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Abstract
Hinge-based bending models are widely used in the physically-based animation of cloth, thin plates and shells. We

propose a hinge-based model that is simpler to implement, more efficient to compute, and offers a greater number

of effective material parameters than existing models. Our formulation builds on two mathematical observations:

(a) the bending energy of curved flexible surfaces can be expressed as a cubic polynomial if the surface does not

stretch; (b) a general class of anisotropic materials—those that are orthotropic—is captured by appropriate choice

of a single stiffness per hinge. Our contribution impacts a general range of surface animation applications, from

isotropic cloth and thin plates to orthotropic fracturing thin shells.

1. Introduction

Many animation applications require simple and efficient
simulation of a general class of elastic surfaces. This class
includes objects that are (a) flat (plates) or curved (shells)
in their undeformed state, (b) flexible or nearly rigid and
(c) isotropic or anisotropic in their response to bending. In
mesh-based simulation, hinge-based methods are preferred
for their simplicity and economy of computation. Consider-
ing every two triangles meeting at an edge to be a bending
hinge, such methods require that some function of the dihe-
dral angle is subject to a restoring force. Empirically, hinge-
based models are known to work well for isotropic materi-
als, and for geometric models of anisotropy based on Euler’s
curvature formula [BW98,VMT06]. For a survey of bending
models used in animation, see [TW06].

Contributions. We present what we believe is the simplest
and most efficient hinge-based bending model to encompass
the spectrums (a), (b), and (c), at the cost of restricting our at-
tention to quasi-inextensible surfaces, i.e., surfaces that pre-
fer to bend much more than to stretch. Our model is based
on a mathematical analysis of the hinge-based approach re-
sulting in two main insights:

First, we introduce a hinge-based bending model that pre-
serves a key property of the smooth setting: the bending en-
ergy of a thin shell is cubic under isometric deformations.
To understand the consequences of this statement, consider
that bending energy is in general a highly nonlinear func-
tional of the surface position; therefore, the implementation
of implicit solvers for thin shells involves relatively complex
derivation and costly computation of the nonlinear bending

force Jacobian. However, under the assumption of quasi-
isometry, we show that implementation can be reduced to
a one-time precomputation of an approximate Jacobian ma-
trix, and implicit time stepping routines can use an inex-
act Newton method for significant performance gains. Shells
simulated with this method conserve both linear and angular
momenta.

Second, we treat anisotropy, where mechanical response
depends on the direction of applied strain. We present a
bending model for orthotropic materials, exposing an impor-
tant physical parameter—the shear modulus—which affects
the drapability of a fabric [SM02]. Perhaps due to their small
stencil, hinge-based models in computer animation have thus
far eluded the incorporation of orthotropic response.

Our work builds on a foundation laid out by Bergou et

al. [BWH∗06], who demonstrated that in the special case of
isotropic thin plates undergoing isometric deformations, the
bending energy is quadratic, and correspondingly the forces
are linear, in mesh positions; see also Volino and Magnenat-
Thalmann [VMT06] for a linear bending force. In contrast,
we consider inextensible thin shells, whose bending energy
is cubic, with correspondingly quadratic forces.

Overview. By first considering isotropic bending, we ex-
pose the cubic nature of bending energies in the smooth
(§2.1) as well as discrete settings (§2.2), establishing the cu-

bic hinge (§3) as our discrete building block. Next, we intro-
duce orthotropy (§4) and show that it is captured by a scalar
hinge stiffness (§4.1). Finally, we describe the efficient im-
plementation of orthotropic cubic shells (§5–§6), and dis-
cuss a battery of experiments demonstrating the efficiency
and efficacy of our model (§7–§8).
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2. Isotropic bending

2.1. Smooth setting

Consider a surface deformed away from its natural (un-

deformed) shape. To this deformation we associate the
isotropic bending energy

Eb(x) =
1
2

Z
S
(H −H)2dA . (1)

This is the integral, over the undeformed surface, of the
squared change in mean curvature. Here x is the position of
the deformed surface, and H is the mean curvature function
of the deformed surface. A bar (e.g., H) denotes the cor-
responding quantity evaluated on the undeformed surface.
Whereas we consider arbitrary undeformed shapes, the spe-
cial case of flat undeformed shapes (H = 0) was explored by
Bergou et al. [BWH∗06].

Although not immediately apparent from (1), Eb(x) is ac-
tually a cubic polynomial in x under isometric deformations,
i.e., if the surface is allowed to bend but not to stretch. To
see this, rewrite (1) as

Eb(x) =
1
2

Z
S

(
〈H,H〉−2〈H,Hn̂〉+H

2
)

dA . (2)

Here 〈·, ·〉 denotes the standard inner product in 3-space, and
H = Hn̂ stands for the mean curvature normal, a vector par-
allel to the surface’s unit normal, n̂. Bergou et al. observed
that the mean curvature vector can be expressed as H = Δx,
i.e., the surface’s intrinsic Laplacian applied to the position
of the surface. For isometric deformations of the surface, two
facts follow: (F1) Since Δ is intrinsic, H is linear in surface

position, thus 〈H,H〉 is quadratic in x [BWH∗06]. (F2) The
surface normal is quadratic† in x; therefore, 〈H,Hn̂〉 is cu-
bic. It follows that Eb(x) is a cubic polynomial in x, because
〈H,Hn̂〉 is cubic, 〈H,H〉 is quadratic, and H

2 does not de-
pend on x. While Bergou et al. discussed (F1) for thin plates
(H = 0), (F2) is unique to shells (H �= 0) and presents our
central technical challenge.

The cubic shells idea is to develop a discrete analogue of
this picture.

2.2. Discrete setting

Consider a triangle mesh whose shape before deformation is
given by the vector of vertex positions x. When the mesh is
deformed to position x, the usual hinge-based bending en-
ergy [BW98, BMF03, GHDS03, BWH∗06, TW06] is given

† To see that n̂ is quadratic, write n̂ = ∂x
∂u

× ∂x
∂v

, and observe that
orthonormality of tangent vectors, ∂x

∂u
and ∂x

∂v
, is preserved under

isometric deformations.
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Figure 1: Top-left: Hinge stencil for an interior edge. Top-
middle and -right: Perpendicular vectors used in the compu-

tation. Bottom: Hinge in 3-space with corresponding labels.

by‡

Eb(x) =
1
2 ∑

i

3|ei|2
Ai

(
2sin

θi −θi

2

)2

. (3)

Here the sum is taken over all interior edges, Ai denotes the
combined area of the two triangles incident to edge ei, and
θi denotes the dihedral angle at edge i.

Our goal is to establish an important, and previously over-
looked, property of (3): under isometric deformations, it is a
cubic polynomial in x. This observation will expose a much
more efficient implementation than is directly evident from
(3); for details on this implementation, refer directly to §5.

The discrete energy (3) can be written as a sum over con-
tributions from every hinge (indexed by i). Using the identity
2sin2 u = 1−cos2u, with u = (θ−θ)/2, we arrive at an ex-
pression of energy associated to the ith hinge:

Eb(x)i =
3|ei|2

Ai

(1− cos(θi −θi)) . (4)

In the following section, we prove that for isometric defor-
mations this hinge energy is cubic in x.

3. The cubic hinge

Our derivation uses the geometric construction in Figure 1,
which defines local indices of the triangles, {T0,T1}, edge
vectors, {e0, . . . ,e4}, and vertex positions, {x0, . . . ,x3}, as-
sociated to a hinge. Note the construction of perpendicu-

lars ti: each edge vector ei is rotated 90 degrees, on the

‡ For planar rest state (θ = 0) we have limθ→0 2sinθ/2 =
limθ→0 2 tanθ/2 = θ, so that models that use 2sinθ/2, 2 tanθ/2,
or θ coincide in the limit of an appropriate refinement sequence.
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plane of the triangle, to point outwards (thus |ti| = |ei| and
〈ti,ei〉 = 0). Since e0 is associated to two triangles, we con-
struct two perpendiculars, t(0)

0 and t(1)
0 , on the planes of tri-

angles T0 and T1 respectively.

Expressing the perpendiculars t(0)
0 (resp. t(1)

0 ) in the edge
basis {e1,e3} (resp. {e2,e4}) we obtain

t(0)
0 = −cotα03e1 − cotα01e3 , (5)

t(1)
0 = −cotα04e2 − cotα02e4 . (6)

Under isometric deformation, interior angles remain con-
stant, therefore t(0)

0 and t(1)
0 are linear expressions in the

position of the mesh. Furthermore, the geometry of Fig. 1-
bottom reveals that§

cosθ =
−〈t(0)

0 , t(1)
0 〉

|e0|2
, and sinθ = −β[e0,e1,e2]

|e0|2
,

where [ei,e j,ek] is the scalar triple product (ei ×e j) ·ek, and
β = 1

|e0| (cotα01 + cotα03)(cotα02 + cotα04).

Expanding (4) by the identity cos(θ− θ) = cosθcosθ +
sinθsinθ, substituting the above expressions for cosθ and
sinθ, and simplifying the resulting expression by using the
isometry assumption (|ei| = |ei|) we find that (4) equals

3
A0

(
|e0|2 + 〈t(0)

0 , t(1)
0 〉cosθ

)
︸ ︷︷ ︸

thin plate component

+
3β
A0

[e0,e1,e2]sinθ︸ ︷︷ ︸
cubic term

. (7)

Under isometry, the energy associated to an individual hinge
is a cubic polynomial in x. Just as in the smooth picture,
the discrete Eb(x) is cubic. Note that for the special case
θ = 0, we recover the quadratic bending thin plate energy
of [BWH∗06] simply by substituting (5) and (6) into (7).

4. Orthotropy

We now generalize our bending model to orthotropic

materials—an important class of anisotropic materials
whose elastic properties depend on the direction along which
they are measured [VK01]. A fully general linear elastic-
ity model for deformable surfaces has six parameters (not
counting the choice of anisotropy axes) some of which are
hard to interpret intuitively. We focus on a more restricted or-

thotropic elasticity model whose four parameters have more
intuitive meaning and appear to be useful for material be-
havior control in animation. Most common man-made ma-
terials are orthotropic, for example, cloth, plastic reinforced

§ The expression for sinθ was derived from

sinθ =
〈t(0)

0 ,n(1)〉
|e0|2

= − [t(0)
0 , t(1)

0 ,e0]
|e0|3

= −β[e0,e1,e2]
|e0|2

,

where n(1) = (|e0|/|e4 × e2|)e4 × e2 is a scaled triangle normal. The
last step is obtained by using (5) and (6) to replace t(0)

0 and t(1)
0 ,

followed by observing that e4 = e2 − e0 and e3 = e1 − e0 .

by fibers, sheet metal, and paper. Non-orthotropic thin ma-
terials are less common (e.g., thin sheets obtained by cutting
a 3D orthotropic material at an angle, or composite materi-
als). For cloth, orthotropic approximation naturally matches
most of the parameters of the Kawabata cloth evaluation sys-
tem [Kaw80], a commonly used system for characterizing
cloth properties, as explained below.

We are primarily interested in how these material parame-
ters affect bending, rather than in-plane deformations. From
the four parameters of orthotropic materials, one parame-
ter can be eliminated if we assume that bending the surface
along material directions does not have any effect on bend-
ing on the other direction (this corresponds to having zero
Poisson ratio in the isotropic case). For simplicity we will
assume that this is the case, and briefly discuss the role of
the Poisson ratio at the end of this section.

The most obvious of the remaining three parameters are
two Young’s moduli, Y 0 and Y 1, which determine bending
stiffness along two material directions. The third parameter
is the shear modulus, G01, which, for in-plane deformations,
determines the resistance to shear. In the case of bending, the
shear modulus allows for additional directional variability of
bending stiffness. Specifically, bending stiffness at an angle
α with respect to the material axis 0, is given by (up to a
scale factor):

Y
0 cos4 α+Y

1 sin4 α+2G
01 sin2 αcos2 α . (8)

90

270

180 0

G01 = K

G01 =.01K

G01 =2KConsider the adjacent
plot of directional

stiffness as a func-
tion of α, for three
materials all sharing
Y 0 = Y 1, but with
shear moduli 0.1K,
K, and 2K. Note
that for low shear,
typical for cloth, the
maximal to minimal
bending stiffness
ratio is 2. As shown
in Figure 4, this has a significant effect on drapability,
and cannot be achieved by a simple model using just two
parameters. Similarly, the shear modulus affects resistance
of cloth to twisting, even if Y 0 = Y 1, as twisting may lead to
diagonal bending.

Directional stiffness is particularly important in the case
of quasi-inextensible flat sheets. Such sheets have small
Gaussian curvature (the product of the two principal curva-
tures), which implies that strong bending can be present only
in a single direction.

In contrast to directional stiffness, forces arising from the
interaction of multiple bending directions (e.g., due to the
Poisson ratio in the isotropic case) appear to be qualitatively
less important. In fact, one can show that for directional stiff-
ness this interaction results in effective increase in the shear

c© Association for Computing Machinery, Inc. 2007.
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modulus. One can prove that in the simple case of bending
of a plate with fixed boundaries the bending forces (unlike
stretching) are independent of the Poisson ratio.

The Kawabata system characterizes cloth by its resistance
to bending along warp and along weft directions, and by
tensile, shearing and compressive stiffnesses measured as
functions of deformation. In the orthotropic elasticity model,
stiffnesses are assumed to be independent of the deforma-
tion, which appears to be a good approximation for quali-
tative modeling. Furthermore, plasticity effects are ignored,
and the compressive and tensile stiffnesses are assumed to be
equal. As pointed out in [BD94], linear elasticity provides a
good approximation for Kawabata measurements for small
deformations, although it ignores some of the subtler initial-
resistance effects.

Given Kawabata measurements of a fabric, Y 1 and Y 0 can
be inferred from directional bending stiffnesses and tensile
measurements, and G01 from shear measurements. Alterna-
tively, Y 1, Y 0, G01, and the material axes may be directly
controlled by an artist, adjusting parameters based on the
notion that Y 1 and Y 0 determine resistance to bending along
the two orthogonal material directions and G01 determines
the resistance of the material to draping over an object.

Given the material parameters, and applying a standard
formulation of Hooke’s law for orthotropic materials, we can
express the bending energy density of a deformed surface as
a function of bending strain ε, using one additional mate-
rial parameter Y 01 = ν01Y 1 = ν10Y 0, where ν10 and ν01 are
Poisson ratios (which always satisfy ν01/Y 0 = ν10/Y 1). The
energy density is

c
(

Y
0ε2

00 +Y
1ε2

11 +2Y
01ε00ε11

)
+2hG

01ε2
01 , (9)

where c = hY 0Y 1/(Y 0Y 1 −Y 01Y 01), h = τ3/12, and τ is
the sheet thickness. The bending strain is the shape opera-
tor [dC92] for surface, which for a quadratic bending energy
reduces to the matrix of second partial derivatives. For the
special case of isotropic materials, Y 0 =Y 1 = 2(1+ν)G01 =
Y 01/ν.

In the following section, we show that orthotropic effects
can be captured by weighting each hinge stiffness by a scalar
factor, λi. For convenience of implementation, the results of
this derivation are summarized in §5.1.

4.1. Derivation of hinge stencil orthotropy

In §2.2 we discussed a simple model of discrete bending en-
ergy for isotropic shells. We based this model on summing
the contributions of squared mean curvatures over interior
edges. While discrete mean curvatures suffice to cover the
isotropic case, we must use a discretization of the full shape
operator in the anisotropic case. Indeed, smooth anisotropic
energy density (9) requires expressing the discrete shape op-
erator as a symmetric 2×2 matrix in the material frame—as
the entries of this matrix measure bending and shearing stiff-
ness in principal material directions. A hinge-based discrete

shape operator S has been successfully applied in geometric
modeling [HP04]. Here we augment the geometric modeling
view by two aspects: (a) we express S in a material frame as
opposed to its original expression in a principal curvature
frame, and (b) we show how S leads to a scalar stiffness-
correcting factor per edge covering the discrete orthotropic
case.

Let us briefly recall the geometric view based on discrete
principal curvatures taken in [HP04]. It is well-known from
the smooth case [dC92] that S corresponds to a quadratic
form whose (orthogonal) eigenvectors correspond to the
two principal curvature directions, and its eigenvalues corre-
spond to the principal curvatures, κ0 and κ1. Recall also that
mean curvature is given as H = κ0 +κ1. In the discrete edge-

based view, [HP04] defines the two principal curvature di-
rections as (1) the direction along the edge and (2) the direc-
tion perpendicular to the edge—with no curvature (κ0 = 0)
along the edge and normal curvature (κ1 = κ) perpendicu-
lar to the edge. Consequently, H = κ, and in the edge-based
principal curvature frame, the discrete shape operator takes
the form

S =
(

0 0
0 κ

)
= H

(
0 0
0 1

)
.

We note that this hinge-based shape operator is mesh depen-
dent (in particular, principal directions are tied to edge direc-
tions). However, if the edge directions are distributed evenly,
on the average the true shape operator is well approximated.

In order to express S in the material frame, we treat the
mesh area associated with each hinge stencil as a homoge-

neous piece of material, i.e., we assume that the material
parameters cY 0, cY 1, cY 01, hG01, and the material axes are
constant over hinge stencils. Denoting by γ0 the angle be-
tween edge ei and the first material axis, ŷa, and using the
fact that the shape operator transforms like a quadratic form,
we obtain that S takes the form

Si = Hi

(
sin2 γ0 −sinγ0 cosγ0

−sinγ0 cosγ0 cos2 γ0

)
,

when expressed in the material frame of the edge i. Finally,
using the smooth energy density (9) and setting ε = S, it
follows from basic trigonometric identities that the discrete
orthotropic density can be written as(

(cY 0) sin4 γ0 +(cY 1)cos4 γ0 +
1
2

(
cY 01 + hG01

)
sin2(2γ0)

)
︸ ︷︷ ︸

λi

·H2
i ,

providing a way to adjust hinge weights to effect orthotropic
response.

This completes the requisite derivations for orthotropic
cubic shells. In the following, we discuss the implementa-
tion of our model (§5–§6) and demonstrate the generality of
the model with various simulation examples (§7).

c© Association for Computing Machinery, Inc. 2007.
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5. Implementing cubic shells

In this section we describe the computation of forces and
force Jacobians for the cubic shells energy, (7). Consider a
mesh with n vertices and coordinate vectors xx,xy,xz ∈ R

n.
Hinge-centric computations are expressed in terms of the
hinge’s local indices (Fig. 1) for triangles, {T0,T1}, edge
vectors, {e0, . . . ,e4}, and vertex positions, {x0, . . . ,x3}.

Precomputation. Recall that quantities that depend only on
the undeformed positions are decorated with a bar, e.g., x.
Compute barred quantities once, before the simulation.

One-time matrix assembly. Assemble the global n×n ma-
trix, Q, by iterating over hinge stencils. In the usual style of
stiffness matrix assembly [ZT89], Q accumulates contribu-
tions from each local 4×4 matrix, Qi:

Qi =

(
3λi cosθi

Ai

)
K

T
i Ki ,

where λi is the stiffness of the hinge, Ai is the combined area
of the two hinge triangles, and θi is the undeformed hinge
angle. In local indices, cosθ = −〈t(0)

0 , t(1)
0 〉/|e0|2, and K =

(c03 + c04,c01 + c02,−c01 − c03,−c02 − c04) ∈ R
4, where

c jk = cot∠e j,ek.

Force computation. Compute forces by adding thin plate
and nonflat contributions. Compute thin plate contributions
globally as the matrix-vector products fx = Qxx, fy = Qxy,
fz = Qxz. Compute nonflat contributions by accumulating
local hinge contributions

f0 = −f1 − f2 − f3 , f1 = k(e1 × e2) ,

f2 = k(e2 × e0) , f3 = k(e0 × e1) ,

where k = 3λi(c01 − c03)(c04 − c02)[e0,e1,e2]/(A0|e0|3).

Force Jacobian computation. The exact force Jacobian
(R3n × R

3n) is obtained by adding the thin plate and the
nonflat contributions. The thin plate contributions are given
by ∂fx/∂xx = ∂fy/∂xy = ∂fz/∂xz = Q. For best performance
(without sacrifice of accuracy), the nonflat contribution is
omitted (as explained in §6); for completeness of exposition
the nonflat contribution is detailed in the Appendix A.

5.1. Orthotropic hinge

The simple expressions above are all that is required to im-
plement a cubic hinge-based bending force, given a stiffness
value λi per hinge. For homogeneous isotropic materials,
λi = λ does not vary over the mesh, and the above derivation
suffices; if a general class of orthotropic materials is desired,
then λi should be computed by the formula derived in (§4.1);
recall λi =

(cY
0)sin4 γ0 +(cY

1)cos4 γ0 +
1
2

(
cY

01 +hG
01

)
sin2(2γ0) ,

where γ0 is the angle between the hinge edge and the first
material axis, ŷ0, and Y 0,Y 1,Y 01, and G01 are the material

parameters described above. The above expression is all that
is needed to implement orthotropic bending for cubic shells,
and indeed for any existing hinge-based model.

In our implementation, the (spatially-varying) direction of
ŷ0 is encoded by a coordinate function over a given parame-
terization of the surface. In particular, we use the color val-
ues of a texture map to encode the direction of the material
axis.

6. Efficient simulation of thin shells

The separability of the force Jacobian of cubic shells into
a constant and linear term opens several interesting possi-
bilities for efficient time integration of thin shell dynamics.
Among common discrete time-stepping schemes [Hau04,
HLW06, BW98], implicit schemes are popular in anima-
tion due to their stability. Implicit schemes advance time
by solving a (typically nonlinear) system of equations. The
system is usually solved by repeated Newton iterations (al-
though semi-implicit methods complete a single Newton it-
eration) [PTVF92]. Each Newton iteration requires an eval-
uation of the force, −∇E, as well as the force Jacobian.

The fixed points of Newton’s method remain unaltered
when the nonlinear system Jacobian is replaced by any in-
vertible matrix. An inexact Newton’s method [Mor99] uses
this fact in replacing a costly Jacobian with an inexpensive
approximant. Hauth [Hau04] used an approximation of the
in-plane stretching force Jacobian, and an inexact Newton
framework, to accelerate cloth simulations; our work is sim-
ilar, but we approximate the bending Jacobian. Wardetzky et

al. [WBH∗] also used an inexact Newton solve, in a mesh
smoothing application; in contrast to that application, we
treat the dynamics of shells having nonflat undeformed con-
figurations.

Experiment. We consider the application of the inexact
Newton’s method with approximations to the bending force
Jacobian. To provide a standard and easily-reproducible
point of reference, we consider the Euler method, fully-
implicit on stretching and bending elastic forces, without any
additional damping forces.

In our experiments we pair two possible bending forces
with three possible force Jacobians. For the two forces we
consider the nonlinear hinge (NH)—the force resulting from
treating bending energy fully nonlinearly (i.e., by dropping
the isometry assumption)—and the cubic shells force (CS)
arising from our cubic energy as discussed in the previous
section. For the three force Jacobians we consider the non-

linear hinge Jacobian (NH), the entire cubic shells Jacobian
(CS), and the constant part (CC) of the cubic shells Jaco-
bian. A particular choice of (inexact) Newton is denoted by
a 2-tuple, e.g., (CS,CC) denotes the use of the cubic shell
bending forces paired with an approximate constant Jaco-
bian; (NH,NH) denotes the usual fully-implicit implementa-
tion of the nonlinear hinge.

As a baseline, we run (NH,NH) at the maximum stable step

c© Association for Computing Machinery, Inc. 2007.
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Mesh Resolution
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Figure 2: (Left:) Performance measured in completed simulation time per CPU second (y-axes) as a function of discrete time

step (x-axes). Higher values mean better performance. In an inexact Newton framework, Cubic Shells dominate performance

for all tested scenarios, including (left-to-right) Orthotropic Flags (Fig. 5), Falling Cylinders (Fig. 3), and Falling Bowl (Fig. 7).

Right: Performance as a function of mesh resolution (from 10×10 to 160×160 regular grids), demonstrating that the benefits

of cubic shells are not resolution-dependent. Timing numbers include timestepping and collision detection/response.

size, and four smaller step sizes; these step sizes are reused
in runs of (NH, CS), (NH, CC), (CS, CS), (CS, CC). We mea-
sure performance of these runs for various problem scenarios
(see §7 and video).

We record the performance of each method, measured as
the ratio completed simulation time per CPU second, i.e.,
higher values mean better performance (see Figure 2–left).
The cubic shells with an approximate constant Jacobian,
(CS,CC), dominates all methods for all problem scenarios.
Note that the performance gains observed for (CS, CC) are
independent of mesh resolution (see Figure 2–right).

7. Visual impact of orthotropic parameters
Orthotropic parameters provide additional artistic control
over the dynamics of wrinkles and folds. Consider for ex-
ample a flag tailored by cutting a rectangular pattern from
an orthotropic textile. The orientation of warp and weft rela-
tive to the flag’s pattern, as well as the values of Young’s and
shear moduli, have considerable visual impact on the result-
ing dynamics (see Fig. 5 and accompanying video).

The orthotropic shear modulus plays an important role
in the drapability of a fabric [SM02]; the shear modulus
is not captured by geometric models that employ Euler’s
formula, such as [BW98, VMT06], or elliptic interpolation,
such as [CK03]. A high shear modulus tends to align folds
and wrinkles to the material axes; a lower shear modulus al-
lows the fabric to fold along other directions, and therefore to
obtain a closer fit to the body. The first two frames of Fig. 4
compare a high and low shear modulus, respectively, illus-
trating the intuitive notion of drapability. When a high shear
modulus is desired (leftmost frame), the Young’s modulus is
a poor substitute—it is unable to capture stiff extrusion of
the poncho around the shoulders without introducing extra-
neous stiffness elsewhere.

Furthermore, orthotropy has a strong effect on the interac-
tion between a material and its environment. We simulate the
fall and bounce of four elastic cylinders, each with a differ-
ent orientation for its principal material axis. The resulting
animation (Fig. 3 and accompanying video) reveals the ex-
treme variations in deformation and overall trajectory that
arise purely from changing the orthotropic parameters.

Orthotropy indirectly enriches any other technologies im-
plemented in the simulator, such as viscoelasticity or frac-
ture [TF88]. For example, the anisotropic bending resulting
from collisions produces distinctive fracture patterns both
for plates (Fig. 6) and shells (Fig. 7). For a summary of the
fracture algorithm refer to Appendix B.

8. Discussion

Limitations. The cubic hinge does not overcome those
limitations that are shared by all hinge-based approaches.
In particular, the simplicity of hinge-based models comes
at the cost of limited convergence behavior and meshing-
dependence [GGRZ06].

Implicit to the cubic hinge is the assumption that the sur-
face deforms isometrically, i.e., without stretching. A natu-
ral question, then, is how much stretching is permissible in
practice, and what are the failure modes of the model un-
der excessive stretching? To explore these questions, we re-
simulate the falling cylinder and falling bowl using progres-
sively lower stretching resistance. Both examples remain
well-behaved so long as the stretching stiffness is two or-
ders of magnitude greater than the bending stiffness; during
the simulation, the meshes stretch by as much as 15%.

If we reduce stretching stiffness even further, then for the
thin shell examples we observe a slow, noticeable stretching
of the surface, in particular, in an expanding (not oscillatory)
mode. This is perhaps not surprising, since a cubic energy
is not bounded from below; under normal (quasi-isometric)
circumstances, the stretching resistance prevents this infinite
well from being exploited.

We repeat the above experiment with the billowing flag.
Since the flag has a flat undeformed configuration, the cubic
energy term vanishes, leaving a quadratic energy bounded
from below. We observe that the flag simulation is well-
behaved even when strong wind induces stretching of 300%.

Conserved momenta. In all circumstances (even when par-
asitic stretching is observed due to a broken isometry as-
sumption), the simulated model conserves linear and angular
momenta. To see this, note that the quadratic forces arising
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from the cubic energy are not approximated (only their Jaco-
bian is); since the cubic energy is invariant under rigid body
transformations of the deformed (and also the undeformed)
configuration, forces induced by this energy do not apply a
global acceleration or torque.

Due to its simplicity, efficiency, and generality, we expect
cubic shells to be of practical relevance in computer anima-
tion.
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Appendix A: Neglected term in force Jacobian As discussed
in §6, we advocate the use of an inexact Newton’s method, using only the constant portion
of the force Jacobian given in §5. Indeed, for optimal performance (and no loss of accuracy)
one should omit calculation of the linear component arising from the nonflat undeformed
configuration. However, for completeness of presentation, we include the expression for
this linear component below.

With respect to the local position vector (x0,x1,x2,x3) ∈ R
12, and the corresponding

local force vector f = (f0, f1, f2, f3) ∈ R
12, the local force Jacobian (R12 ×R

12) is given
by

k

⎛
⎜⎝

0 (e1 − e2)∗ (e2 − e0)∗ (e0 − e1)∗
−(e1 − e2)∗ 0 −e∗2 e∗1−(e2 − e0)∗ e∗2 0 −e∗0−(e0 − e1)∗ −e∗1 e∗0 0

⎞
⎟⎠ ,

where each entry represents a 3 × 3 skew-symmetric subblock; the asterisk applied to a
vector, v∗ , produces the matrix

v∗ =

⎛
⎝ 0 −vz vy

vz 0 −vx

−vy vx 0

⎞
⎠ ,

corresponding to the cross product operation v× (·). The local force Jacobian is assembled
into the global R

3n ×R
3n Jacobian in the usual manner. While it is most easily expressed

by a skew-symmetric matrix of skew-symmetric subblocks, note that Hess G(e0) is indeed
symmetric.

Appendix B: Implementing fracture The material fractures when in-
ternal strain exceeds a threshold. For simplicity we only consider fracture along existing
mesh edges; however, this limitation can be easily removed, see e.g., [OH99, MBF04,

GSH∗04]. A hinge edge, ei , fractures if the bending strain, |ei|
Ai

(θi − θi), exceeds a

material-dependent threshold.

Fracture may be viewed as the transition when an interior edge becomes a
boundary edge. A mesh edge has one of three states: INTERIOR→FRACTURED-
INTERIOR→BOUNDARY, where the arrows indicate allowable state transitions. An IN-
TERIOR edge becomes FRACTURED-INTERIOR if the strain threshold is exceeded; a
FRACTURED-INTERIOR edge becomes BOUNDARY only as a consequence of explicit
changes to mesh connectivity, as explained below.

A BOUNDARY vertex is a vertex incident on a FRACTURED-INTERIOR or BOUNDARY
edge. A FRACTURED-INTERIOR edge, ei , may be in one of three configurations, distin-
guished by the number of incident BOUNDARY vertices:

ei ei ei

B0 B1 B2

In each case, any BOUNDARY vertices incident on ei are split into two. Specifically, in
case: (B0), no action is taken; (B1) and (B2), one and two vertices are split, respectively,
and the resulting change to mesh connectivity causes at least one edge (ei) but possibly
other incident edges to transition FRACTURED-INTERIOR→BOUNDARY.
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Figure 3: Thin-shell simulation of falling orthotropic cylinders. Material axes vary from left-to-right: isotropic, vertical, hor-

izontal, diagonal. Left Image: stress formed on the cylinders upon impact. Right Image: the effects of anisotropy after impact.

Note the extreme flatenning of the cylinder with axis aligned vertically and the high bounce of the cylinder with axis aligned

horizontally.

Y 0 = Y 1 = 0.01,G01 = 100 Y 0 = Y 1 = 0.01,G01 = 0 Y = 0.2 Y = 0.35 Y = 0.5

Figure 4: Shear vs. no bending shear: a high bending shear modulus tends to align folds and wrinkles to the material axes

(leftmost); a lower shear modulus allows the fabric to fold along other directions, and therefore to obtain a closer fit to the

body (second frame). Shearing effects cannot be reproduced by simply tuning Young moduli (3 unsuccessful attempts shown on

the right).

Figure 5: Varying material axes at no additional cost. From left-to-right: isotropic, vertical, horizontal and diagonal.

Figure 6: Thin plates: adjustable directions of fracture patterns. Left-to-right: isotropic, vertical, horizontal and diagonal.

Figure 7: Thin shells: adjustable directions of fracture patterns. Left-to-right: isotropic, vertical, horizontal and diagonal.
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