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Abstract
We introduce an efficient method for synthesizing rigid-body acceleration noise for complex multibody scenes.
Existing acceleration noise synthesis methods for animation require object-specific precomputation, which is pro-
hibitively expensive for scenes involving rigid-body fracture or other sources of small, procedurally generated
debris. We avoid precomputation by introducing a proxy-based method for acceleration noise synthesis in which
precomputed acceleration noise data is only generated for a small set of ellipsoidal proxies and stored in a proxy
soundbank. Our proxy model is shown to be effective at approximating acceleration noise from scenes with lots
of small debris (e.g., pieces produced by rigid-body fracture). This approach is not suitable for synthesizing accel-
eration noise from larger objects with complicated non-convex geometry; however, it has been shown in previous
work that acceleration noise from objects such as these tends to be largely masked by modal vibration sound. We
manage the cost of our proxy soundbank with a new wavelet-based compression scheme for acceleration noise
and use our model to significantly improve sound synthesis results for several multibody animations.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geome-
try and Object Modeling—Physically based modeling; I.6.8 [Simulation and Modeling]: Types of Simulation—
Animation; H.5.5 [Information Systems]: Information Interfaces and Presentation—Sound and Music Computing

1. Introduction

Simulations of multibody dynamics for complex scenes
– tumbling piles of rocks, shattering panes of glass,
etc. – can be used to produce compelling anima-
tions with rich visual behavior. These simulations
should also provide an equally rich source of sound.

Figure 1: When two objects
collide, the resulting rigid-
body accelerations produce
pressure fluctuations which
are interpreted as sound.

Unfortunately, most
approaches for syn-
thesizing rigid-body
sound produce un-
convincing results
for these scenarios
due to their inability
to resolve certain
physical phenomena.
Rigid-body sound is
most often computed
with the linear modal
sound algorithm [vd-
DKP01, OSG02, BDT∗08] in conjunction with some

method for evaluating modal acoustic transfer functions
(e.g., [JBP06, CAJ09]). This approach ignores aspects of an
object’s physical behavior which are potentially important
for sound synthesis. Linear modal sound synthesis considers
how an object vibrates, and how these vibrations produce
sound in the surrounding medium. However, certain objects
experience few, if any, physical vibrations at frequencies
within the human hearing range (roughly 20-20000 Hz). For
these objects, an important source of sound is acceleration
noise; that is, acoustic perturbations resulting from an object
experiencing rapid rigid-body acceleration. Acceleration
noise typically takes the form of short, transient “clicks”
immediately following collisions between pairs of objects.
Sound synthesis pipelines based on only the modal sound
algorithm tend to produce results in which impacts sound
blurred or indistinct due to this method’s failure to correctly
resolve transient collision sounds. This omission is particu-
larly noticeable when synthesizing sound from small objects
(e.g., rigid debris generated from fracture simulations or
some other procedural method).
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Acceleration noise has been extensively studied outside of
the computer animation community. Numerous theoretical
and experimental studies have analyzed acceleration noise
produced by simple objects (spheres, cylinders, plates, etc.)
[RWJ79a, RWJ79b, ENNS81, YZ92, WGM94, CL01]. Oth-
ers have studied acceleration noise numerically [SLC99,
LCM01, RO07, MKP11]; however, the models employed
here are impractical for animation sound synthesis. O’Brien
et al. [OCE01] synthesize sound directly from surface mo-
tion computed using a physics-based solver but do not con-
sider wave propagation effects which are necessary for con-
vincing acceleration sound synthesis. Recently, Chadwick et
al. [CZJ12] proposed a method for synthesizing acceleration
noise from physically based rigid-body animations. In this
work, the authors use Hertz contact theory [Her82,Joh85] to
generate physics-based continuous rigid-body accelerations
from each contact event in a simulation. Next, they introduce
an object-centric representation for acceleration noise – Pre-
computed Acceleration Noise (PAN) – which enables effi-
cient synthesis of acceleration noise due to arbitrary rigid-
body accelerations.

The methods of [CZJ12] require extensive precomputation
on a per-object basis. This approach guarantees physical ac-
curacy and is not a severe bottleneck for scenes involving a
few predetermined objects. However, it presents a challenge
when attempting to synthesize sound from simulations with
many unique objects. Moreover, the examples presented in
[CZJ12] suggest that acceleration noise makes a large contri-
bution relative to modal sound primarily in scenes with large
ensembles of small objects. We also observe that the acceler-
ation noise produced by such objects tends to be fairly sim-
ple when compared to sound produced by larger non-convex
objects (bowls, mugs, etc.). As a result, it is important to
develop simpler models for approximating sound from com-
plex multibody scenes with many small objects (e.g., debris
from fracture simulations). We address this with two main
contributions:

1. Proxy object soundbank: We build PAN representations
for a set of proxy ellipsoids and compute sound from arbi-
trary objects by fitting them to appropriate proxies based
on their physical properties. By introducing a scaling re-
lationship for the precomputed representation introduced
in [CZJ12], we are able to limit the space of proxy ellip-
soids to a few dozen objects.

2. Memory-efficient PAN representation: A common issue
arising in both modal and acceleration sound synthesis
is the large amount of storage required for precomputed
sound data. To address this, we introduce a wavelet-based
representation for precomputed acceleration noise. This
enables acceleration sound synthesis which is more ef-
ficient in both time and space. Our PAN representation
also requires a less costly preprocess than the represen-
tation used in [CZJ12]. We further reduce the size of our
proxy soundbank by fully exploiting symmetries arising

in our precomputed data set, allowing us to limit the total
size of this data set to approximately 5-26MB, depending
on the amount of compression used.

Other Related Work: In [ZJ10], the authors introduced a
method for synthesizing modal sound from rigid-body frac-
ture simulations. An important component in this method is
an ellipsoidal proxy soundbank storing precomputed modal
sound data. Chadwick et al. [CZJ12] showed that the addi-
tion of acceleration noise significantly improves the fracture
sound results of [ZJ10] for certain scenes, but their results
are limited to scenes with a small number of objects. In this
work, we further improve upon these results by applying our
proxy model to fracture simulations involving hundreds of
pieces. Our work is similar in spirit to [ZJ10], but in this
work we address the challenges of developing a proxy model
for a fundamentally different sound phenomenon.

2. Background

The sound produced during rigid-body collisions is the result
of two sources: “ringing noise” [RWJ79b] and “acceleration
noise” [RWJ79a]. Ringing noise is produced when an ob-
ject vibrates, whereas acceleration noise is produced when
an object as a whole experiences rapid rigid-body acceler-
ation. Existing rigid-body sound pipelines typically synthe-
size ringing noise with the linear modal sound model [vd-
DKP01, OSG02, BDT∗08], which fails to resolve the latter
phenomenon.

2.1. Acceleration Noise Physics

Following the notation of [CZJ12], we consider a rigid-body
object O, its boundary ∂Ω and its exterior domain Ω. Acous-
tic pressure in Ω is governed by the wave equation

1
c2

∂
2 p(x, t)

∂t2 =∇2 p(x, t), x ∈Ω, (1)

subject to boundary conditions

∇p(x, t) ·n(x) =−ρan(x, t), (2)

where c and ρ refer to the speed of sound and density of
air (343.2m/s and 1.2041kg/m3 for air at standard tempera-
ture and pressure). n(x) and an(x, t) denote the surface nor-
mal and time-varying normal acceleration at position x on
the surface of O. It is clear from (2) that arbitrary surface
accelerations – including those due to rigid-body motion –
contribute to the sound produced by O.

Previous approaches for computing rigid-body sound have
assumed that O’s visual motion is governed by rigid-body
dynamics, and that this motion is independent of any defor-
mations experienced by O. Surface deformations in O are
modeled by simulating dynamics in a small basis of linear
modes. Under these assumptions, O’s surface acceleration
can be written as a sum of rigid-body acceleration and accel-
eration due to modal vibration: an(x, t) = aR

n(x, t)+aM
n (x, t).
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By the linearity of (1) and (2), the acoustic pressure field pro-
duced by O’s motion can be similarly written as p(x, t) =
pR(x, t) + pM(x, t). Since most rigid-body sound pipelines
only synthesize sound due to modal vibrations, the term
pR(x, t) – acoustic pressure due to rigid-body acceleration
– has traditionally been neglected.

2.2. Acceleration Noise Synthesis

In this section, we briefly review the acceleration noise syn-
thesis methods introduced in [CZJ12].

2.2.1. Continuous Contact Force Estimation

A common technique for resolving collisions in rigid-body
simulations is to apply repulsive impulses to colliding ob-
jects (e.g., [GBF03]). For the purpose of physics-based ani-
mation of rigid-body dynamics, these impulses produce in-
stantaneous changes in the linear and angular momentum of
colliding objects. While this method is sufficient for visual
dynamics simulation, instantaneously updating linear and
angular velocities does not provide a satisfactory continuous
acceleration boundary condition of the form (2). In [CZJ12],
the authors appeal to Hertz contact theory [Her82] to pro-
duce physically plausible continuous acceleration profiles
from rigid-body impacts. The time-dependence of acceler-
ation for each impact is given by a half-sine pulse [Joh85]:

S(t; t0,τ) =

{
sin
(

π(t−t0)
τ

)
if t0 ≤ t ≤ t0 + τ

0 otherwise
(3)

where t0 is the time of impact between two objects. The col-
lision time scale τ is estimated from the local contact geom-
etry and material parameters of the colliding objects. See §3
in [CZJ12] for further details.

2.2.2. Precomputed Acceleration Noise

Let a(t) = [a1(t) a2(t) a3(t)]
T , ααα(t) = [α1(t) α2(t) α3(t)]

T

and x0 refer to the translational acceleration, angular accel-
eration and center of mass position of a rigid body O at
time t in O’s coordinate frame. If we assemble the trans-
lational and rotational accelerations in to a single vector
z(t) = [a1(t) a2(t) a3(t) α1(t) α2(t) α3(t)], then rigid sur-
face acceleration aR

n at point x on O’s surface can be written

aR
n(x, t) =

6

∑
i=1

zi(t)gi(x), (4)

where gi (i = 1, . . . ,6) are functions depending only on O’s
geometry (see §4.1 in [CZJ12]). We can solve (1) inde-
pendently for each of 6 surface accelerations of the form
an(x, t) = zi(t)gi(x) and reconstruct the total pressure by
summing these solutions. Let pi(x, t) refer to the solution
of (1) with an(x, t) = zi(t)gi(x). In [CZJ12], the authors ap-
proximate zi(t) with interpolating basis functions ψ(t;h):

zi(t)≈
∞
∑
k=0

zi(kh)ψ(t− kh;h). (5)

ψ(t;h) is a Mitchell-Netravali cubic filter [MN88]

ψ(t;h) =
1

18


−15y3 +18y2 +9y+2 |t| ≤ h
5(1+ y)3−3(1+ y)2 h≤ |t| ≤ 2h,

0 otherwise,
(6)

where y≡ 1−|t|. The wave equation is solved with surface
acceleration an = ψ(t;h)gi(x) for some h > 0, yielding solu-
tion p(h)i (x, t). It then follows from (5) that the total pressure
for the ith rigid acceleration term can be approximated by

pi(x, t)≈
∞
∑
k=0

zi(kh)p(h)i (x, t− kh) (7)

That is, given the functions p(h)i , we can use (7) to approxi-
mate acceleration noise due to arbitrary rigid-body accelera-
tions, up to a temporal resolution defined by h. The parame-
ter h is chosen heuristically based on O’s geometry and ma-
terial parameters to ensure that (5) adequately interpolates
rigid-body accelerations encountered by O during simula-
tions (see §4.3 of [CZJ12]).

The pressure field p(h)i can be found by, for example, time-
stepping (1) on a finite difference grid or finite element mesh
(e.g., [MKP11]); however, this approach would prove too
costly for animation sound synthesis. Instead, [CZJ12] intro-
duced a representation for p(h)i – Precomputed Acceleration

Noise (PAN) – which allows for efficient evaluation of p(h)i
at arbitrary positions and times. For a listening position x, let
(R,θ,φ) be the spherical coordinates of x relative to object
O’s center of mass (θ and φ are the azimuthal and polar an-
gles, respectively). For a fixed angular direction (θ,φ), p(h)i
is approximated by the following series (dropping subscripts
and superscripts from p(h)i for brevity):

p(R,θ,φ, t)≈
N

∑
k=1

1
Rk qk

(
θ,φ, t− R

c

)
. (8)

N is the number of series terms, c is the speed of sound, and
the functions qk are chosen so that (8) accurately approx-
imates p(x, t) in the direction (θ,φ). In §4.1 we present a
method for choosing the functions qk that achieves signifi-
cant compression over the representation used in [CZJ12].

3. Acceleration Noise Proxy Geometry

The sound synthesis methods discussed in §2.2 have been
shown to significantly improve results for a variety of objects
when used in conjunction with linear modal sound (coins,
dice, keys, etc.). Unfortunately, computing the PAN fields
discussed in §2.2.2 requires lengthy precomputation for each
unique object in a scene. Specifically, the wave equation
must be solved for short acceleration pulses in each rigid-
body degree of freedom. While this approach is sufficient
for scenes involving a reasonably small number of prede-
termined objects, it does not scale well to scenes with hun-
dreds or thousands of unique objects. In [CZJ12] it is shown
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Figure 2: Proxy Acceleration Sound Synthesis: We synthesize sound due to motion of object O at listening position x. (a) An
object O undergoes translational acceleration a. O’s center of mass x0 and principle axes of inertia z1,z2 are shown; (b) We
fit an ellipsoidal proxy to O according to its principle moments of inertia, and transform x→ x′,a→ a′ in to the axis-aligned
proxy ellipsoid space; (c) We scale the proxy ellipsoid to match a reference ellipsoid with unit x-axis length and synthesize
sound using this ellipsoid’s PAN functions p(h)i and the scaling relationships (10) (in this figure, we assume 0 < β < 1).

that acceleration noise can make a significant contribution
to scenes with large quantities of small debris (e.g., frac-
ture simulations). As such, it is important to develop scalable
methods for synthesizing acceleration noise from multibody
scenes. In this section, we introduce an ellipsoidal proxy
model for acceleration noise. By storing PAN fields for a
small set of proxy objects, we are able to efficiently synthe-
size plausible acceleration noise for scenes with thousands
of unique objects.

3.1. Scaling Relationships

In this section we establish scaling relationships between the
acceleration noise produced by objects O and Oβ, where Oβ

is identical to O but has been uniformly scaled by β > 0.
Following the notation of §2.2.2, the boundary conditions
used to solve the wave equation for pressure fields p(h)i (i =
1, . . . ,6) due to object O are

∇p(h)i ·n(x) = ψ(t;h)
{

−ρei ·n(x) i = 1,2,3
−ρ(ei−3× (x−x0)) ·n(x) i = 4,5,6

(9)
where ei ∈R3 is the vector with components ei j = δi j. Now,
suppose that the exterior domains of O and Oβ are Ω and Ωβ,
respectively. Let P refer to pressure due to the scaled object
Oβ. The following scaling relationships hold:

P(βh)
i (x, t) =

 βp(h)i

(
x
β
, t

β

)
i = 1,2,3

β
2 p(h)i

(
x
β
, t

β

)
i = 4,5,6

x ∈Ωβ.

(10)
See Appendix A for a proof of this result.

3.2. Proxy Soundbank

To avoid building PAN representations for each unique ob-
ject in a scene, we instead map objects to ellipsoidal proxies
according to their physical properties and build PAN rep-
resentations for only these proxy objects. By exploiting the
scaling relationships presented in §3.1, we can reduce the
three dimensional set of all ellipsoids to a much smaller two

dimensional set. Every ellipsoid in R3 is equivalent – up to
scaling and rigid transformation – to an ellipsoid defined by
x2

A2 +
y2

B2 +
z2

C2 = 1 where A = 0.5; that is, ellipsoids with unit
length in the x-axis. We also only need to consider ellipsoids
for which C ≤ B ≤ 0.5. See §5 for soundbank precomputa-
tion details.

3.3. Proxy Sound Synthesis

Consider a rigid-body object O and let x0, M and V denote
its center of mass, moment of inertia matrix, and volume.
The ellipsoidal proxy used to represent O will be chosen
so that its principle moments of inertia match those of O.
A similar procedure was used to select proxy geometry for
modal sound synthesis in [ZJ10]. M is real and symmetric
and can be diagonalized to yield an orthonormal basis Z and
diagonal matrix D such that M = ZDZT . The columns of Z
and diagonal entries of D are the principle axes and princi-
ple moments of inertia for O [GPS02]. For an axis-aligned
ellipsoid with mass m, it is straightforward to derive M from
the definition of the moment of inertia [GPS02]:

Mellipsoid =
m
5

 B2 +C2 0 0
0 A2 +C2 0
0 0 A2 +B2

 . (11)

Assuming that D11 ≤ D22 ≤ D33, we set Mellipsoid ≡ D and
solve the resulting system of equations to obtain ellipse pa-
rameters A≥ B≥C. Next, we uniformly rescale (A,B,C) so
that the volume of the resulting ellipsoid matches V . Assum-
ing that this ellipsoid has the same density as O, identifying
its volume with O’s ensures that it also has the same mass
as O. The principle moments of inertia for this ellipsoid also
match O’s up to a scaling factor. This implies that O and its
proxy ellipsoid exhibit similar rigid accelerations when sub-
jected to the same external force and ensures that the magni-
tude of acceleration noise produced by this ellipsoid is con-
sistent with the sound produced by O. Finally, we identify
this ellipsoid with a proxy ellipsoid (A′ = 0.5,B′,C′) with
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Figure 3: Precomputed Acceleration Noise Compression: (a) Acceleration noise signals evaluated with a wave equation solver
at several radii Ri (i = 1, . . . ,5) in a fixed listening direction; (b) Acceleration noise signals time-shifted according to (13); (c)
A subset of the coefficients from wavelet decompositions of the time-shifted functions from (b). The inset shows a larger set of
wavelet coefficients for one of these functions. We compress PAN functions by storing only sufficiently large wavelet coefficients.

unit length in the x-axis. We choose a scaling factor β = 2A
so that (A,B,C) = (βA′,βB′,βC′).

To synthesize sound from O, collision forces are estimated
using O’s original geometry and the methods discussed in
§2.2.1. To approximate O’s sound contribution at listening
position x, we begin by transforming x in to the coordi-
nate frame of O’s proxy ellipsoid: x′ = ZT (x− x0). Like-
wise, we rotate the translational and rotational accelera-
tions a(t) and ααα(t) applied to O to find the accelerations
a′ and ααα

′ acting on the proxy ellipsoid: a′(t) = ZT a(t),
ααα
′(t) = ZT

ααα(t). Suppose that O’s proxy is parametrized
by (A,B,C) = (βA′,βB′,βC′), where (A′,B′,C′) has unit
length (A′ = 0.5). Assuming that we have precomputed p(h)i
(i = 1, . . . ,6, h > 0) for O’s unscaled proxy ellipsoid, we can
evaluate P(βh)

i for the desired ellipsoid (A,B,C) using the
scaling relationships (10). Finally, we use the PAN functions
P(βh)

i and (7) to recover the total acceleration noise P(x′, t)
due to a′(t) and ααα

′(t) acting on the proxy ellipsoid (A,B,C).
Figure 2 summarizes the process of fitting an ellipsoid to O
and synthesizing sound from this proxy.

4. Proxy Soundbank Representation

The PAN representation introduced in [CZJ12] stores time
signals qk (k = 1, . . . ,N) at a discrete set of angular directions
surrounding an object. The signals in each direction are ex-
plicitly discretized and stored at some sampling frequency f .
Storing these fields at a reasonably high angular resolution
can require on the order of 10-100 MB of storage per ob-
ject. While this may not be particularly expensive in scenes
with only a few unique objects, storing precomputed data for
a large set of proxy objects could become prohibitively ex-
pensive if we use these methods directly. In this section, we
discuss techniques for building a memory-efficient represen-
tation for our proxy soundbank.

4.1. Precomputed Acceleration Noise Compression

As we originally discussed in §2.2.2, precomputed accel-
eration noise functions p(h)i are represented by discretizing
the angular space (θ,φ) about object O’s center of mass x0
and associating with each angular direction the series repre-
sentation (8) for p(h)i . For the remainder of this section, we
will drop subscripts and superscripts and refer to the func-
tion to be approximated simply as p(x, t). To find the values
of the functions qk in each direction (θ,φ) the true values of
p(R,θ,φ, t) are computed at a discrete set of radii R1, . . . ,RM
by solving (1,9) on O’s exterior domain Ω. We can write
p(Ri,θ,φ, t) as a time series{

p0
i , p1

i , p2
i , . . .

}
where p`i = p(Ri,θ,φ, `∆t). (12)

∆t is the simulation time step used to solve (1). In [CZJ12],
the functions qk(θ,φ, t) from (8) are also discretized at a
sampling rate of f = 1/∆t. A least-squares system is built by
enforcing the condition that (8) holds at each radius Ri and
each time sample of (12). The system is solved for the full set
of samples for the functions qk in such a way that the func-
tions are temporally smooth. This approach was successfully
applied to a number of example objects; however, it tends
to result in very large least-squares systems and memory-
intensive representations for the resulting PAN fields.

We introduce a new fitting approach which simultaneously
allows for compression of the PAN functions and a less ex-
pensive fitting process. Observe that if (8) holds with equal-
ity, then the time-shift t−R/c in the right hand side can be
moved to the left while preserving equality:

p
(

R,θ,φ, t +
R
c

)
=

N

∑
k=1

1
Rk qk(θ,φ, t). (13)

Figure 3 (a) illustrates the function p(R,θ,φ, t) evaluated at
five radii in a fixed listening direction and figure 3 (b) illus-
trates the time-shifted signals p(R,θ,φ, t +R/c).

Rather than discretizing the PAN functions qk and explic-
itly computing their samples, we instead choose to repre-
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sent the functions qk in a wavelet basis. Shifting p(R,θ,φ, t)
in time temporally aligns these signals, allowing us to rep-
resent them using the same wavelet basis. Figure 3 (c)
illustrates some of the wavelet coefficients for the func-
tions p(Ri,θ,φ, t + Ri/c). We represent these signals us-
ing a Daubechies wavelet family [Dau88]. Let p̂i be the
vector of coefficients in the wavelet basis for the function
p(Ri,θ,φ, t + Ri/c) and let p̂ j

i be the jth coefficient. Simi-
larly, let q̂ j

k be the jth wavelet coefficient for the function
qk(θ,φ, t) (θ and φ fixed). It follows from (13) and the lin-
earity of the wavelet transform that

p̂ j
i =

N

∑
k=1

1
Rk q̂ j

k. (14)

(14) encodes a M×N least-squares system for each wavelet
coefficient, where M is the number of sampling radii, and
N is the number of series terms (5 and 2, respectively, in
our examples). We solve (14) repeatedly to recover the full
set of wavelet coefficients for the PAN functions qk. These
small, M×N least-squares systems are significantly easier to
solve than the systems appearing in [CZJ12], which tended
to have matrix dimensions numbering in the thousands. As
in [CZJ12], we discretize the angular space surrounding ob-
ject O, and repeat this procedure for each direction. This
provides us with a representation of p(h)i which can be ef-
ficiently evaluated at each point in space and time.

We compress the PAN fields qk by only storing certain
wavelet coefficients. From Figure 3 it is clear that many
wavelet coefficients in p̂i are close to zero. We define a tol-
erance ε > 0 and choose to store coefficient j if and only if
∃i : | p̂ j

i | ≥ ε‖p̂i‖∞.

In practice, we use (7) to write the total pressure as

p(x, t) =
∞
∑
k=0

6

∑
i=1

zi(kh)p(h)i (x, t− kh) (15)

The inner sum can be evaluated efficiently by summing
wavelet coefficients for each directional PAN field and per-
forming a single wavelet reconstruction.

4.2. High-frequency Suppression

Suppose that the PAN fields discussed in §4.1 are stored at
some sampling frequency f (so that ∆t = 1/ f in (12)). To
evaluate p(h)i , we must reconstruct the time signals qk – sam-
pled at frequency f – from their wavelet coefficients. Note,
however, that when invoking the scaling relationships (10)
the effective sampling frequency for P(βh)

i is f ′ = f/β. As-
suming that f is relatively high (96 kHz for our proxy ellip-
soids) and β is small, the effective frequency f ′ may signif-
icantly exceed frequencies necessary for high-quality audio
synthesis (44-96 kHz). Fortunately, our wavelet PAN repre-
sentation provides us with a convenient way to reconstruct
the signals qk at approximately the desired output sampling
frequency, while suppressing content above this frequency.

As before, let q̂k be the vector of wavelet coefficients for the
time signal qk, which is assumed to be sampled at frequency
f . Coefficients are stored in q̂k as follows: q̂k(0) stores
the wavelet smoothing coefficient, and q̂k(2

`, . . . ,2`+1− 1)
stores the detail coefficients for level ` ≥ 0 of the wavelet
basis. Intuitively, coefficients at higher indices in q̂k repre-
sent higher-frequency content than coefficients at lower in-
dices. Assuming that q̂k has length T (assumed to be a power
of 2), this storage scheme has the property that the vector
q̂′k = q̂k(0, . . . ,T/2− 1)/

√
2 stores the wavelet coefficients

for a signal q′k, which is sampled at frequency f/2, and is
similar to qk but lacks high-frequency details from the origi-
nal signal. This relationship allows us to reconstruct the PAN
time signal qk with sampling frequency within a factor of 2
of the desired audio output frequency. Algorithm 1 summa-
rizes the process of reconstructing scaled PAN functions qk.
Note, however, that in practice we do not independently re-
construct the functions qk (see the last paragraph of §4.1).
This process guarantees that we do not introduce aliasing
artifacts by synthesizing details at frequencies significantly
above the desired audio sampling frequency.

4.3. Ellipsoid Proxy Symmetries

We can further reduce PAN storage for ellipsoids by noting
that ellipsoids centered at the origin are symmetrical about
each axis. Moreover, symmetries in the boundary conditions
(9) allow us to conclude that the following relationships hold
for x,y,z≥ 0:

p1(x0) = p1(x1) = p1(x4) = p1(x5) (16)

=−p1(x2) =−p1(x3) =−p1(x6) =−p1(x7)

p2(x0) = p2(x1) = p2(x2) = p2(x3) (17)

=−p2(x4) =−p2(x5) =−p2(x6) =−p2(x7)

p3(x0) = p3(x2) = p3(x4) = p3(x6) (18)

=−p3(x1) =−p3(x3) =−p3(x5) =−p3(x7)

p4(x0) = p4(x2) = p4(x5) = p4(x7) (19)

=−p4(x1) =−p4(x3) =−p4(x4) =−p4(x6)

p5(x0) = p5(x3) = p5(x4) = p5(x7) (20)

=−p5(x1) =−p5(x2) =−p5(x5) =−p5(x6)

p6(x0) = p6(x1) = p6(x6) = p6(x7) (21)

=−p6(x2) =−p6(x3) =−p6(x4) =−p6(x5)

where x0 = (x,y,z), x1 = (x,y,−z), x2 = (−x,y,z),
x3 = (−x,y,−z), x4 = (x,−y,z), x5 = (x,−y,−z), x6 =
(−x,−y − z), and x7 = (−x,−y,−z). Our precomputed
soundbank only stores PAN fields for directions in the posi-
tive (x ≥ 0,y ≥ 0,z ≥ 0) octant. We use (16-21) to evaluate
these fields in all other octants.

5. Results

Implementation Details: We synthesize sound using a pre-
computed soundbank with 66 ellipsoids. The ellipsoids have
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Algorithm 1: Reconstructs scaled precomputed acceleration
noise functions at a sampling rate f ′ within a factor of 2 of
the desired output sampling rate fout . The waverec func-
tion reconstructs a time signal from T wavelet coefficients.

input : PAN wavelet coefficients q̂k, scaling factor β, PAN
sampling rate f , output sampling rate fout

output: Time signal q′k(t) and its sampling rate f ′

1 begin
2 T ← length(q̂k)
3 while f/β > 2 fout do
4 f ← f/2
5 T ← T/2
6 q̂k← q̂k(0 : T −1)/

√
2

7 q′k(t)← waverec(q̂k,T )
8 return

[
q′k(t), f/β

]

parameters 0.5m = A >= B >=C with B and C varying be-
tween 0.025m and 0.5m in increments of 0.0475m. We chose
this increment to be sufficiently small to guarantee smooth
variance of PAN fields across the proxy soundbank (see Fig-
ure 4). Since this set is well-sampled, we fit objects to the
nearest ellipsoids in the soundbank rather than interpolat-
ing between ellipsoids, as the latter approach would require
longer synthesis times. We evaluate the pressure time series
(12) for each ellipsoid on a 5003 finite difference grid with a
time step of ∆t = 1/96000s and use perfectly matched lay-
ers [LT97] to avoid reflections from the domain boundary.
These high-resolution simulations were carried out over the
course of several days on a set of eight 32-core Intel X7560
machines. Figure 6 illustrates the ellipsoids in our proxy set.

For these reference ellipsoids, we choose a time scale h =
10−4s. This time scale was chosen based on results from
[CZJ12]. Specifically, the ball bearing example (a steel
sphere of radius 0.0075m) in this paper is assigned a time
scale of hball = 7.3× 10−6s. Our soundbank time scale of
h = 10−4 was chosen conservatively to guarantee that an
equivalently scaled sphere from our proxy set will have a
PAN time scale of approximately hball/5. We find that this
time scale is sufficiently small to interpolate contact force
profiles of the form (3) encountered in our simulations.

We compute the wavelet transforms discussed in §4.1
with a Daubechies wavelet family with 5 vanishing mo-
ments using the GNU Scientific Library implementation of
the wavelet transform (http://www.gnu.org/software/
gsl/). We find that this basis achieves a suitable compro-
mise between performance and compression.

The positive octant (x ≥ 0,y ≥ 0,z ≥ 0) associated with
each proxy is discretized by uniformly triangulating the unit
sphere in this octant with 64 triangles and 45 vertices. Each
vertex represents a direction in which PAN data is stored,
and we use linear interpolation to synthesize sound in ar-

bitrary directions. Our experiments show that storing proxy
data at this resolution does not introduce significant errors
relative to solutions computed with a finite difference solver.

Sound from multibody examples like the ones simulated for
this paper tend to exhibit high dynamic range. As a result,
normalizing pressure time series to have unit infinity norm
tends to produce sounds in which certain parts are abnor-
mally quiet. We address this by post-processing our results
with dynamic range compression using Adobe Soundbooth.
We also present some results post-processed with artificial
environmental reverb.

Precomputed Acceleration Noise Compression: We find
that with a PAN compression parameter of ε = 0.01 pro-
duces compressed PAN fields that exhibit small errors rela-
tive to the explicit precomputed solutions (12) (on the order
of 1-5%). While increasing this parameter does increase nu-
merical error, noticeable differences in sounds synthesized
using our proxy soundbank only become apparent at higher
values of ε. See the accompanying result video for compar-
isons of sounds synthesized from soundbanks with varying
ε. The following table details proxy data storage sizes for nu-
merous values of ε (for reference, uncompressed PAN fields
stored at the same resolution require 293MB):

ε 0.01 0.02 0.04 0.08 0.16 0.32 0.64
Size (MB) 26 20 16 12 7.3 4.5 2.6

The compressed PAN representation introduced in §4.1 is of
general use, even for examples not computed using prox-
ies. We apply the wavelet fitting procedure to several ex-
ample objects from [CZJ12] and compare our results to the
methods originally proposed in this paper. See Table 1 for a
comparison of memory usage/synthesis times and the sup-
plemental video for a comparison of acceleration noise re-
sults computed with these two approaches.

Model
PAN size (MB) Synthesis time (s)

[CZJ12] Current result [CZJ12] Current result
Plate 108 12 3.72 2.02
Mug 1131 76 10.33 3.42
Dice 35 6.9

0.40 0.19
Rounded Dice 35 6.1

Coin 35 9.3 16.00 7.70

Table 1: Precomputed Acceleration Noise Compression:
We compare memory use and acceleration sound synthesis
times to those of [CZJ12] for a selection of models and ex-
ample scenes from that paper’s results. Results are reported
for PAN fields with 3200 discrete angular directions to co-
incide with the original PAN results. For all examples, we
choose the wavelet compression tolerance to be ε = 0.04.
This was determined experimentally as roughly the largest ε

we could use before producing noticeably different results.

Proxy Validation: In [CZJ12], the authors compute accelera-
tion noise for two fracture simulations by explicitly building
PAN representations for every piece produced in the simu-
lations. Using the same simulation data, we compare these
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Figure 4: Varying precomputed acceleration noise over the proxy soundbank: The precomputed acceleration noise function
p(h)3 (translation in the z-axis) evaluated with several proxy ellipsoids. (a) Varying ellipsoid parameter C between 0.025m and
0.5m while A = B are held fixed at 0.5m. (b) Varying parameter B between 0.025m and 0.5m while A = 0.5m and C = 0.025m.
(c) Varying parameters B and C simultaneously (B =C) between 0.025m and 0.5m with A = 0.5m.

Figure 5: Varying wavelet compression: We visualize p(h)5
at a fixed position with varying levels of wavelet com-
pression. The object considered here is an ellipsoid with
a = 0.5m, b = 0.405m and c = 2625m. The inset shows a
close-up of the highlighted region. Signals compressed with
ε = 0.01 and ε = 0.04 (purple and red, respectively) ex-
hibit good agreement with the finite difference solution (light
green) with small errors arising from angular discretization.
Fields compressed with ε = 0.16 and ε = 0.64 (dark green
and pink, respectively) exhibit more significant errors.

results with sounds computed using our proxy soundbank.
The original approach requires many hours of precomputa-
tion to build PAN fields for each object in these scenes. This
approach also requires hundreds to thousands of MB of stor-
age for PAN fields. Our method avoids this cost by synthe-
sizing all acceleration noise with ellipsoidal proxies. We also
present comparisons with sounds synthesized using a sim-
pler proxy model in which each object O with volume V is
approximated by a spherical proxy with volume V . We find
that this method results in significant degradation of qual-
ity compared to our results. In particular, the contribution
of acceleration noise tends to be severely underestimated by
this method. This suggests that our approach is indeed cap-

turing acceleration noise phenomena that is difficult to re-
solve with simpler techniques. See the supplemental video
for these comparisons.

EXAMPLE (Rock Pile): To test the scalability of our method,
we model a scene with 1000 unique, procedurally generated
rocks and synthesize acceleration noise from the resulting
simulation. We compute two examples: one with small rocks
(≈ 1-5cm in diameter) and one with larger rocks (≈ 2-20cm
in diameter). While the example with smaller rocks produces
some modal sound, acceleration noise dominates this result.
The example with larger rocks produces significantly louder
modal sound, but the addition of acceleration noise still com-
plements this example by introducing details not present in
the modal result.

EXAMPLE (Glass Fracture): In this simulation, a glass pane
falls to the ground and shatters in to 315 small pieces. With-
out acceleration noise the debris produces very little sound.

EXAMPLE (Breaking Plates): We simulate 10 plates falling
to the ground and breaking. Many of the objects generated in
this simulation produce no modal sound and the addition of
acceleration noise produces a substantially richer and more
detailed result.

Figure 6: Ellipsoid Proxy Soundbank: All ellipsoid objects
for which PAN fields are precomputed. Our results are com-
puted by fitting objects to scaled ellipsoids from this set.
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Figure 7: Rock pile: Synthesizing acceleration noise for this
falling pile of 1000 procedurally generated rocks would re-
quire extensive precomputation to exactly resolve each ob-
ject’s contribution. Instead, we approximate each object with
a proxy ellipsoid and synthesize acceleration noise with data
from our precomputed soundbank.

Figure 8: Glass fracture: This fracture simulation generates
over 300 small objects with no audible vibration modes. Our
method allows us to recover sound from this example by effi-
ciently synthesizing acceleration noise for each piece using
our proxy soundbank.

Example Duration (s) ∆t (ms) # impulses
Synthesis
time (s)

Single plate fracture 5 0.025 1293 1
Multiple plate fracture 4 0.25 5921 40
Glass fracture (71 pieces) 2 0.025 2507 2
Glass fracture (316 pieces) 3 0.025 18787 12
Rock pile (large) 6 0.25 210741 192
Rock pile (small) 6 0.25 96579 97

Table 2: Sound Synthesis Statistics: Acceleration sound
synthesis times for our examples. The duration and ∆t
columns report the length and time step duration for the
rigid-body simulation. # impulses refers to number of im-
pulses used for sound synthesis.

6. Conclusion

We presented an efficient method for synthesizing rigid-
body acceleration noise from complex multibody scenes
with hundreds to thousands of objects. We avoid precom-
puting acceleration noise data for each object in a scene
by introducing an ellipsoid proxy model for acceleration
sound. We build a soundbank of precomputed acceleration
noise data for a set of ellipsoid proxies and limit the size
of this data set by making use of a new wavelet compression
scheme for precomputed acceleration noise data. As a result,
the proxy soundbank only requires between 5 and 26MB of
memory, depending on the amount of compression applied.
This method introduces significant detail when applied to

rigid-body fracture simulations and other simulations with
large quantities of procedurally generated debris.

Limitations and Future Work: Our method computes sound
independently from each object in a scene and adds these
sounds together to recover the complete result. Ignoring
acoustic interactions between objects may fail to capture in-
teresting sound phenomena, particularly in scenes involving
many bodies stacked on top of each other (e.g., Figure 7).
Existing brute force methods for resolving this phenomena
are far too costly for animation sound synthesis. Developing
efficient methods for resolving acoustic interactions between
objects for both modal and acceleration sound is a challeng-
ing problem and an interesting area for future work.

Our results currently include only modal and acceleration
sound from the objects in each scene. We do not currently
synthesize sound from the ground plane. Zheng and James
[ZJ10] synthesized modal sound for fracture examples, and
included modal sound from the ground plane by synthesiz-
ing sound from a concrete slab. Including ground plane noise
would likely enhance the realism of our results somewhat.

Our experiments show that our proxy-based synthesis
pipeline is particularly effective for scenes involving small
debris-like objects, producing results similar to those gen-
erated with object-specific precomputation. This is advan-
tageous, as it is precisely objects like this for which ac-
celeration noise is the dominant sound source. While our
method does not accurately predict acceleration noise for
large, non-convex objects, the contribution of acceleration
noise for these objects is typically less significant relative
to that of modal sound. Nevertheless, enriching our proxy
database with additional object categories to better approx-
imate acceleration noise from larger, non-convex objects is
an interesting area for future work.
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Appendix A: Scaling Relationship Proof

Following the notation of §3.1, consider object O with
PAN fields p(h)i and object Oβ – a uniformly scaled version

of object O. We first show that (1) holds for P(βh)
i on the

domain Ωβ. Consider x∈Ωβ, t ≥ 0 and let y = x/β,τ = t/β.
It is clear that if x ∈ Ωβ then y ∈ Ω. For i = 1,2,3 we have
1
c2

∂
2P(βh)

i (x,t)
∂t2 = 1

βc2
∂

2 p(h)i (y,τ)
∂τ2 by definition (10) and the chain

rule. We also have ∇2P(βh)
i (x, t) = 1

β
∇2

y p(h)i (y, t). Since

p(h)i satisfies (1) on Ω, it follows from these equations that
1
c2

∂
2P(βh)

i (x,t)
∂t2 = ∇2P(βh)

i (x, t) on Ωβ, as required. The proof
for i = 4,5,6 is analogous.

Next, we show that the boundary conditions (9) hold
for P(βh)

i . Let x ∈ ∂Ωβ and define y and τ as before.
Clearly y ∈ ∂Ω and nβ(x) = n(y) where n and nβ are
the normal fields on O and Oβ, respectively. We will
prove that (9) holds for i = 4,5,6 since the proof for
i = 1,2,3 is similar. Following from (9) and (10), for
i = 4,5,6, we have ∇P(βh)

i (x, t) · n(x) = β∇y p(h)i (y,τ) ·
n(y) by the definition of P(βh)

i and the chain rule. We
also have ψ(t;βh)gi(x) = ψ(βτ;βh)gi(x) = βψ(τ;h)gi(y),
which is true since ψ(βτ;βh) = ψ(τ;h) and gi(x) =
−ρ(ei−3× (x−x0)) · n(x) = −βρ(ei−3× (y−y0)) · n(y).
Therefore,

∇P(βh)
i (x, t) ·n(x) = β∇y p(h)i (y,τ)

= βΨ(τ;h)gi(y) since p(h)i satisfies (9)

= Ψ(t;βh)gi(x),

as required. �
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