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Figure 1: An example RigMesh modeling sequence: the artist experiments with different ideas for a shape by modeling (blue arrows) and
posing (green arrows) using our skeletal rig. In the traditional pipeline, modeling and rigging are separate procedures, so the model must
be re-rigged every time the shape changes (i.e. after each modeling operation). RigMesh unifies modeling and rigging; the model is always
rigged, and the artist can pose freely, allowing for iterative modeling, deformation, and key-frame animation with real-time response.

Abstract

The creation of a 3D model is only the first stage of the 3D character
animation pipeline. Once a model has been created, and before
it can be animated, it must be rigged. Manual rigging is labori-
ous, and automatic rigging approaches are far from real-time and
do not allow for incremental updates. This is a hindrance in the real
world, where the shape of a model is often revised after rigging has
been performed. In this paper, we introduce algorithms and a user-
interface for sketch-based 3D modeling that unify the modeling
and rigging stages of the 3D character animation pipeline. Our
algorithms create a rig for each sketched part in real-time, and up-
date the rig as parts are merged or cut. As a result, users can freely
pose and animate their shapes and characters while rapidly iterating
on the base shape. The rigs are compatible with the state-of-the-
art character animation pipeline; they consist of a low-dimensional
skeleton along with skin weights identifying the surface with bones
of the skeleton.
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1 Introduction

The task of creating ready-to-animate 3D models is funda-
mentally hard; designers and artists spend years becoming
proficient at commercial, state-of-the-art tools such as Maya
and 3ds Max [Autodesk 2012c; Autodesk 2012a]. In an effort
to make freeform 3D modeling more accessible to novices and
to enable rapid iterative prototyping, sketch-based tools such
as Teddy [Igarashietal. 1999] and a large body of follow-up
work [Tai et al. 2004; Cherlin et al. 2005; Schmidt et al. 2005;
Alexe et al. 2005; Karpenko and Hughes 2006; Nealen et al. 2007;
Bernhardt et al. 2008; ~ Sugihara et al. 2008;  Pihuit et al. 2010;
Cordier et al. 2011] introduced techniques to create plausible 3D
models from 2D freeform strokes. (See [Olsen et al. 2009] for a
recent survey.) While these tools greatly simplify shape modeling,
modeling is only the first stage of the 3D animation pipeline. Once
a model has been created, and before it can be animated, it must
be rigged. In the state-of-the-art character animation pipeline, a
rig takes the form of a skeleton, a cycle-free graph whose nodes
are called joints and whose edges are called bones, and skin
weights identifying the surface of the model with the bones of
the skeleton [Magnenat-Thalmann et al. 1988; Lewis et al. 2000].
Rigging can be performed manually, by designing the skeleton
and then laboriously painting the surface with skin weights
for each bone. Various computational methods exist for auto-
matic skeleton extraction [Sharf et al. 2007; Cornea et al. 2007;
Au et al. 2008; Pan et al. 2009] and skinning [Lewis et al. 2000;
Bloomenthal 2002;  Kry et al. 2002;  Mohr and Gleicher 2003;
Weber et al. 2007;  Baran and Popovi¢ 2007; Wang et al. 2007;
Yang and Wiinsche 2010; Miller et al. 2010].

In this paper, we take advantage of these recent advances in the
literature, and further simplify the process of creating ready-to-
animate 3D models by combining shape creation, modification and
posing into a single coherent framework. However, this cannot
be achieved trivially by integrating existing tools. Sketch-based
modeling tools like Teddy [1999] and FiberMesh [2007] do not
explicitly maintain a skeleton. Automatically adding the skeleton
(e.g. [Au et al. 2008]) and rigging (e.g. [Baran and Popovi¢ 2007])
as a post-process typically does not allow for real-time interac-
tions. Furthermore, in our discussions with professional anima-



tors [Shukan 2012], we have learned that they often need to revise
the geometry of their models after they have been rigged (Fig. 1
illustrates this process). Such incremental updates to the shapes
are especially difficult with the aforementioned tools. We believe
the fundamental problem lies in the conventional pipeline where
modeling and rigging are treated as two entirely separate processes.
Shapes are modeled before they can be rigged; if the base shape
requires any modifications at a later time, the skeleton has to be
re-computed, and the rig re-designed.

Thus, in contrast with the traditional, sequential view of modeling
and rigging, we propose to unify these steps and introduce
algorithms for sketch-based modeling by parts that maintain
a rigged mesh at all times. Our algorithms generate a
rigged mesh—a surface, a skeleton, and skin weights—for
each sketched part and update it as parts are merged or cut.
Modeling by parts is consistent with human recognition of shapes
by components [Biederman 1987], and has been employed by
modeling approaches such as ShapeShop [Schmidt et al. 2005]
for CSG operations on individual sketched parts; Gingold et
al. [2009] for single-view modeling from existing sketches;
and the SPORE Creature Creator [Maxis 2008], as well
as SnapPaste [Sharf et al. 2006], Shuffler [Kraevoy et al. 2007],
meshmixer [Schmidt and Singh 2010], the works of Chaudhuri et
al. [2011], and Funkhouser et al. [2004] for re-using parts of exist-
ing models.

By unifying modeling and rigging, artists can freely pose the
shape while modeling to adjust it, or to examine the motion
of the model by using poses as key-frames. Furthermore,
the unification removes friction from incremental and iterative
character modeling and animation (Fig. 1). Our algorithms are
efficient and execute in real-time, far below the one second delay
that interrupts mental flow [Nielsen 1993]. Our work builds
on Pinocchio [Baran and Popovié 2007], adapting its skin weight
algorithm to support incremental merging and cutting of shapes,
and revisits the Chordal Axis Transform [Prasad 1997] used by
Teddy [Igarashi et al. 1999] for skeleton generation. Specifically,
our contributions are:

e A unified approach to modeling and rigging, eliminating a re-
curring step from the professional 3D animation pipeline.

e A modification of the Douglas-Peucker algorithm [1973] for
creating a high-quality skeleton from the sketched outline of
a shape.

e An efficient method for locally re-computing skin weights to
maintain a valid, high-quality rig when merging or cutting
shapes.

Note that a variety of hierarchical approaches to smooth
surface modeling exist in the literature, such as the
seminal BlobTrees [Wyvilletal. 1999] and aforementioned
ShapeShop [Schmidt et al. 2005], as well as other approaches
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based on convolution surfaces [Sherstyuk 1999; Alexe et al. 2005;
Allegre et al. 2006]. While a convenient representation for
modeling and animation, CSG-based hierarchies are quite different
from the rigged models preferred in professional character anima-
tion pipelines, which are based on surfaces, skeletons, and skin
weights. Also notably, a system that shares some similarity with
our work flow is the ZSpheres tool of ZBrush [Pixologic 2012], in
which a base model is created by connecting spheres of varying
radii with tapered cylinders. While ZSpheres allows for base model
creation and posing at the same time, this base model only serves
as a bone skeleton and rig, from which the surface mesh needs to
be sculpted as a separate step. Furthermore, our system differs
from ZSpheres in being sketch-based and by supporting modeling
by parts, which enables part re-use.

2 Initial Shape Creation

To create a new shape, the user sketches its silhouette. From
the sketched curve, our system generates a surface composed of
smoothly joined generalized cylinders, a skeleton, and skin weights
attaching the surface to the skeleton. First, the user’s sketched
curve is closed and treated as a planar polygon (Fig. 2 (a)). The
polygon is decomposed into cylindrical regions with well defined
local symmetry, and connecting regions lacking such symmetry
(Section 2.1). The surface and the skeleton are then each generated
(Sections 2.2 and 2.3), and, as a final step, the surface is attached to
the skeleton by automatically computing skin weights (Section 2.4).
These steps are all computed instantaneously as soon as the user
completes the stroke by releasing the mouse button.

2.1 Decomposition and Symmetry Axes

Our use of generalized cylinders benefits from an extensive liter-
ature on 2D shape analysis. We use the Chordal Axis Transform
(CAT) [Prasad 1997], and refine its result to obtain the decomposi-
tion and local symmetry axes of the polygon (Fig. 2).

The CAT relies on the Constrained Delaunay Triangulation
(CDT) [Chew 1989] of the polygon. The new (internal) edges of
the polygon, added by the CDT, are referred to as chords. Triangles
defined by three chords are called junction triangles (green triangles
in Fig. 2 (b)). Local symmetries of the polygon are approximat-
ed by the chordal axis — a polyline connecting the chord mid-
points. As in Prasad [1997], we prune the chordal axis to remove
insignificant branches — features of the chordal axis not contribut-
ing significantly to the characterization of the polygon. After prun-
ing, we apply Laplacian smoothing to both the extracted chordal
axis and the orientation of the chords.

The result of these steps is a decomposition of the polygon
with smooth approximate symmetry axes ready for generating the
surface and the skeleton. Note that junction triangles connect three
parts of a polygon that have local symmetry, so we consider them to
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Figure 2: (a) The input user sketch. (b) The CAT of the polygon in (a). Chordal axes are shown as black polylines and junction triangles are
shaded green. (c) Pruned and smoothed chordal axes. Flat cylindrical regions (yellow) still exist between junction triangles. (d) The final
decomposition: cylindrical regions (white) and the connecting region (green).
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Figure 3: Generating the 3D surface mesh. (a) Generalized cylinders (yellow) are created from cylindrical regions. (b) and (c) are side-views
shown with coarser tessellation for illustration purposes. (Orientation is indicated by the red/green coordinate axes.) (b) The semi-circles
of neighboring generalized cylinders are connected by lines. (c) Uniformly sampled points along these lines are stitched together to form
triangle strips. (d) Frontal view after steps in (b) and (c). (e) Using the boundary vertices, GridMesh [Nealen et al. 2009] covers the holes
(green) and provides a water-tight mesh. (f) The surface is smoothed using Least-Squares Meshes [Sorkine and Cohen-Or 2004].

be connecting regions. The remainder of the polygon can be treated
as cylindrical regions. There may also be short-yet-wide cylindri-
cal regions between junction triangles (yellow in Fig. 2 (¢)), which
would lead to the creation of flat, disc-like surfaces. Such regions
are merged with the neighboring junction triangles to form larger
connecting regions (green in Fig. 2 (d)), alongside the elongated
cylindrical regions (remainder of polygon in Fig. 2 (d)).

The use of these techniques is inspired by Teddy. However, Teddy
only uses the CAT for surface inflation from a 2D silhouette and
discards it afterwards; we, however, further process the chordal axis
to generate the skeleton (Section 2.3).

2.2 Surface generation

To create the surface of the 3D shape, generalized cylinders are con-
structed from the cylindrical regions. The smoothed chordal axis is
used as the cylinder axis, and circular cross sections are erected per-
pendicular to the sketch plane, using the smoothed chords as their
respective diameters. The circumference of each cross section is
uniformly sampled in arc length, and neighboring cross sections
are stitched together by triangle strips. Cross sections are added at
a frequency such that the maximum distance between two adjacent
cross sections is as close to a predefined constant (target edge
length) as possible, without the two cross sections intersecting
each other. The resulting generalized cylinder surfaces are shown
in Fig. 3 (a), while subsequent steps for constructing connecting
regions are shown in Fig. 3 (b)—(e).

As a final step in surface generation, the entire surface is smoothed
using Least-squares Meshes [Sorkine and Cohen-Or 2004]
(Fig. 3 (f)): connecting region vertices (blue and green) are
unconstrained, and vertices in cylindrical regions (yellow) are
used as positional constraints. The weights on these positional
constraint vertices are proportional to the distance (along the
chordal axis) from their cross sections to the closest connecting
region. In simpler terms, the farther from the (unconstrained)
connecting region, the higher the weight. Connecting region
vertices are unconstrained because, as junctions, it i paramount
that they provide a smooth transition between cylindrical regions;
moreover, they typically share only a short boundary with the user
sketch. The result is a smooth, watertight mesh with well-shaped
triangles.

2.3 Skeleton generation

Cylindrical regions. The (smooth) chordal axis is down-sampled
into a skeleton composed of joints and bones. Intuitively, choos-
ing the skeletal joints is similar to identifying the salient points

[/[\@/j (b) (©

[ —r T
r—— L —~1]

) (e) ®)

Figure 4: Applying DP and CDP to a cylindrical part with roughly
straight symmetry axis. The user sketch is shown in red. The fitted
trapezoids are shown in black. Top row: the DP algorithm. Bottom
row: our CDP algorithm. Each image in the left-to-right sequence
shows one step in the divide-and-conquer algorithm.

of the chordal axis. The popular Douglas-Peucker algorithm
(DP) [Douglas and Peucker 1973] finds such points in a greedy
manner; a dynamic programming approach was proposed by Lewis
and Anjo [2009].

Unfortunately, simply identifying salient points along the chordal
axis polyline does not suffice for determining skeletal joints in
positions where users would expect them. For example, in Fig. 4,
the polygon has a nearly straight chordal axis, while the cylinder
thickness varies substantially along the chordal axis. Applying DP
(or any other line simplification method) would result in a skeleton
with only one bone (Fig. 4 (a)), while reducing the error threshold
might place the joints at undesirable locations (Fig. 4 (b) and (c))
due to noise or slight perturbations of the chordal axis.

The problem with such approaches is that the measure of saliency
considers only the chordal axis, rather than the entire shape. To
alleviate this, we propose a modified, cylindrical version of the
DP algorithm (Cylindrical Douglas-Peucker or CDP) that also
considers the variation in shape thickness along the chordal axis.
Recall the original DP algorithm: at each step, a range [¢, j] of
the chordal axis (v1,v2,...,vn) is considered. If the distance
of every vertex in the range to v;v; (the imaginary line between
the first and last vertices of the range) is less than a predefined
threshold, the algorithm outputs v;v;. Otherwise, the algorithm
proceeds by dividing the range into two: [¢, m] and [m, j]|, where
m is the index of the vertex in the range whose distance was great-
est. Fig. 5 illustrates the error measure (distance): the DP error for
vertex v is epp, the distance to the line segment v1v,,. In our pro-
posed CDP, each line segment induces a symmetric trapezoid (the
shaded quadrilateral ABC D), with the line segment (v17,,) as its
symmetry axis. The bases of the trapezoid (AB and C'D) are deter-



Figure 5: Error terms for vertex v in DP and CDP algorithms. The
chordal axis is shown in blue. The user sketch is shown in red. V10,
is the line segment added in one step of DP; In CDP, besides v1vn,
symmetric trapezoid ABCD (shaded) is also added to evaluate the
error term.

mined by projecting the chords passing through v, and v,,, the end
points of the range, onto the direction perpendicular to v1v,. The
error term for vertex v in CDP is defined as:

2 2
ecpp =e€] + €3

where e and ez are the distances from the two end points of the
chord passing through v (E'F') to the two sides of the trapezoid,
respectively.

Fig. 4 compares the results of DP and CDP. Note how the CDP
algorithm captures the kink in the boundary of the input polygon,
while the standard DP algorithm chooses potentially undesirable
skeletal joints.

Connecting regions. To determine the skeletal structure of
connecting regions, a joint is placed at the center of each junction
triangle and a bone is added across each of its three sides (Fig. 6(a)).
If a side is adjacent to a cylindrical region, the bone is connect-
ed to the end of its skeleton; otherwise, the side must be adjacent
to another junction triangle, and the bone connects both junction
triangles’ centers. This may lead to short bones within connecting
regions, resulting in a rig with redundant degrees of freedom for
controlling the shape. Thus, as a last step, short bones inside “thick”
regions are collapsed. Fig. 6(b) shows the final skeleton for the
shape.

2.4 Skin weight computation

To create (and maintain) a rigged model, we must attach the surface
to the skeleton through a process that assigns to each vertex a set
of skin weights for each bone. We calculate skin weights using the
heat diffusion method of Pinocchio [2007]. In this method, bones
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Figure 6: Determining the skeletal structure. The connecting
regions are shown in green. The skeleton is shown in black. (a)
Trapezoids (gray) are fit to cylindrical regions using our CDP
algorithm; each trapezoid corresponds to a bone. A joint is also
added at the center of each junction triangle, and a bone is added
across each of its three sides. (b) Short bones inside connecting
regions are collapsed.
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Figure 7: Cutting an existing 3D shape into two parts. The cutting
stroke is shown as a red open curve. Left: cut placement. Middle:
result of a smooth cut. Right: result of a sharp cut

radiate heat onto the surface, and the equilibrium temperature at
each vertex is computed by solving a linear system of equations.
The performance bottleneck for Pinocchio’s skinning algorithm is
in determining the closest visible bone for each vertex. In our
system, for vertices on cylindrical regions, the set of closest visible
bones and their distances are trivially known at creation time. Con-
sequently, visibility and distance computations only need to be per-
formed for vertices in connecting regions. The number of such
vertices is typically small; as a result, skin weights are computed
instantaneously for all of our examples.

3 Modeling Tools

Our interface includes two part-based modeling operations, cutting
and merging, as well as two operations based around manipulating
the rig, posing and skeleton refinement. With the aid of the
rig, posing is naturally performed using forward and inverse
kinematics (IK) [Watt and Watt 1991]. (We use dual quaternion
skinning [Kavan et al. 2008] to compute the deformed surface.)
Our algorithms for the other operations are described as follows.

3.1 Cutting

The user can perform a smooth or sharp cutting operation on the
shape by drawing an open curve across the model, as shown in
Fig. 7 (left). The surface is split into two parts along this curve,
and GridMesh [Nealen et al. 2009] is used to generate the hole-
filling patches, resulting in two watertight meshes. A smooth cut-
ting operation creates a smooth boundary (Fig. 7 (middle)), while
a sharp cut does not (Fig. 7 (right)). Vertex positions for the
glued patch of surface are computed using Least-Squares Mesh-
es [Sorkine and Cohen-Or 2004], with appropriate smooth or sharp
boundary constraints.

The skeleton is also cut by the user’s stroke, resulting in two
independent skeletal structures. In order to maintain valid skin
weights on the two resulting shapes, weights corresponding to
bones no longer in a shape are removed and weights for vertices
on the newly created surface patches are computed as follows.
Following the heat diffusion analogy in Pinocchio, we wish to find
the temperatures at the locations of the new vertices. Since tempera-
ture varies smoothly, we can compute the skin weights by diffusion.
So, skin weights for the new vertices are computed by minimizing,
for each bone, || Aw’||?, where w® are the skin weights for bone i. !
Skin weights for old vertices are kept fixed. Finally, since the skin
weights at both new and old vertices may no longer sum to one,
they are normalized.

3.2 Merging

A merging operation is initiated by dragging one shape into close
proximity of another. Fig. 8 shows the three types of merging: In
the case of snapping, the entire dragged shape translates so that the
two joints indicated by the user (highlighted in blue) become coin-
cident, and then the skeletons are joined. In the case of splitting, a

I'The matrix factorization from the computation of vertex positions for
the glued surface patch can be re-used.
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Figure 8: Merging two existing 3D shapes. The shape being
dragged has a lighter color. Top row: Before merging; Bottom row:
Results of merging operations. See text for details.
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Figure 9: Merging two shapes by inserting a bone (the connecting
merge from Fig. 8). (a) Global skin weight re-computation results
in a localized change. The value visualized at each vertex is the
L1 magnitude of the vector difference between skin weights of
the two parts before the merge, and after the merge and global
skin weight re-computation (pre-merge skin weights for any newly
inserted bone are 0). (b) Bones and vertices included in our local
skin weight re-computation algorithm (see text for details).

new joint is inserted at the indicated location on the second shape’s
bone and then snapping is performed with this joint (the new joint
and the projection line are highlighted in blue). In the case of
connecting, a new bone (highlighted in red) is inserted to con-
nect the two skeletons at the joints indicated by the user. After
releasing the dragged shape, skeletons and surfaces are merged
(Section 3.2.1). Then, we prune bones that are not the most
influential for any vertex of the merged surface (i.e. bones that do
not correspond to any vertex’s maximum skin weight). Finally, the
skin weights are updated (Section 3.2.2).

3.2.1 Merging the surfaces

When merging two shapes, our system creates a new, watertight
surface from their union (Fig. 8). The intersection of two surfaces
results in a closed intersection loop.? First, each surface’s mesh is
adjusted to accommodate the intersection loop, using the method
from [Nealen et al. 2005]. Then, any triangles from one surface
inside the other are discarded, and the resulting meshes are glued
together along the shared boundary. If necessary, new vertices are
created by splitting boundary edges. An example intersection loop
can be seen as a blue line in Fig. 9 (b). To smooth the geometric
transition between the two shapes, local Laplacian smoothing is
performed around the intersection loop. The vertices included in
this smoothing step are every vertex whose graph distance from
the intersection loop—Ilet v; be the closest point on the intersection
loop—is closer than k = 0.6 times the Euclidean distance from v;
to the intersection loop’s centroid.

2Without loss of generality, we describe the simple case where the inter-
section results in a single closed loop. Our system can handle more compli-
cated cases with multiple closed loops.

3.2.2 Local skin weight re-computation

Once two shapes’ surfaces and skeletons have been merged, skin
weights must be updated. While we could simply perform the same
global skin weight computation as in Section 2.4, the algorithm
slows down considerably as the complexity of a shape increas-
es following a series of merge operations. We make the crucial
observation that only the skin weights of vertices near the merge
boundary—a small fraction of all vertices—are noticeably affected
(see Fig. 9 (a)). This allows for a local skin weight re-computation
that greatly accelerates the process. In this local re-computation,
we run the same skinning algorithm used for the global computa-
tion (see Section 2.4) on a subset of the shape’s vertices and bones.

In deciding which vertices and bones should be included, we first
identify vertices for which the original (pre-merge) weights are
clearly not correct anymore. We rely on the simple intuition that the
greatest influence on a vertex should come from the bone closest to
and visible from it. Alas, this is not always the case, since skin
weights vary smoothly over the surface. Yet it is the case that
a vertex’s closest visible bone almost always has above average
weight (taking the average over all positive bone weights associated
with the vertex). This suggests the following inclusion test: for
a given vertex, if the closest visible bone (or bones if there are
more than one equally close) in the new shape does not have above
average weight, then the vertex, and obviously this closest bone,
should be included in the re-computation. We perform this test
beginning with vertices along the merge boundary, expanding out-
ward in a breadth-first manner until the test fails. Fig. 9 (b) depicts
the merge boundary in blue, and vertices that pass the inclusion
test in red. Finally, to ensure skin weight smoothness between re-
computed and not re-computed vertices, the following additional
vertices and bones are included: every vertex (and bones having
higher than average weight for the vertex) whose graph distance
from a red vertex v; is less than ¢ times the Euclidean distance
between v; and the bone closest to v;, where ¢ = 1.5. This prevents
folding artifacts around joints by ensuring a transition width pro-
portional to the distance from the joint to the surface. Fig. 9 (b)
depicts these additional vertices in yellow (using ¢ = 0.8 for illus-
tration purposes) and the added bones in blue. Note that all vertices
whose skin weights would be significantly affected by a global re-
computation are included (Fig. 9 (a)—(b)).

To generate the new skin weights, the Pinocchio skinning algorithm
is run on the included vertices and bones; the skin weights of
excluded immediate neighboring vertices are used as boundary
conditions. Afterwards, the updated skin weights are normalized
to sum to one, and the merge is complete.

3.3 Skeleton refinement

The user can refine the skeleton by splitting an existing bone and
adding a new joint along it, or by deleting a bone and merging the
two adjacent joints. For the purposes of updating skin weights,
splitting a bone is treated as a cutting operation followed by a
merge: the shape is cut with a plane perpendicular to the bone
and through the position of the new joint; the split shape is then
merged back together. Deleting a bone b is handled as several cut-
ting operations, followed by a skeleton modification, followed by
a merge: the skeletal modification collapses b (its joints move to
the midpoint), the cuts are through the far joints of all bones con-
nected to b (and perpendicular to those bones), and the merge re-
attaches all the cut pieces back together again (N.B. every vertex
and bone in collapsed-bone piece are included in the skin weight
re-computation).



Figure 10: Models created using RigMesh. Models took an
average of 20 minutes to create. Top: result shapes; Bottom: posed
shapes.

Figure 11: More modeling results. Models were created in 30—40
minutes each. Top: result shapes; Bottom: posed shapes.

4 Results

Our current implementation is written in C++, and was tested
on a 2.8GHz Intel i7 under Windows 7. We use OpenMesh for
mesh processing and CHOLMOD for numerical computations. Our
modeling software runs at interactive rates (see the accompanying
videos).

4.1 Modeling Results

When modeling with an ever-present rig, it is natural to interleave
posing with modeling (Fig. 1). In Fig. 10 and 11, we show complex
animal shapes created and posed using our modeling tool. Such
poses, along with the possibility to make modeling changes on-the-
fly, are ideal for key-frame animation. Because our rig is created
in tandem with the model itself and updated locally, there are no
pauses in the modeling process due to re-rigging.’

3 A complete modeling session can be found in the video materials.

Figure 12: Imaginary creatures. These models took approximate-
ly 5 minutes to make by reusing existing models or parts through
simple cut-and-merge operations. Top row: Jackalope; Dino-
camelaroo. Bottom row: Octocamel; Crabadogotaurus.

Figure 13: Models created by first-time users. These models took
an average 30 minutes to make.

The idea of modeling by parts also enables re-use and collaboration
amongst users. For the tyrannosaur model in Fig. 11, the head and
torso were created by a first-time user; an experienced user created
the front-arms, feet, and tail; and a second experienced user per-
formed detailed refinement by adding the claws. Fig. 12 shows the
results of repurposing existing models and parts. Simple cut-and-
merge operations proved efficient for creating complex shapes.

We have conducted an informal user study by training first-time
users on our system for approximately 20 minutes, and then
allowing them to model without a time limit. None of the subjects
had significant prior 3D modeling experience. One subject had 2D
artistic experience and another had research experience in computer
graphics. Some of their modeling results are shown in Fig. 13.
Fig. 14 depicts two very young users.



Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
Local | Global | Local | Global | Local | Global | Local | Global | Local | Global | Local | Global
#Bones involved 10 17 11 25 8 33 10 41 9 45 4 49
#Vertices involved 1685 3270 1567 4071 1771 4867 1639 5643 937 6284 352 6582
Time (ms) 102 181 115 259 142 333 151 428 96 529 29 547
Difference in weight 0.0632 0.0396 0.0281 0.0228 0.0061 0.0023

Table 1: Comparing local and global skin weights for the camel model from Fig. 10.

=

Figure 14: Tvo very young users trying out RigMesh.

We have also publicly released RigMesh to professional artists.
Artists expressed enthusiasm regarding RigMesh’s simple rigging
process and have remarked that it ”put[s] the fun back into rig-
ging” [Thacker 2012]; they also find the idea of using the rig as
part of the modeling process very helpful, which allows for quickly
posing while trying out ideas. This is especially valuable for artists
who frequently begin modeling without a specific goal in mind.

4.2 Local skin weight re-computation

In computing the skin weights, we use a KD-tree to accelerate
the test to determine whether a line segment is contained entire-
ly inside the shape volume. When combined with our local skin
weight re-computation algorithm, the result is that merging shapes
never requires a global segment/volume containment test, which is
the performance bottleneck of the (global) Pinocchio skin weight
algorithm [Baran and Popovié 2007].

We compared our local skin weight re-computation algorithm to
the global algorithm. Fig. 15 visualizes the difference (L, vector
magnitude) between skin weights (which are all positive and sum
to 1 on each vertex) computed by our incremental algorithm
and weights computed globally on the finished models. Table 1
compares the running time and the 90th percentile of difference in
skin weights between the two algorithms from the camel modeling
session (Fig. 10).* Our local re-skinning method shows consider-
ably improved performance over the global method without notice-
able loss in deformation fidelity; as the number of vertices increases
due to merging, the difference in running time between the local and
global re-skinning becomes more pronounced.

5 Conclusion, limitations and future work

Our modeling tool provides an easy-to-use interface for modeling
relatively complex characters, following the idea of modeling by
parts. In addition to being accessible to novices, our tool is
advantageous for rapid prototyping and base mesh creation (and
the created models can be further refined in other tools). Unlike
the traditional, sequential approach to modeling and rigging, our
system maintains a rigged mesh throughout the modeling process.
With the skeleton and skin weights, artists can freely pose their

4Specifically, the steps shown are the merging of the left back leg, right
back leg, left front leg, right front leg, neck, and head.
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Figure 15: Visualizing the L1 magnitude of the vector differ-
ence in skin weights computed by our incremental algorithm
and weights computed globally using the Pinocchio algorithm

[Baran and Popovi¢ 2007].
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Figure 16: A possible work-around to create the squid head.

models-in-progress and more rapidly iterate through the entire
character animation pipeline. We believe our work is important
for connecting sketch-based modeling approaches from the litera-
ture with professional uses. (Our current implementation supports
exporting to the industry-standard FBX format [2012b] for further
refinement. In the future we would like to support exporting to
additional formats, allowing artists to model using parts created or
refined in other tools.)

Our system is designed for models that merit a skeleton-based rig,
such as characters, and can handle any tubular organic shape or
shapes that can be cut therefrom (limited to spherical topology).
However, when the input sketch does not have an obvious symmetry
axis, our system does not generate a desirable shape with a reason-
able skeleton. For example, to make the squid head (Fig. 16), the
user cannot simply sketch its silhouette. Instead, a work-around is
introduced by sketching a longer shape and cutting it apart after-
wards so the skeleton has the desired orientation. In addition, it
can be unfamiliar to novice users to consider the skeletal structure
during the creative process. For example, the novice user who creat-
ed the bird character in Fig. 13 commented that he had to resort to
unnatural skeletons to achieve the details on the face.



The CAT occasionally produces unstable chordal axes near regions
of the stroke with a close-to-circular shape; this can lead to some-
what unexpected 3D shapes. Mi et al. [2009] describe tech-
niques that extend and extrapolate the chordal axes to mitigate such
problems.

Our local skin weight re-computation follows the heat diffusion
method in Pinocchio [2007], which can lead to incorrect bone
weight assignment in certain cases. Wareham and Lasenby [2008]
discussed this issue in details and proposed the bone glow method
to address it. Our skin weights can thus be improved by adapting
for their algorithm.

The current system employs inverse kinematics for posing and de-
formation, which is oblivious to the semantics of the model’s parts.
It would be interesting to explore the possibilities of posing the
shapes in meaningful ways, as in the work of Grochow et al. [2004]
and Hecker et al. [2008].

Finally, an obvious, yet non-trivial extension of our tool is towards
simplified animation controls. Specifically, we are interested in
including animation in our unified pipeline, such that modeling
operations are immediately reflected in the animation sequence. We
envision that this will simplify the work of animators, as well as
bring more practitioners to the craft.
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