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SUMMARY

A unifying procedure to numerically compute enrichment functions for elastic fracture problems with

the extended finite element method is presented. Within each element that is intersected by a crack,

the enrichment function for the crack is obtained via the solution of the Laplace equation with Dirichlet

and vanishing Neumann boundary conditions. A single algorithm emanates for the enrichment field

for multiple cracks as well as intersecting and branched cracks, without recourse to special cases,

which provides flexibility over existing approaches in which each case is treated separately. Numerical

integration is rendered to be simple—there is no need for partitioning of the finite elements into

conforming subdivisions for the integration of discontinuous or weakly singular kernels. Stress intensity

factor computations for different crack configurations are presented to demonstrate the accuracy and

versatility of the proposed technique. Copyright© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the extended finite element method (X-FEM) [1, 2], crack modeling is performed by

enriching the finite element approximation through the framework of partition of unity [3, 4].

To represent the crack, the near-tip asymptotic functions and a discontinuous function are

used as enrichment functions, and fracture simulations for different crack configurations

are carried out on a fixed finite element mesh. Closely-related approaches to modeling

discontinuities within the partition-of-unity framework include the manifold method [5–7],

the finite cover method [8], and the method of Hansbo and Hansbo [9]. In this paper, we

adopt harmonic enrichment functions [10] to describe cracks in the extended finite element

method. The approach herein unifies the procedure for crack modeling in the X-FEM with

two distinct advantages: (1) numerically computed enrichment functions are constructed for

cracks that naturally generalizes for the treatment of multiple cracks as well as intersecting

and branched cracks. This provides flexibility over existing approaches [11–14], where each

case is handled separately and the number of cases and the associated combinatorics quickly

becomes unfavorable when complex patterns of multiple cracks and branches are present inside

an element; and (2) partitioning of the finite elements is not required to compute the stiffness

matrix.

Recently, with an eye on graphics simulations, Kaufmann et al. [10] conceived a new

enrichment strategy to represent highly detailed, complex cuts through coarse elements. They
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HARMONIC ENRICHMENT FUNCTIONS 3

showed that a generalized harmonic enrichment function, which is the numerical solution

to the Laplace equation with Dirichlet and Neumann boundary conditions, can serve as

a suitable enrichment function for the entire crack discontinuity. Since the discontinuous

near-tip function [1] and the generalized Heaviside function [2] are harmonic, the Laplace

equation recovers both. The use of numerical harmonic enrichment functions departs from

previous fracture studies on the extended finite element method where analytical enrichment

functions are used: arbitrary branched and intersecting cracks [11, 12, 15], cracks in Mindlin-

Reissner plates [16], polycrystals with discontinuous grain boundaries [13], bimaterial interface

cracks [17], cracks in orthotropic media [18], cracks in piezoelectric materials [19], cohesive

cracks [20, 21], and elastic-plastic fracture in power-law hardening materials [22] to name a

few applications. In fracture computations, use of numerically computed enrichment functions

has been limited. Strouboulis et al. [23, 24] construct enrichment functions for square voids

and bifurcated cracks—that do not admit analytical solutions—by solving auxiliary canonical

boundary-value problems. Duarte and Kim [25] adopt a global-local approach to build

numerical enrichment functions tailored for three-dimensional fracture analyses. First, the

global problem is solved over a coarse mesh and the solution is applied as the boundary

conditions for a local problem that is specifically designed for local features of interest. Then,

the solution of the local problem is used as the enrichment for the global problem.

For multiple cracks, and intersecting and branched cracks in the X-FEM, determining

whether or not a specific type of enrichment function is present and the criteria for selecting

the enriched nodes tends to be cumbersome. Daux et al. [11] treat branched and intersecting

cracks as a main crack and consider each of the branches as separate cracks. Distinct types

of enrichment functions for the crack-tip, crack interior, and the junction are used. For the
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4 S. E. MOUSAVI ET AL.

main and branch cracks, Heaviside and near-tip enrichments are adopted. Furthermore, an

additional (junction) enrichment is required to model the point where the cracks meet. The

junction enrichment assumes the values of −1, 0 and 1 in the three regions around the junction-

point. This enrichment strategy is problem-dependent. On adopting the algorithm proposed

in Reference [13], Duarte et al. [14] use a discontinuous function that is unity within a domain

in the neighborhood of a branched crack and zero elsewhere to model a branched crack. This

technique simplifies the enrichment strategy, but it remains problem-dependent: selection of

the regions where the branch enrichment functions take on a non-zero value, depends on how

the cracks interact. Furthermore, as in the standard X-FEM [2], inclusion of discontinuous

functions in the trial space requires partitioning of the finite elements for the computation of

element stiffness matrices, which complicates the implementation for intersecting and branched

cracks.

In this paper, we adopt the technique of Kaufmann et al. [10] to compute harmonic

enrichment functions, and use it for crack modeling and stress intensity factor (SIF)

computations within the X-FEM. The domain of the Laplace equation (hereon referred to

as the Laplace domain) is the union of all the finite elements that are enriched for any of the

cracks. This domain is further discretized into a regular subgrid mesh and the finite element

stiffness matrix of the Laplace equation is set up and solved over the subgrid to obtain the

harmonic enrichment function. In Kaufmann et al. [10], the crack has finite width—that of

a subgrid element. Though suitable for computer graphics applications, this smearing of the

crack can not capture the physics of a strong discontinuity. To resolve this issue and yet retain

algorithmic simplicity, we approximate the crack by a staircase path that passes along the

edges of the subgrid element without intersecting its interior—a rasterized (Manhattan path)
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Prepared using nmeauth.cls



HARMONIC ENRICHMENT FUNCTIONS 5

description of the crack geometry emanates. In the Laplace solve, the enrichment function

for each crack is obtained by imposing Dirichlet boundary conditions along the rasterized

crack path (+1 and −1 values are imposed on duplicated nodes that lie on the crack path; 0

values are imposed on the crack-tips) of the subgrid mesh, and vanishing Neumann boundary

conditions along all other cracks and boundaries. We point out that our technique is distinct

from the global-local approach of Duarte and Kim [25]—in our approach the local solution for

the enrichment function is independent of the global problem and is solved separately.

In the standard X-FEM, the stiffness matrix of enriched elements requires the integration

of discontinuous and weakly singular functions. The numerical integration is performed

by partitioning the finite elements into conforming subdivisions and using standard Gauss

quadrature over these partitions [2]. More sophisticated schemes such as integration of

equivalent polynomials [26], quadratures with variable weights [27], and generalized Gaussian

quadrature rules with polynomial-precision over arbitrary polygons [28, 29] have also been

proposed. Integration of weakly singular kernels can be carried out in one of several ways: with

higher-order Gauss quadrature over the partitions [2], using adaptive integration schemes [30],

or through different types of singular mappings [29, 31–33]. For a more complete list of

numerical integration schemes used for the integration of discontinuous and singular functions,

see References [29, 34] and the references therein. In our algorithm, the Laplace domain is

discretized with conforming subgrid elements—the subgrid mesh is nested within the coarse

finite element mesh. Since the harmonic enrichment function is a bilinear polynomial over each

subgrid element, numerical integration on the subgrid mesh provides exact integration of the

weak form integrals. Therefore, a uniform procedure emerges for the numerical integration

over enriched elements, which is independent of the enrichment type or crack geometry.
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The discretization of the Laplace domain without the use of such a nested subgrid mesh

is undesirable, since it would produce derivative-discontinuities of the basis functions within

the subgrid elements, which would preclude exact numerical integration.

We begin with the presentation of the weak form of the governing equations and a brief

introduction to the extended finite element approximation (Section 2), laying the groundwork

for the use of harmonic enrichment functions, which are numerically computed (Section 3).

Convergence of the extended finite element method with harmonic enrichment functions is

studied in Section 4. We demonstrate the accuracy and versatility of the approach with

numerous benchmark crack problems (Section 5). The main findings from this work are

summarized in Section 6, and we close with some final remarks.

2. EXTENDED FINITE ELEMENT METHOD

Consider the domain Ω with boundary Γ = Γu∪Γt∪Γc as shown in Figure 1. The displacement

boundary condition is prescribed over Γu and the traction is prescribed over Γt. The boundary

Γc is composed of all crack faces that are assumed to be traction-free. The strong form for

elastostatics is:

∇ · σ = 0 in Ω

u = ū on Γu

σ · n = t̄ on Γt (1)

σ · n = 0 on Γc,
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HARMONIC ENRICHMENT FUNCTIONS 7

where σ is the Cauchy stress tensor, u is the displacement, n is the unit outward normal and

ū and t̄ are the prescribed displacements and tractions on Γu and Γt, respectively. On using

the linear elastic constitutive law σ = C : ε, the weak form of the boundary-value problem in

(1) is: find u ∈ U such that∫
Ω

ε(u) : C : ε(v)dΩ =
∫

Γt

t̄ · vdΓ ∀v ∈ U0, (2)

where U and U0 are the trial and test spaces, respectively, which are determined by the

regularity of the solution (U and U0 include functions that are discontinuous across Γc), ε

is the small-strain tensor, and C is the material moduli tensor. After discretizing the domain,

the trial function in the extended finite element method takes the following general form [11]:

uh(x) =
∑
I∈N

NI(x)uI +
nc∑

c=1

∑
I∈Nc

NI(x)Hc(x)aIc

+
nt∑

t=1

∑
I∈Nt

4∑
α=1

NI(x)Φαt(x)bIαt +
nj∑

j=1

∑
I∈Nj

NI(x)Jj(x)cIj , (3a)

with

{Φαt(x)}4
α=1 =

{√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin θ sin

θ

2
,
√
r sin θ cos

θ

2

}
, (3b)

where N is the set of all nodes in the mesh, Nc is the set of nodes whose shape function support

is cut by the interior of the crack c,Nt is the set of nodes whose shape function support contains

the crack-tip t andNj is the set of nodes that are enriched for the junction j. In addition, NI(x)

are the finite element shape functions, Hc(x) is the generalized Heaviside function defined with

respect to crack c, Φαt(x) in (3b) are the crack-tip asymptotic functions defined with respect

to crack-tip t (r and θ are the polar coordinates of a point in the coordinate system attached to

the crack-tip), Jj(x) is the junction function corresponding to the jth junction. The unknown

coefficients of node I corresponding to the classical, Heaviside, near-tip and junction shape
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Figure 1. Boundary value problem with an internal traction-free crack.

functions are uI , aIc, bIαt and cIj , respectively. The number of cracks, crack-tips and junctions

present in the domain are indicated by nc, nt and nj , respectively.

In (3), multiple near-tip and junction enrichment functions are required in addition to the

generalized Heaviside function to realize the correct displacement field to model the presence

of a crack and its interactions with other existing cracks in the domain. On the other hand,

with the harmonic enrichment functions that we use in this paper, the numerical enrichment

function for a given crack is computed by considering its interactions with all other cracks

in the domain. Thus, flexibility accrues and the complexity of the implementation is also

significantly reduced. The extended finite element approximation for crack modeling with

harmonic enrichment functions is:

uh(x) =
∑
I∈N

NI(x)uI +
nc∑

c=1

∑
I∈Nc

NI(x)ψc(x)aIc, (4)

where ψc(x) is the harmonic enrichment function of crack c. On substituting the trial and test

approximations of the form (4) into (2), and using the arbitrariness of nodal variations, the

discrete system of equations are obtained (see Reference [35]).
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HARMONIC ENRICHMENT FUNCTIONS 9

3. CONSTRUCTION OF HARMONIC ENRICHMENT FUNCTIONS

We now describe the algorithm for constructing harmonic enrichment functions through an

illustrative crack problem. The aim, as proposed in Kaufmann et al. [10], is to calculate the

enrichment function of a crack as the solution of the Laplace equation:

∆ψc(x) = 0 in Ω`, (5a)

with Dirichlet and vanishing Neumann boundary conditions:

ψc = ±1 on Γr
c , ψc = 0 on ∂Γr

c , ∇ψc · n = 0 on Γ`, Γr
d (d = 1, 2, . . . , nc; d 6= c). (5b)

The boundary-value problem posed in (5) is for the enrichment function of crack c with Γr
c

denoting the rasterized crack path of crack c (∂Γr
c are the crack-tips), and Γ` ≡ ∂Ω` is the

boundary of the Laplace domain. For a Laplace domain that is fully cut by a crack, the

generalized Heaviside function satisfies the boundary-value problem in (5) and as a result the

harmonic enrichment function ψc(x) coincides with the generalized Heaviside function used

in Moës et al. [2]. Furthermore, observe that the discontinuous crack-tip function, namely

Φ1(r, θ) =
√
r sin(θ/2) in (3b), which is used in Belytschko and Black [1], is a harmonic

function—solution of the mode III crack problem [36]. For a crack that terminates inside an

element, the enrichment function Φ1 can be recovered on using a sufficiently refined subgrid

mesh and on imposing±
√
r as the Dirichlet boundary conditions along the exact representation

of the cracks [10]. However, it should be noted that the crack-tip function is recovered only

sufficiently close to the crack. Away from the crack, the Neumann conditions have influence,

and since the analytic crack-tip function does not satisfy the Neumann conditions, Φ1 is not

reproduced elsewhere. In light of the relatively coarse subgrid meshes we use and to keep the

algorithm simple, we adopt the boundary conditions given in (5b). The use of the ±1 Dirichlet

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–32
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10 S. E. MOUSAVI ET AL.

boundary conditions along the rasterized crack-path provides algorithmic simplicity without

compromising accuracy in fracture computations (see Section 5).

Consider the computation of the enrichment function for crack 1 in a two-dimensional

domain with two cracks (see Figure 2a). The domain is discretized with quadrilateral finite

elements in Figure 2b. The nodes whose shape function support includes a crack-tip or is

cut by a crack interior are enriched for that crack. This is similar to the standard X-FEM

except that in our algorithm all the nodes that are enriched for a crack share one enrichment

function and are treated similarly. The enriched nodes are marked with filled circles for crack 1

and open squares for crack 2 in Figure 2b. The Laplace domain is the set that contains all the

elements that have at least one enriched node. For simplicity, we choose a rectangular box that

contains all the enriched elements (the box in Figure 2b); however, the Laplace domain need

not be rectangular and Kaufmann et al. [10] use a more compact domain. The Laplace domain

is further refined into regular subgrid elements and the smooth crack paths are rasterized so

that the cracks pass along the edges of the subgrid mesh (see Figure 2c). We demonstrate

in Section 5 that the rasterized approximation of the crack paths does not adversely affect

accuracy.

To model the discontinuity, all the nodes along the rasterized crack are duplicated and

the connectivity of the subgrid elements are modified so that one copy of these nodes is

connected to elements that lie above the crack and the other copy is connected to elements

that are below the crack. This is similar to modeling a crack with conforming finite elements

that allows the discontinuity to pass through the elements with the difference that herein

the subgrid mesh is only used to compute the enrichment function. For crack 1, Dirichlet

boundary conditions, namely ψ = +1 and ψ = −1 are assigned to the duplicated nodes above

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–32
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HARMONIC ENRICHMENT FUNCTIONS 11

and below the crack, respectively. A vanishing Neumann boundary condition, i.e., ∇ψ · n = 0

is assigned to all the boundary nodes of the Laplace domain and also on the duplicated

nodes along the rasterized path of crack 2. Once the Laplace equation is solved, bilinear finite

element interpolation on the subgrid mesh is used to compute the enrichment function within

the subgrid mesh. The numerical solution for the enrichment function of crack 1 is shown

in Figure 2d. We remind the reader that the single numerical enrichment function that is

obtained through the solution of (5) suffices for modeling crack 1, whereas in the standard X-

FEM, generalized Heaviside function and multiple crack-tip enrichment functions are needed

for the same purpose. The enrichment function of crack 2 is calculated similarly: Dirichlet

boundary conditions are assigned along crack 2 with vanishing Neumann boundary conditions

elsewhere. The enrichment function for crack 2 is depicted in Figure 2e. The same procedure

is used in case of intersecting cracks with no additional overhead; in the standard X-FEM, an

extra discontinuous enrichment must be added to the nodes containing the junction. Clearly,

for two cracks that are sufficiently distant from each other, the effect of the vanishing Neumann

boundary condition along one crack can be ignored when the harmonic enrichment function of

the other crack is calculated. One can take advantage of this fact and choose a more compact

Laplace domain containing only the cracks that are considered to be interacting with each

other and as a result reduce the computational costs incurred in the Laplace solutions.

4. CONVERGENCE STUDY

We study the convergence properties of the X-FEM with harmonic enrichment function.

Consider a plate defined over the region (−1, 1) × (−1, 1) with an edge crack starting from

(−1, 0) and ending at (0, 0). The material of the plate is assumed to be homogeneous and

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–32
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(a) (b) (c)

(d) (e)

Figure 2. Algorithm for construction of harmonic enrichment functions. (a) geometry; (b) enriched

nodes and Laplace domain; (c) subgrid mesh and rasterized approximation of the cracks (Manhattan

paths); (d) enrichment function of crack 1; and (e) enrichment function of crack 2.

isotropic with the Young’s modulus E = 1 and the Poisson ratio ν = 0. The Cartesian

components of mode I displacement field is used as the Dirichlet boundary conditions, which

corresponds to KI = 1 and KII = 0. In order to realize the discontinuous Dirichlet boundary

condition at (−1, 0), two finite element nodes are placed at (−1, ε) and (−1,−ε), i.e., slightly

above and below the crack, with ε a small positive number. The finite elements are connected

to distinct nodes so that the exact displacement boundary condition can be imposed. This

problem has been considered by Sukumar and Srolovitz [37] and Mousavi and Sukumar [29]

to study the convergence of the X-FEM. We evaluate the relative energy norm of the error to

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–32
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HARMONIC ENRICHMENT FUNCTIONS 13

analyze the convergence of the harmonic X-FEM:

Erel =
||u− uh||E(Ω)

||u||E(Ω)
=

(∫
Ω
(ε− εh)T C (ε− εh)dΩ

)1/2(∫
Ω

εT C εdΩ
)1/2

, (6)

where u and uh are the exact and extended finite element solutions for the displacement field,

ε and εh are the exact and extended finite element solutions for the strain tensor, and C is

the constitutive matrix. First, we examine the convergence rate in the energy norm when only

one layer of elements around the crack-tip are enriched (topological enrichment). Five different

meshes are used: 10 × 10, 20 × 20, 40 × 40, 80 × 80 and 160 × 160. A sample mesh is shown

in Figure 3a with the enriched nodes marked with filled squares. The convergence curves for

3× 3 and 6× 6 subgrid elements over each finite element are shown in Figure 3c—the rate of

convergence is 0.500 and 0.499, respectively, which is in agreement with finite element theory

for
√
r-singular problems. Also, it is seen from Figure 3c that refining the subgrid reduces the

relative error but does not improve the convergence rate.

Next, we enrich a fixed area around the crack-tip as the mesh is refined (geometrical

enrichment [31, 32], see Figure 3b). All the nodes within a distance of re from the crack-

tip are enriched. Convergence curves for re = 0.25 and re = 0.5 are shown in Figure 3c. It

is observed that the improvement in the accuracy and convergence rate is only marginal as

the enrichment region is enlarged: convergence rate for 3 × 3 subgrid elements is 0.519 and

0.511 for re = 0.25 and re = 0.5, respectively, and for 6 × 6 subgrid elements is 0.524 and

0.513 for re = 0.25 and re = 0.5, respectively. While the X-FEM is capable of recovering the

optimal convergence rate of unity in the energy norm via geometrical enrichment, the rate of

convergence of harmonic X-FEM remains close to one-half. This is due to the fact that the

harmonic enrichment function does not exactly reproduce the terms that are present in the

asymptotic displacement field around the crack-tip, i.e., the analytical crack-tip functions that

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–32
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(a) (b)

(c)
Figure 3. Convergence study of the X-FEM with harmonic enrichment. (a) enriched nodes for

topological enrichment; (b) enriched nodes for geometrical enrichment (re = 0.25); and (c) relative

energy norm of the error.

are used as the enrichment functions in the X-FEM.
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5. NUMERICAL EXAMPLES

We present six benchmark crack problems to demonstrate the accuracy and effectiveness of

the proposed enrichment scheme in fracture analyses with the X-FEM. Plane strain conditions

are assumed, and the material is homogeneous and isotropic with Young’s modulus E = 1

and Poisson’s ratio ν = 0.3. Four-node quadrilateral finite elements are used to discretize the

domain for all the crack problems. A 2×2 Gauss quadrature rule is used in all elements that are

not enriched. For each enriched element, numerical integration is done over the subgrid mesh;

since the harmonic enrichment function is a bilinear polynomial, a 3 × 3 Gauss quadrature

rule in each subgrid element provides exact integration for the stiffness matrix entries. Our

numerical tests reveal that a 2 × 2 quadrature rule yields comparable accuracy to a 3 × 3

rule, and hence the former is preferred since it renders the numerical integration to be more

efficient.

5.1. Edge-crack in a finite plate

First, we consider the benchmark problem of an edge-crack in a finite plate under tension. The

geometry of the plate and crack configuration are shown in Figure 4a with w = 7, h = 16,

a/w = 1/2, and σ = 1. The exact stress intensity factor (SIF) is: K∗
I = 9.372 [36]. The

numerical enrichment function is obtained by solving the Laplace equation over a refined

subgrid mesh around the crack as explained in Section 3.

The domain over which the Laplace equation is solved must contain all the elements

that are enriched so that the enrichment function can be evaluated within all of them. In

our implementation, the domain is chosen as the smallest rectangular box (see Figure 4b)

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–32
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16 S. E. MOUSAVI ET AL.

Table I. Normalized mode I stress intensity factor for the edge-crack problem.a

Mesh X-FEM
Subgrid

2× 2b 3× 3 4× 4 6× 6 8× 8 16× 16

21× 41 0.954 0.933 0.902 0.942 0.946 0.949 0.951

41× 81 0.977 0.961 0.945 0.966 0.968 0.970 0.971

a Reference solution: K∗
I = 9.372 [36].

b Each enriched finite element is divided into 2× 2 subgrid elements.

that contains all the enriched elements. A contour plot of the enrichment function is shown

in Figure 4c, in which the discontinuity is visible. The normalized mode I stress intensity

factors that are computed using a standard implementation of the X-FEM and also with our

numerical enrichment function are shown in Table I. For each mesh, the subgrid mesh for

calculating the enrichment function is refined until the desired accuracy is obtained. In this

case, a 6× 6 subgrid mesh or finer over each finite element proves to be sufficient.

5.2. Inclined edge-crack in a finite plate

Consider the inclined edge-crack in a finite plate shown in Figure 5a with the dimensions

w = 1 and h = 2, and under uniaxial tension σ = 1. The crack extends from (0, 1) to (0.4, 1.4).

In Figure 5b, the enriched nodes are marked with filled circles and the Laplace domain is

shown enclosed by a box. The enrichment function is depicted in Figure 5c. Mode I and

mode II stress intensity factors for different finite element meshes and subgrid meshes are

listed in Table II. The numerical results for the refined mesh are in good agreement with the

reference solution provided in Sutradhar et al. [38].

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–32
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(a) (b)

(c)

Figure 4. Edge-crack problem. (a) geometry; (b) enriched nodes and Laplace domain; and (c)

enrichment function.

5.3. Inclined center-crack in an infinite plate

Consider an infinite plate with an inclined center-crack under biaxial loading (Figure 6a). The

crack has a half-length of a = 1/2 and makes an angle of β with the vertical direction. The

ratio a/w = 1/10 is selected so that the domain can accurately model an infinite plate. The

tensile loads are chosen as σ1 = 1 and σ2 = 2. The normalized SIFs for different inclination

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–32
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(a) (b) (c)

Figure 5. Inclined edge-crack problem. (a) geometry; (b) enriched nodes and Laplace domain; and (c)

enrichment function.

Table II. Normalized stress intensity factors for the inclined edge-crack problem.a

SIFs Mesh X-FEM
Subgrid

2× 2 3× 3 4× 4 6× 6 8× 8

KI/K
∗
I

21× 41 0.979 0.874 0.938 0.900 0.942 0.947

41× 81 0.990 0.936 0.976 0.945 0.974 0.972

KII/K
∗
II

21× 41 0.997 0.939 0.952 0.938 0.968 0.984

41× 81 0.998 0.949 0.984 0.950 0.988 0.990

a Reference solution: K∗
I = 1.927 and K∗

II = 0.819 [38].

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–32
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(a) (b) (c)

Figure 6. Inclined center-crack in an infinite plate. (a) geometry; (b) enriched nodes and Laplace

domain; and (c) enrichment function.

Table III. Normalized stress intensity factors for an infinite plate with an inclined center crack (FE

mesh: 41× 41).

β
Exact [39] X-FEM Subgrid (3× 3) Subgrid (6× 6) Subgrid (10× 10)

K∗
I K∗

II
KI

K∗
I

KII

K∗
II

KI

K∗
I

KII

K∗
II

KI

K∗
I

KII

K∗
II

KI

K∗
I

KII

K∗
II

0 1.253 0.000 1.001 — 0.972 — 0.986 — 0.987 —

15 1.337 0.313 1.000 0.992 0.972 0.977 0.974 0.990 0.979 1.001

30 1.566 0.542 1.000 1.005 0.962 0.983 0.982 0.992 0.989 0.994

45 1.880 0.626 1.003 1.011 0.954 0.963 0.973 0.976 0.980 0.979

60 2.193 0.542 1.000 0.998 0.963 0.969 0.984 0.975 0.990 0.987

75 2.422 0.313 1.001 1.024 0.971 0.944 0.974 0.936 0.980 0.958

90 2.506 0.000 1.001 — 0.973 — 0.987 — 0.988 —

angles β and subgrid meshes are given in Table III, which are in good agreement with the

exact solution of Aliabadi and Hall [39].
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5.4. Intersecting cracks in a finite plate

To show the generality of the approach we use the numerical enrichment function to model

a cross crack in a finite plate under unit biaxial loading (Figure 7a). The plate is a square

of side length w = 2 and the crack half-length is a = 1/2. The crack is modeled as a main

crack (AOB) with the enrichment function shown in Figure 7c and two branches (OD and

OC) with their enrichment functions shown in Figures 7d and 7e, respectively. For the Laplace

domain and enriched nodes, see Figure 7b: the nodes that are enriched for cracks AOB, OD

and OC are marked with filled circles, open squares and asterisks, respectively. The nodes of

the element containing the junction point are enriched for all the cracks. Normalized mode

I stress intensity factor is computed at crack tips A and B and presented in Table IV. The

numerical results are in excellent agreement with the reference solution provided in Cheung et

al. [40].

Selecting the cracks as AOB, OD and OC ensures that the crack-opening and junction are

appropriately represented—the calculated enrichment functions form a suitable basis for the

enriched trial function space. However, it is not the only possible choice of basis functions

and we show that there are other basis functions that can be used in the enriched space. For

example, we choose AOC, OB and OD (see Figure 7a) as the cracks and apply the procedure

outlined earlier to calculate the corresponding enrichment functions, which are now shown in

Figures 7f, 7g and 7h. The SIFs calculated using these enrichment functions are presented

in Table IV, and the numerical results obtained via the two different enrichment strategies are

found to be of comparable accuracy.
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(a) (b)

(c) (d) (e)

(f) (g) (h)
Figure 7. Intersecting cracks in a finite plate. (a) geometry; Crack combination AOB, OD and OC: (b)

enriched nodes and Laplace domain; (c) enrichment function of crack AOB; (d) enrichment function

of crack OD; and (e) enrichment function of crack OC. Crack combination AOC, OB and OD: (f)

enrichment function of crack AOC; (g) enrichment function of crack OB; and (h) enrichment function

of crack OD.
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Table IV. Normalized stress intensity factors for cross-cracks in a finite plate.a

Crack combination SIFs Mesh
Subgrid

2× 2 4× 4

AOB, OC and OD

KA
I /K

∗
I

21× 21 0.979 0.992

41× 41 0.993 0.999

KB
I /K

∗
I

21× 21 0.971 0.985

41× 41 0.985 0.993

AOC, OB and OD

KA
I /K

∗
I

21× 21 0.963 0.978

41× 41 0.979 0.989

KB
I /K

∗
I

21× 21 0.996 1.006

41× 41 1.004 1.008

a Reference solution: K∗
I = 1.281 [40].

5.5. Branched crack in an infinite plate

We analyze a branched-crack (multiply-connected cracks) in an infinite plate under unit tensile

loading (see Figure 8a). The plate has width w = 40 and height h = 32, and the crack is

modeled as a main crack (AOC) and a branch (OB) with the dimensions a = 1, b = 1 and

θ = π/4. The Laplace domain is selected as the box containing all enriched elements as shown

in Figure 8b. The enrichment function for each of the cracks is calculated by duplicating

the nodes along both of the cracks and assigning Dirichlet boundary conditions along the

corresponding crack only (Figures 8c and 8d) [10]. The normalized stress intensity factors for

the tips A and B of the crack are listed in Table V for different finite element and subgrid

meshes. The reference solutions are from Chen and Hasebe [41]. The extended finite element
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Table V. Normalized stress intensity factors for the branched-crack problem.a

SIFs Mesh X-FEM [11]
Subgrid

2× 2 3× 3 4× 4 6× 6 8× 8

KA
I /K

A∗
I

80× 65 0.922b 0.913 0.948 0.952 0.967 0.974

160× 129 0.983c 0.953 0.950 0.978 0.985 0.982

KB
I /K

B∗
I

80× 65 0.929b 1.079 1.060 1.038 1.015 1.031

160× 129 1.006c 1.048 0.933 1.007 0.996 1.006

KB
II/K

B∗
II

80× 65 0.905b 1.048 1.100 1.024 1.015 1.008

160× 129 0.990c 1.016 0.795 0.998 0.993 1.008

a Reference solution: KA∗
I = 1.709, KB∗

I = 0.810, and KB∗
II = 0.828 [41].

b The element size parameter h/a = 0.40, where h is the average element size and a is shown

in Figure 8a. In our implementation, the element size parameter for the mesh 80× 65 is 0.5.

c The element size parameter h/a = 0.22. In our implementation, the element size parameter

for the mesh 160× 129 is 0.25.

solutions reported here are from Daux et al. [11] for the closest available element sizes. Our

results are in good agreement with both the reference solutions and the X-FEM [11].

As shown in the previous example, other combinations of the cracks can also serve as the

basis for the construction of the enrichment functions. The enrichment functions that are built

by representing the cracks as AO and BOC are illustrated in Figures 8e and 8f. We obtain

comparable results to those in Table V for this case too, but in the interest of space do not

include these results.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Branched-crack problem. (a) geometry; (b) enriched nodes and Laplace domain (zoom over

the cracks); (c) enrichment function of crack AC; (d) enrichment function of crack OB; (e) enrichment

function of crack AO; and (f) enrichment function of crack BC.
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5.6. Arc-shaped crack in an infinite plate

As the last example, we consider the problem of an arc-shaped crack in an infinite plate to

demonstrate that the rasterized approximation of the crack path in our algorithm does not

limit its application to just straight cracks. In fact, it proves to be a convenient method to

compute the enrichment function to model curved cracks, where otherwise the crack would

be required to be approximated by many linear segments. The geometry of the plate, crack

configuration and biaxial loading are shown in Figure 9a. The exact solution is [42]:

KI =
σ

1 + sin2 β
2

[
πR sinβ(1 + cosβ)

2

]1/2

, KII =
σ

1 + sin2 β
2

[
πR sinβ(1− cosβ)

2

]1/2

.

This problem was solved by Huang et al. [43] (bilinear finite elements) and Stazi et al. [44]

(quadratic finite elements) using the X-FEM. To adequately represent the infinite domain, we

choose the arc radius R = 1 within a plate of dimensions 20 × 20. To capture the curvature

of the crack and to obtain accurate results, Huang et al. [43] used a structured mesh with

Cartesian grid refinement in a narrow band near the crack. We adopt a similar approach

and use two different element sizes: he = 0.26 is selected for elements far from the crack and

he = 0.02 for the ones in the vicinity of the crack. A sample mesh with refinement in the region

around the crack is shown in Figure 9b (enlarged image of the mesh near the crack appears

in Figure 9c). Note that since the crack dimensions are much smaller than the problem domain,

a sufficiently refined mesh is required in the vicinity of the crack. The enriched nodes and the

Laplace domain of the crack is illustrated in Figure 9d for β = 45◦ and in Figure 9g for

β = 90◦. The rasterized crack-path and the harmonic enrichment function for the arc-shaped

crack is shown in Figures 9e and 9f for β = 45◦ and Figures 9h and 9i for β = 90◦, respectively.

The normalized SIFs for different subgrid refinements are presented in Table VI, and we note

that the numerical results are in good agreement with the exact solution [42]. This example
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Arc-shaped crack in an infinite plate. (a) geometry; (b) sample mesh; (c) zoom over the

Cartesian refinement of the mesh in the vicinity of the crack with the exact crack geometry; (d), (e)

and (f) enriched nodes, Laplace domain, rasterized crack path and enrichment function for β = 45◦,

mesh parameters [0.26, 0.02], and subgrid mesh of 3×3 over each element; and (g), (h) and (i) enriched

nodes, Laplace domain, rasterized crack path and enrichment function for β = 90◦, mesh parameters

[0.26, 0.02], and subgrid mesh of 3× 3 over each element.

reveals that the harmonic enrichment function for a rasterized crack-path also yields accurate

SIFs for a curved crack.
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Table VI. Normalized stress intensity factors for the arc-shaped crack problem.a

β Mesh parameters SIFs
Subgrid

3× 3 6× 6 10× 10

45◦

[0.26, 0.04]
KI/K

∗
I 1.000 1.001 1.003

KII/K
∗
II 0.913 0.949 0.962

[0.26, 0.02]
KI/K

∗
I 1.001 1.001 1.001

KII/K
∗
II 0.951 0.980 0.981

90◦

[0.26, 0.04]
KI/K

∗
I 1.005 1.003 0.997

KII/K
∗
II 0.985 0.986 0.964

[0.26, 0.02]
KI/K

∗
I 0.999 0.999 0.999

KII/K
∗
II 0.984 0.987 0.982

a Exact solution: K∗
I = 1.201 and K∗

II = 0.497 for β = 45◦ and K∗
I = K∗

II = 0.835 for

β = 90◦ [42].

6. CONCLUDING REMARKS

We presented a unifying procedure to construct enrichment functions for crack modeling using

the extended finite element method. The point of departure in this work was the numerical

computation of the enrichment function via the solution of the Laplace equation with Dirichlet

and vanishing Neumann boundary conditions. The Laplace domain was selected as the set that

consisted of the union of all the elements with at least one enriched node and was discretized

into a refined subgrid mesh. A rasterized approximation of the crack was used such that

the crack passed along the boundaries of the subgrid elements but did not cut any of them.

Regular four-node quadrilateral finite element meshes were used in the fracture computations.
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Since there was no discontinuity inside a subgrid element and all basis functions (classical finite

element and enriched) were piecewise polynomials, numerical integration with a standard 3×3

Gauss quadrature rule was exact; a 2 × 2 quadrature rule in subgrid elements proved to be

sufficient for accurate numerical results.

A relative coarse uniform subgrid mesh (6× 6 division of each enriched element) sufficed to

realize acceptable accuracy in stress intensity factor computations. The generalization of the

algorithm to branched cracks was straightforward: the branched crack was considered as a main

crack and each branch was treated as a separate crack. In case of multiple and intersecting

cracks, the enrichment function of each crack was calculated by setting Dirichlet boundary

conditions along it and vanishing Neumann boundary conditions along all other cracks and

the external boundary. This enrichment strategy took care of junctions automatically and there

was no need to add extra discontinuous enrichment functions to the nodes whose shape function

support contained the branching/intersecting point. Several benchmark numerical examples

were presented that demonstrated the accuracy of the stress intensity factor computations

and the robustness of the method in static fracture analyses. Good agreement with theory for

the stress intensity factors was also realized for the problem of an arc-shaped crack, which

further revealed the potential of the approach. The rate of convergence in energy norm for

the X-FEM with harmonic enrichment functions was studied; a rate of one-half was realized,

which matches the theoretical rate of the FEM for
√
r-singular problems. The convergence

rate was only marginally improved when a fixed area was enriched. The numerically computed

harmonic enrichment function deviates from the discontinuous asymptotic crack-tip function

away from the crack-tip, and hence use of the fixed-area enrichment does not lead to an

improvement in the convergence rate. Partitioning of the elements, which is required in
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the standard implementation of the extended finite element method, is avoided, and exact

integration is realized, albeit with the additional cost of numerical integration over a subgrid

mesh. Harmonic enrichment functions provide an easy-to-implement and flexible approach for

modeling multiple cracks, and intersecting and branched cracks in the extended finite element

method.
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4. I. Babuška and J. M. Melenk. The partition of unity method. International Journal for Numerical

Methods in Engineering, 40:727–758, 1997.

5. G-H. Shi. Manifold method of material analysis. In Transactions of the 9th Army Conference on Applied

Mathematics and Computing, pages 57–76, Minneapolis, Minnesota, 1991.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–32

Prepared using nmeauth.cls



30 S. E. MOUSAVI ET AL.

6. G. W. Ma, X. M. An, H. H. Zhang, and L. X. Li. Modeling complex crack problems using the numerical

manifold method. International Journal of Fracture, 156:21–35, 2009.

7. G. W. Ma, X. M. An, and L. He. The numerical manifold method: A review. International Journal of

Computational Methods, 7(1):1–32, 2010.

8. K. Terada, M. Asai, and M. Yamagishi. Finite cover method for linear and non-linear analyses of

heterogeneous solids. International Journal for Numerical Methods in Engineering, 58:1321–1346, 2003.

9. A. Hansbo and P. Hansbo. A finite element method for the simulation of strong and weak discontinuities

in solid mechanics. Computer Methods in Applied Mechanics and Engineering, 193(33–35):3523–3540,

2004.

10. P. Kaufmann, S. Martin, M. Botsch, E. Grinspun, and M. Gross. Enrichment textures for detailed cutting

of shells. ACM Transactions on Graphics, 28(3):50:1–50:10, 2009.
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