular space, a single observation of the reflected light field corresponds to a single BRDF mea-
surement. This property is used in image-based BRDF measurement [Lu et al. 1998; Marschner et al.
2000]. We see that in frequency space, there is a similar straightforward relation between BRDF coeffi-
cients and reflected light field coefficients. BRDF recovery is well-posed and well-conditioned since we
are estimating the BRDF filter from its impulse response.

5.2.2 Uniform Lighting. This can be considered the canonical opposite to the case of a directional
source. For uniform lighting, only the DC term of the lighting does not vanish, that is we set L00 = �−1

0 ,
with other coefficients being zero.

Llm = δl0δm0�
−1
0

Blmpq = δl0δm0δq0ρ̂0p0 (65)
ρ̂0p0 = B00p0.

ACM Transactions on Graphics, Vol. 23, No. 4, October 2004.



A Signal-Processing Framework for Reflection • 1029

Note that q = 0 since l = 0 and |q| ≤ l . We may only find the BRDF coefficients ρ̂0p0; the other coefficients
cannot be determined. In other words, we can determine only the 0−order coefficients (l = 0). This is
because the input signal has no amplitude along higher frequencies, making it impossible to estimate
these higher frequencies of the BRDF filter. A subtle point to be noted is that reciprocity (symmetry)
of the BRDF can actually be used to double the number of coefficients known, but the problem is still
extremely ill-posed. For instance, a mirror surface cannot be distinguished from a Lambertian object
under uniform lighting.

We will now derive analytic results for four different BRDF models. We start with the mirror BRDF
and Lambertian surface, progressing to the Phong and microfacet models.

5.2.3 Mirror BRDF. A mirror BRDF is analogous to the case of a directional source. The reflected
light has the same intensity as the incident light. A physical realization of a mirror BRDF is a gazing
sphere, commonly used to recover the lighting. For a mirror surface, the BRDF is a delta function.
We use the BRDF formula in Equation 2.29 of Cohen and Wallace [1993], multiplying by the cosine of
the local incident angle, to get the appropriate formula for the transfer function. In this special case,
the transfer function is also reciprocal since the cosines of the incident and outgoing angles are the
same. The spherical harmonic coefficients can be written as

ρ̂ = δ(cos θ ′
o − cos θ ′

i )δ(φ′
o − φ′

i ± π )

ρ̂lpq =
∫ 2π

0

∫ 2π

0

∫ π/2

0

∫ π/2

0

δ(cos θ ′
o − cos θ ′

i )δ(φ′
o − φ′

i ± π )Ylq(θ ′
i , φ′

i)Y
∗
pq(θ ′

o, φ′
o) sin θ ′

i sin θ ′
o dθ ′

idθ ′
odφ′

idφ′
o (66)

=
∫ 2π

0

∫ π/2

0
Y ∗

pq(θ ′
i , φ′

i ± π )Ylq(θ ′
i , φ′

i) sin θ ′
i dθ ′

idφ′
i

= (−1)qδlp.

The factor of (−1)q in the last line comes about because the azimuthal angle is phase shifted by π .
This factor would not be present for retroreflection. Otherwise, the BRDF coefficients simply express
in frequency-space that the incident and outgoing elevation angles are the same, and show that the
frequency spectrum of the BRDF does not decay with increasing order.

The reflected light field and BRDF are now related by

Blmpq = �l (−1)qδlpLlm

Llm = �−1
l (−1)q Blmlq. (67)

Just as the inverse lighting problem from a mirror sphere is easily solved in angular space, it is well-
posed and easily solved in frequency space because there is a direct relation between BRDF and reflected
light field coefficients. In signal processing terminology, the inverse lighting problem is well-posed and
well-conditioned because the frequency spectrum of a delta function remains constant with increasing
order.

Reparameterization by Reflection Vector: For reflective BRDFs, it is often convenient to reparameterize
by the reflection vector, as discussed in Section 4.3.3. The transfer function can then be written simply
as a function of the incident angle (with respect to the reflection vector), and is still a delta function.
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Fig. 6. The clamped cosine filter corresponding to the Lambertian BRDF and successive approximations obtained by adding
more spherical harmonic terms. For l = 2, we already get a very good approximation.

Since there is no dependence on the outgoing angle after reparameterization, we obtain

ρ̂(θ ′
i ) = δ(cos(0) − cos θ ′

i )
2π

ρ̂l = Yl0(0) = �−1
l (68)

Blm = Llm.

In the top line, the factor of 2π in the denominator is to normalize with respect to the azimuthal angle.
The bottom line follows from the identity for mirror BRDFs that �l ρ̂l = 1.

Therefore, we see that after reparameterization by the reflection vector, the BRDF frequency spectrum
becomes particularly simple. The reflected light field directly corresponds to the incident lighting. The
BRDF filter just passes through the incident illumination, and the reflected light field is therefore
just an image of the lighting without filtering or attenuation. Hence, the illumination can be trivially
recovered from a mirror sphere.

5.2.4 Lambertian BRDF. For a Lambertian surface, the BRDF is a constant, corresponding to the
scaled surface albedo—for purposes of energy conservation, the albedo must be less than 1, and the
BRDF must consequently not be greater than 1/π . For simplicity, we will omit this constant in what
follows. The transfer function is a clamped cosine since it is equal to the cosine of the incident angle over
the upper hemisphere when cos θ ′

i > 0 and is equal to 0 over the lower hemisphere when cos θ ′
i < 0. A

graph of this function, along with spherical harmonic approximations to it up to order 4 is in Figure 6.
Since the reflected light field is proportional to the incident irradiance and is equal for all outgoing

directions, we will drop the outgoing angular dependence and use the form of the convolution formula
given in Equation 56,

ρ̂ = max(cos θ ′
i , 0) =

∞∑
l=0

ρ̂l Yl0(θ ′
i )

Blm = �l ρ̂l Llm. (69)
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It remains to derive the form of the spherical harmonic coefficients ρ̂l . To derive the spherical harmonic
coefficients for the Lambertian BRDF, we must represent the transfer function ρ̂(θ ′

i ) = max(cos θ ′
i , 0) in

terms of spherical harmonics.
We will need to use many formulas for representing integrals of spherical harmonics, for which a

reference [MacRobert 1948] will be useful. The spherical harmonic coefficients are given by

ρ̂l = 2π

∫ π
2

0
Yl0(θ ′

i ) cos θ ′
i sin θ ′

i dθ ′
i . (70)

The factor of 2π comes from integrating 1 over the azimuthal dependence. It is important to note that
the limits of the integral range from 0 to π/2 and not π because we are considering only the upper hemi-
sphere. The expression above may be simplified by writing in terms of Legendre polynomials P (cos θ ′

i ).
Putting u = cos θ ′

i in the above integral and noting that P1(u) = u and that Yl0(θ ′
i ) = �−1

l Pl (cos θ ′
i ), we

obtain

ρ̂l = 2π�−1
l

∫ 1

0
Pl (u)P1(u) du. (71)

To gain further insight, we need some facts regarding the Legendre polynomials. Pl is odd if l is
odd, and even if l is even. The Legendre polynomials are orthogonal over the domain [−1, 1] with the
orthogonality relationship being given by

∫ 1

−1
Pa(u)Pb(u) = 2

2a + 1
δa,b. (72)

From this, we can establish some results about Equation 71. When l is equal to 1, the integral evaluates
to half the above norm: 1/3. When l is odd but greater than 1, the integral in Equation 71 vanishes.
This is because, for a = l and b = 1, we can break the left-hand side of Equation 72 using the oddness of
a and b into two equal integrals from [−1, 0] and [0, 1]. Therefore, both of these integrals must vanish,
and the latter integral is the right-hand integral in Equation 71. When l is even, the required formula
is given by manipulating Equation 20 in Chapter 5 of MacRobert [1948]. Putting it all together, we
obtain, as plotted in Figure 7,

l = 1 ρ̂l =
√

π

3
l > 1, odd ρ̂l = 0 (73)

l even ρ̂l = 2π

√
2l + 1

4π

(−1)
l
2 −1

(l + 2)(l − 1)

[
l !

2l
( l

2 !
)2

]
.

There are two important points to note here. First, the transfer function is identically zero for odd
frequencies greater than 1. Second, it can be shown by applying Stirling’s formula, that the bracketed
term falls off asymptotically as 1/

√
l , cancelling the square root. Therefore, ρ̂l ∼ l−2. The reflected

light field therefore falls off as �l ρ̂l ∼ l−5/2. This rapid falloff means the Lambertian BRDF effectively
behaves like a low-pass filter, letting only the lowest frequencies of the lighting through. Numerically,
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Fig. 7. The solid line is a plot of ρ̂l versus l , as per Equation 74. It can be seen that odd terms with l > 1 have ρ̂l = 0. Also, as l
increases, the BRDF coefficients decay rapidly.

we may write the first few terms for the BRDF filter as

�0ρ̂0 = 3.142
�1ρ̂1 = 2.094
�2ρ̂2 = 0.785
�3ρ̂3 = 0 (74)
�4ρ̂4 = −0.131
�5ρ̂5 = 0
�6ρ̂6 = 0.049.

We see that already for l = 4, the coefficient is only about 4% of what it is for l = 0. In fact, it can be
shown that over 99% of the energy of the BRDF filter is captured by l ≤ 2. By considering the fact that
the lighting must remain positive everywhere [Basri and Jacobs 2001a], similar worst-case bounds can
be shown for the approximation of the reflected light field by l ≤ 2. Therefore, the irradiance, or
equivalently, the reflected light field from a Lambertian surface can be well approximated
using only the first 9 terms of its spherical harmonic expansion—1 term with order 0, 3 terms
with order 1, and 5 terms with order 2. Note that the single order 0 mode Y00 is a constant, the 3
order 1 modes are linear functions of the Cartesian coordinates—in real form, they are simply x, y ,
and z—while the 5 order 2 modes are quadratic functions of the Cartesian coordinates. Therefore, the
irradiance can be well approximated as a quadratic polynomial of the Cartesian coordinates of the
surface normal vector.

We should note that, unlike the actual clamped cosine function, the order 2 spherical harmonic
approximation is small but not exactly 0 in the lower or unseen hemisphere, and is also negative in
some locations. It can therefore reflect a small amount of light from below the horizon. While we have
not observed any significant practical problems as a result, some visual differences may be perceptible
in some circumstances (for instance, the actual clamped cosine function has a C1 discontinuity at the
horizon, while the spherical harmonic approximation does not).

We first consider illumination estimation, or the inverse lighting problem. The fact that the odd
frequencies greater than 1 of the BRDF vanish means the inverse lighting problem is formally ill-posed
for a Lambertian surface. The filter zeros the odd frequencies of the input signal, so these terms cannot
ACM Transactions on Graphics, Vol. 23, No. 4, October 2004.
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be estimated from images of a convex Lambertian object. This observation corrects a commonly held
notion (see Preisendorfer [1976], volume 2, pages 143–151) that radiance and irradiance are equivalent
in the sense that irradiance can be formally inverted to recover the radiance. In fact, different radiance
distributions can give rise to the same irradiance distribution. For further details, see Ramamoorthi
and Hanrahan [2001c]. Moreover, in practical applications, we can robustly estimate only the first 9
coefficients of the incident illumination, those with l ≤ 2. Thus, inverse lighting from a Lambertian
surface is not just formally ill-posed for odd frequencies, but very ill-conditioned for even frequencies.
This result explains the ill-conditioning observed by Marschner and Greenberg [1997].

Our results are also in accordance with the perception literature, such as Land’s retinex theory [Land
and McCann 1971]. It is common in visual perception to associate lighting effects with low frequency
variation, and texture with high frequency variation. Our results formalize this observation, showing
that distant lighting effects can produce only low frequency variation, with respect to orientation, in
the intensity of a homogeneous convex Lambertian surface. Therefore, it should be possible to estimate
high frequency texture independently of the lighting. However, there is still an ambiguity between low
frequency texture and lighting-related effects.

Since the approximation of Lambertian surfaces is commonly used in graphics and vision, the above
results are of interest for many other problems. For instance, we can simply use the first 9 terms of
the lighting to compute the irradiance—the shading on a Lambertian surface. Further implementation
details on computing and rendering with irradiance environment maps are found in Ramamoorthi
and Hanrahan [2001b]. The 9 parameter approximation also means that images of a diffuse object
under all possible illumination conditions lie close to a 9D subspace. This is a step toward explaining
many previous empirical observations of the low-dimensional effects of lighting made in the computer
vision community, such as by Hallinan [1994] and Epstein et al. [1995]. Basri and Jacobs [2001a,
2003] have derived a Lambertian formula similar to ours, and have applied this result to lighting
invariant recognition, and to photometric stereo under general unknown lighting [Basri and Jacobs
2001b]. A number of other researchers have also used these results to develop new practical algorithms
for recognition and reconstruction in computer vision [Lee et al. 2001; Ho et al. 2003; Zhang and Samaras
2003; Simakov et al. 2003; Zhang et al. 2003].

5.2.5 Phong BRDF. The normalized Phong transfer function we use is

ρ̂ = s + 1
2π

( �R · �L)s, (75)

where �R is the reflection vector, �L is the direction to the light source, and s is the shininess, or Phong
exponent. Lewis [1993] discusses various ways of making shaders, like the Phong BRDF, physically
plausible. We adopt his normalization term, ensuring that the Phong lobe has unit energy. Technically,
we must also zero the BRDF when the light vector is not in the upper hemisphere. However, the Phong
BRDF is not physically based anyway, so others have often ignored this boundary effect, and we will do
the same. Similarly, we also treat Equation 75 directly as the transfer function, rather than the BRDF,
for simplicity. A more detailed analysis of Phong reflection using Clebsch-Gordan coefficients [Inui et al.
1990], taking into account horizon effects and multiplying by the cosine of the incident angle, is provided
by Thornber and Jacobs [2001].

The form of Equation 75 allows us to reparameterize by the reflection vector �R, making the trans-
formations outlined in Section 4.3.3. In particular, �R · �L → cos θ ′

i . Since the BRDF transfer function
depends only on �R · �L = cos θ ′

i , the Phong BRDF after reparameterization is mathematically analogous
to the Lambertian BRDF just discussed (they are both radially symmetric). In particular, Equation 69
holds. However, note that while the Phong BRDF is mathematically analogous to the Lambertian case,
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it is not physically similar since we have reparameterized by the reflection vector. The BRDF coefficients
depend on s, and are given by

ρ̂l = (s + 1)
∫ π/2

0
[cos θ ′

i ]
sYl0(θ ′

i ) sin θ ′
i dθ ′

i

Blm = �l ρ̂l Llm. (76)

To solve this integral, we substitute u = cos θ ′
i in Equation 76. We also note that Yl0(θ ′

i ) = �−1
l Pl (cos θ ′

i ),
where Pl is the legendre polynomial of order l . Then, Equation 76 becomes

ρ̂l = �−1
l (s + 1)

∫ 1

0
us Pl (u) du. (77)

An analytic formula is given by MacRobert [1948] in equations 19 and 20 of Chapter 5.

ODD l �l ρ̂l = (s + 1)(s − 1)(s − 3) · · · (s − l + 2)
(s + l + 1)(s + l − 1) · · · (s + 2)

EVEN l �l ρ̂l = s(s − 2) · · · (s − l + 2)
(s + l + 1)(s + l − 1) · · · (s + 3)

. (78)

This can be expressed using Euler’s Gamma function, which for positive integers is simply the factorial
function, (n) = (n − 1)!. Neglecting constant terms, we obtain for large s and s > l − 1,

�l ρ̂l ∼
[


( s
2

)]2


( s

2 − l
2

)


( s
2 + l

2

) . (79)

If l � s, we can expand the logarithm of this function in a Taylor series about l = 0. Using Stirling’s
formula, we obtain

log(�l ρ̂l ) = −l2
(

1
2s

− 1
2s2

)
+ O

(
l4

s2

)
. (80)

For large s, 1/s � 1/s2, and we may derive the approximation

�l ρ̂l ≈ exp
[
− l2

2s

]
. (81)

The coefficients fall off as a Gaussian with width of order
√

s. The Phong BRDF behaves in the frequency
domain like a Gaussian filter, with the filter width controlled by the shininess. Therefore, inverse
lighting calculations will be well-conditioned only up to order

√
s. As s approaches infinity, �l ρ̂l = 1, and

the frequency spectrum becomes constant, corresponding to a perfect mirror. Note that the frequency
domain width of the filter varies inversely with the angular domain extent of the BRDF filter. A plot of
the BRDF coefficients and the approximation in Equation 81 is shown in Figure 8.

We should also note that for l > s, ρ̂l vanishes if l and s are both odd or both even. It can be shown
that for l � s, the nonzero coefficients fall off very rapidly as ρ̂l ∼ l−(s+1). This agrees with the result
for the mathematically analogous Lambertian case, where s = 1 and ρ̂l ∼ l−2. Note that s � √

s, so ρ̂l
is already nearly 0 when l ≈ s.

Associativity of Convolution: We now consider factorization of light fields for surfaces approximated by
Phong BRDFs. From the form of Equation 76, it is clear that there is an unrecoverable scale factor
for each order l . In physical terms, using the real BRDF and real lighting is equivalent to using a
blurred version of the illumination and a mirror BRDF. In signal processing terminology, associativity
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Fig. 8. Numerical plots of the Phong coefficients �l ρ̂l , as defined by Equation 78. The solid lines are the Gaussian filter
approximations in Equation 81. As the Phong exponent s increases, corresponding to increasing the angular width of the BRDF
filter, the frequency width of the BRDF filter decreases.

of convolution allows us to sharpen the BRDF while blurring the illumination without affecting the
reflected light field. To be more precise, we may rewrite Equation 76 as

L′
lm = �l ρ̂l Llm

�l ρ̂
′
l = 1

(82)
Blm = �l ρ̂

′
l L′

lm

= L′
lm.

These equations say that we may blur the illumination using the BRDF filter, while treating the BRDF
as a mirror. This formulation also allows us to analyze the conditioning in estimating the parameters
of a Phong BRDF model under arbitrary illumination. The form of Equation 81 for the Phong BRDF
coefficients indicates that for l � √

s, the effects of the filtering in Equation 83 are minimal. The BRDF
filter passes through virtually all the low-frequency energy with practically no attenuation. Thus, under
low-frequency lighting, the reflected light field is essentially independent of the Phong exponent s. This
means that under low-frequency lighting, estimation of the exponent s of a Phong BRDF
model is ill-conditioned. In physical terms, it is difficult to determine the shininess of an object
under diffuse lighting. In order to do so robustly, we must have high-frequency lighting components
like directional sources. This observation holds for many reflective BRDF models. In particular, we shall
see that a similar result can be derived for microfacet BRDFs; estimation of the surface roughness is
ill-conditioned under low-frequency lighting.

5.2.6 Microfacet BRDF. Consider a simplified Torrance-Sparrow [1967] model,

ρ = 1
4πσ 2 cos θ ′

i cos θ ′
o

exp

[
−

(
θ ′

h

σ

)2
]

. (83)

The subscript h stands for the half-way vector, while σ corresponds to the surface roughness parameter.
For simplicity, we have omitted Fresnel and geometric shadowing terms, as well as the Lambertian
component usually included in such models.
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We analyze the microfacet BRDF by fixing the outgoing angle, and writing the BRDF as

ρ̂(θ ′
i , θ ′

o, φ′
i) =

∞∑
l=0

l∑
q=−l

ρ̂lq(θ ′
o)Ylq(θ ′

i , φ′
i). (84)

The advantage of this representation is that other effects like Fresnel can be incorporated essentially
as simply a scaling function, dependent on θ ′

o, applied to ρ̂lq, instead of affecting the coefficients in more
complicated ways.

It is convenient to also reparameterize by the reflection vector, as we did for the Phong BRDF (i.e. con-
sider (θ ′

i , φ′
i) with respect to the reflection of the outgoing direction about the surface normal). However,

it is important to note that microfacet BRDFs are not symmetric about the reflection vector. As distinct
from the Phong BRDF, there is a preferred direction, determined by the exitant angle. However, it can
be shown by Taylor-series expansions and verified numerically that it is often reasonable to treat the
microfacet BRDF using the same machinery as for the Phong case. This is in accord with observations
made by others (such as Ikeuchi and Sato [1991]) that the Torrance-Sparrow BRDF is radially symmet-
ric for small outgoing angles. Furthermore, in practical inverse rendering applications, measurements
made at large or grazing angles are given low confidence anyway. Even under this assumption, it is
somewhat difficult to derive precise analytic formulae. However, we may make good approximations.

In this article, we will only describe our derivation of the coefficients ρ̂lq for normal exitance θ ′
o = 0.

In this case, because of azimuthal symmetry, only terms with q = 0 will be nonzero. Since the BRDF
is approximately radially symmetric for small outgoing angles, these results will also hold for these
cases: we can apply the same mathematical machinery as for Lambertian and Phong. More details on
approximations for non-normal exitance are found in Ramamoorthi [2002b], where it is shown more
formally that the corrections to the results below are small except when l is large (corresponding to
high-frequency lighting distributions or directional light sources), and at large viewing angles.

For normal exitance, there is no azimuthal dependence, and the half angle, θ ′
h = θ ′

i/2,

ρ̂l = 2π

∫ π/2

0

exp
[ − θ ′

i
2
/4σ 2

]
4πσ 2

Yl0(θ ′
i ) sin θ ′

i dθ ′
i . (85)

The expansion of Yl0(t) near t = 0 for small l is (this can be verified using a symbolic mathematics
program like Mathematica) is

Yl0(t) = �−1
l

(
1 − l (l + 1)

4
t2 + O([lt]4)

)
. (86)

The asymptotic form of Yl0(t) near t = 0 for large l is

Yl0(t) ∼ �−1
l

(
1√
t

cos[(l + 1/2)t − π/4]
)

. (87)

To integrate Equation 85, we substitute u = θ ′
i/2σ . Then, θ ′

i = 2σu. Assuming σ � 1, as it is for most
surfaces, the upper limit of the integral becomes infinite, and sin θ ′

i dθ ′
i = θ ′

i dθ ′
i = 4σ 2u du.

ρ̂l ∼
∫ ∞

0
2e−u2

Yl0(2σu)u du (88)

We therefore set t = 2σu in Equations 86 and 87. When σ l � 1, we use Equation 86 to obtain to
O([σ l ]4),

�l ρ̂l ∼
(∫ ∞

0
2ue−u2

du − (σ l )2
∫ ∞

0
2u3e−u2

du
)

. (89)
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Substituting, v = u2, both integrals evaluate to 1, so we obtain

�l ρ̂l = 1 − (σ l )2 + O([σ l ]4). (90)

We note that these are the first terms of the Taylor series expansion of exp[−(σ l )2]. When σ l � 1, we
use Equation 87 to obtain (� is a phase that encapsulates the lower-order terms)

�l ρ̂l ∼
∫ ∞

0
e−u2√

u cos[(2σ l )u + �] du. (91)

The dominant term can be shown to be exp[−(2σ l )2/4] = exp[−(σ l )2]. Therefore, we can simply use
exp[−(σ l )2] as a valid approximation in both domains, giving rise to an approximation of the form

�l ρ̂l ≈ exp[− (σ l )2]. (92)

We have also verified this result numerically.
For normal exitance, the BRDF is symmetric about the reflection vector and Gaussian, so in that

case, Equation 92 simply states that even in the spherical-harmonic basis, the frequency spectrum of
a Gaussian is also approximately Gaussian, with the frequency width related to the reciprocal of the
angular width.

Conditioning Properties: Since Equation 92 has many similarities to the equations for the Phong BRDF,
most of those results apply here too. In particular, under low-frequency lighting, there is an ambiguity
with respect to estimation of the surface roughness σ . Also, inverse lighting is well-conditioned only up
to order σ−1. With respect to factorization, there are ambiguities between illumination and reflectance,
similar to those for the Phong BRDF. However, it is important to note that while these ambiguities are
exact for Phong and mirror BRDFs, they are only a good approximation for microfacet BRDFs since
Equation 92 does not hold at grazing angles or for high-frequency lighting distributions. In these cases,
the ambiguity can be broken, and we have used this fact in an algorithm to simultaneously determine
the lighting and the parameters of a microfacet model [Ramamoorthi and Hanrahan 2001d].

6. CONCLUSIONS AND FUTURE WORK

We have presented a theoretical analysis of the structure of the reflected light field from a convex
homogeneous object under a distant illumination field. We have shown that the reflected light field
can be formally described as a convolution of the incident illumination and the BRDF, and derived
an analytic frequency space convolution formula. This means that reflection can be viewed in signal
processing terms as a filtering operation between the lighting and the BRDF to produce the output light
field. Furthermore, inverse rendering to estimate the lighting or BRDF from the reflected light field can
be understood as deconvolution. This result provides a novel viewpoint for many forward and inverse
rendering problems, and allows us to understand the duality between forward and inverse problems,
wherein an ill-conditioned inverse problem may lead to an efficient solution to a forward problem.
We have discussed the implications for inverse problems such as lighting recovery, BRDF recovery,
light field factorization, and forward rendering problems such as environment map prefiltering and
rendering. We have also made these ideas concrete for many special cases, deriving analytic formulae
for the frequency spectra of many common BRDF and lighting models.

In terms of the theoretical results for the Lambertian case, we have derived a low-dimensional rep-
resentation composed of spherical harmonics up to order 2. This explains previous results in computer
vision on low-dimensional subspaces for lighting variation [Hallinan 1994; Epstein et al. 1995]. Recent
theoretical work has also attempted to directly link the common principal component methods used
to derive low-dimensional subspaces with our spherical harmonic convolution approach [Ramamoorthi
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2002a; Nillius and Eklundh 2003a]. Other theoretical and practical work has tried to remove some of
the restrictions in our framework, such as the limitation to distant illumination [Annen et al. 2004;
Frolova et al. 2004]. There has also been an effort to develop appropriate basis function methods for more
general problems, where the convolution results with spherical harmonics may not hold, using hemi-
spherical basis functions [Koenderink and van Doorn 1998; Gautron et al. 2004] or Haar wavelets [Ng
et al. 2003, 2004].

More broadly, many of the ideas developed here have links to other areas of graphics and vision, and
some work has already begun in exploring and extending these links. For instance, our factorization of
the reflected light field to separate the illumination and BRDF bears some conceptual similarities to
the use of factorization in many areas of computer vision, such as structure from motion [Tomasi and
Kanade 1992]. In this article, we have explored the notion of reflection as convolution for convex opaque
surfaces, but the idea of convolution has more general implications for rendering. Convolution results
can also be derived for cast shadows under specific assumptions [Soler and Sillion 1998; Ramamoorthi
et al. 2004]. These ideas are also very powerful for rendering volumetric materials, where direct nu-
merical simulation is usually very slow. However, practical methods that conceptually use convolution
of the incident irradiance with a point-spread function have been employed successfully for subsurface
scattering [Jensen et al. 2001; Jensen and Buhler 2002], and we have recently developed such methods
for rendering multiple scattering effects in volumetric participating media [Narasimhan et al. 2004;
Premoze et al. 2004].

The present article is only one way in which the reflection operator can be analyzed. Specifically,
we have studied the computational properties of the reflection operator—given a complex illumination
field and arbitrary BRDF—in the frequency domain. However, there are many other ways these compu-
tational fundamentals of reflection can be studied. For instance, it might be worthwhile to consider the
differential properties of reflection, and to study perceptual metrics rather than physical ones. Another
important area is the formal study of the conditioning of forward and inverse problems, possibly directly
from an eigenanalysis of the kernel of the Fredholm integral equation. We believe this formal analysis
will be increasingly important in deriving robust and efficient algorithms in the future. While we have
made a first step in this direction, other issues such as how our results change when we have only a
limited fraction of the reflected light field available, or can move our viewpoint only in a narrow range,
need to be studied. In summary, we believe there are a number of domains in graphics and vision that
benefit greatly from a fundamental understanding of the reflection operator. We believe this work is a
first step in putting an analysis of reflection on a strong mathematical foundation.

APPENDIX

Properties of the Representation Matrices

In this appendix, we derive the two properties of representation matrices listed in Equation 31. The first
property follows from the addition theorem for spherical harmonics (see for instance, Jackson [1975]
Equation 3.62),

Yl0(u, v) = �l

l∑
m=−l

Y ∗
lm(θ , φ)Ylm(θ ′, φ′). (93)

Here, v is a dummy-variable since Yl0 has no azimuthal dependence, and u is the angle between (θ , φ)
and (θ ′, φ′), i.e.

cos u = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′). (94)
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Now, let (u, v) = Rα(θ ′, φ′). Here, Rα = R y (α). We omit the z rotation since that does not affect Yl0
which has no azimuthal dependence. The vector corresponding to coordinates (u, v) is then given by


sin u cos v
sin u sin v

cos u


 =




cos α 0 sin α

0 1 0
− sin α 0 cos α







sin θ ′ cos φ′

sin θ ′ sin φ′

cos θ ′


 =




cos α sin θ ′ cos φ′ + sin α cos θ ′

sin θ ′ sin φ′

cos α cos θ ′ + sin α sin θ ′ (− cos φ′)

 . (95)

Since (−cos φ′) = cos(π − φ′), we know from Equation 94 that u corresponds to the angle between (α, π )
and (θ ′, φ′). In other words, we may set (θ , φ) = (α, π ). To summarize,

Yl0(Rα(θ ′, φ′)) = �l

l∑
m=−l

Y ∗
lm(α, π )Ylm(θ ′, φ′). (96)

To proceed further, we write the rotation formula for spherical harmonics, omitting the z rotation by β

and γ , since they have no significance for azimuthally symmetric harmonics.

Yl0(Rα(θ ′, φ′)) =
l∑

m=−l

d l
0m(α)Ylm(θ ′, φ′) (97)

A comparision of Equations 96 and 97 yields the first property of representation matrices in Equation 31

dl
0m(α) = �l Y ∗

lm(α, π ). (98)

To obtain the second property in Equation 31, we use the form of the spherical harmonic expansion
when the elevation angle is 0, i.e. we are at the north pole. Specifically, we note [Jackson 1975] that
Ylm′ (0′, φ′) = �−1

l δm′0. With this in mind, the derivation is as follows,

Ylm(α, β) = Ylm(Rα,β,γ (0′, φ′))

=
l∑

m′=−l

Dl
mm′ (α, β, γ )Ylm′ (0′, φ′) (99)

= �−1
l Dl

m0(α, β, γ ).

This brings us to the second property stated in Equation 31,

Dl
m0(α, β, γ ) = �l Ylm(α, β). (100)
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