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Abstract

Advances in high-performance computing have led to the
broad use of computational studies in everyday engineering
and scientific applications. A single study may require thou-
sands of computational experiments, each corresponding to
individual runs of simulation software with different param-
eter settings; in complex studies, the pattern of parameter
changes is complex and may have to be adjusted by the user
based on partial simulation results. Unfortunately, existing
tools have limited high-level support for managing large en-
sembles of simultaneous computational experiments.

In this paper, we present a system architecture for inter-
active computational studies targeting two goals. The first
is to provide a framework for high-level user interaction
with computational studies, rather than individual experi-
ments; the second is to maximize the size of the studies that
can be performed at close to interactive rates.

We describe a prototype implementation of the system
and demonstrate performance improvements obtained using
our approach for a simple model problem.

1 Introduction

Computer simulation has become widely accepted as an
integral part of the scientific method. Advances in high-
performance computing hardware and software have en-
abled simulations of ever increasing scale and accuracy, and
have led to the broad use of computational studies in ev-
eryday engineering and scientific applications. A typical
computational study is built out of multiple computational
experiments corresponding to individual runs of simulation
software. Simple computational studies may involve either
few experiments or a larger number of experiments with
simple predefined parameter variation patterns. In more
complex studies, the pattern of parameter changes is more
complex and may have to be adjusted by the user continu-
ously, based on partial results. Examples of the latter kind

range from exploration of design spaces in engineering to
molecular simulations for drug design.

With few exceptions, existing parallel system software
tools are inadequate for managing complex computational
studies. Such tools either offer limited interactivity, or re-
quire the scientist to explicitly control individual experi-
ments, an approach that does not scale for studies that in-
volve thousands of experiments.

This paper describes the architecture of the Sim-X sys-
tem, which attempts to address these shortcomings, and our
initial experiments with a prototype of the system. Sim-
X builds on several research efforts over the past decade
on computational steering tools [20, 12, 11, 23, 4], domain-
specific problem solving environments [14], and parameter-
sweep tools introduced in the context of grid comput-
ing [6, 2, 1, 22, 19, 3, 5, 10] to enable interactive computa-
tional studies. Sim-X uses the following key principles:
Dynamic resource allocation. Sim-X relies on a more per-
meable interface between parallel system software and nu-
merical simulation codes than is usually assumed by tra-
ditional environments. By exposing more of the internal
simulation structures to the system and vice-versa, our ap-
proach enables application-specific prioritization of activi-
ties (reflected in how resources are assigned), faster adapta-
tion to changing objectives, and the ability to flexibly trade-
off simulation result accuracy and precision versus resource
needs so as to meet user requirements.
Reuse. Sim-X relies on the expanded system-application
interface to aggressively reuse available data in carrying for-
ward new computations. Sim-X enables a study to return to
a previously abandoned experiment, or perform a new ex-
periment faster using the results of an experiment for nearby
parameter values as a starting point.
High-level user control. Sim-X frees the user from mi-
cromanaging every individual computational task, comple-
menting existing computational steering tools in targeting
interactive manipulation of entire computational studies,
rather than individual experiments.



Reuse and high-level control are crucial features for
bringing computational studies closer to interactive perfor-
mance rates. In our experiments, we observe a 40-fold im-
provement in performance compared to simple parameter
sweep-like approaches.

The rest of this paper is organized as follows. Section 2
draws a clearer distinction between previous efforts and the
goals of the Sim-X system, and introduces a bridge design
study where the designer’s interest is in identifying a Pareto
frontier that defines optimal tradeoffs among several design
parameters. This study serves as a running example through
the rest of the paper. Section 3 presents the overall architec-
ture of the Sim-X system, and we discuss our implementa-
tion of key components of the architecture in Section 4. The
benefits of the architecture and this expanded interface are
evaluated in Section 5. We conclude in Section 6.

2 Background

2.1 Related Work

Sim-X builds on a considerable body of prior work in
computational steering toolkits and scheduling of parameter
sweep applications.
Computational steering infrastructures. Since Bob
Haber and David McNabb first demonstrated the concept
in 1989 [13], several systems have been developed to pro-
vide an infrastructure for visualizing and steering large-
scale parallel scientific experiments. A brief chronologi-
cal history includes Falcon [12, 21], SCIRun [20, 18], CU-
MULVS [11], UINTAH [9], DISCOVER [16], CSE [23],
RealityGrid [4], gViz [24], and SCIRun2 [25].

Sim-X shares with these systems the ideas of standard-
ized component architectures, enabling application devel-
opers to mix-and-match compute, steering, and visualiza-
tion modules and reuse generic modules across multiple ap-
plication domains, and supporting a low latency visualiza-
tion/steering interaction cycle [12, 21].

However, in marked contrast to most of these systems,
which have focused on steering individual (or a small num-
ber of) experiments, Sim-X aims to steer computational
studies involving a multitude of short-running experiments,
requiring introduction of higher level user interface tools
and a framework for dynamic resource management that
emphasizes reuse and adaptation rather than fault-tolerance
and heterogeneous task migration.
Scheduling of parameter sweep applications. Several
grid computing infrastructures (APST [6], Nimrod [2, 1],
Condor [22], Globus [19, 3], Netsolve [5], Virtual Instru-
ments [10]) provide support for the scheduling of parameter
sweep applications, where the same application is run with
a change in parameter values across distributed resources.
The underlying tools simplify the running of multiple sim-
ulation experiments, possibly running into the tens of thou-
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Figure 1. The bridge design problem; posi-
tions of supports r0 and r1 are the parameters,
and the maximal displacement and the con-
struction cost define the performance mea-
sures. f(r) yields the river depth as a function
of the distance from the left bridge endpoint.

sands. Such support differs from our focus on an interac-
tive computational study; with the exceptions below, these
schedulers assume that the simulations are independent and
hence can be run in batch mode.

A small number of parameter sweep tools do support
user interaction. Condor DAGman permits specification of
a workflow involving several related parameter sweep jobs;
however, each job is still executed in batch fashion. Nim-
rod/O [1] supports applications where the user’s interest is
in identifying the point in parameter space that maximizes
a particular objective function. Sim-X generalizes this sup-
port to support more interactive exploration of fuzzier and
dynamically changing optimization criteria. Closer to our
goals is the scheduling module of the Virtual Instruments
project [10], which implements priority-based resource al-
location for the application’s tasks. Sim-X extends this sup-
port to factor in reuse of results from previous tasks and
control of the internal behavior of tasks.

2.2 Example Computational Study

In this paper, we use as an example, a sample compu-
tational study from the domain of engineering design. Our
model problem is to design an elastically deforming bridge
with four supports, two of which are fixed at the endpoints
(see Figure 1). This specific problem is relatively straight-
forward, and the individual simulations are relatively fast.
At the same time, it captures many essential features present
in a real-life engineering design situation, e.g., one involv-
ing simulations of a car body or a more complex structure.

Engineering design is a process of design space explo-
ration where one trades off amongst multiple performance
measures, subject to a set of constraints.1 In our bridge de-

1Design space and performance measures correspond to Section 3’s
parameter space and observation measures, respectively. In this section,



sign example, the two parameters defining the design space
are the locations of the two non-fixed supports. We assume
that the cost of supports changes as we move away from the
endpoints (e.g., due to the variable profile of the riverbed
and the difficulty of constructing a support further away).
A desirable design would thus trade off among two perfor-
mance measures: the cost of bridge construction and the
maximal deformation of the bridge.

A typical strategy for design space exploration is Pareto
optimization (e.g. [17]). Pareto optimization seeks to find a
set of optimal points, with each Pareto-optimal point cor-
responding to a different trade-off of design preferences,
e.g., two bridge designs may be equally desirable, one for
its lower deformation and the other for its cost. A Pareto-
optimal point has the property that improving one measure
can only be achieved at the expense of another, e.g., a bridge
design is Pareto-optimal if cost cannot be improved while
holding deformation fixed, and vice-versa. This set of opti-
mal points is the Pareto frontier.

In general the number of simulations to fully resolve the
Pareto frontier is prohibitive for all but the simplest design
problems, however using aggregation methods engineers
can steer the exploration toward regions of the Pareto fron-
tier that are particularly promising. Furthermore, engineers
are able to choose a good design point in the presence of
an incomplete or fuzzy localization of the frontier, further
reducing computational cost. Both aggregation and fuzzy
localization make the underlying computational study in-
teractive: the engineer looks at the frontier as it is evolving
and makes decisions about how to steer the study to refine
specific regions of the frontier to the desired accuracy.

3 System Architecture

Figure 2 shows the overall structure of the Sim-X archi-
tecture. We briefly discuss its main components from a user,
application and system points of view.
User view. The platform is able to run a large number of
computational experiments (simulations) organized into a
study. Simulations differ in their input parameters, which
control properties of the underlying physical/mathematical
model and the simulation technique and define the parame-
ter space for the study.

Typically, the result of a simulation is not examined by
the user directly; rather, a collection of measures is ob-
served. In our example, the measures are maximal deflec-
tion of the bridge and the cost of the construction. The
ranges of all measures forms the observation space.

The system permits a user to select domains of interest
in the parameter and observation spaces, by identifying ad-
missible ranges of parameter values and measures. In addi-
tion, inside the observation domain, the user may implicitly

we use terminology more typical of the engineering design community.

specify a target set of interest: the goal of the study is to
identify this set. The most common example of such a set
is the Pareto frontier.

The user may additionally define functions on both the
parameter and observation domains, which inform the sys-
tem about the priorities of the user. The crucial aspect of
the system is that most if not all of the user selections above
can be modified as the study is underway.
Application developer view. The application developer is
expected to provide three kinds of modules: (1) simulation
modules whose execution corresponds to the actual exper-
iment; (2) visualization and interaction modules that make
up the user interface, and (optionally) (3) transformation
modules, which make it possible to transform a state of a
simulation with one parameter set into that compatible with
another (e.g., interpolation of an intermediate solution from
a finer to a coarser grid).

Simulation modules need to adhere to a standard in-
terface to permit their active manipulation by the system.
Specifically, they need to support:

• Checkpointing: With some sufficiently fine granular-
ity, the module should be able to create a dataset from
which the current state of the simulation can be recon-
structed with a minimal amount of computation.

• Time estimates: To allocate resources to active exper-
iments, the modules must be able to provide estimates
for their time to completion, assuming simulation pa-
rameters do not change; other cost estimates, such as
the cost of adding/releasing resources, can be added.

• Snapshots of observation measures: In simulations
using iterative and hierarchical solvers, intermediate
results are useful approximations to the final solution;
observation measures can be evaluated against these
results to provide quick feedback to the user.

System view. As shown in Figure 2, the core functionality
of the system is realized by two modules, the active sampler
and the resource allocator. A shared object space layer pro-
vides a machine-wide repository of shared state, including
both simulation checkpoints and different meta-information
about the ongoing study.

The active sampler converts user specifications of pa-
rameter and observation space domains, the target set, and
priority/time target/precision functions into a collection of
sample points in the parameter domain for which simula-
tions need to be run. Whenever new user input arrives
(communicated to the active sampler by the user interface
modules), the sample set is adjusted. The active sampler
occupies an intermediate position between system and ap-
plication software. Adding domain knowledge to the sam-
pler is likely to enhance its performance, but narrow the
applicability of the system; making the sampler completely
application-independent may result in suboptimal sampling
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Figure 2. Overall architecture of the Sim-X platform for multi-experiment computational studies.

strategies in important cases. Our prototype implementa-
tion provides an active sampler for computing the Pareto
frontier (Section 4.3).

The resource allocator manages the pool of simulations
of the computational study. It receives its directives from
the active sampler module via a task list, and responds by
starting new simulations and modifying the parameters of or
terminating active ones. The goal of the resource allocator
is to optimize completion time for these simulations.

4 Current Implementation

We report on a prototype implementation of the Sim-X
architecture, which is being refined as we continue to gain
experience with supporting different kinds of studies.

4.1 Execution substrate

The overall functionality of the Sim-X architecture is
realized by two types of communicating processes: man-
agers and simulation containers. These processes commu-
nicate via a generic satellite interface. In our current imple-
mentation, the processes are just standard UNIX processes,
and the satellite interface is implemented using TCP socket
calls. The code is modular, so replacing the satellite imple-
mentation with one that uses a different transport mecha-
nism (e.g., MPI) is relatively simple.

The interaction between these processes is shown in Fig-
ure 3. One or more simulation containers are started off
first; they constitute the worker pool to which the manager
farms off individual simulations. After initializing them-
selves, the simulation containers wait to be contacted by a
manager process, which sends it simulations corresponding
to regions in the parameter space identified by the active
sampler and resource allocator modules.

The simulation container code is structured to overlap
manager interactions with computation (of a previously re-
ceived piece of work). Similarly, the manager code is struc-
tured to permit asynchronous receipt of messages from any

Figure 3. Sim-X manager and simulation con-
tainer processes.

of its simulation containers; message arrival triggers a pre-
registered callback function. The satellite interface pro-
vides a generic interface for any process to retrieve and
send information about the ongoing studies to the simula-
tion containers. It allows different kinds of processes to be
distinguished, and supports both pull-based and push-based
interactions (e.g., for viewers to update their display).

In addition to the explicit interactions described above,
the processes also implicitly communicate using the shared
object space layer. Simulations running within the simula-
tion containers write checkpoints and results to this layer,
while manager processes optionally write meta-information
about the study; this information is read by other simula-
tions and the manager.

4.2 Test simulation problem

Our prototype implementation works with the bridge de-
sign study introduced earlier (see Figure 1). We present
its details here to provide context for the discussion of the
active sampler, resource allocator, and shared object space
layer modules below. The design problem is to construct
a simple bridge with four supports, two of which are fixed
and clamped at the end points, with the remaining two mod-
elled as columns made of a homogenous elastic material.



The design parameters of the problem are positions of the
two columns. The performance parameters are the com-
bined costs of the column construction as a function of the
distance from the endpoints, and the maximum vertical de-
flection of the bridge.

We consider a nonlinear model for the problem, as linear
models typically allow considerable simplifications of the
design process, which do not apply in more general cases.
To obtain a realistic understanding of typical solver behav-
ior, our implementation uses a widely used scientific com-
puting library (PETSc) to solve the discretized systems.
Problem formulation and the parameter space. The
bridge is modeled as a one-dimensional rod, elastically de-
forming in two dimensions. The continuous energy of the
bridge in a static configuration is given by∫ t1

t=t0

(kbκ(t)2 + km

∣∣∣∣ds(t)
dt

− 1
∣∣∣∣2 + ρgpy(t)

+Kc(py(r0))2 + Kc(py(r1))2)dt

where the five terms correspond to the bending energy, the
membrane energy, the potential energy due to gravity, and
the potential energies due to the two elastic supports.

The parameter t is the distance from a material point to a
reference point (t0 and t1 are the endpoints), s(t) is the ar-
clength distance from a material point to the reference point
in the deformed configuration, κ(t) is the curvature of the
deformed configuration at t, and p(t) = (px(t), py(t)) is
the displacement of a point. r0 and r1 are the locations of
intermediate elastic supports, and Kc is the effective elastic
stiffness of the supporting columns.

The boundary conditions for the problem are fixed loca-
tions for supports: p(t0) = (t0, 0), p(t1) = (t1, 0). The pa-
rameters r0 and r1 define the parameter space for the model.
Performance space. We use two performance measures:
one is the maximal displacement of the bridge; for support
positions r0 and r1 and the corresponding deformed config-
uration of the bridge p(t)

F1(r0, r1) = max
t0≤t≤t1

|p(t)− p̄(t)|,

where p̄(t) = (t, 0) is the undeformed configuration.
The second performance measure is computed using a

user-defined cost function f(r− t0) for support placement:

F2(r0, r1) = f(r0 − t0) + f(r1 − t0)

Intuitively, the function f(r) is dictated by the shape of the
riverbed as shown in Figure 1.
Discretization. We use a simple nonlinear discretization of
the problem, where ti = hi, i = 0 . . . N and h = (t1 −
t0)/N . The discretized energy is given by:

N−1∑
i=1

(
2θ2

i

li + li+1
+ ρgpy

i ) +
N−1∑
i=0

(li/h− 1)2

where li = |pi+1−pi|, and θi is the angle between segments
(pi−1, pi) and (pi, pi+1). One can show that for small dis-
placements, this is equivalent to using piecewise linear basis
functions to discretize the membrane energy and piecewise
quadratic functions to discretize curvature. In addition, we
assume supports of the bridge to be elastically deformable,
modeling them as simple elastic springs of high stiffness.
The forces and force derivatives are obtained by differenti-
ating the energy with respect to the degrees of freedom.
Numerical methods. To solve the nonlinear problem, we
use the Newton method with cubic line search; the only nu-
merical parameter that we choose is the residual tolerance.
We solve the linear system in the interior loop of the linear
solver using a direct LU solver.
Instrumentation. To interface the code with the system,
we added two components; in each case, the resulting mod-
ification was minor.

First, after each Newton iteration, a checkpoint is saved
into the shared object space layer (SISOL) decribed below.
Each checkpoint contains the information about the param-
eters of the system and the positions of all nodes. In the
current implementation, the checkpoint is a PETSc vector
containing t0 ... tN .

Second, the simulation can be started using checkpoint
information from a different simulation run. A simple trans-
formation module is included, which maps the solution ob-
tained for a particular configuration of supports to a new
configuration using linear rescaling and cubic interpolation
of the solution.

4.3 Active sampler

Our current implementation of the Sim-X architecture
features an active sampler that resolves the Pareto frontier
in a breadth-first, coarse-to-fine manner. Consequently, (a)
the user perceives a low response time as a rough depiction
of the frontier is displayed within seconds, (b) as the dis-
play resolution progressively increases, so does the required
number of simulations, but so does the sampling density,
enabling better reuse of simulation results in the resource
allocator as described below.

A variety of techniques have been developed for discov-
ering Pareto frontiers (e.g. [8, 17, 7]). We have imple-
mented a general hierarchical approach which requires no
specific information about cost functions other than an eval-
uation procedure, which is consistent with our goals of pro-
viding a framework for interactive experimentation: coarse
scale results can be obtained first and gradually refined, and
arbitrary simulations can be used as a part of the cost func-
tional computation.
Approach. Assume that the parameter space has been sam-
pled at a finite number of points, yielding a discrete finite
set, V , of evaluated designs. The discrete approximation of



the Pareto frontier is the subset, R ⊆ V , containing only the
undominated points.2

We start by discretizing the parameter space into a coarse
lattice and proceed as follows. Seed the computation by
evaluating one or more (arbitrary) lattice points, always
adding evaluated points to V . Every time a change is made
to V , incrementally update R. If a point is added to R,
then the sampler requests evaluation of all lattice-neighbors
of the new point. This effectively walks along the Pareto
frontier: lattice-neighbors that are off the frontier will be
dominated, hence will not propagate further; neighbors on
the frontier will be added to R, thus advancing the walk. At
all times, R represents the best approximation to the Pareto-
frontier given current data. At the end of this computation,
R is the best approximation of the Pareto frontier at the cur-
rent lattice resolution. When we reach this point, we refine
the Pareto approximation: resolution is increased and points
on a finer lattice adjacent to points in R are evaluated.
Parallelization The active sampler must efficiently and cor-
rectly resolve the Pareto frontier in the setting of multiple
simulation containers. This is an inherently difficult task
consisting of conflicting goals: optimal sampling dictates
using all information at hand in choosing the next evaluation
point; full loading requires that every simulation container
have queued jobs.

Full loading of simulation containers requires the sam-
pler to issue evaluation points in the absence of complete
knowledge. Therefore in comparing a parallel to a sequen-
tial implementation we expect (and observe) that some eval-
uations, issued with incomplete knowledge, would not have
been issued under complete knowledge. These excess eval-
uations are inevitable in the parallel setting. Even so, the
active sampler satisfies the goal of optimal sampling by
issuing simulations based only on known completed sim-
ulations (in effect, treating pending simulations as if they
would be dominated). When new information may indicate
that a previously issued evaluation is (in retrospect) in ex-
cess, this may lead to a truncation of search stemming from
the excess evaluation.

4.4 Resource allocator

Our current implementation of the resource allocator al-
locates work units to simulation containers using a simple
FIFO queue. This decision was largely motivated by the
fact that individual simulation runs for our test problem ex-
ecute on the order of a few tens of microseconds each, so
a more sophisticated scheme would have yielded few addi-
tional benefits.

2A parameter space point, x = {x1, . . . , xn}, with associated perfor-
mance measure, p(x) = {p1(x), . . . , pm(x)}, dominates another point
x2 if and only if ∀1 ≤ i ≤ m : pi(x1) ≤ pi(x2). Note that a lower
value of a performance measure is preferred.

The one decision that the resource allocator does make
is to choose a nearby checkpoint from which to jumpstart
the requested simulation. This choice is made by querying
the shared object space layer for the nearest evaluated pa-
rameter space point and then supplying this as an additional
modifier to the work unit.

4.5 Shared object space layer (SISOL)

A central component of the Sim-X implementation is
the SISOL module, which implements a spatially-indexed
shared object layer.
Interface. The primary abstraction provided by SISOL is
one of a spatially-indexed object set, elements within which
can be inserted and retrieved using spatial coordinates. In
addition to looking up specific objects by their coordinates,
SISOL also supports neighborhood queries to retrieve an
arbitrary number of objects that are within a certain distance
from a specified coordinate.

Table 1 shows the high-level interface functions pro-
vided by SISOL. The interface supports typed objects (e.g.,
PETSc vectors) which can be either sequential or parallel.
Implementation. The choice to explicitly distinguish be-
tween object reads and writes, and to delimit these accesses
with start and stop calls enables an efficient distributed
caching implementation of the SISOL layer [15]. Multi-
ple read copies of an object can be simultaneously cached
at multiple nodes; however, only one of these copies can
be valid for a write access. The SISOL interface supports
application-specific custom coherence protocols to reduce
coherence traffic in commonly encountered access patterns.

For the results that we report in Section 5, we work
with a simpler implementation where the object storage is
partitioned among multiple SISOL server processes; each
SISOL client communicates with a statically chosen server
process over TCP connections to implement the interface
functionality but does not itself cache retrieved objects.
Note that this implementation can be scaled easily by grow-
ing the number of SISOL server processes as the number
of clients increase. Such scaling comes at the cost of not
all updates being visible to all clients, but this tradeoff is
likely acceptable in most situations including in our model
problem.

The test simulation code and active sampler work with
two object sets: a 2-dimensional set that stores the simula-
tion checkpoints corresponding to different points in the pa-
rameter space, and a 2-dimensional set that stores the simu-
lation results for retrieval by the active sampler and viewer
modules. Both the active sampler and the simulations them-
selves make heavy use of neighborhood queries.

Our implementation internally supports two variants for
how one maintains the objects within a set: a simple hash-
table, and a more involved R-tree based implementation.



OPERATION SIGNATURE FUNCTION

Initialization int CreateSet(int setID, int typeID, int arity,

double *weights, int capacity)

Create object set of arity dimensions
to store objects of type typeID. The
weights array specifies a weighted
Euclidean distance metric.

Registration int RegisterSet(int setID, void** objSet) Registers client as participant; retrieves
object set metadata in objSet.

void UnregisterSet(void* objSet) Unregisters client.
Access void Insert(void* objSet, double* coords, void* obj)

void Remove(void* objSet, double* coords)

Insert/remove an object into/from the set.

void* StartRead(void* objSet, double* coords)
void* StartWrite(void* objSet, double* coords)
void EndRead(void* objSet, double* coords, void* obj)

void EndWrite(void* objSet, double* coords, void* obj)

Start/end a read/write operation on an
object.

Query void QueryClosest(void* objSet, double* coords, int

numToLookup, int* numRetrieved, double** retrCoords)

Query for up to numToLookup closest
neighbors

Table 1. Interface of the spatially-indexed shared object space layer (SISOL).

The results in the next section use the hash table implemen-
tation, which for the particular object sets of interest yielded
lower operation times.

5 Evaluation

To understand the costs and benefits of the Sim-X archi-
tecture, we evaluated the performance characteristics and
outputs of the bridge design computational study for mul-
tiple user input and execution environment scenarios. We
discuss some of these scenarios below.
Experiment setting. For all of the experiments in this sec-
tion, the study was run on a homogenous IBM eServer clus-
ter comprising 256 nodes, each with two 64-bit 2.2 GHz
PowerPC 970 processors and 2 GB RAM, interconnected
via a Myrinet network. The study involved a single manager
process, from one to four SISOL server processes serving
the checkpoint object set, and varying numbers of simula-
tion container processes, each hosted on a separate physical
processor.

To quantify the impact of the different features of the
Sim-X architecture, we defined the following four system
configurations:

1. GS: a grid-based sampling of the parameter space,
which progressively refines the Pareto frontier by eval-
uating simulations at grid points of increasing resolu-
tion.

2. GS+C: grid-based sampling, with reuse of check-
points from prior runs.

3. AS: active sampling of the parameter space.
4. AS+C: active sampling, with reuse of checkpoints

from prior runs.

In each case, the objective of the study was to identify a
Pareto frontier corresponding to minimum bridge deflection

and a bridge cost function. To ensure that the study results
were not affected by human interaction delays, the manager
read the study specifications from a file. Both samplers are
seeded with a 40x40 grid over the parameter space, and the
studies terminate after the samplers resolve the Pareto fron-
tier to the fourth refinement level of the original grid. The
results are written into the SISOL server processes, and col-
lected after each refinement of the partial Pareto frontier.
High-level control of the study. Figure 4 shows the evolu-
tion of the Pareto frontier over time for the AS+C configu-
ration run with 128 simulation containers. For comparison,
we are showing the evolution of the Pareto frontier for the
GS configuration. Table 2 shows in detail the wall-clock
time needed by each of the GS, GS+C, AS, and AS+C
configurations to reach each stage of the Pareto frontier’s
evolution.

Two points can be observed from the plots. First, even
relatively early on in the study, the overall shape of the
Pareto frontier is visible, which permits a user to interact
and optionally change the study parameters without waiting
for completion of a set number of simulation runs.

Second, the Sim-X architecture managed to provision
resources to explore only those portions of the parameter
space that were most productive from the point of view of
developing the Pareto frontier. This is seen by the sparsity

Time (in secs) to produce level
Configurations 1 2 3 4

GS 97.48 360.91 1407.76 5678.22
GS + C 6.73 15.52 50.39 429.06

AS 98.64 199.26 315.31 362.83
AS + C 6.62 8.90 12.26 13.63

Table 2. Times required on 128 processors to
produce the frontiers shown in Figure 4.
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Figure 4. Time evolution of the Pareto frontier as observed for the AS+C (rows 1-2) and the GS (rows
3-4) configurations, after refining to (left to right) 1st, 2nd, 3rd, and 4th levels, with runtime listed for
each snapshot. Rows 1 and 3 depict evaluated designs (light gray) and Pareto points (dark blue). In
the GS configuration the sampling in design space is too dense for individual points to be visible.
Rows 2 and 4 depict Pareto points in observation space. The number of simulation experiments
required to generate these frontiers are 1727, 2684, 4243, and 4526 for the AS+C configuration, and
1735, 4950, 18632, and 75351 for the GS configuration.

of the evaluations in the AS+C configuration, which is very
unlike what is seen for the GS configuration.

Figure 5 shows the quality of the Partial frontier avail-
able at particular times for the AS+C and GS+C configu-
rations respectively, as measured by the Hausdroff distance
metric in the observation space . It can be seen as early as
ten seconds into the study that the AS+C configuration al-
ready yields a good approximation of the final answer. The
GS+C configuration is clearly non-competitive.

Figure 5. Relative error in Pareto frontier ap-
proximation for the AS+C and GS+C configu-
rations as measured using the Hausdorff dis-
tance metric, shown for observation space.

Performance benefits of Sim-X. Table 2 shows the perfor-
mance benefits from Sim-X’s use of the active sampler and
reuse of application checkpoints. Checkpoint reuse has the
effect of reducing average per-simulation runtimes by 60%
to more than 90%, depending on the pool of checkpoints
that the manager can draw from. These savings result from
a reduction in the number of iterations taken by the solver to
converge, which goes down from 40-50 for the initial simu-
lations to as low as 3-4 for later ones.3 Independent of this,
the active sampler cuts down total runtime by up to an ad-
ditional factor of 35×, depending on the target refinement
level. These savings result from a reduction in the number
of simulations needed to generate a frontier.
Scaling behavior. Table 3 shows the breakdown of execu-
tion times on the manager, simulation container, and SISOL
server processes into various components for different num-
bers of processors. The runs used four SISOL server pro-
cesses, each handling requests from an equal-sized partition
of the simulation container processes. (See the caption for
an explanation of the different components).

The high level conclusion that one can draw from the ta-
ble is that all of the components of the Sim-X architecture

3In fact the reduction in iterations is so dramatic that we found rela-
tively little additional performance gains from controlling error tolerances
achieved by the simulations.



Components
Procs # Simul. Manager Simulator SISOL-1 SISOL-2 SISOL-3 SISOL-4

1 4125 1203.14 (1.30) 1191.82 (11.65) (1.01, 12.51)
2 4224 625.71 (1.35) 620.26 (5.81) (0.52, 4.00) (0.51, 4.04)
4 4284 334.35 (1.45) 329.93 (4.84) (0.26, 1.56) (0.26, 1.49) (0.20, 1.39) (0.20, 1.39)
8 4353 175.59 (2.04) 170.33 (5.72) (0.26, 5.74) (0.26, 5.83) (0.22, 1.59), (0.22, 1.44)
16 4380 89.39 (2.29) 86.54 (9.35) (0.26, 5.69) (0.26, 1.37) (0.24,1.31) (0.23, 1.18)
32 4394 45.33 (1.79) 44.98 (3.10) (0.28, 1.39) (0.28, 1.41) (0.24, 1.23) (0.24, 1.10)
64 4392 24.12 (1.90) 24.05 (5.30) (0.30, 1.48) (0.31, 1.47) (0.27, 1.25) (0.28, 1.29)
128 4490 13.13 (1.95) 12.60 (2.10) (0.39, 1.86) (0.38, 1.8) (0.32, 1.35) (0.33, 1.43)

Table 3. Number of simulations and breakdown of process execution times (all times are in seconds)
for runs with different numbers of processors. The manager components correspond to the total
runtime and the time spent on the active sampler. The simulation container times correspond to the
time spent on executing the simulations and the time interacting with the manager respectively. The
SISOL components are the time spent for each of the four server processes, on communication with
client processes, and the time spent processing the read, write, and neighborhood search queries.

Simul. # Avg. time Simul. # Avg. time
0-200 7.069 800-1000 2.652

200-400 3.714 1000-1200 2.467
400-600 3.231 1200-1400 2.461
600-800 2.681 1400-1600 2.372

Table 4. Average per-simulation run times (in
milliseconds) of the first 1600 simulations, in
200 simulation increments, based on a 128-
processor run.

scale relatively well for our target numbers of processors,
and spend relatively little time on overhead activities, e.g.,
dispatching new work to the simulation containers or inter-
acting with the SISOL service. While we did have to in-
crease the the number of SISOL servers as the number of
simulation containers increased, no additional implemen-
tation effort was needed. Our detailed measurements also
indicate that the tradeoff of not having all checkpoints ac-
cessible to all containers, while having some effect, did not
increase overall run times in any noticeable fashion.

Benefits in other environments. More detailed analysis of
the data in Table 3 and the reasons behind them is instructive
to understand how the Sim-X architecture would perform on
different workloads or on larger numbers of processors.

The first observation not directly seen in the data is that
simulation sizes are non-uniform. At the beginning of the
study, few checkpoints have been created. The manager has
a relatively small pool of checkpoints to draw from, and
thus is less likely to find a checkpoint that benefits the simu-
lation. Therefore, early simulations take longer to run. This
phenomenon is illustrated in Table 4. Such non-uniformity
ultimately affects scalability because the active sampler sets
up dependencies between the simulations it issues. On the
other hand, these results suggest that manager resources can

perhaps be used to do additional (exploratory) work during
the early stage of the study to make more informed choices
about which simulations to run.

Beyond this non-uniformity, the primary source of par-
allel overhead in Sim-X appears to be algorithmic, resulting
from the active sampler basing its decisions on incomplete
information. As discussed in section 4.3, when the active
sampler chooses a parameter point to issue, it assumes all
the parameter points that are still running to be not on the
Pareto frontier. If those points are found to be on the frontier
when their results arrive, then the active sampler will have
to issue extra simulations to fix the frontier. As the number
of parallel processes increases, the number of simulations
being run at any one time increases, therefore the chance
of the sampler making a mistake also increases. As a re-
sult, the number of evaluations needed to construct a Pareto
frontier also increases. Table 3 illustrates this overhead,
which indicates the need for improving the active sampler
algorithm to better track inter-simulation dependencies.

Table 3 also shows that on larger numbers of processors
and for studies involving lighter-weight simulations, the in-
teraction overheads of the manager and SISOL server pro-
cesses can potentially become bottlenecks. Manager scal-
ability can be addressed by setting up a hierarchy of man-
agers each of which takes responsibility for exploring a por-
tion of the design space; the challenge here is in orchestrat-
ing active sampler decisions across these portions.

SISOL server scalability is easier to address: the domi-
nant cause for the increased runtimes seen for SISOL server
operations appears to be the linear search of the hash table
entries to resolve neighborhood queries. A smarter search
strategy, e.g., one that combines an R-tree implementation
with more approximate responses to neighborhood queries
would alleviate this problem, as would further partitioning
the SISOL server activity. Ultimately however, the tradeoff



inherent in partitioning, where not all updates are visible
everywhere, may become a problem. We expect that the
distributed caching implementation of the SISOL server to
provide a longer-term solution to this issue, effectively ap-
proximating a SISOL server per simulation container, yet
still permitting propagation of updates.

6 Summary

The results we have obtained with our initial prototype of
Sim-X suggests that the Sim-X system does go a long way
towards meeting the two goals we started off with: provid-
ing a framework for high-level user interaction with compu-
tational studies, and increasing the sizes of computational
studies that can be performed at interactive rates. For our
sample problem, significant improvements were observed
both from intelligent parameter space navigation strategy
implemented in the active sampler, and reuse of previously
computed solutions.

There are several next steps we intend to pursue: sup-
port for parallel simultion codes that run on multiple simula-
tion containers, support for heterogeneous multiscale mod-
els often used in engineering, and a user interface support-
ing computational study steering. As our implementation
matures, we hope that Sim-X will substantially improve
the ease with which scientists and engineers can perform
sophisticated computational studies on small and medium-
size parallel platforms.
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