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Abstract

In this note we consider a simple shape operator discretization for general meshes, based on computing
an interpolating quadratic function passing through vertices of a triangle and its edge-adjacent neighbors.
This approximation is computationally simple and consistent for a broad class of meshes. However, its con-
vergence properties in the context of mesh optimization problems are not as good as some of the previously
proposed techniques and it suffers from instabilities for certain point configurations.

In [GGRZ06], we explored the behavior of a number of discretizations of the shape operator on general
meshes. Other than the midedge normal discrete operator introduced in that paper, all these operators were
using vertex degrees of freedom (DOFs) only, and were obtained one of three minimal stencils: edge-centered
(vertices of two triangles sharing an edge), face-centered (vertices of all triangles adjacent to a given triangle),
and vertex-centered (vertices of all triangles sharing a given vertex). The stencils are shown in Figure 1.

Figure 1: Minimal stencils: edge-centered, triangle-centered and vertex-centered.

Once a stencil is fixed, there are two common approaches to defining a shape operator or mean curvature
vector: interpolating or approximating quadratic approximation to the surface, and elementary hinge operator
averaging. The latter approach is motivated by discrete geometric ideas, i.e., defining shape operators using
properties not requiring surface smoothness (see [CSM03]). In this case, the shape operator associated with
an edge is approximated by an operator with one principal curvature direction aligned with the edge, and the
only non-zero principal curvature magnitude proportional to the angle between triangle normals.

In the case of the simplest stencil (two triangles sharing an edge) the two approaches are effectively the
same, as only a cylinder can be used to interpolate four points. One type of quadratic fit [Tau95] and discrete
hinge averaging [PP93] were considered for vertex-centered stencils in [GGRZ06]. However, [GGRZ06]
presents the results only the hinge-averaging operator for the triangle-centered stencil. Quadratic fit can be
also applied on the triangle-centered stencil: the number of DOFs for triangles with no vertices of valence
3, exactly matches the number of DOFs needed for a general quadratic function, so a quadratic fit yields
an interpolating quadratic function. As it was pointed out in [Zor05] this is sufficient for consistency of
discretization, but is in general insufficient for convergence.

This note presents the results that were obtained for this operator at the time [GGRZ06] was written, but
were omitted from the experimental results due to space limitations and the lack of observed advantages of
this operator compared to other formulations. Additionally, we present explicit formulas for the operator
obtained using elementary geometry, rather than solving a linear system of equations.
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Figure 2: Notation for stencil vertices.

Formulation. The idea is to approximate the surface locally using a quadratic function defined over a
plane close to the tangent plane. We use the plane of the central triangle of the stencil as the tangent plane
approximation.

Let the triangle normal be n. The distances from points qi, i = 1 . . . 3 (see Figure 2) to the plane of the
triangle are computed as (qi − pi) · n = f(qi). Let q̃i = qi − f(qi)ni be projections of points qi to the
plane of the triangle.

We seek a quadratic function Q defined on the plane of the triangle, satisfying Q(pi) = 0 (interpolation
of points) and Q(q̃i) = f(qi), i = 1 . . . 3, and use its quadratic term coefficients to estimate the Hessian.
Such quadratic function may be nonunique (if some of the points coincide) or not exist (if six points pi, q̃i

are on the same conic). Whenever six points of the stencil are close to a common conic, the coefficients of
the quadratic interpolant become large and Hessian estimation becomes highly unreliable.

We define wi = pi+1 and wi+3 = q̃i, i = 0 . . . 2. Let zi be f(wi), i = 0 . . . 5.

Proposition 1. For six co-planar points wi i = 0 . . . 5 in a plane P , there is a unique quadratic function on
P satisfying Q(wi) = zi, for arbitrary choice of zi, if and only if these six points are not on the same conic.

Proof. Assume that the origin is not in the plane P (if the plane passes through the origin, it can be shifted
away from origin along its normal changing the quadratic function only by a constant). We use three-
dimensional representations of points wi in P . If A is a rotation mapping P to a plane z = C, then x̄ = Ax
for any point x in the plane is of the form [x, y, C], i.e., is a homogeneous form of the points. It is well-known
that any quadratic function in homogeneous coordinates can be written as x̄T Q̄x̄. Then we obtain the matrix
Q in the original coordinate system as AT Q̄A, and Q(wi) = wT

i Qwi.
By linearity of Q with respect to zi, Q can be expressed as a linear combination of six basis matrices Qj ,

j = 0..5, where Qj is the quadratic form for the configuration zi = δij .
We now derive the expression for Q0, i.e., for the configuration zi = 0 for i ≥ 1, and zi = 0; expressions

for other Qj are obtained by circular permutation of points. Note that in this case all points except w0 are in
the same plane. As zi = 0 for i ≥ 1 the quadratic function Q vanishes at wi, for any i ≥ 1: wT

i Q0wi = 0,
i.e., the matrix Q0 defines a conic passing through five points. Such a conic is unique, unless three points are
collinear. (We consider the question of uniqueness below). Conversely, a conic passing through five points
wi, i ≥ 1, determines Q0 up to a constant. Given a nontrivial conic with matrix M passing through wi,
i ≥ 1, we obtain Q0 as M/(wT

0 Mw0). If wT
0 Mw0 = 0, either there are multiple conics passing through

the points, or the system has no solution.

A conic matrix M can be computed using a matrix form of the Braikenridge-Maclaurin construction,
[CG67] (Figure 3) which we review here for completeness.

This construction is based on Pascal’s theorem. Construct three pairs of lines, each pair passing through
opposing sides of the hexagon (x,w1, ...w5). Each pair of lines will intersect at some (possibly infinite)
point. By Pascal’s theorem, x lies on the conic passing through wi if and only if all three intersection points
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Figure 3: Constructing a conic passing through 5 points wi, i = 0 . . . 6.

are collinear. For two points a and b, on a plane P not containing the origin, the line (a,b) passing through
these points can be identified with a× b: this vector determines a plane P ′, passing through the origin such
that P ∩ P ′ = (a,b). Similarly, for two intersecting lines la and lb in P , corresponding to vectors a and b,
a× b defines a line through the origin passing through la ∩ lb. This also works for two distinct parallel lines
(in this case the intersection point is at infinity).

Using these formulas we write Pascal’s theorem algebraically. Define li,i+1 = wi × wi+1, the lines
along the edges of the hexagon not containing x. The intersection points of opposite sides are given by
r1 = (w1×x)× l34, r2 = l12× l45, and r3 = l23× (w5× x). (Here we rely on the fact that no three points
are collinear, so no two lines coincide).

Using this notation, Pascal’s theorem’s statement, becomes

r1 · (r2 × r3) = 0,

i.e., the volume of the parallelepiped spanned by ri is zero. In expanded form, this yields a quadratic equation
for x:

(l34 × (w1 × x)) · (r2 × (l23 × (w5 × x))) = 0

This formula allows us to write an explicit expression for the matrix M .Let R(a) be the skew symmetric
matrix satisfying Rx = a × x. Replacing a × · with left multiplication by R(a) in the formula above, we
obtain

(R(l34)R(w1)x)) · (R(r2)R(l23)R(w5)x) = xT R(w1)R(l34)R(r2)R(l23)R(w5)x = 0

(we use skew-symmetry of R(a): R(a)T = −R(a)).
This yields an expression for M :

M = R(w1)R(l34)R(r)R(l23)R(w5),

A complete discretization of the shape operator is given by

Squad =
6∑

i=3

Qif(q̃i) =
6∑

i=3

Qi(n · (qi − pi))

Only the last 3 matrices Qi corresponding to q̃i are used, as the values of the quadratic function at pi,
i = 1 . . . 3 is always zero.
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Uniqueness. The quadratic function exists and is unique if six points wi are not collinear and are not on
the same conic (possibly degenerate).

Suppose some three points are collinear but no four points are collinear. In this case, when we construct
matrices Qi according to the procedure above, the quadratic function is still uniquely defined: For each Qi,
we may have three out of five defining points on one line, but the remaining two are not on the same line. The
collinear triple and the remaining pair define two lines, i.e., a degenerate conic defined by the product of two
linear equations.

If four or five points are collinear, it is easy to see that the quadratic function is not defined uniquely. In
this case one can pick a unique degenerate conic passing through four collinear and one additional point by
requiring it to be two parallel lines; we note that for such configurations resulting conics are unstable with
respect to small perturbations of points.

Boundaries and valence 3 vertices. For boundaries, as one of the flap triangles of the stencil may be
missing, we use reflection about the boundary edge to create an additional point. If one of the triangle
vertices has valence three, the stencil centered at this triangle has five or four points. If there are only four
points, this implies that the whole mesh is a tetrahedron, thus only the case of five points is interesting. In
this case, we use an additional vertex outside the stencil for the quadratic fit.

Note that if all six points of the stencil projected to the central triangle plane are close to a conic, the
quadratic function still exists and is unique but does not yield a good curvature estimate: this is a fundamental
limitation of the discretization. In the case when six distinct points are exactly on a unique conic (e.g., vertices
of a regular hexahedron), there is no interpolating quadratic function.

Evaluation. We tested this discretization in three convergence experiments, identical to the ones described
in [GGRZ06]. Two tests are based on the linearized form of the operator used to discretize thin-plate energy:
uniformly loaded plate deformation and recovery of a quadratic displacements in the interior of the given
Dirichlet and Neumann boundary conditions sampled from the quadratic displacement function (Neumann
conditions are enforced by sampling two rows of points along the boundary). The third test uses the com-
plete (nonlinear in vertex displacements) form of the operator to discretize the Willmore energy; Dirichlet
and Neumann boundary conditions sampled from the sphere, which minimizes the Willmore energy in the
continuum case.

equilateral regular half 4-8 irregular

aspect rat. 3 polar distort. half 3-12 mixed

Figure 4: Mesh types.

4



 1.4

 1.3

 1.2

 1.1

 1

 0.9

 0.8

 0.7
 10  100  1000  10000  100000

regular
3-12
4-8

irregular
varied
polar

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 1.015

 1.02

 10  100  1000  10000  100000

regular
3-12
4-8

irreg
varied
polar

Figure 5: Left: uniformly loaded linearized plate test for different mesh types. Right: Sphere recovery test.
The maximal computed pointwise displacement is shown relative to the maximal pointwise displacement for
the analytic solution.

regular irregular polar mixed 3-12

Figure 6: The boundary conditions (two rows of vertices) are sampled from a quadratic function. Linear thin-
plate functional is minimized. To compute normals at vertices the top row averages the normals of triangles
incident to each vertex, while the bottom row fits a quadratic to the area of the surface surrounding each
vertex and uses the corresponding normal.

We used several types of meshes shown in Figure 4. The results for different tests are shown in are shown
in Figures 5 and 6.

Comparing to operators used in [GGRZ06], we observe that the quality of the results is somewhat better
than triangle-averaged and vertex quadratic fit discretizations, but inferior to the cotangent formula discretiza-
tion and midedge normal discretization.

Note that [GGRZ06] uses a fit to edge-wise normal curvature approximations [MS92, Tau95, SK01],
rather than a quadratic fit to the ring of vertices as it was done in [WW94], with special treatment for valence
three and four vertices and degenerate cases. The quality relative to the latter type of fit is unknown to us.

Figure 6 shows that the the normal computation has a significant impact on visual quality. For most
meshes, relatively expensive techniques based on fitting significantly improve the appearance, unless the
normals are computed as a part of the optimization process as it is done for the midedge operator.

We observe that the quality of the results for tests with no external forces is better than that with external
forces applied (compare quadratic surface recovery errors shown in Figure 7 to the plate and sphere recovery
errors in Figure 5). However, the cotangent formula appears to yield somewhat better results, and its com-
putational cost is comparable, if not better. We note that cotangent discretization does not yield a full shape
operator, only the mean curvature (for generalization to a shape operator discretization, see [HPW05]).

Considering triangle-centered stencils, quadratic interpolation is less robust, and more complex, than
hinge averaging. In particular, (i) near-conic configurations of stencil vertices lead to numerical instabilities,
(ii) vertices of valence three require special treatment, and (iii) the formulas for the discretization coefficients
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Figure 7: Error plots for quadratic function recovery for different types. The maximal error is measured
relative to difference between maximal and minimal values (vertical extent) of the solution.

are more costly than corresponding formulas for hinge averaging, an important consideration for nonlinear
problems with significant triangle shape deformation.
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