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The shading in a scene depends on a combination of many factors—how the lighting varies spatially across a surface, how it varies along different directions, the
geometric curvature and reflectance properties of objects, and the locations of soft shadows. In this article, we conduct a complete first-order or gradient analysis
of lighting, shading, and shadows, showing how each factor separately contributes to scene appearance, and when it is important. Gradients are well-suited to
analyzing the intricate combination of appearance effects, since each gradient term corresponds directly to variation in a specific factor. First, we show how the
spatial and directional gradients of the light field change as light interacts with curved objects. This extends the recent frequency analysis of Durand et al. [2005]
to gradients, and has many advantages for operations, like bump mapping, that are difficult to analyze in the Fourier domain. Second, we consider the individual
terms responsible for shading gradients, such as lighting variation, convolution with the surface BRDF, and the object’s curvature. This analysis indicates the
relative importance of various terms, and shows precisely how they combine in shading. Third, we understand the effects of soft shadows, computing accurate
visibility gradients, and generalizing previous work to arbitrary curved occluders. As one practical application, our visibility gradients can be directly used
with conventional ray-tracing methods in practical gradient interpolation methods for efficient rendering. Moreover, our theoretical framework can be used to
adaptively sample images in high-gradient regions for efficient rendering.
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1. INTRODUCTION

A theoretical analysis of lighting and shading has many applications
in forward and inverse rendering. For example, understanding where
the image intensity varies rapidly can be used to determine nonuni-
form image sampling rates for efficient rendering. Understanding
how shading changes in penumbra regions can lead to efficient and
robust soft shadow computations, as well as advances in inverse
lighting-from-shadow algorithms. In this article, we seek to address
these theoretical questions through a first-order, or gradient, analysis
of lighting, shading, and visibility.

The appearance of a surface (and its gradients) depends on many
factors. The shading is affected by lighting—spatial lighting vari-
ation over a flat object surface due to close sources, as well as
angular variation in lighting at a point from different directions.
Shading also depends on geometric effects, such as the object’s
curvature, which determine how much the surface normal or orien-
tation changes between neighboring points. Material properties are
also important, since shading is effectively a convolution with the
object BRDF [Basri and Jacobs 2001, 2003; Ramamoorthi and Han-
rahan 2001, 2004]. These factors can combine in complex ways in an
image, and each factor may have less or more importance, depend-
ing on the situation. For example, the spatial variation in lighting
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over a surface can be primarily responsible for specular reflections
from a near source on a glossy flat table. On the other hand, the
angular variation in lighting is most important for a highly-curved
bumpy object on the table—the effect of spatial variation here is
often small enough that the lighting can effectively be treated as
distant (see Figure 5).

For analysis of lighting and shading, the gradient is usually a sum
of terms, each corresponding to variation in a specific factor. Hence,
a first-order analysis is able to isolate the impact of various shading
effects. Our computation of gradients also enables new practical ren-
dering algorithms, such as efficient gradient-based image sampling,
as well as fast and accurate gradient-based interpolation of visibility
(Figure 1). Specifically, we make the following contributions:

—Analysis of light reflection: First, we analyze the basic conceptual
steps in the reflection of light from a curved surface (Section 4.1).
We develop the theory for both spatial and angular (or directional)
gradients of the light field, since many visual effects involve a rich
interplay between spatial and angular information.

—Analysis of first-order terms: In Section 4.3, we determine the
gradients for shading on a curved object lit by general spa-
tially and directionally-varying lighting. We combine the basic
shading steps in Section 4.1, augmenting them with nonlinear
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Fig. 1. Our theoretical analysis can be applied to efficient rendering; (top):
Gradient-based image sampling achieves a 6× speedup on a scene with
bumpy, diffuse, and specular objects, including shadows and near-field light-
ing; (bottom): We use visibility gradients for rendering accurate soft shadows
from curved objects on the ground plane, evaluating visibility explicitly at
only 1% of the image pixels. More details are in Figures 13 and 15.

transformations like bump mapping (Section 4.2). Our final gra-
dient formula can be separated into individual terms that corre-
spond to effects like spatial lighting variation, angular variation,
and surface curvature. We analyze the effects of these terms in a
variety of situations, understanding which factors are important
for the appearance of different scenes (Section 5.2). Moreover,
we show how to extend the first-order analysis to second-order
Hessians (Section 5.4).

—Analysis of visibility gradients: We derive new analytic expres-
sions for soft shadow gradients in Sections 6 and 7, extending
the work of Arvo [1994] and Holzschuch and Sillion [1998] to
arbitrary curved or polygonal blockers. Moreover, our formula-
tion is local, based only on analyzing angular discontinuities in
visibility at a single spatial location.

—Practical applications: In Section 8, we use our analytic visi-
bility gradients for efficient and accurate rendering of soft shad-
ows using gradient-based interpolation. As shown in Figures 1
and 13, accurate results can sometimes be obtained by explicitly
evaluating only 1% of the pixels. Section 9 (Figures 1 and 15)
applies our analysis to efficient rendering by adaptively sampling
images using a metric which is based on gradient magnitude.
We consider general scenes with bump maps, glossy reflectance,
shadows, and near-field lighting, achieving accurate results using
only 10%–20% of the effective pixels.

The rest of this article is organized as follows. After a review the of
previous work in Section 2, Section 3 reviews the basic preliminaries

and mathematical operations of light transport. We then develop our
theoretical analysis. First, Section 4 conducts a gradient analysis for
light reflection from curved surfaces in flatland. Section 5 discusses
extensions to 3D, as well as image gradients and second-order anal-
ysis. Thereafter, Section 6 analyzes soft shadow gradients in 2D.
Section 7 generalizes these results to 3D, deriving the first general
formulae for visibility gradients from curved occluders. Sections 8
and 9 describe practical applications to gradient-based shadow in-
terpolation and gradient-based adaptive image sampling, respec-
tively. Finally, Section 10 compares the theoretical derivations to
previous work on Fourier and shadow analysis methods, and
Section 11 concludes the article and discusses future work.

2. PREVIOUS WORK

This research builds on a substantial body of previous work on
analyzing light transport in a number of different representations.

Frequency domain analysis. Frequency domain techniques have
been popular for light field analysis, leading to a signal process-
ing approach. Chai et al. [2000] analyze light field sampling in
the Fourier domain. [Ramamoorthi and Hanrahan 2001, 2004] de-
velop a convolution framework for reflection on curved surfaces
with general materials using spherical harmonics. The special case
of Lambertian reflection was also analyzed concurrently by [Basri
and Jacobs 2001, 2003]. Ng [2005] has shown how Fourier analysis
can be used to derive a slice theorem for light fields.

Most recently, and closest to our work, Durand et al. [2005] derive
a frequency analysis of light transport considering both spatial and
angular variation. Indeed, our initial analysis of the steps of light
reflection from a curved surface (Section 4.1) is inspired by their
approach. In Section 3.1 (Figure 2), we directly compare Fourier and
gradient analysis in terms of basic mathematical operators (the end
of Section 10 has a more detailed discussion of specific steps). First-
order analysis has two main benefits for us. The gradient is naturally
written as a sum of terms corresponding to specific variations in
shading, while keeping other factors fixed. This makes it easier to
analyze the importance of various shading effects. Moreover, first-
order analysis is by definition fully local and can handle general
nonlinear effects like bump mapping, while Fourier analysis always
requires a finite neighborhood and linearization.

Wavelet analysis. Wavelets have been another popular tool for
efficient computation and representation of light transport. Early
work in rendering includes wavelet radiosity [Gortler et al. 1993;
Gershbein et al. 1994]. More recently, Ng et al. [2004] have analyzed
multiplication and triple-product integrals using wavelets. However,
many of the mathematical operations of light transport currently
have no simple analytic interpretation in wavelets (see Section 3.1
and Figure 2). Thus, wavelets seem more useful for efficient practical
computation, rather than for deriving theoretical insights.

Differential and gradient analysis of light reflection. Gradient-
based methods have been widely used in graphics, starting with the
irradiance gradients of Ward and Heckbert [1992]. While we are
inspired by these methods, there are some important differences.
While Ward and Heckbert [1992] essentially try to find gradients
of the incident light field, we seek to determine how these gradi-
ents evolve as light interacts with object surfaces or blockers. Igehy
[1999] and Chen and Arvo [2000] find the differentials of individual
ray paths as certain parameters (like viewpoint or location on the
image plane) vary. By contrast, we seek to determine how gradients
over the entire light field transform. Most importantly, this article
is more focused on theoretical analysis, understanding the nature
of shading variation by considering various gradient terms. We are
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Fig. 2. The basic mathematical operators of light transport, and the resulting transformations in gradient, Fourier, and wavelet representations.

optimistic that our analysis can be used to derive new theoretical
bounds and practical algorithms for previous methods.

Visibility analysis and shadow gradients. Shadows are one of the
most important visual features and have received significant theo-
retical attention. Durand et al. [2002] have developed a full char-
acterization of visibility events in terms of the visibility complex.
Soler and Soler and Sillion [1998] and Ramamoorthi et al. [2005]
have characterized special cases as convolutions. Stark et al. [1999]
derived analytic formulae for the shadowed irradiance in polygonal
scenes by explicitly evaluating an integral over the contour of re-
ceivers. Arvo [1994] has derived irradiance Jacobians for occluded
polyhedral scenes, and applied them to shadow computations based
on a global analysis of scene configuration. Holzschuch and Sillion
[1998] computed gradients and Hessians of form factors for error
analysis. By contrast, our approach is local, using only the visibility
information at a single spatial location, and can consider general
curved occluders in general complex lighting.

3. PRELIMINARIES

We start by writing the reflection equation at a single point x ,

B(x, θ ) =
∫

L(x, ω)ρ(x, θ, ω)V (x, ω) cos ω dω, (1)

where B is the reflected light field, L(x, ω) is the incident light field,
ρ is the BRDF, and V is the visibility. In this article, light fields such
as B or L are expressed in terms of their spatial location x and local
angular direction (ω or θ ), with respect to the local surface normal.

Our goal is a first-order analysis of reflection on a curved sur-
face. We consider both spatial and angular gradients because most
physical phenomena involve significant interaction between them.
For example, angular variation in the lighting often leads to spatial
variation in the shading on a curved object.

For much of the article, the derivations are carried out in the
2D plane, or flatland, for clarity and simplicity. In this domain, the
gradient is essentially equivalent to partial derivatives along spatial
and angular dimensions, which we give formulae for throughout
the work. While the 3D extensions (detailed in Sections 5.1, 7,
and Appendix B) are more complicated algebraically, and in some
cases involve the definition of appropriate unit vectors for formally
relating partial derivatives to gradients, much the same results are
obtained. Our analysis is applied practically to evaluation of soft
shadows from curved blockers in 3D (Section 8), and to efficient
rendering of 3D scenes (Section 9).

We will be analyzing various parts and generalizations of Eq. (1).
In this section, we will consider abstractly the result h of the in-
teraction of two functions f and g, which will usually correspond
to the lighting and BRDF, respectively. From Section 4 onwards,
we will be more concrete, using notation closer to that of Eq. (1).
The partial derivatives will be denoted with subscripts—for exam-
ple, fx (x, ω) = ∂ f (x, ω)/∂x . In Section 3.1, we will also obtain
insight by comparing the forms of basic mathematical operations
for first-order and Fourier analysis—we denote the Fourier trans-

form of f (x, θ ) as F(�x , �θ ), where the subscripts now stand for
the spatial (x) or angular (θ ) coordinate.

3.1 Mathematical Operations of Light Transport

The interaction of lighting with the reflectance and geometry of ob-
jects involves fairly complex effects on the light field, as well as
the gradients or Fourier spectra. However, the basic shading steps
can all be reduced to five basic mathematical building blocks—
multiplication, integration, convolution of functions, and linear and
nonlinear transformations on a function’s domain. For example,
modulation of the shading by a texture map involves multiplication.
Adding up the contributions of lighting from every incident direction
involves integration. The interaction of lighting and reflectance can
usually be written as a convolution with the surface BRDF. We will
see that transformations between a global coordinate frame and the
local frame of the surface can be written as linear transformations of
the spatial and angular coordinates. Complex shading effects, like
general bump mapping and visibility computations, require nonlin-
ear transformations of the coordinates.

Figure 2 summarizes these mathematical operators for gradient,
Fourier, and wavelet representations. While many of these formulae
are widely available in calculus textbooks, their forms give consid-
erable insight in comparing analysis with different representations.

Multiplication. Canonically, h(x, θ ) = f (x, θ )g(x, θ ). In the
Fourier basis, this is a convolution, written H (�) = F(�) ⊗ G(�),
where ⊗ stands for convolution. For gradients,

�h = f � g + g � f. (2)

Integration. Consider h(x) = ∫
f (x, θ ) dθ , where, for example,

f may denote the lighting premultiplied by the cosine term (with
the result h(x) being the diffuse shading). After a Fourier transform,
this corresponds to restricting ourselves to the �θ = 0 line, that is,
the �x axis, so H (�x ) = F(�x , 0). For first-order analysis,

hx =
∫

fx (x, θ ) dθ. (3)

Convolution. Canonically, h(x, θ ) = ∫
f (x, ω)g(θ − ω) dω,

where f can be thought of as the incident lighting and g as the
homogeneous radially symmetric BRDF. In the Fourier basis, this
becomes a multiplication, H (�) = F(�)G(�). For gradient anal-
ysis, it is convenient to realize that convolution is a symmetric op-
eration.1 Thus, derivatives and convolutions commute, so that

h = f ⊗ g ⇒ �h = � f ⊗ g, (4)

where the convolution is only over the angular coordinate.

1By symmetry, hθ = fθ ⊗ g in Eq. (4) is the same as hθ = f ⊗ gθ . This
symmetry no longer holds for 3D spherical convolution, where the lighting
is a 2D spherical function while the radially symmetric BRDF is 1D. In this
case, we must use f ⊗gθ (see Appendix B). However, Eq. (4) is still accurate
for flatland, and can be used in practice even for 3D sampling.
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Linear Transformations. In general, we consider

h(u) = f (Mu), (5)

where u is a n × 1 vector and M is a n × n matrix. In 2D, the light
field has two dimensions, so n = 2 and u = (x, θ )T . For example,
f could be the incident light field in global coordinates, and h could
be the lighting in the local coordinate frame of a point, with M being
the appropriate transformation of u = (x, θ )T .

For Fourier analysis, we can use the general Fourier linear trans-
formation theorem. While the derivation is straightforward, it does
not appear to be commonly found in standard texts or well-known
in the field, so we briefly derive it in Appendix A,

H (Ω) = 1

| det(M) | F(M−T Ω), (6)

where det(M) is the determinant of M .
For gradients, we have a similar linear transformation theorem

(also derived in Appendix A). In particular,

�h(u) = MT � f (Mu). (7)

Nonlinear transformations. Finally, we come to nonlinear transfor-
mations. These are seldom considered in analyses of light transport
because it is not clear how to handle them with Fourier or wavelet
methods.

To apply gradient techniques, we effectively use the chain rule.
We assume that h(u) = f (T (u)), where T is a general nonlinear
and not necessarily invertible transformation. However, T can be
locally linearized, by computing the Jacobian, to obtain a local linear
transformation matrix J (u) (that now depends on u),

h(ui ) = f (Ti (u)) Jik(u) = ∂Ti

∂uk
�h(u) = J T (u)� f (T (u)). (8)

Implications. Besides relating Fourier and gradient techniques,
direct application of these formulae simplifies many derivations,
both in our article and in previous work. For example, many deriva-
tions in Durand et al. [2005] follow directly from the Fourier linear
transformation theorem. The Fourier slice result in Ng [2005] can
be easily derived using a combination of the linear transformation
and integration relations. Figure 2 also indicates why certain repre-
sentations are more commonly used for mathematical analysis. The
Fourier basis handles the first four basic operations in a very sim-
ple way, making it possible to conduct a full analysis of linear light
transport, such as Durand et al. [2005]. Similarly, the simple form of
these operations with gradients makes them well-suited to the anal-
ysis in this article. Moreover, gradients are often the only available
tool when considering nonlinear transformations for which there is
no simple Fourier equivalent. For wavelets, on the other hand, most
operations like convolution or linear transforms are very difficult
to study theoretically or analytically. However, recent work shows
there are often efficient computational wavelet methods for practical
applications, such as triple product algorithms for fast multiplica-
tion [Ng et al. 2004; Clarberg et al. 2005], or the recent fast wavelet
rotation method [Wang et al. 2006].

4. LIGHT REFLECTION FROM CURVED
SURFACES IN 2D

In this section, we first discuss the important conceptual steps for re-
flection from a homogeneous curved object (with a brief digression
to consider spatially-varying materials). Then, we analyze nonlinear
transformations like normal or bump maps, and derive the combined
gradient, including all effects. In Section 5, we describe a simple

(a)
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   Light Field             Spatial Gradient          Angular Gradient
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(c)
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Fig. 3. The light field and its spatial and angular gradients, as a result of the
various curved surface shading steps in Section 4.1. Green denotes positive
values, and red denotes negative values.

direct extension to 3D, and analyze the effects of individual shad-
ing terms. In Sections 4 and 5, we do not explicitly consider cast
shadows, since visibility is analyzed in detail in Sections 6 and 7.

4.1 Basic Shading Steps

To illustrate our ideas, we start with a spatially and directionally-
varying light source, showing how the light field and gradients
change with various shading steps. As shown in Figure 3(a), the
source intensity L(x, θ ) varies as a Gaussian along both spatial
(horizontal) and angular (vertical) axes. Besides providing a sim-
ple didactic example, one motivation is to consider spatially, and
directionally-varying sources, which have rarely been studied.

We assume the global coordinate frame is aligned such that the
surface normal at origin x = 0 is pointing straight up (towards
θ = 0). The surface is parameterized by the arc-length distance x
along it (which is equivalent to the global x coordinate near x = 0
and used interchangeably). We linearize the surface about x = 0 so
that the normal is given by kx , where k is the standard geometric
curvature at x = 0, and we use positive signs for counterclockwise
directions. Note that this linearization is mainly to simplify the ex-
position and not actually required, since we only need to consider
the local gradients—this will be emphasized in the final results of
Sections 4.2 and 4.3.

Step (1) Per Point Rotation into Local or Surface Frame: We
must perform a rotation at each point to convert global coordi-
nates to local. Let L(x, θ ) be the incident light field in the global
frame. The light field in the local or surface coordinate frame is
Ls(x, θ ) = L(x, θ + n), where n is the surface normal. Noting that
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n = kx , we write Ls(x, θ ) = L(x, θ + kx). This is a linear trans-
formation of the variables x and θ , which mixes spatial and angular
coordinates, shearing the light field along the angular dimension, as
seen in Figure 3(b). If u = (x, θ )T , then Ls(u) = L(Mu), with M
being

(
xnew
θnew

)
=

(
1 0
k 1

) (
x
θ

)
M =

(
1 0
k 1

)
MT =

(
1 k
0 1

)
.

(9)

Using the linear transformation theorem in Eq. (7), and premul-
tiplying by MT , as required,

Ls(x, θ ) = L(x, θ + kx)

�Ls(x, θ ) =
(

1 k
0 1

)
� L(x, θ + kx). (10)

This can be written out explicitly as

(
Ls

x
Ls

θ

)
=

(
1 k
0 1

) (
Lx (x, θ + kx)
Lθ (x, θ + kx)

)

=
(

Lx (x, θ + kx) + k · Lθ (x, θ + kx)
Lθ (x, θ + kx)

)
, (11)

which can be easily verified by differentiating Ls directly, and where
we have made the arguments for evaluation explicit. As noted ear-
lier, the subscripts denote partial derivatives with Ls

x = ∂Ls/∂x
and Ls

θ = ∂Ls/∂θ . As seen in Figure 3(b), the spatial and angu-
lar gradients are sheared in the angular dimension, like the light
field, because all quantities are evaluated at the sheared coordinates
(x, θ + kx).

From the preceding equation, the angular gradients Ls
θ have the

same form as Lθ . The spatial gradient Ls
x makes explicit that shading

variation occurs in two ways: Either the incident light field includes
spatially varying components Lx , and/or the surface has curvature k
(and there is angular lighting variation Lθ ). For a distant environment
map (so L is independent of x), there is no spatial variation (Lx =
0), and Ls

x is only due to curvature. For a flat surface, there is no
curvature (and in fact, Ls = L for this step), and spatial gradients
only come from the original light field. We can also see how to
relate the two components which have comparable magnitude when
| Lx |∼| kLθ |. This discussion also immediately shows the benefit
of first-order analysis where individual gradient terms correspond
directly to different types of shading variation.

Cosine multiplication. We can now multiply by the cosine term,
with the standard multiplication formula for the gradients (Eq. (2)).
Since the cosine effect is relatively subtle and often rolled into
Phong-like BRDFs, we will simply incorporate it in the BRDF trans-
port function for the combined analysis in Section 4.3.

Step (2) Mirror Reparameterization: For glossy materials,
we reparameterize by the mirror direction, setting Lm(x, θ ) =
Ls(x, −θ ). The light field and gradients in Figure 3(c) are there-
fore reflected about the θ -axis. The angular gradient is also negated

Lm
θ (x, θ ) = −Ls

θ (x, −θ ), (12)

or more formally,

Lm(x, θ) = Ls(x, −θ )

�Lm(x, θ) =
(

1 0
0 −1

)
� Ls(x, −θ ). (13)

Step (3) BRDF Convolution: Reflection from the surface can be
written as a convolution2 with a radially symmetric BRDF ρ

Bs(x, θ ) = Lm ⊗ ρ =
∫

Lm(x, ω)ρ(ω − θ ) dω. (14)

Note that we could also generalize the BRDF model beyond radially
symmetric. The gradients would be essentially the same, but with the
convolution replaced by a general integral using the general BRDF
ρ(ω, θ ).

For determining the gradients of Bs(x, θ ) in Eq. (14), we use the
gradient convolution rule in Eq. (4),

�Bs(x, θ ) = �Lm ⊗ ρ =
∫

�Lm(x, ω)ρ(ω − θ ) dω. (15)

Since gradients and convolutions commute, we effectively obtain
gradients of the convolution by convolving the gradients(

Bs
x

Bs
θ

)
=

(
Lm

x ⊗ ρ

Lm
θ ⊗ ρ

)
. (16)

Figure 3(d) shows the results of convolving with a Gaussian for
ρ. This is analogous to a Phong or approximate Torrance-Sparrow
BRDF. We would expect the convolution to lead to some blurring
along the vertical, or angular, direction, and this is in fact the case
for both the light field and the spatial and angular gradients.

Step (4) Inverse Per Point Rotation into Global Frame: So far,
we have worked in the local or surface coordinate frame (hence, the
superscript s on the reflected light field Bs). If we seek to express
the final result in the global frame, we should undo the original per
point rotation, writing, analogous to Eq. (10),

B(x, θ ) = Bs(x, θ − kx)

�B(x, θ ) =
(

1 −k
0 1

)
� Bs(x, θ − kx). (17)

Spatially-Varying materials. As a brief aside, we consider a gen-
eralization of Step 3 to spatially-varying materials. In this case,

Bs(x, θ ) =
∫

Lm(x, ω)ρ(x, ω − θ ) dω. (18)

Note that the convolution is only over angular coordinates, while
Lm and ρ are multiplied over spatial coordinates. The gradients are
given by (

Bs
x

Bs
θ

)
=

(
Lm

x ⊗ ρ + Lm ⊗ ρx
Lm

θ ⊗ ρ

)
. (19)

The only additional term is Lm ⊗ ρx in Bs
x , which corresponds to

the spatial gradient, or texture, in the BRDF.
An interesting special case is texture mapping, where ρ(x) simply

multiplies the diffuse shading. In this case, we denote E as the
irradiance

∫
Ls(x, ω) dω so that Bs(x) = E(x)ρ(x) and

Bs
x = Exρ + Eρx . (20)

For smooth objects, the diffuse shading is low
frequency [Ramamoorthi and Hanrahan 2001], so Ex is gen-
erally small and Bs

x ∼ Eρx (a similar result holds even in 3D, with
�Bs ∼ E � ρ. In 3D, the direction of the gradient �Bs depends
primarily on the direction of the texture gradient �ρ, independent

2We use ρ(ω−θ ) instead of ρ(θ −ω) for algebraic simplicity in Section 4.3.
Since the BRDF is symmetric, this does not matter, and is actually more
consistent with our sign conventions.
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of the lighting or irradiance, while the magnitude is scaled by E .
This is one explanation for why the direction of the gradient is
a good measure for lighting-insensitive recognition in computer
vision [Chen et al. 2000].)

4.2 Gradients for Normal or Bump Maps

We now generalize to arbitrary normal or bump maps, which are
nonlinear transformations. In this case, the per point rotation step
involves a general function n(x) for the normal. By differentiating,
using the chain rule (or using Eq. (8), with the Jacobian of the
transform),

Ls(x, θ ) = L(x, θ + n(x))

�Ls(x, θ ) =
(

1 nx
0 1

)
� L(x, θ + n(x)), (21)

where nx = ∂n/∂x . Hence, we can define a general per point curva-
ture k(x) = nx = ∂n/∂x , assuming an arc-length parameterization.
For normal maps, n(x) = n̂(x)+n0(x), where n̂ is the bump map and
n0(x) is the base normal of the surface. Assuming that the bump map
has much higher frequencies than the base surface, k(x) ≈ ∂ n̂/∂x ,
and depends primarily on the curvature of the bump map. If there
is no bump map, k(x) is simply the curvature of the base surface
∂no/∂x . The use of gradient analysis lets us generalize to bump
maps very easily, with the general function k(x) = nx = ∂n/∂x
simply taking the place of k in Eq. (10).

4.3 Light Field Gradients

We now combine the four light-surface interaction steps in Sec-
tion 4.1, replacing kx with n(x). From Eqs. (17) and (14),

B(x, θ ) = Bs(x, θ−n(x)) =
∫

Lm(x, ω)ρ(ω−θ+n(x)) dω. (22)

Upon substituting Eqs. (13) and (10) for Lm , we obtain Lm(x, ω) =
Ls(x, −ω) = L(x, −ω + n(x)). Hence,

B(x, θ ) =
∫

L(x, −ω + n(x))ρ(ω − θ + n(x)) dω

=
∫

L(x, ω′)ρ(2n(x) − θ − ω′) dω′, (23)

where we set ω′ = n(x) − ω, and we end up with a standard convo-
lution, but evaluated at the “reflected outgoing direction,” given by
θr = 2n(x) − θ , as we might expect.

Upon making similar substitutions for the gradients
(Eqs. (10), (13), (16), and (17)), and combining the linear
transforms,

�B =
(

1 −nx
0 1

) (
1 0
0 −1

) (
1 nx
0 1

)

×
∫

�L(x, −ω + n(x))ρ(ω − θ + n(x)) dω (24)

=
(

1 2nx
0 −1

) ∫
�L(x, ω′)ρ(2n(x) − θ − ω′) dω′.

Now, we can write down explicitly, using θr = 2n(x) − θ for the
reflected direction and ⊗ for convolution,

Bx (x, θ ) = (Lx ⊗ ρ) (x, θr ) + 2 · nx · (Lθ ⊗ ρ) (x, θr )
Bθ (x, θ ) = − (Lθ ⊗ ρ) (x, θr ).

(25)

This is an overall formula for shading gradients on a curved sur-
face. While the initial derivation in Section 4.1 assumed that the
global coordinate frame was aligned with the surface at x = 0, and
used a linearization of the surface as a conceptual tool, the final
formula is completely local, as expected for gradient analysis. We
only need the geometric curvature nx at a point, as well as the spatial
and angular gradients of the incident light Lx and Lθ (expressed in
the local coordinate or tangent frame), where x is a local arc-length
parameterization of the surface. We have verified these results for
a number of flatland scenes, with analytic examples and numerical
evaluation.

For simplicity, we focus on homogeneous objects in this section.
However, incorporating spatial BRDF variation is straightforward.
First, consider the common case when ρ is a product of the current
angular BRDF, and a spatially-varying texture which simply mul-
tiplies the final result. We have already studied texture mapping in
Eq. (20). The spatial gradient Bx involves a modulation of Eq. (25)
by the texture, and an additional term corresponding to the texture
gradient modulated by the image intensity from Eq. (23). This latter
term can dominate in regions of large texture gradients and corre-
sponds to the observation that high-frequency texture often masks
slow shading variations. General spatially-varying BRDFs require a
generalization of the BRDF convolution in Step 3, as in Eq. (19) of
Section 4.1. The only additional term in Eq. (25) is (L ⊗ ρx )(x, θr )
in the spatial gradient Bx .

5. EXTENSION TO 3D AND IMPLICATIONS OF
GRADIENT ANALYSIS

While our derivations have been in 2D, we can directly use the
3D analogs of these results for many rendering applications and
analyses. In this section, we first discuss the direct extension to
3D, and then describe several implications of Eq. (25), as well as
extensions to image gradients and second-order analysis.

In Appendix B, we generalize the four basic shading steps of
Section 4.1 to 3D. This requires simple vector calculus and differ-
ential geometry. While the algebra is more complex, we obtain very
similar results as in the 2D (or flatland) case. For example, the cur-
vature k simply corresponds to the principal curvatures in 3D. In
fact, we show in Section 5.1 that it is both possible and simpler to
directly use the straightforward 3D analogs of 2D results for real
images—the formal 3D derivation in Appendix B is seen to have a
very similar form.

5.1 Direct Extension to 3D

To directly extend Eq. (25) to 3D, we interpret the convolutions ⊗
as 3D convolutions of lighting gradients and the BRDF, over the full
sphere of incident lighting directions. The 2D curvature nx is sim-
ply replaced by the Gaussian curvature of the surface. For practical
computations, the incident light field’s spatial and angular gradi-
ents (corresponding to Lx and Lθ , respectively) can be determined
analytically where possible, or numerically otherwise, and usually
relate directly to the variation in intensity of the light sources.

Consider the spatial gradient Bx in 2D. In 3D, we will have two
such expressions Bx and By . For the gradient magnitude visualiza-
tions in Section 5.2 or the nonuniform image sampling in Section 9,
we consider the net magnitude (B2

x + B2
y )1/2. These magnitudes are

independent of which specific (orthogonal) directions are chosen for
the axes x and y. For the angular gradients, we treat the direction
θ as a unit vector, with Bθ corresponding to two gradients along
directions in the tangent plane to θ . Finally, we consider the net
magnitude of these angular gradients in Sections 5.2 and 9.
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Fig. 4. Magnitudes of various light field gradient terms, corresponding to
a variety of common situations and special cases. Entries not filled-in have
“normal” values, depending on the specific lighting and BRDF.

5.2 Implications: Analysis of Gradient Terms

We now discuss some implications of Eq. (25). Figure 4 shows a
number of common situations. To aid our discussion, we label the
important terms. We refer to Lx ⊗ ρ as the spatial variation (SV)
term in the lighting. Analogously, Lθ ⊗ρ is the directional variation
(DV) term—the directional variation in the reflected light field Bθ

is essentially the same as the incident DV. We refer to 2nx as the
curvature (CV) term, and the product 2nx (Lθ ⊗ ρ) as the curvature
directional variation (CDV) term. Spatial gradients in the reflected
light field Bx are a combination of SV and CDV terms.

We first describe how various factors (lighting, geometry, and ma-
terials) affect shading gradients. Figure 4 summarizes our insights.
Then, we use a simple 3D scene to illustrate some of these effects.

Lighting. In distant lighting, there is no spatial lighting variation
SV (Lx = 0), and spatial gradients Bx are due solely to the curvature
and angular lighting variation (CDV). If the environment itself varies
little (low DV, small | Lθ |), such as an overcast sky, we get soft
shading effects with little spatial variation (| Bx | is small). On
the other hand, for a near light source, there is significant spatial
variation (large Lx ), and both SV and CDV must be considered.

Geometry. A bump-mapped surface has high curvature, so the
directional term CDV will be large, and the main contributor to
Bx . On the other hand, a flat surface has no curvature, so the CDV
term vanishes, and only the spatial variation Lx in the lighting can
induce shading changes. A particularly interesting special case is
a flat surface in a distant environment map. In this case, we get
uniform shading across the surface, and indeed Bx = 0.

BRDF. Material properties can also affect the results. For a Lam-
bertian object (or the diffuse lobe of a general material), the BRDF
ρ is a low-pass filter that causes the directional shading DV to be
low-frequency and smooth. Hence, strong spatial gradients in the
lighting (the SV term) can often be important to the overall shad-
ing. Moreover, we know that sharp edges cannot come from the DV
term, and will either be at geometric discontinuities (very high cur-
vature) or due to strong spatial variation in the lighting. On the other
hand, for a mirror surface, like the chrome-steel sphere often used
to estimate the illumination, we will see full directional variation in
the lighting, and DV will be high.

We can also make some quantitative statements. The spatial term
SV and directional CDV will be of roughly the same magnitude
when | Lx |∼ 2 | nx || Lθ |. This allows a concept like “far”
lighting to be formalized as | Lx |� 2 | nx || Lθ |. In the simple
case when the near light source(s) is isotropic and at a distance d,
from trigonometry, Lx ≈ Lθ /d , so the condition for far lighting
becomes 1/d � 2 | nx |, which relates the distance of the lighting
to the surface curvature. This criterion depends on the curvature: A
light source that is far for a bump-mapped object may not be clas-

sified as far for a flat table. One application is efficient rendering
approximation, where light sources could be treated as distant for
bump-mapped or other high-curvature surfaces, while being mod-
eled exactly in flat regions based on these criteria. There are similar
applications for inverse problems and perception—it will be rela-
tively easier to estimate near-field lighting effects from flatter objects
than from curved surfaces.

We illustrate some of these ideas with a simple didactic 3D scene
in Figure 5 that includes a nearly (but not with zero curvature) flat
table on which sit a diffuse, diffuse plus glossy, and bumpy sphere.
The scene is lit by a moderately close area source. We use the direct
3D analogs of 2D gradients, as discussed in Section 5.1.

The gradient magnitudes are visualized on a log scale in
Figures 5(b)–5(e). The spatial gradient of the (moderately near)
lighting (Figure 5(b)) can be large, and is primarily responsible for
the highlight on the (nearly) flat table. Indeed, CDV is very low on
the table, while being highest on the bumpy sphere. CDV is also re-
sponsible for effects like the specular highlight on the glossy sphere.
Figure 5(e) plots the ratio of angular and spatial terms CDV/SV. This
ratio is very high for the bump-mapped object, where the angular
term dominates, and very low for the table. One insight is that the
lighting is effectively distant for the bumpy sphere, but not for the
table. In diffuse regions of the Lambertian and diffuse plus glossy
sphere, there are parts where CDV and SV are comparable.

Finally, Figure 6 shows the effects of moving the light source
further away for the same scene. For near lighting, the spatial
gradient SV is quite important. As the lighting becomes more dis-
tant, this term becomes less important relative to the directional
variation CDV, and the CDV/SV increases, as expected.

5.3 Image Gradients

So far, we have found the light field gradients. We now seek the
projected image I (u) and image gradients Iu . We carry out our
derivation only in 2D (with a projected 1D image I (u)), since the
3D projection to a 2D image is similar for u and v axes. We assume
the perspective projection model with u = γ x⊥/z, where z is the
vertical distance to the point, x⊥ is the horizontal distance, and γ is
the focal length. Using the standard chain rule for gradients,

Iu = CT B C =
(

∂x/∂u
∂θ/∂u

)
B =

(
Bx
Bθ

)
. (26)

The terms B just correspond to Bx = ∂ B/∂x and Bθ = ∂ B/∂θ , and
are the light field derivatives in Eq. (25). The terms C are the camera
derivatives. To derive them, we write u = γ x⊥/z. The algebra is
slightly tricky, but these are standard trigonometric expressions. For
brevity, we omit the derivation, stating the result

∂x
∂u

= z2

γ
√

z2 + x2
⊥(n0 · v)

∂θ

∂u
= 1

γ + u2/γ
, (27)

where n0 · v is the dot product between the viewing ray and the
(global, without normal mapping) geometric surface normal.

As an example, consider highlights on a flat surface under distant
lighting (but with a close viewer). Since there is no curvature or
spatial lighting variation, the spatial light field gradient Bx = 0. In
this case, for u � γ , the ∂θ/∂u ≈ γ −1, and the image gradient is
Iu ≈ γ −1 Bθ , dominated by the angular variation in the light field.

At the other extreme, assume that the camera is distant (large γ
and z). We can neglect ∂θ/∂u, since θ does not vary much over
the image. Moreover, x⊥ is small relative to z, so that we can write
∂x/∂u ∼ (z/γ )(n0 · v)−1, and

Iu ≈ 1

γ

z
n0 · v

Bx . (28)
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Fig. 5. A scene that shows various shading effects, including a nearly flat table, and diffuse, glossy, and bumpy spheres, lit by a moderately close area source
(b), (c), and (d) show various terms of the gradients; (e) shows the ratio of curvature-weighted directional variation (CDV) and spatial variation (SV).

Fig. 6. Change in ratio of directional and spatial gradients as the light
moves further away. For near lighting, SV is important, while the relative
importance of the angular term (and CDV/SV) increases for far lighting.

This just corresponds to scaling up the spatial light field gradient
Bx at grazing angles (when n0 · v is small) and for distant objects
(large z), when more of the surface projects onto a single pixel.

5.4 Second-Order Light Field Analysis

Finally, one benefit of a first-order analysis is that it is easy to ex-
tend to higher orders. Appendix C differentiates the convolutions in
Eq. (25) to derive second-order terms, or Hessians,

Bxx = Lxx ⊗ ρ + 4nx (Lxθ ⊗ ρ) + 4(nx )2(Lθθ ⊗ ρ)

+ 2nxx (Lθ ⊗ ρ)

Bθθ = Lθθ ⊗ ρ

Bθx = Bxθ = −Lxθ ⊗ ρ − 2nx (Lθθ ⊗ ρ). (29)

As expected, these second derivatives involve second derivatives
of the incident light field. The angular second derivative Bθθ is
easy, just corresponding to the second derivative Lθθ of the incident
light field. Similarly, the mixed partials involve only two terms:
The mixed partial Lxθ and the curvature-weighted Lθθ . This is very
similar to the spatial gradient behavior Bx in Eq. (25). The spatial
second derivative Bxx is the most complex and includes a number of
terms, including a curvature derivative nxx in one of them, indicating
the intricacies of the reflected light field.

6. FIRST-ORDER ANALYSIS OF SOFT SHADOWS
IN 2D

So far, we have not explicitly considered the visibility term V (x, ω)
in Eq. (1). Indeed, since visibility is a discontinuous function, its
“derivatives” can be infinite. However, by taking the shading integral
into account, we can derive finite analytic formulae for soft shadow
gradients. We start by showing how to incorporate visibility into the

shading equations. Then, we compute visibility gradients Vx and Vω

in 2D, followed in Section 7 by a 3D analysis.

6.1 Incorporating Visibility

Taking shadows into account, the incident light field L shad at a point
is a product of the unshadowed lighting L and binary visibility V

L shad(x, θ ) = L(x, θ )V (x, θ ). (30)

The gradients are given simply by

�L shad(x, θ ) = �L(x, θ )V (x, θ ) + L(x, θ ) � V (x, θ ). (31)

Our previous formulae are still valid if we reinterpret L as the
shadowed illumination L shad, which is already premultiplied by the
visibility. Hence, in any gradient formula, we can replace Lx by
Lx V + LVx and Lθ by Lθ V + LVθ . The first term (Lx V or Lθ V )
simply requires us to modulate the shading integrals or convolutions,
such as those in Eq. (25), by the visibility V .

The second term (LVx or LVθ ) requires us to find visibility gradi-
ents. Indeed, these gradients are the focus of this section, and have
often been omitted in previous analyses and algorithms. In general,
the shading gradients in these cases can be written as

B(x, θ ) =
∫

T (x, θ, ω)V (x, ω) dω

�BV =
∫

T (x, θ, ω) � V (x, ω) dω, (32)

where T is a general transport operator encompassing lighting L and
BRDF ρ. For simple convolution, T (x, θ, ω) = L(x, ω)ρ(x, θ −ω).
The superscript in BV indicates explicitly that we are considering
the visibility gradient term (not gradients of the lighting or BRDF).
For ease of notation, we will drop this superscript from now on.

6.2 Local Visibility Gradients

The visibility V is a binary function, and the gradients of it
are Dirac delta “functions” or distributions, being zero except at
discontinuities, where they are infinite. However, the previous inte-
gral for �B(x, θ ) is still finite.3

Figure 7 shows the 2D cases of polyline and curved blockers that
we consider. For computing gradients, it suffices to consider the
local region around an extremal blocker point P , summing over all

3As noted by Arvo [1994] and others, there are degenerate configurations
(such as where shadow lines from multiple blockers meet at a point or a
visibility ray is tangent to two blockers) where the gradients can actually
be infinite. In practice, as seen by our results, these degenerate cases are
relatively rare and do not affect the numerics significantly.
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Fig. 7. We consider the gradient of the blocked region αx = dα/dx ; (a)
a polyline blocker, where the extremal ray intersects a single point P (b) a
curved blocker.
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Fig. 8. Representation of the visibility V (x, ω) at a single point for (a)
single and (b) multiple discontinuities. The sign in the visibility equations is
positive if going from visible to blocked, and we sum over discontinuities.

such visibility discontinuities. From Figure 7, V (x, ω) = 1 (visible)
when ω < α(x) and 0 (blocked) when ω > α(x). Formally,

V (x, ω) = H (α(x) − ω), (33)

where H is the Heaviside step function (H (u) = 1 when u > 0,
and 0 otherwise). If the visibility transition at α is from blocked to
visible instead of vice versa, we will need to change signs, using
1 − H .

In practice, a general visibility function at a point can have multi-
ple discontinuities, as shown in Figure 8(b). These general visibility
functions can be represented as a sum of the Heaviside functions
for each discontinuity α j (x), and we can consider the net gradient
as the sum of the gradients due to each discontinuity. Therefore,
in most of the remaining exposition, we analyze a single visibility
discontinuity, or blocker, but our final formulae involve sums over
all of the visibility discontinuities, and are fully general.

The derivative of the Heaviside function is the Dirac delta

Vx = δ(α(x) − ω)αx Vω = −δ(α(x) − ω). (34)

Angular gradients. Plugging into Eq. (32), the angular gradient
is simple: The delta function evaluates T at ω = α(x),

Bθ =
∑

j

−sgn j T (x, θ, α j (x)), (35)

where we sum over all discontinuities j of the visibility V (x, ω)
for given x , with the appropriate sign sgn j , as shown in
Figure 8. For example, in Figure 8(a), Bθ = −T (x, θ, α1(x)). In
Figure 8(b), Bθ = −T (x, θ, α1(x)) + T (x, θ, α2(x)). Note that we
only need to observe the visibility discontinuities at a single spa-
tial location x to compute the gradients. If we numerically compute
V (x, ω), such as by ray-tracing, it is easy to determine the disconti-
nuities (simply adjacent angles ω where V (x, ω) differs) and apply
the preceding equation.

Spatial gradients. The spatial gradients are more interesting, since
we need to determine αx = dα/dx . This effectively controls how
fast the visibility changes as we move along x , and therefore depends
on the vertical distance d to the blocker.

First, consider the case where we have a polyline blocker, and
therefore a single extremal point P , as in Figure 7(a). From
trigonometry, tan α = x/d, which can be differentiated to give

dα

dx
= cos2 α

d
= cos α

D
, (36)

where d is the vertical distance to the blocker, and D is the total
distance, with D = d/ cos α. In Appendix D, we show that exactly
the same result holds even if we consider a curved blocker, as in
Figure 7(b). Finally, we can write for the spatial gradient

Bx =
∑

j

+sgn j T (x, θ, α j (x))
cos α j

D j
, (37)

where we sum over all discontinuities, as for the angular gradient.

Finally, note that Eqs. (35) and (37) no longer involve delta func-
tions or infinities, and therefore easily allow further differentiation
to find second-order Hessians. Moreover, our approach can also ap-
ply to other shading situations involving delta-function gradients,
such as the sharp edges of area light sources, or mirror reflectance.

Implications and discussion. These results have several implica-
tions. First, the gradient varies inversely with the distance to the
blockers. Second, we must sum over all visibility discontinuities
at a given spatial location to find the net gradient. This confirms
the use of the harmonic mean of blocker distances as a metric for
gradient algorithms and sampling [Ward and Heckbert 1992]. How-
ever, we go further in deriving an exact formula which considers
general curved or polygonal blockers, and can accurately be used
for gradient-based interpolation, beyond its use as a metric for sam-
pling. Moreover, we consider the cos α term in the numerator, with
a smaller gradient for blockers at grazing angles.

Also note the connection between spatial and angular effects for
visibility, as for the earlier shading formulae. Eq. (37) for the spatial
gradient at a point involves knowledge only of the angular disconti-
nuities α j in visibility at this spatial location. Unlike numerical dif-
ferentiation, we do not need to consider neighboring spatial points,
making implementation efficient and robust.

6.3 Evaluation and Verification in 2D or Flatland

To evaluate and verify the accuracy of our formulae, we consider
a simple flatland scene of a flat diffuse surface in Figure 9, shad-
owed by a box (rectangle) and a circle, lit by a distant environment
map (with Gaussian variation in lighting, being maximal directly
overhead). The cosine term can be folded into the lighting, and T
corresponds almost directly to the illumination, allowing us to fo-
cus on visibility effects. Figure 9(b) shows that the shading on the
receiver has complex umbra and penumbra regions.

To use the preceding analytic formulae, we need to know the vis-
ibility discontinuities α j (x) and other relevant information, such as
the distance to the blocker D j . Note that different discontinuities,
j , need not correspond to the same object, and occluding objects
can overlap (this is discussed in greater detail in our practical im-
plementation in Section 8.1). The visibility discontinuities can be
determined in two ways: For simple objects, the values of α j (x)
can be determined analytically in object-space, by considering each
object. More generally, we can numerically sample V (x, ω) at a
number of angular locations ωk , as in standard image-space ray-
tracing. The discontinuities α j (x) are then simply those ωk , where
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scene description intensity on receiver numerical vs. theoretical gradient our sampling scheme vs. uniform sampling

Fig. 9. Using our formula for visibility gradients and sampling; In (a) we show a schematic of our scene; (b) shows the shading on the receiver that includes
complex umbra and penumbra regions; (c) compares gradients obtained by numerical differentiation with those from our theoretical formula, indicating the
noise in numerical differentiation; (d) (including closeup on right) compares our adaptive sampling based on gradients to uniform sampling.

Fig. 10. Comparison of gradient interpolation versus standard linear inter-
polation for shadows (with uniform sampling). As seen in the closeup on the
right, using gradients gives significantly greater accuracy.

adjacent values differ (the visibility boundaries or discontinuities).
These numerical α j are then used in the analytic formulae given by
Eqs. (35) and (37). This approach is “semianalytic,” since visibility
discontinuities α j (and the related D j ) are determined numerically
(but with very high precision, since we typically use a large number
of samples, such as 256 or 512, in ω). We also make comparisons
with the purely numerical computation of the visibility gradient by
standard numerical differentiation of the intensities, without using
our analytic formulae at all.

As seen in Figure 9(c), the numerical intensity gradient is very
noisy. Because visibility is a binary function, the intensity (and local
visibility extrema α j (x)) usually change in a stairstep pattern, de-
pending on specific lighting and image resolutions. While this mild
aliasing is not usually a problem for image synthesis, it introduces
serious problems for numerical differentiation. By contrast, with
our formal treatment of the visibility gradient as a delta function,
we calculate a smooth result that accurately matches the correct
value. Note that at the scale of this figure, fully analytic and “semi-
analytic” gradients were identical, and are not shown separately.

Figure 9(d) explores applications to adaptive image sampling,
using an adaptive sampler based on our accurate gradients which
places more samples in high-gradient shadow regions, leading to a
much more accurate reconstruction than uniform sampling.

Our calculations will perhaps be most useful in terms of accurate
visibility gradients for gradient-based interpolation in algorithms
liked those of Ward and Heckbert [1992], which currently often ig-
nore visibility gradients. Figure 10 compares gradient interpolation
to standard linear interpolation (for uniform sampling); it is clear
that gradient interpolation gives much higher accuracy.

7. FIRST-ORDER ANALYSIS OF SOFT SHADOWS
IN 3D

Unlike for curved surface reflection in Section 4, it is not possible
to use the direct 3D analog of the 2D results (as in Section 5.1).
However, we can extend our visibility analysis to 3D using much the
same techniques as in 2D. In this section, for simplicity, we assume
a flat receiver. We start by considering spatial visibility gradients.
Then, we compute gradients for the total visible area of the sphere
of directions, followed by gradients in complex lighting. To our
knowledge, this is the first derivation of accurate visibility gradients
for general curved occluders.

7.1 Spatial Visibility Gradients

In 3D, the visibility is

V (x, y, θ, φ) = H (α(x, y, φ) − θ ), (38)

where θ and φ are a standard spherical parameterization in terms of
elevation and azimuthal angle, and (x, y) are spatial coordinates. As
in flatland, we are considering a single discontinuity α(x, y, φ) here
for ease of exposition, but we can address general visibility simply
by summing the gradients for multiple visibility discontinuities—
our final formulae will include this explicit summation.

We consider only Vx here, since the derivation for Vy is similar,

Vx (x, y, θ, φ) = δ(α(x, y, φ) − θ )αx (x, y, φ). (39)

As in 2D, the difficult part is determining αx . It is convenient to
define new axes u and v , where u is aligned along φ, given by
(cos φ, sin φ), and v is aligned at 90◦, given by (− sin φ, cos φ). In
this case, applying the chain rule,

αx (x, y, φ) = αx (u, v) = αu(u, v)ux + αv (u, v)vx , (40)

which can be simplified to

αx (x, y, φ) = αu(u, v) cos φ − αv (u, v) sin φ. (41)

We now derive αu and αv for a general curved surface. Figure 11
shows the local geometry in the u-v plane (Appendix D derives the
analogous result for a polygonal object or mesh, which we have
numerically verified extensively using general cuboids or boxes).

The basic idea is to think about the differential change in the
point of intersection p, as we move the spatial location slightly in
the u-v plane. We define w as the direction of the tangent ray to the
surface, given in the (u, v, z) frame by (sin α, 0, cos α). Here, c is the
transverse direction given in the (u, v, z) frame as (cos α, 0, − sin α).
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Fig. 11. Local geometry for calculation of αu and αv in 3D visibility.

Moreover, w and c are orthogonal, forming a coordinate frame for
the u-z plane.

If the angle α changes a small amount, the point of intersection
moves an amount dp = (D dα) c along c, from basic trigonometry.
Similarly, if the distance to the blocker changes a small amount,
the point of intersection moves along the tangent ray dp = (dD)w.
Finally, if the starting spatial location shifts in the u-v plane by an
amount dr in the direction m (where for us, m is either the u- or
v-axis), the point of intersection will move dp = dr m,

dp = (Ddα) c + (dD)w + (dr) m. (42)

The new point of intersection still lies on the tangent plane to the
surface at p (shown in red in Figure 11) to first-order. Therefore,
dp · n = 0, where n is the surface normal at p,

dp · n = 0 = (Ddα) c · n + (dD)w · n + (dr) m · n. (43)

Now, the condition of tangency requires that w · n = 0, so that

D dα(c · n) + dr(m · n) = 0 ⇒ dα
dr

= − 1

D
m · n

c · n
. (44)

Finding αu . Let dr= du and m = u be a unit vector along u. It is
possible to express u = sin αw + cos αc. Noting that w · n = 0,

αu = − 1

D
sin αw · n + cos α c · n

c · n
= − cos α

D
, (45)

as expected, since αu is essentially the flatland 2D case.

Finding αv . Now, consider αv with m = v. Directly from Eq. (44),

αv = − 1

D
v · n

c · n
. (46)

Finally, note that, as in the 2D case, the spatial gradients depend
inversely on the distance to the blocker D. The gradients also depend
on the angle α, as well as the angle between the blocker’s surface
normal n and the vectors c and v.

7.2 Gradients of Net Visibility

Now, we consider gradients of the net visibility, that is, what fraction
of the hemisphere of directions is blocked. This is immediately
useful for ambient occlusion [Christensen 2002], and provides a
useful background for the complex environments considered later,

B(x, y) =
∫ 2π

φ=0

∫ π/2

θ=0
V (x, y, θ, φ) sin θ dθdφ. (47)

To compute gradients Bx , we use the visibility gradients Vx from
Eq. (39). The delta function causes the θ integral to be evaluated
at α(x, y, φ). Summing over multiple discontinuities as usual (so
that we can handle general visibility and multiple discontinuities
for each φ),

Bx (x, y) =
∫ 2π

φ=0

∑
j

(
sgn j

∂α j

∂x
(x, y, φ) sin α j (x, y, φ)

)
dφ,

(48)
where we use the long form ∂α j/∂x , instead of αx , to avoid con-
fusion with the subscript j for the j th discontinuity. For simplicity,
we assume that x and y are coordinates on the receiver. If we seek
gradients in the image, we will need to consider camera terms, as
we did in 2D, and we have implemented these where appropriate.

As in flatland, evaluation of the previous equation requires know-
ing the locations of visibility discontinuities α j , and related quanti-
ties (such as the distance to the blocker at those points). For simple
objects and scenes, these can be determined analytically in object-
space by considering each object. In general, we can use standard
image-space ray-tracing to determine the α j numerically with high
precision, and plug into the preceding formula for a “semianalytic”
evaluation, just as in the flatland case.

It is important to note that, unlike in flatland, we must still do a
1D integral over φ, which in practice is performed using adaptive
numerical integration. Note, however, that the delta functions in
visibility have already been resolved, so that this φ integral is now
well behaved, and efficient to evaluate accurately.4

Efficiency and accuracy. Our gradient computation is very effi-
cient and accurate. The gradients depend only on discontinuities, not
the full visibility function. In particular, Eq. (48) is only a 1D inte-
gral, as opposed to the image evaluation in Eq. (47), which requires
2D integration. Therefore, gradients can be computed very effi-
ciently relative to the actual image. This is true regardless of whether
we can analytically determine the discontinuities α j (x, y, φ) for
each φ (as for simple objects in our examples) or need to use a
“semianalytic” approach wherein the α j are found numerically from
the full visibility calculation.

Figure 12 shows a plane with a single sphere blocker. For a single
sphere, it is easy to derive an independent analytic expression for
Eq. (47) to test accuracy. Indeed, with 400 samples inφ, the gradients
computed by our method in Figure 12 are nearly exact for 24-bit
RGB images. On the other hand, even with 900 samples, the image
evaluation shows noticeable variance or bias. While these errors
are usually tolerable for image synthesis, they become pronounced
when computing gradients by numerical differentiation—which is
also compared in Figure 12.

7.3 Complex Lighting

We now consider environment map illumination on a flat Lambertian
surface. In this case, the cosine term can be folded into the lighting,

4The only challenging numerical issue occurs if ∂α j /∂x is very large. The
denominator c · n in Eq. (46) can be small when the u-z plane is (nearly)
tangent to the surface (so that both c · n and w · n are zero). It can be shown
that this is a weak singularity, going as (φ − φ0)−1/2, where φ0 is where
the u-z plane is tangent to the surface. Therefore, the integral is still well
behaved, and we evaluate it efficiently by an adaptive sampling of φ. The
other potential problem is minor errors when the number of discontinuities
α j changes abruptly, such as from 1 to 2. This is responsible for the slight
errors near the projection of the sphere on the ground plane in Figure 12.
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Fig. 12. Accuracy of net visibility gradients. From left-to-right, the simple scene, the independent analytic gradient for Bx (for a head-on view of the ground
plane), the accurate results computed by our method, and the very noisy results obtained by numerical differentiation.

g
g

wsu

Fig. 13. Comparison of gradient interpolation to linear interpolation. The leftmost image shows the scene. The other images interpolate shading directly on
the ground plane (shown in a head-on view), using a uniform 20 × 20 sampling (less than 1% of total pixels). Gradient interpolation with our accurate gradients
is very high-quality, and substantially lowers the error from simple linear interpolation.

and the gradients are only due to soft shadows

B(x, y) =
∫ 2π

φ=0

∫ π/2

θ=0
L(θ, φ)V (x, y, θ, φ) sin θ dθdφ

Bx (x, y) =
∫ 2π

φ=0

∑
j

(
sgn j L(α j (x, y, φ), φ)

∂α j

∂x
(x, y, φ)

× sin α j (x, y, φ)

)
dφ. (49)

These visibility gradients can also be trivially extended to spatially-
varying lighting, L(x, y, θ, φ). However, the intensity gradients Bx
would need an additional term corresponding to variation in the
lighting itself. Similarly, complex reflectance can be baked into the
lighting term for a flat surface with a distant viewer. For a close
viewer, the visibility part of the gradient simply replaces L with a
general transport function, and there will be an additional term for
gradients of the BRDF, themselves.

8. PRACTICAL APPLICATION: GRADIENT-BASED
INTERPOLATION OF SOFT SHADOWS

We now discuss some simple prototype applications, suggesting
how gradient analysis may be applied to efficient rendering. In this

section, we focus on gradient-based interpolation of soft shadows,
while the next section addresses adaptive gradient-based image sam-
pling. We emphasize that these are proof-of-concept results, indica-
tive of the potential of our analysis, with more work required to
develop production-quality solutions. Nevertheless, they indicate
the potential benefits of a first-order analysis and we expect that
many other applications in forward and inverse rendering may ben-
efit from our analysis.

To illustrate our gradient-based interpolation method for efficient
rendering of soft shadows, we use the scene in Figure 13, which is lit
by an environment map (with the usual Gaussian lighting variation).
While the geometry is simple (three spheres on a ground plane), our
main focus is on the shadows, which exhibit complex penumbra
regions on the ground plane from curved blockers.

The standard approach to rendering computes the image shading
and visibility at each pixel (or each location on the receiver plane).
Our goal is to instead compute the image and its gradients accu-
rately at a small number of pixels (Figure 13 demonstrates accurate
results using only 1% of the pixels). The gradients can then be used
to do interpolation very efficiently, instead of explicitly computing
the shading at other pixels. This approach is enabled by our ac-
curate analytic formula for soft shadow gradients, and is seen in
Figure 13 to be significantly more accurate than simple linear inter-
polation. Thus, we can use our gradient formulae to very efficiently
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render complex shadows with standard gradient interpolation
methods.

8.1 Implementation

The shading on the receiver plane in Figure 13 is first computed
accurately at a coarse spatial grid of only 1/10 the resolution of the
image in both directions (or only 1% of the total pixels). Simultane-
ously with computing the image, we also compute the gradients at
these points, as discussed next. At each pixel on the coarse grid, we
use high-resolution (θ ×φ) = 100×100 environment and visibility
sampling.

To compute the spatial gradients for environment map lighting,
we can use Eq. (49). Consider a given spatial location (pixel) (x, y)
and azimuthal angle φ. We will need to determine all discontinu-
ities α j (x, y, φ) along θ . Since we sum the gradients due to each
discontinuity, we can handle general visibility.

Object-Space analytic method. One approach is to analytically
determine the visibility discontinuities α j (x, y, φ) for all objects in
the scene. We use this object-space approach for our scene since
the calculation is simple for a sphere, as well as many other simple
parametric objects.5 We then need to merge the information from all
objects in the scene, to determine the net visibility discontinuities
observed. For example, let the first sphere be visible between α0 = 0
and α1 = π/4, and the second between α0 = π/6 and α1 = π/3.
The receiver point sees only two (and not four) discontinuities in its
net visibility at α∗

0 = 0 (from the first object) and α∗
1 = π/3 (from

the second object). Since we are simply dealing with 1D segments
(along θ ) of visible and blocked regions, this merge is relatively
straightforward.

Image-Space semianalytic method. For a scene with several com-
plex objects, it may not be feasible to obtain the α j analytically, nor
practical to do so separately for each object. Fortunately, our ray
tracer already has an image-space notion of visibility, computing
V (θk ; x, y, φ) for a discrete set of values θk for the spatial location
(x, y) and azimuthal angle φ. We can now easily find the visibility
discontinuities α j (i.e., those θk where V (θk) and V (θk+1) differ).
While this calculation is numerical (and hence the overall method
is semianalytic), it is fairly precise, since, the visibility is sampled
finely. We can then use these α j values (and auxiliary information
like distances to the blockers) in our analytic gradient formulae.

Computation. Once the discontinuities α j have been determined,
we can use the formula for ∂α j/∂x from Section 7.1. Determining
the lighting term L(α j (x, y, φ), φ) in Eq. (49) is also straightfor-
ward. Note that we have thus far considered the calculation for a
single value of φ. Finally, we need to numerically integrate or add
up the contributions due to all φ values.

Efficiency and accuracy. The gradient computation at a pixel in-
troduces minimal overhead relative to computing the shading (and
shadows) at this pixel. For the object-space analytic technique, find-
ing the visibility discontinuities analytically is very efficient, and
does not even require the tracing of rays for visibility. For the image-
space method, the same visibility rays as for shading are used to
determine discontinuities, so the overhead is minimal—no new ray
tracing is required in either method to compute gradients. In both
cases, the final 1D integral over φ is much faster than the 2D lighting
integral for the image.

5For more complex geometric objects, a computational geometry plane-
sweep algorithm may still be possible, since we are essentially intersecting
with a plane given by the spatial location (x, y), angle φ, and perpendicular
direction.

In fact, both object-space analytic and image-space semiana-
lytic methods for computing gradients are much more efficient than
straightforward numerical differentation. Standard numerical differ-
entiation would require explicit image computation at neighboring
pixels to take finite differences. This computation at nearby pixels
(and ray-tracing to compute shadows) is a constant multiplier over
computing the shading at a single pixel. On the other hand, analytic
or semianalytic gradient evaluation imposes minimal overhead, and,
as seen in Figure 12, is significantly more accurate.

Interpolation and results. We now have the image values and
gradients computed over a coarse grid. Any of a number of standard
gradient-based interpolation schemes [Ward and Heckbert 1992;
Annen et al. 2004] can be used to determine the values of interme-
diate image pixels (we construct a quadratic Bezier curve). As seen
in Figure 13, gradient-based interpolation is much more accurate
than standard linear interpolation, and one to two orders of mag-
nitude more efficient than explicitly evaluating the shading at each
pixel.

8.2 Limitations and Evaluation

Accurate gradient computations in our framework require a fairly
dense sampling of the φ integrals. In addition, we must have ac-
curate values at the image pixels to enable proper interpolation.
This requires a dense sampling of the incident illumination at those
pixels that are explicitly evaluated (we use a 100 × 100 uniform
θ × φ sampling, which requires a number of shadow rays to be
traced). By contrast, standard image synthesis techniques that com-
pute each pixel independently, without calculating gradients, often
do not require very high accuracy (since the final display only has
8 bits). Therefore, they can often use many fewer shadow rays at
a pixel [Agarwal et al. 2003]. However, given the dramatically re-
duced number of pixels our method needs to explicitly evaluate, it
is still likely to lead to a speedup.

An issue with all interpolation techniques is that they can be
inaccurate when the initial set of samples is too far apart, so that there
are important discontinuities that are missed. In these cases, gradient
(or linear) interpolation will smooth over the discontinuities. A fully
robust system would therefore need to identify significant image-
space geometric discontinuities (perhaps using some recent global
visibility analysis methods, such as Durand et al. [2002]), and place
samples to avoid interpolating across them.

In general, we believe gradient-based soft shadow interpolation
provides a powerful tool for fast rendering and analysis of penumbra
regions for which general analytic formulae have not previously
been available.

9. PRACTICAL APPLICATION: GRADIENT-BASED
IMAGE SAMPLING FOR FAST RENDERING

We now develop a simple algorithm that adaptively samples images
for efficiency. We seek to place more image samples in high-contrast
regions with large gradients. The analysis in Sections 4 and 5 imme-
diately confers insight, and we could develop a number of simple
heuristics to place samples where the SV or CDV terms are ex-
pected to be large. We would not even need to formally evaluate
the convolutions, and could simply focus on regions of high spatial
or directional change in lighting. We could also use our analysis
to sample more finely in high curvature regions and grazing angles
for the camera (low n0 · v), or to develop a simple metric using a
product of these factors. As a proof-of-concept, in this section, we
will show how to use the full gradient computation, that is, Iu from
Eq. (26), with camera terms in Eq. (27), and light field gradients
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our sampling sampling for Durand et al.

Fig. 14. Comparison of sample locations (using 10% of the image pixels)
with our gradient algorithm, and the approximation of Durand et al. [2005],
for the scene in Figure 5. We correctly place more samples on the bumpy
sphere, and in highlights, while Durand et al. focus on relatively smooth re-
gions near the sphere boundaries, with a coarser sampling for the diffuse ob-
ject. Note: To avoid line aliasing, the reader may wish to zoom into the PDF.

in Eq. (25). As in Section 5.2, we use direct 3D analogs of 2D or
flatland gradients.

9.1 Implementation and Results

For adaptive sampling, we use a method based on quad-trees. We
first render a sparse uniform sampling, dividing the image into 8×8
blocks. We treat each sample as the center of a square, and use the
gradient magnitude | Iu |, multiplied by the area of the square, as
an importance metric. We then greedily pick the square of greatest
importance, and refine it into four smaller squares, placing four new
samples at their centers: This reduces the net importance metric in
each subsquare, since the area is reduced to 1/4. We also always
subdivide along object boundaries or silhouettes in image space so
as to avoid interpolating across different objects. At the end, samples
are eventually distributed according to gradient magnitude. Note that
when we subdivide to create new samples, these need not lie on the
original grid of image pixels, and can be at fractional locations: Our
final image reconstruction involves a Delaunay triangulation of all
the sample locations (including those at each level of subdivision),
and interpolates to determine pixel intensities.

This simple adaptive scheme also allows us to directly compare
with any other metric. In particular, we consider the frequency-based
sampling heuristic of Durand et al. [2005] (Eq. (20) of their article),
which in our notation can be written as

I ∼ 1

γ

2kz
n0 · v

�ρ,

where I is the importance given to a pixel, k is the global curvature
(without considering nonlinear effects like bump maps), and �ρ is an
overall band-limit for the BRDF (based on Ramamoorthi and Han-
rahan [2001], we use �ρ = √

6s, where s is the Phong exponent).
Note that for uniformity, we do not compare to the actual imple-
mentation in Durand et al. [2005], but only to the aforementioned
metric calculated within a single framework. For example, in these
comparisons both methods work adaptively, while the actual imple-
mentation in Durand et al. [2005] uses a simpler (but potentially
more costly) two-pass approach. On the other hand, Durand et al.
[2005] actually compute curvature on the basis of finite differences
within a normal buffer that, in practice, could take bump maps into
account—however, their theoretical development cannot conceptu-
ally fully handle bump mapping, and we therefore use the preceding
metric.

Figure 14 compares the sample distribution for our gradient met-
ric and that from the previous formula for the scene in Figure 5
(both with 10% of the total image samples). The approach of Du-
rand et al. [2005] places many samples near object boundaries where
n0 ·v is small. However, these regions are primarily diffuse, with the
shading not varying rapidly. Moreover, more weight is given to the
glossy spheres than the Lambertian sphere, and no special impor-
tance is attached to the bumpy object. By contrast, our approach can
explicitly evaluate the gradients. Therefore, it places lots of sam-
ples in the bumps to capture them accurately. Moreover, the glossy
sphere has a finer sampling in only the highlight region, but coarser
sampling elsewhere. Finally, our approach samples somewhat more
densely on the table between the spheres, where there are interesting
near-field lighting effects like highlights.

To extend these results to complex geometric objects, we must ad-
dress curvature on meshes, complex reflectance, and shadows. Gaus-
sian curvatures are assumed to be given as part of the input, and in
practice, are precomputed using the TriMesh library [Rusinkiewicz
2004]. For general BRDFs, we simply replace convolutions with the
explicit shading calculation for gradients, as we already must do for
the image intensity. Finally, for shadows, we modulate shading in-
tegrals for the gradients by visibility, as well as for the image itself.
Shadow testing is the expensive operation in a ray tracer, especially
with soft shadows in complex lighting. Since the same visibility
samples are used for image and gradient calculations, our approach
introduces minimal overhead.

Figure 15 shows a similar scene, now with geometric objects and
shadows. We see that with only 17% of the samples, we obtain sharp
results comparable to the reference, including on the bumpy sphere.
By contrast, an equal number of uniform samples, blurs the bumps
considerably, as does the method of Durand et al. [2005]. More-
over, comparison of sample distributions shows that we place them
appropriately, in high-curvature (bumpy) areas and rapid change re-
gions like highlights or shadows. Considering the error plots on the
far right, uniform sampling has large errors on all of the objects.
Durand et al. [2005] have large errors on the bumpy sphere, and to
some extent in the teapot highlight, as well as on the head of the
cow, since less weight is given to diffuse objects.

In terms of total wall-clock running time, the reference image (at
a resolution of 512 × 512), which evaluates each pixel separately,
took 75.9 minutes (our ray-tracing software is not optimized). If we
simply perform a gradient calculation at every pixel so as to check
the overhead involved for just the gradient calculation itself (without
any adaptive sampling), the additional time is only 1.2 minutes, or
less than 2%. The primary overhead in computing the adaptively
sampled image actually comes from quad-tree construction, and
takes about 6 minutes (8%).

On this specific scene with our adaptive image sampling eval-
uating 17% of the pixels, the bumps are easier to ray-trace for
shadows (a simple sphere) and we actually obtain a slightly su-
perlinear speedup in total wall-clock running time (11.5 minutes
for gradient sampling, or a 6.6× improvement over the reference
75.9 minutes), and are also somewhat faster than Durand et al.
[2005], who place fewer samples in the bumps (17.5 minutes). In
general, we expect the efficiency improvement to be directly pro-
portional to the number of pixels evaluated for both our method and
Durand et al. [2005].

9.2 Comparison to Alternative Approaches

There are a number of other adaptive image sampling strategies
for ray-tracing which we make comparison to briefly here, giving
some insights into the strengths and limitations of our approach.
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Fig. 15. Comparison of various image sampling strategies for a 3D scene with complex geometry, reflectance, and shadows. Our method, based on gradient
magnitude, places samples in regions of high-curvature and shading change, closely matching the reference with only 17% of the effective pixels. By contrast,
both uniform sampling and Durand et al. [2005] blur the bumpy sphere, as well as having other regions with large errors. Note: To avoid on-screen aliasing in
the sampling visualizations, the reader may wish to zoom into the figure in the PDF.

As we note that many of these strategies effectively compute gra-
dients numerically in their inner loops, and we believe our method
can be integrated into many of these techniques to improve their
performance or accuracy.

Adaptive image sampling. Perhaps the most common approach is
to consider the variance between nearby samples, adaptively adding
more samples in high-variance regions. In effect, this is equivalent
to estimating the magnitude of the gradient in a local region nu-
merically. As a simple example, in flatland, the variance or differ-
ence in intensity between two neighboring points is just the central
difference formula for the derivative at their midpoint. In many
respects, this strategy is very similar to our adaptive quad-tree con-
struction for sampling, differing primarily in the numerical (rather
than analytically-based) computation of gradients, and confirms the
use of a gradient-based sampling metric.

A potential issue with numerical estimation of variance is shown
in Figure 16. As an illustrative example, we consider a flatland
bumpy surface that is essentially a sine wave. Since the intial sam-
ples are placed coarsely, they do not match the frequency of the
bumps, and the numerically computed gradient is much lower than
the actual (or analytically determined) value. In effect, this is the
standard aliasing problem whereby a lower sampling rate effectively
sees an incorrect low-frequency or aliased version of the original
signal. Note that for adaptive image sampling, we cannot afford
to initially sample densely enough to capture all high-frequency
details—indeed, doing so would defeat the purpose of adaptive sam-
pling. By contrast, our approach computes gradients analytically and
is usually accurate, regardless of the initial grid resolution.

Figure 17 compares our analytic gradient approach to
numerically-based adaptive sampling in 2D. We consider bumps
whose frequency varies, increasing from left-to-right. This is a very
common real-world scenario because of the perspective viewing

of surfaces, wherein the frequency content increases for distant re-
gions. Our approach reconstructs a fairly accurate version of the
original signal, while numerical adaptive sampling has regions of
large error in high-frequency areas. The form of these errors is also
interesting, and corresponds to an aliased or low-frequency repre-
sentation of parts of the image.

Finally, Figure 18 compares images of the bumpy sphere for our
method and numerical adaptive sampling with the same number
of samples. It can be seen that our gradient-based image sampling
technique performs somewhat better in preserving the sharpness,
especially in the highlights. Moreover, the sampling patterns show
that our approach can focus precisely on the fastest varying regions,
even within bumps.

Directional coherence maps. In recent years, several more sophis-
ticated adaptive sampling and image analysis methods have been
developed, which we discuss briefly. The most notable work is per-
haps that of Guo [1998], which exploits information on edges in
the image to construct directional coherence maps for sampling. A
number of recent works have shown the importance of identifying
edge information [Bala et al. 2003; Sen et al. 2003] in other ren-
dering contexts. In effect, Guo [1998] uses the magnitude of the
gradient (estimated numerically from small image blocks) to guide
image sampling. However, he goes further in identifying and re-
specting edge directions. This essentially boils down to computing
the gradient direction. With a simple extension to our gradient cal-
culation to compute the direction (i.e., Bx and By separately), we
believe our approach can be integrated into Guo’s framework; using
an analytically-based gradient could, in many cases, provide more
accurate estimates of the behavior of images in local blocks.

Note that for a scene like Figure 15, there are no significant
edges except at object boundaries (which we already take into ac-
count), so directional coherence maps are unlikely to provide a
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Fig. 16. Potential “aliasing-like” inaccuracies in numerical gradient computation for adaptive image sampling with a coarse initial sample placement. The
numerical image gradients in red (effectively used for adaptive image sampling) are significantly lower-frequency than the original signal.

Fig. 17. Common practical situation of spatially-varying frequencies. From left-to-right, the original image or function sampled using our approach with
analytic gradients, and using numerical adaptive sampling. The closeups in the bottom row show that our method is quite accurate, while numerical adaptive
sampling makes significant errors, and often fails to refine its coarse or “low-frequency” estimate.
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Fig. 18. Comparison of sampling pattern (top) and closeups of bumpy sphere (bottom) for our approach and numerical adaptive image sampling, with the
same number of adaptively placed samples. Our method produces a somewhat sharper pattern on the bumps, especially for the specular highlights on the sphere,
since adaptive image sampling somewhat underestimates gradients of high-frequency bump map.

significant speedup over standard numerical adaptive sampling. In-
deed, coherence-based techniques like Guo [1998] are not intended
for bumpy surfaces in complex environment illumination with soft
shadows.

Coherence in shadow rays. Much recent work has addressed the
exploitation of coherence in shadow ray-tracing [Agrawala et al.
2000; Ben-Artzi et al. 2006], which is usually the dominant cost
in rendering with complex lighting. Such coherence-based shadow
accelerations are not readily applicable in our case, since the lighting
can neither be assumed distant nor a small area source. Moreover,
we also consider complex reflectance effects. An interesting future
direction is to see if our shadow gradient computations can be used
to generalize shadow coherence techniques.

9.3 Limitations and Evaluation

Our current approach has some theoretical and practical limita-
tions. From a theoretical perspective, a gradient or linear interpola-
tion technique for reconstruction can already deal with first-order
variation in the image, even if the gradient magnitude is large. There-
fore, we should actually be using a second-order analysis to guide
image sampling (such as the formulae in Eq. (29). In practice, how-
ever, higher-order derivatives are well correlated with the gradient,
and gradient-based image sampling is much simpler and more sta-

ble than using higher-order schemes. Indeed, as just discussed, most
adaptive image sampling methods effectively use some form of gra-
dient sampling. Practically, we need to assess the robustness of our
method on more complex scenes. This would be most interesting in
the context of a more sophisticated predictor, such as directional co-
herence maps. Our adaptive sampling metric also does not currently
consider shadow gradients; using our visibility gradient formulae
may make for more robust sampling in shadowed regions. Never-
theless, we believe our proof-of-concept gradient-based sampler is a
viable alternative for adaptive image sampling techniques, and has
significant potential for integration into more advanced sampling
strategies.

10. DISCUSSION AND COMPARISON

In this section, we briefly discuss some of our theoretical results
compared to Fourier analysis [Durand et al. 2005], and previous
analyses of visibility [Arvo 1994; Ramamoorthi et al. 2005].

Basic shading steps. Section 4.1 conducts a first-order analysis of
the basic steps for light reflection from a curved surface, and is simi-
lar to the frequency analysis of light transport in Durand et al. [2005].
Most analogies and differences follow directly from the forms of the
mathematical operations in Section 3.1. For instance, consider the
per point rotation in Step 1 with Ls(x, θ ) = L(x, θ + kx), and the
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gradient formula in Eq. (10). The effects on the Fourier spectrum are
found from the linear transformation theorem in Eq. (6). To apply
this, we need M−T and its determinant. Note that M−T is simply
MT in Eq. (9), with k replaced by −k, and det(M) = 1,

Ls(�) = L(�′)
(

�′
x

�′
θ

)
=

(
1 −k
0 1

) (
�x
�θ

)
=

(
�x − k�θ

�θ

)
.

(50)

Apart from a sign change (we use a different sign convention for
k), this is the formula derived from first principles by Durand et al.
[2005]. The important differences between Fourier and gradient
results are direct consequences of the linear transformation theorems
in Eqs. (7) (gradient) and (6) (Fourier). The function in the gradient
case is evaluated at L(Mu): in this case, (x, θ + kx). Hence, the
gradients will be transformed in the same way as the light field:
in this case, sheared along the angular dimension. By contrast, the
function in the Fourier case is evaluated at L(M−T �): in this case
(�x −k�θ, �θ ). Therefore, the 2D Fourier spectrum is often sheared
in the opposite way as the light field (and gradients)—in this case,
along the spatial dimension.

Also note that Durand et al. [2005] include additional shading
steps at the beginning and end, for reparameterization into the local
tangent frame, in their equivalent of section 4.1. Because gradient
analysis is fully local, as discussed after Eq. (25), our final results
do not need these additional reparameterization steps.

Advantages of first-order analysis. Frequency analysis has many
benefits and insights in a variety of applications. In particular, one
obtains a full frequency spectrum, as opposed to the first term of
a Taylor expansion. However, for the theory in this article, first-
order analysis easily separates the different factors responsible for
shading variation. Moreover, we can accurately consider nonlinear
transformations like bump maps, aspects of camera transformations,
and visibility. The derivations and insights in Sections 4.2–5.4 would
not be easy to obtain from Fourier analysis.

A concrete example is the relative performance of gradient-
based adaptive image sampling versus a frequency-based metric,
in Section 9. In fact, we can consider the sampling metric in Durand
et al. [2005] (Eq. (20) of their paper) a special case of Eq. (28),
with the assumption of a distant camera with distant lighting and no
bump mapping. In this case, Bx = 2k(Lθ ⊗ρ), where we substitute
the global curvature k for nx ,

Iu ≈ 1

γ

2kz
n0 · v

(Lθ ⊗ ρ)(x, θr ). (51)

If we further approximated the convolution with a constant band-
limit ((Lθ ⊗ ρ) ∼ �ρ) derived from the BRDF, we would recover
the image sampling criterion in Eq. (20) of Durand et al. [2005].

We emphasize that the gradient approach allows spatially-varying
lighting, bump mapping, and close cameras. Moreover, we can ex-
plicitly evaluate convolutions like Lθ ⊗ρ, whereas Fourier methods
do not easily lend themselves to practical computation.

Visibility. Since visibility is nonlinear, frequency analysis can
give some insights, but not the precise formulae derived here. Our
analysis of 2D visibility is perhaps closest to the shadow convo-
lution relation in Ramamoorthi et al. [2005]. However, we make
an exact calculation of local shadowing and gradients, and gener-
alize to curved occluders. The 3D analysis has some similarities to
the irradiance Jacobian of Arvo [1994] for polygonal scenes, but
we also consider general curved occluding surfaces. Moreover, our
approach is different in that all computations are local, depending
only on visibility discontinuities at a single point, and being easy
and efficient to integrate into a ray-tracing framework. Note that we
consider local gradients, and our method is orthogonal to identify-

ing global visibility events [Durand et al. 2002]; a future direction
is to combine visibility gradients with global analysis.

11. CONCLUSIONS AND FUTURE WORK

We present a complete first-order theory of lighting, shading, and
shadows. First, we develop a full gradient analysis of the basic shad-
ing steps, showing the relationship between spatial, and angular
effects. Second, we analyze the gradients for general scenes with
bump maps, and spatially-and directionally-varying lighting. Gradi-
ent analysis allows us to separate the effects of the individual terms,
and determine under what conditions each factor (lighting varia-
tion, surface curvature, and object reflectance) is important. Third,
we develop novel results for visibility gradients, which generalize
much previous work on analysis of soft shadows. In terms of practi-
cal applications, we show how to use gradients to adaptively sample
images for efficient rendering, and demonstrate efficient gradient-
based visibility interpolation.

We see this article as an important theoretical step in the anal-
ysis of light transport. In the future, we are hopeful that methods
from this work can be used to derive rigorous theoretical bounds
and new practical algorithms for many widely used gradient in-
terpolation methods like irradiance gradients, spherical harmonic
gradients, ray differentials, and path perturbation. We also expect
to see the sampling metrics applied to other problems involving
nonlinear steps, such as the flow of light fields in the full vol-
ume or 5D space, as is necessary for applications like shadow
fields for precomputed radiance transfer [Zhou et al. 2005]. Finally,
gradient-based methods are also likely to be important in inverse
problems where we have only local information, such as nearby
views.

More generally, we see this article as an important step towards a
comprehensive framework for analyzing light transport using a vari-
ety of established mathematical tools. It complements and extends
the recent frequency domain and signal processing analyses that
use Fourier and spherical harmonic representations. In the future,
we expect considerable further effort on a theoretical analysis of
lighting and reflection, using other basis representations and opera-
tors to give a rich fundamental understanding of the computational
nature of light transport.

APPENDIXES

APPENDIX A: LINEAR TRANSFORMATION
THEOREMS

In this appendix, we briefly derive the linear transformation theo-
rem for Fourier transforms, as well as gradient-based methods. For
Fourier, note that (with I = √−1),

F(Ω) =
∫

f (u) exp
[−2π IΩT u

]
du, (52)

where Ω and u are both vectors. If we now set u = Mv, then

F(Ω) = | det(M) |
∫

f (Mv) exp
[−2π IΩT Mv

]
dv

= | det(M) |
∫

h(v) exp
[−2π I (MT Ω)T v

]
dv,

F(Ω) = | det(M) | H (MT Ω)

⇒ H (Ω) = 1

| det(M) | F(M−T Ω). (53)
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Now, if the transform includes translations, and so we have u =
Mv + c, then

F(Ω) = | det(M) | exp[−2π I�T c]∫
h(v) exp

[−2π I (MT Ω)T v
]

dv (54)

= | det(M) | exp[−2π I�T c]H (MT Ω)

⇒ H (Ω) = exp[2π IΩT M−1c]

| det(M) | F(M−T Ω).

For gradients, we can write

h(ui ) = f (vi =
∑

j

Mi j u j ) ⇒ ∂h
∂ui

=
∑

k

∂ f
∂vk

∂vk

∂ui

=
∑

k

∂ f
∂vk

Mki , (55)

which can be rearranged to Eq. (7).

APPENDIX B: LIGHT REFLECTION FROM 3D
SURFACES

We briefly extend the light-curved surface interaction steps in Sec-
tion 4.1 to 3D. We define local tangent frames and partial derivatives
with respect to motion in a particular direction.6 At x, the tangents
are t and b, which, along with the normal n, form a coordinate
frame. Similarly, ω can be treated as a vector with tangents u and
v for Ls . The angular tangent directions of the global L will be
l = Ru and m = Rv, where R is the appropriate rotation (or
reflection) matrix. Algebraic simplicity in the formulae requires
precisely choosing these tangent vectors, which we will describe
shortly. For now, note that a partial derivative such as Ls

t is defined
as Ls

t = (∂/∂α)Ls(x + αt,ω).
Rotation (Step 1). We first discuss rotations, writing Ls(x,ω) =

L(x, R[n(x)]ω), where R is a 3 × 3 rotation matrix in 3D. The
angular gradients now become

Ls
u = ∂

∂α
L(x, R(ω + αu)) Ls

v = ∂

∂α
L(x, R(ω + αv)), (56)

where R can be treated as a constant matrix, since the spatial location
(and hence the normal) is not changing. Since we know that l = Ru
and m = Rv, this simply becomes

Ls
u = ∂

∂α
L(x, Rω + αl) = Ll (x, Rω)

Ls
v = ∂

∂α
L(x, Rω + αm) = Lm(x, Rω), (57)

so that the angular gradients behave much like in the 2D case, with-
out transformation.

For the spatial gradients, we write

Ls
t = ∂

∂α
L(x + αt, R[n(x + αt)]ω)

Ls
b = ∂

∂α
L(x + αb, R[n(x + αb)]ω), (58)

where we must now also account for the change in the rotation
matrix. We will only consider Ls

t , with the other term being similar.

6Note also that since these directions are unit vectors rather than spheri-
cal angular coordinates, the gradient is well-defined based simply on these
partial derivatives, without further normalization.

It can be expanded as

Ls
t = Lt (x, Rω) + ∂

∂α
L(x, R[n(x + αt)]ω), (59)

where the first term is simply the spatial gradient of the original light
field, as in 2D. The second term, which corresponds to curvature
and directional variation in 2D, is more interesting to extend to 3D.

We now choose t and b to be the maximum and minimum curva-
ture directions (respetively), or those directions that diagonalize the
shape operator from differential geometry. Using a general set of
directions is also possible, but makes the algebra messier. We also
define κ as the leading eigenvalue of the shape operator, or principal
curvature.

The rotation matrix is simply a projection into the coordinate
frame at n. Its rows are therefore simply t, b, and n. The change of
the rotation operator can be shown to be

R[n(x+αt)] ≈
⎛
⎝ t + ακn

b
n − ακt

⎞
⎠ = R[n(x)]+ακ P P =

⎛
⎝ n

0
−t

⎞
⎠ .

(60)
Therefore,

L(x, R[n(x + αt)]ω) = L(x, Rω + ακ Pω). (61)

It can be easily verified by directly taking dot-products that Rω and
Pω are orthogonal. Therefore, Pω lies in the tangent space to Rω,
and we can define l = Pω/ ‖ Pω ‖, with a corresponding definition
for m using the P derived from b instead of t. By extension, we can
define u = R−1l and v = R−1m. Finally, let μ =‖ Pω ‖.

With these judicious choices for directions and tangent frames,
the algebra becomes simple without loss of generality, and

∂

∂α
L(x, R[n(x + αt)]ω) = μκLl (x, Rω). (62)

The 3D case now becomes very close to 2D or flatland, with

Ls
t = Lt + μ1κ1 Ll Ls

b = Lb + μ2κ2 Lm, (63)

where we have explicitly written the two principal curvatures as κ1

and κ2. The final inverse rotation in Step 4 can be treated in the same
way.

Reflection (Step 2). If R is a (now fixed, independent of x) reflec-
tion, it simply negates the tangents u and v, so these gradients (and
the evaluation location) should be negated as in 2D, with Lm

u = −Ls
u

and Lm
v = −Ls

v .
Convolution (Step 3). Unlike in the 2D flatland case, we must

differentiate the BRDF kernel rather than the more elegant approach
of considering gradients of the lighting. Briefly, the 3D convolution
equation for a 1D radially symmetric BRDF is

Bs(x,θ) =
∫

�

Lm(x,ω)ρ(θ · ω) dω = Lm ⊗ ρ. (64)

The spatial gradients can proceed as in 2D, with, for example,

Bs
t (x,θ) =

∫
�

Lm
t (x,ω)ρ(θ · ω) dω = Lm

t ⊗ ρ. (65)

For the angular gradients, as before, we have to define tangent frames
with

Bs
u(x,θ) = ∂

∂α
Bs(x,θ+αu) = ∂

∂α

∫
�

Lm(x,ω)ρ(θ·ω+αu·ω) dω,

(66)
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which can easily be simplified using the derivative ρ ′ of the 1D
BRDF ρ to

Bs
u(x,θ) =

∫
�

Lm(x,ω)ρ ′(θ · ω)(u · ω) dω. (67)

APPENDIX C: SECOND-ORDER LIGHT FIELD
ANALYSIS

We differentiate Eq. (25) directly. One challenging issue is that
θr = 2n(x) − θ depends on both x and θ . Therefore,

h(x, θ ) = f (x, θr ) ⇒ hx (x, θ ) = fx (x, θr ) + 2 · nx · fθ (x, θr )

hθ (x, θ ) = − fθ (x, θr ). (68)

Using this relation, we can differentiate the convolutions,

[(Lx ⊗ ρ)(x, θr )]x = (Lxx ⊗ ρ)(x, θr ) + 2nx (Lxθ ⊗ ρ)(x, θr )

[(Lx ⊗ ρ)(x, θr )]θ = −(Lxθ ⊗ ρ)(x, θr )

[(Lθ ⊗ ρ)(x, θr )]x = (Lxθ ⊗ ρ)(x, θr ) + 2nx (Lθθ ⊗ ρ)(x, θr )

[(Lθ ⊗ ρ)(x, θr )]θ = −(Lθθ ⊗ ρ)(x, θr ) (69)

Now, it is easy to derive the result in Eq. (29) by (somewhat labo-
rious) differentiation, where we have omitted parameters (x, θr ) of
the evaluation for brevity.

APPENDIX D: VISIBILITY ANALYSIS

We first elaborate on the curved surface flatland case in Figure 7b.
Assume that the blocker object has an instantaneous radius of cur-
vature r . In this case, if we move a distance dx on the surface, the
point of tangency will also move. In general, if the original tangent
point was (0, d), the new point will be (−r sin αdα, d + r cos αdα).
This is derived from trigonometry, noting that the length of the arc is
r dα. Now, the coordinates of the new surface point are (x + dx, 0),
and we also know that x = d tan α. Hence,

tan(α+dα) = (x + dx) − (−r sin αdα)

d + r cos α
= d tan α + dx + r sin αdα

d + r cos αdα
.

(70)
We can simplify this by multiplying by the denominator and keeping
only first-order terms to,

d tan α + d sec2 αdα + r sin αdα = d tan α + dx + r sin αdα, (71)

which, upon subtracting d tan α + r sin αdα from both sides, can
be simplified to exactly the same form as Eq. (36). This result is
also confirmed by the 3D derivation for αu (which is essentially the
flatland 2D case) in Eq. (45).

We now consider Section 7.1, extending the curved surface deriva-
tion to polygonal blockers. For a polygonal blocker, the occlusion
is defined by an extremal line with unit vector k (the 3D general-
ization of the extremal point in 2D). Our expression also works for
mesh approximations of curved surfaces, where k can be consid-
ered a tangent in the local frame (k, n, and w form an orthonormal
coordinate frame).

For αu , we are essentially considering the 2D case with a point
blocker. Therefore, dp = 0 in Eq. (42), and by equating components
along c (since w is orthogonal to c and u = cos αc + sin αw), we
obtain αu = − cos α/D, as expected.

For αv , dp must lie along k. In this case, c, w, and v form a
coordinate frame. Hence, we can consider the coordinates of dp in
this frame, requiring the condition that (dp ·c)/(dp ·v) = k ·c/k ·v.
From Eq. (42), since c, w, and v form a coordinate frame, dp · c =

Ddα and dp · v = dv . Therefore,

D dα
dv

= k · c

k · v
⇒ αv = 1

D
k · c

k · v
. (72)

Interestingly, this result reduces to Eq. (46), if k is orthogonal to
both n and w, such as for a polygonal approximation to a curved
object. In this case, k · c = −n · v and k · v = n · c. This indicates
that we obtain a consistent result, whether we use an actual curved
object or a polygonal approximation to it.
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