
Energy-based Self-Collision Culling for Arbitrary Mesh Deformations

Changxi Zheng Doug L. James
Cornell University

Figure 1: A squishy ball with 820 tentacles and over 1 million triangles, squishes and bounces on the ground, inducing numerous small
interpenetrations. Our Energy-based Self-Collision Culling (ESCC) method accelerates self-collision detection (SCD) for arbitrarily deform-
ing triangle meshes, such as this mesh animated using Oriented Particles [Müller and Chentanez 2011]. We observe an 11.5× speedup over
an optimized AABB-Tree SCD implementation on this challenging example.

Abstract

In this paper, we accelerate self-collision detection (SCD) for a de-
forming triangle mesh by exploiting the idea that a mesh cannot self
collide unless it deforms enough. Unlike prior work on subspace
self-collision culling which is restricted to low-rank deformation
subspaces, our energy-based approach supports arbitrary mesh de-
formations while still being fast. Given a bounding volume hierar-
chy (BVH) for a triangle mesh, we precompute Energy-based Self-
Collision Culling (ESCC) certificates on bounding-volume-related
sub-meshes which indicate the amount of deformation energy re-
quired for it to self collide. After updating energy values at runtime,
many bounding-volume self-collision queries can be culled using
the ESCC certificates. We propose an affine-frame Laplacian-based
energy definition which sports a highly optimized certificate pre-
process, and fast runtime energy evaluation. The latter is performed
hierarchically to amortize Laplacian energy and affine-frame esti-
mation computations. ESCC supports both discrete and continuous
SCD with detailed and nonsmooth geometry. We observe signifi-
cant culling on many examples, with SCD speed-ups up to 26×.

Links: DL PDF WEB

1 Introduction

Self-collision detection (SCD) methods are widely used in com-
puter graphics and engineering to enable realistic simulation of
self contact for highly deformable objects. Various methods have
been devised to accelerate the numerous triangle-triangle overlap
tests, however few methods exist that can entirely avoid SCD tests
over large mesh regions. Recently Subspace Self-Collision Culling

(SSCC) was proposed [Barbič and James 2010], wherein precom-
puted certificates are used to cull SCD tests for large mesh regions
within bounding volume (BV) nodes–sometimes even the entire
model. Unfortunately, the use of SSCC is restricted to a very spe-
cial class of low-dimensional subspace deformations, such as modal
deformations, which prevents its widespread use.

In this paper, we propose Energy-based Self-Collision Culling
(ESCC), a generalization of certificate-based self-collision culling
to arbitrary mesh deformations. We use a deformation energy
E(u) to measure “how much” a mesh patch deforms due to vertex
displacements u. We precompute the minimum energy E required
for that mesh patch to self collide, then use this self-collision certifi-
cate to cull SCD tests at runtime: after a mesh deforms we compute
E(u), then if E(u) < E we are guaranteed that no self collision
can occur. Our ESCC certificates work seamlessly with the tradi-
tional BVH-based self-collision detection methods and can accel-
erate them significantly. We first precompute certificates of surface
patches contained in BV nodes. Given a node at runtime, before
the standard BVH traversal to test for self collisions, we compute
the node’s deformation energy to evaluate its certificate. If the cer-
tificate is valid, the subsequent BVH traversal can be completely
culled. Consequently, ESCC can rule out regions with little defor-
mation, resulting in faster self-collision processing.

While many deformation energy models are possible, we propose
an affine-invariant Laplacian energy model that measures nons-
mooth deformation, and has several speed advantages. Major con-
tributions of this paper are the algorithms for fast runtime en-
ergy evaluation, and fast certificate precomputation for BV nodes.
Leveraging the BVH structure, runtime energy computation can be
done hierarchically in O(N) flops, and much faster than traditional
SCD. As a result, significant speedups in SCD can be achieved (see
Figure 1 for a preview of our results). To enable a very fast triangle-
triangle certificate preprocess, we propose several techniques (de-
tailed in our supplemental appendices) that enable the underlying
QCQP optimization problems to be solved exactly, and at low cost.

2 Related Work

Self-collision detection (SCD) methods for deformable models
have a long history in computer graphics, and we optimize the
common practice of using a bounding volume hierarchy (BVH)

http://doi.acm.org/10.1145/2185520.2185594
http://portal.acm.org/ft_gateway.cfm?id=2185594&type=pdf
http://www.cs.cornell.edu/projects/escc/

for triangle-based SCD [Teschner et al. 2005]. Our ESCC certifi-
cates represent a geometric property of the sub-mesh inside any
BV node (or nodes), and can therefore be used with any flavor of
bounding volume, including spheres [Hubbard 1995], axis-aligned
bounding boxes (AABBs) [van den Bergen 1997], oriented bound-
ing boxes (OBBs) [Gottschalk et al. 1996], and discrete oriented
polytopes (k-DOPs) [Klosowski et al. 1998]. In our implementa-
tion, we use AABB-based binary trees [van den Bergen 1997]. Our
ESCC certificates are complementary to many existing SCD accel-
eration approaches for BVHs, and can provide yet another way to
cull triangle-overlap tests. Our ESCC certificates support continu-
ous SCD needed for simulating thin objects [Bridson et al. 2002].

The most closely related work to ours is subspace self-collision
culling (SSCC) [Barbič and James 2010]. It assumes object-frame
subspace deformations of the form u = Uq, and uses certificates
that measure minimal deformation essentially using ‖q‖2 = ‖u‖2.
The effectiveness of the certificates relied upon the ability of the
modal basis U to produce smooth deformations which tend to avoid
localized self collisions. For the arbitrary deformations we con-
sider, one cannot use ‖u‖2 as a certificate measure since its certifi-
cates degenerate into measuring individual vertex displacements.
In contrast, we use an energy-based measure E(u) of arbitrary
patch deformations, and exploit the sparse structure of the arbitrary-
deformation problem to derive an exact ESCC certificate preprocess
and runtime that is mathematically different and highly efficient.

Barbič and James [2010] accelerated BVH-based SCD by reducing
both (i) the cost of post-deformation BVH updates, CUpdate , and
(ii) the cost of recursively testing the BVH against itself to iden-
tify overlapping triangle pairs, CQuery . For arbitrary deformations,
our method is stuck with inherently Ω(N) CUpdate and CQuery costs
for an N triangle mesh patch. Our method adds additional O(N)
overhead to update patch-specific certificate energies E(u), and
cannot exploit subspace certificates or BV updates [James and Pai
2004] to avoid looking at the triangles entirely. Nevertheless, the
BVH-based SCD bottleneck for arbitrary deformations remains the
CQuery cost, and our ESCC certificates measure localized patch de-
formations, as opposed to global deformation amplitude, and can
thus cull localized deformations more effectively—ESCC can even
be faster than SSCC on subspace deformations (see §8).

For arbitrary deformations, many prior works have attempted to re-
duce the CQuery cost bottleneck. For example, methods based on
chromatic decompositions [Govindaraju et al. 2005a] and represen-
tative triangles [Curtis et al. 2008] can effectively reduce the num-
ber of redundant low-level triangle overlap tests. Curvature tests
[Volino and Magnenat-Thalmann 1994; Schvartzman et al. 2010]
and normal bounds [Provot 1997; Grinspun and Schröder 2001;
Tang et al. 2009; Schvartzman et al. 2009] can also cull overlap tests
in potentially large regions, however, unlike ESCC, these meth-
ods can only cull effectively in regions with smooth geometry and
smooth deformations. In contrast, our certificates can efficiently
cull self-collision tests even in areas of non-smooth geometry (like
[Barbič and James 2010]), and, furthermore, we can cull patches
with nonsmooth deformations. Curvature-based culling also re-
quires a potentially expensive “contour test” for correctness, but
recently it was shown how this could be performed efficiently us-
ing “Star Contours” [Schvartzman et al. 2010]. In comparisons
provided later (§8), we observe larger speedups using ESCC on
the same examples. Nevertheless, many of these narrow-phase
triangle-triangle optimizations are complementary to patch-based
ESSC, and could be used simultaneously.

Our use of ESCC certificates for BVH-based SCD is an instance of
a kinetic data structure (KDS) [Guibas 2004] for reasoning about
self collisions of dynamic meshes. In contrast to other geometric
KDS techniques for SCD [Guibas et al. 2002; Gao et al. 2006], we

Algorithm 1: Energy-based self-collision detection
procedure: BVH Self Traversal (r)
input : BVH root node r
begin

stack.put (r, r);
while not stack.empty () do

n,n′ ← stack.pop ();
if n = n′ then

if has certificate (n) and
deformation energy (n) <certificate (n)

then
continue;

if is leaf(n) then
triangle-triangle intersection tests for all
non-neighboring triangle pairs of n;

else
L1 foreach distinct children pairs c, c′ of n do
L2 stack.put(c, c′);
L3 foreach child c of n do stack.put(c, c);

else
if has certificate (n ∪ n′) and
deformation energy (n ∪ n′) <
certificate (n ∪ n′)

then continue;
if not is BV intersected(n, n′) then continue;
if is leaf(n) and is leaf(n′) then

triangle-triangle intersection tests for all
non-neighboring triangle pairs from n and n′;

else
t1 ←higher non-leaf node in n and n′ ;
t2 ←lower or leaf node in n and n′ ;
foreach child c of t1 do stack.put(c, t2);

end

propose energy-based certificates for triangle meshes.

Our energy-based certificates are complementary to GPU-based
methods that use brute force to accelerate triangle-level SCD com-
putations, but less so for rasterization-based methods [Heidelberger
et al. 2004]. In addition to improving the speed of triangle over-
lap tests, GPU-based methods also try to reduce the number of
needed overlap tests [Govindaraju et al. 2005b; Sud et al. 2006].
Our current implementation exploits multi-core optimizations, but
GPU parallelization is a logical extension.

3 Self-Collision Detection Using Certificates

The most common approach to detect self-collisions of a triangle
mesh is to build a bounding volume hierarchy (BVH) for the mesh
and query the BVH against itself (see Algorithm 1 without the blue-
colored code blocks). Each BV node contains a subset of the trian-
gle mesh. To find collisions between mesh regions contained by
two BV nodes, the algorithm first checks if their bounding boxes
are intersected. If they are separated, it is guaranteed to have no
collisions between the two nodes, and it is sufficient to go no deeper
on the BVH for collision detection. If the two BV nodes overlap,
then the algorithm has to check collisions over all pairs of their chil-
dren. Fast collision detection algorithms rely on culling expensive
triangle-triangle intersection tests at high levels of BVH traversal.
However, this is usually hopeless for self-collision detection, be-
cause, even for undeformed meshes, the algorithm always has to
test triangle-triangle intersections for non-adjacent but geometri-
cally close triangle pairs, which are contained in either the same
BV nodes or overlapping BV nodes.

BVH Level-n

BVH Level-n+1

Parent Node

Child Node 1 Child Node 2

Figure 2: Intra-node and inter-node certificates: (Top) We com-
pute intra-node certificates for the submesh associated with a BV
node, here shown as a level-n node in a binary AABB-Tree. (Bot-
tom) We also compute inter-node certificates between sibling nodes
on level n+ 1, as well as (and unlike [Barbič and James 2010]) all
same-level nodes with adjacent submeshes.

Our algorithm integrates certificate validation into the BVH traver-
sal (see Algorithm 1) to achieve more efficient self-collision
culling. It works for certificates defined by any surface deforma-
tion energy model, E(u). Given an energy model, we precompute
certificate values E for surface patches of individual BV nodes as
well as the combined patches of some pairs of connected BV nodes
(see Figure 2). We call these intra-node and inter-node certificates,
respectively. Certificate computation is described in §6. At runtime,
to detect self-collisions of a node n, we first compute its deforma-
tion energy En. If En is less than the intra-node certificate En,
there is no need to traverse its subtree because it is guaranteed to
be self-collision free. Similarly, to detect collisions between node
i and j, if the inter-node certificate Eij has been precomputed, we
evaluate the current deformation energy Eij of the joint surface
patch of nodes i and j, and compare it to Eij . If Eij < Eij , the
traversal of the two subtrees from i and j can be culled, otherwise
subtree traversal is needed. In practice, we observe that certificates
increase culling performance as one traverses deeper on the BVH,
so that even for a mesh undergoing large deformation, many BV
nodes at fine geometric scales can still be culled (see Figure 3).
Also, the use of inter-node and intra-node certificates ensures that
for SCD on a nearly undeformed model, ESCC can cull essentially
all triangle-triangle overlap tests.

0.2

0.1

3 4 5 6 7 8 9 10 11
BV node level

0.3

0.5

0.4

0.6

0.7

0.8

C
ul

lin
g

su
cc

es
s r

at
e

Figure 3: Culling performance increases at finer scales: Certifi-
cates tend to become stronger for smaller nodes as more deforma-
tion energy (per triangle) is required to deform smaller submeshes
to self collide. (Data for flag example.)

Algorithm 2: Precompute certificates for BV nodes
procedure: precompute intranode certificate (n)
begin

if number of triangles (n) < Tc and is connected(n)
then

return intranode certificate (n) // see §6
else return null

end
————————————————————————————
procedure: precompute internode certificate (n, n′)
begin

if number of triangles(n)+
number of triangles(n′) < Tc and
is connected(n) and is connected(n′) and
is connected(n, n′) and
BVH level(n) = BVH level(n′) then

return internode certificate (n, n′) // see §6
else return null

end

Selective use of certificates on BV nodes: Computing all pos-
sible certificates on a BVH requires quite expensive precomputation
effort, and storing them for runtime validation consumes a large
amount of memory since there are O(N2) possible inter-node cer-
tificates for N BV nodes. For inter-node self-collision detection, if
the sub-meshes of two nodes are not directly connected, we can rely
on the traditional BV-intersection tests to cull collision-free nodes
because these tests can often offer efficient culling between two dis-
tinct tree nodes. However, if two nodes are geometrically connected
on the mesh, their BVs always intersect, and we can use inter-node
certificates for collision culling. In practice, we only compute inter-
node certificates for connected nodes if they are on the same BVH
level and their joint sub-mesh is connected and has less than Tc
triangles (see Algorithm 2). Consequently, both the computation
and storage of certificates require O(N) complexity. For the nodes
without certificates, the algorithm simply returns to the traditional
BVH traversal scheme.

The order of BV node traversal: While our certificate-
accelerated self-collision detection simply adds certificate compar-
ison before subtree traversal and requires no change on the other
parts, further performance improvement can be achieved by adjust-
ing the order of node traversal. Notice that the satisfaction of inter-
node certificate Eij guarantees the absence of self-collisions on the
entire joint sub-mesh of nodes i and j. In other words, the certifi-
cates Ei and Ej are both guaranteed to be satisfied as well. There-
fore, when pushing node pairs into the stack to traverse, we push
the cross-node test on first (see line L1 and L2 of Algorithm 1) and
the self-node tests on last (see line L3 of Algorithm 1). If the inter-
node certificate Eij is satisfied, the subsequent self-node traversals
on both node i and j can be immediately skipped. In our implemen-
tation, we notice about 2% to 6% performance improvement over
the BVH traversal without this optimization.

4 Geometrically Based Deformation Energy

Laplacian Energy: Our energy-based certificate framework can
be used with arbitrary surface deformation energy models. How-
ever, for practical reasons, we propose a parameter-free geometri-
cally based energy model which is fast for both certificate precom-
putation and runtime energy evaluation. We use a Laplacian-based
mesh deformation energy based on the simple quadratic form,

E = ‖Lu‖22 = uTLTLu = uTKu (1)

Figure 4: Minimum-energy deformation for self contact: (Left)
A hand model is globally and smoothly deformed (Right) to bring
two fingertips into contact as per the minimum displacement Lapla-
cian energy defined in (1). The smoothness of minimum-energy de-
formation enables meaningful certificates on BV nodes.

where L is the discrete Laplace-Beltrami operator on a surface
mesh patch [Meyer et al. 2002], u are its vertex displacements,
and K = LTL is the effective stiffness matrix of this potential en-
ergy functional. ThisE will essentially minimize the squared mean
curvature of the displacement field (See Figure 4).

An important property of K is its particular 3×3 block matrix struc-
ture: each (i, j) block is a scalar kij times a 3×3 identity matrix,
such that E =uTKu=

P
ij kiju

T
i uj . We will exploit this struc-

ture to devise a faster certificate preprocess, and to accelerate run-
time energy computation, by exploiting various properties, e.g., L
commutes with affine transforms.

Affine Pull-Back: The Laplace-Beltrami operator L is rank-3 de-
ficient, leading to a translation invariant energy measure (1). Unfor-
tunately, this measure is not rotation invariant, and so mere rigid-
body displacements will add fictitious deformation energies that re-
duce culling. It turns out that if we approximate the vertex dis-
placement field with a smooth spatial deformer φ : X → x we can
use φ−1 to “pull back” the deformed geometry to a less deformed
state while still preserving any intersections that exist. For affine
deformers, the pulled-back triangle geometry will also preserve tri-
angle planarity, thereby leading to efficient algorithms. Therefore
we estimate displacements in a local affine frame via

x = F(X + u) + t ⇔ u = F−1(x− t)−X, (2)

where x are current vertex positions andX are their rest positions,
F and t denote linear and translation components, and u is the dis-
placement field deforming the sub-mesh. Note that while affine de-
formation cannot induce self-collisions, how we estimate F will af-
fect E(u). Estimating an F which minimizes E is preferable since
it will improve culling, but it is not necessary. In practice, we esti-
mate (F−1, t) using an hierarchical least-squares computation (§5).
Using this affine pull-back we obtain an affine-invariant measure,
and can significantly reduce deformation energy (see Figure 5).

Sub-mesh Energy: Given a BV node, we detach its sub-mesh
from the rest of the entire mesh and compute the L matrix based
on the isolated sub-mesh. Similarly, for a pair of connected BV
nodes, we combine their sub-meshes as a single triangle patch iso-
lated from the rest of the original mesh, and compute the L matrix.
All these L matrices can be precomputed and stored with the BVH
together. Later, the related certificates and energy values are evalu-
ated based on their corresponding detached sub-meshes.

5 Hierarchical Energy Computation

We now present a fast hierarchical method for runtime evaluation
of deformation energy on BVH sub-meshes. We have two steps for

(a) Undeformed (E=0)

(b) Deformed (E=2512.2)

(c) Rigid frame (E=1564.1) (d) Affine frame (E=197.47)

Figure 5: Smaller deformation energies can be obtained by us-
ing a suitable affine transformation to reduce mesh deformation.
Shown are (a) the undeformed mesh, and (b) the deformed mesh.
While deformation energies in a tracked rigidbody frame (c) are
smaller, they cannot undo stretching. In contrast, pulling back to
an affine frame (d) can further reduce deformation energy while still
preserving intersection properties. Affine frames are also cheaper
to estimate than rigidbody frames.

the hierarchical energy evaluation: (i) estimate the affine transform;
and (ii) compute the quadratic energy using (1).

5.1 Hierarchical estimation of sub-mesh transforms

We use least squares to estimate sub-mesh affine transforms similar
to “shape matching” [Müller et al. 2005], and exploit the hierarchi-
cal and overlapping nature of sub-meshes for fast summation of in-
termediate quantities analogous to [Rivers and James 2007; Steine-
mann et al. 2008]. Given a set of BV-node vertices deforming from
the rest positions Xi to the current positions xi, we estimate the
affine matrix A = F−1 and rigid translation vector t to minimizeX

i

mi‖A(xi − t)− (Xi − t0)‖2 (3)

where mi is the vertex weights, and t0 is the center of mass of the
initial shape. Setting its derivative with respect to A and t to zero
yields the solution: t is the center of mass of the deformed shape,
i.e., t =

P
imixi/

P
imi, and A can be computed by

A =

 X
i

mi(Xi − t0)(xi − t)T

! X
i

mi(xi − t)(xi − t)T

!−1

≡ A1A−1
2

Both A1 and A2 can be computed quickly. Computing A1 of a BV
node n requires two summations,

sx =
X

vertex i∈n

mixi and SA1 =
X

vertex i∈n

miXix
T
i , (4)

and then A1 =SA1 − t0sTx . Computing A2 requires two sums,

mc =
X

vertex i∈n

mi and SA2 =
X

vertex i∈n

mixix
T
i , (5)

and A2 =SA2 − sxsTx /mc. These four summations are computed
hierarchically on the BVH. For example, to compute SA1 of node
n, we sum up the SA1 matrices of all its children, and remove the
repeated counting on the children’s shared boundary vertices. Pro-
ceeding recursively, the summations on node n and all its descen-
dants can be computed by going through the subtree of n from bot-
tom up. Shape matching of joint sub-meshes of node i and j can
be computed similarly by computing the summations on i and j
individually and adding them together without repeating boundary
vertices. Furthermore, on multi-core processors, the summations on

different subtrees can be computed in parallel, and hence are even
faster. In practice, we implement the recursive parallel computa-
tion using Intel’s Thread Building Block. Note that by using affine
instead of rigid transforms, we avoid the need for polar decomposi-
tions to estimate rotations, achieving both cheaper computation and
better culling efficiency (see Figure 5).

5.2 Hierarchical evaluation of deformation energy

Given a sub-mesh’s x and A at runtime, its energy is given by

E = ‖Lu‖22 = ‖L(A(x− t)− (X − t0))‖22
= ‖LAx− LAt− LX + Lt0‖22
= ‖LAx− LX‖22 = ‖ALx− LX‖22

(6)

where LX is the mean curvature normal vector of the vertices on
the undeformed mesh (which is precomputed), Lx evaluates the
mean curvature normals of the vertices at the current configuration,
and ALx are node-transformed versions. Here we have used the
fact that A and L commute. Note that the energy is independent
of the rigid-body translation, t. The mean-curvature normal (Lx)i
of vertex vi is completely determined by the positions of vi and its
direct neighbors, as seen from the sparsity structure of L, which en-
ables us to reuse Lx hierarchically. In particular, consider a vertex
vi contained in a BV node n and its child node nc. If vi is not on the
boundary of the sub-mesh contained by nc, then vi has the same lo-
cal connectivity on both n and nc. Therefore, if the mean-curvature
normal of vi on node n has been computed, there is no need to re-
compute the normal of vi on nc. This observation is particularly
helpful for BVH traversal. If the certificate checking fails on node
n, we need to traverse to its child nodes to evaluate the deformation
energy. For most of the vertices on the children, we can reuse the
normals Lx computed at node n and only need to recompute the
normals for boundary vertices. Finally, normals are then multiplied
by A to construct ALx for a specific BV node.

6 Certificate Precomputation

We now show how to efficiently precompute certificates for a trian-
gle sub-mesh T , such as one associated with a BV node. The pre-
computation for intra-node and inter-node certificates is identical,
since both minimize the energy in (1) for a self-colliding sub-mesh
T detached from the original mesh. For an intra-node certificate,
T is the sub-mesh contained by the BV node. For an inter-node
certificate, T is the joint sub-mesh of both nodes.

6.1 Certificate for triangle-triangle collision

Here we show how to compute the minimum en-
ergy required to intersect two nonadjacent trian-
gles, ti and tj . Let Xi

k ∈ R3, k = 1, 2, 3 de-
note the rest positions of the three vertices of ti,
and, similarly, use Xj

k, k = 1, 2, 3 for tj . Let
uik,u

j
k ∈ R3, k = 1, 2, 3 indicate the vertex

displacements of ti and tj , respectively. If a point on ti is in con-
tact with a point on tj , denote the barycentric coordinates of the two
points by αk and βk, k = 1, 2, 3, respectively. Then the minimum
energy Eij required to intersect ti with tj is given by the following
non-convex quadratically constrained quadratic program (QCQP),

minimize uTKu

subject to α1 + α2 + α3 = 1, αi ≥ 0, i = 1, 2, 3

β1 + β2 + β3 = 1, βi ≥ 0, i = 1, 2, 3

α1(ui1 + Xi
1) + α2(ui2 + Xi

2) + α3(ui3 + Xi
3) =

β1(uj1 + Xj
1) + β2(uj2 + Xj

2) + α3(uj3 + Xj
3),

(7)

where K = LTL is a positive semidefinite matrix. While non-
convex QCQP is considered to be NP-hard in general, we notice
that this problem can be solved exactly.

Reduction to Rayleigh quotient form: If we assume the two
points in collision (α and β) are known a priori, then the QCQP (7)
simplifies to a linearly constrained quadratic program (LCQP),

minimize uTKu

subject to α1(ui1 + Xi
1) + α2(ui2 + Xi

2) + α3(ui3 + Xi
3) =

β1(uj1 + Xj
1) + β2(uj2 + Xj

2) + α3(uj3 + Xj
3).

(8)

This problem can be easily solved analytically using Lagrange mul-
tipliers. We defer the details of the LCQP solver to Appendix A,
and only present the result here. In particular, the achieved min-
imum energy value uTKu can be expressed as a generalized
Rayleigh quotient,

Êij =
aTMa

aTGa , (9)

where a is a 6 × 1 vector, a = [α1 α2 α3 −β1 −β2 −β3]T ; M =
BTB ∈ R6×6 is a rank-3 symmetric positive semidefinite matrix,
where B = [Xi

1 Xi
2 Xi

3 X
j
1 X

j
2 X

j
3]; and G= K̃†s ∈ R6×6 is a sub-

matrix of the pseudo-inverse of a related matrix K̃, where the ele-
ments of K̃†s correspond to the 6 vertices of ti and tj . Following the
convention of elastostatic mechanics, we call this K pseudo-inverse
the Green’s function matrix. Appendix B details a fast computation
of the Green’s function matrix that exploits the block structure and
null space of K. Now (7) is equivalent to the following problem:

minimize
aTMa

aTGa
subject to α1 + α2 + α3 = 1, αi ≥ 0, i = 1, 2, 3

β1 + β2 + β3 = 1, βi ≥ 0, i = 1, 2, 3.

(10)

Case (1)

Case (2)

Its optimum is achieved only at one of the two
cases: (i) a vertex of one triangle touches the
other triangle; or (ii) an edge of one triangle
touches an edge of the other triangle. Intu-
itively, if a collision does not satisfy either case,
one can relax the vertex displacements to shrink
the deformation energy while still keeping the
two triangles in collision until either case (i) or
(ii) is achieved. In the remainder of this subsec-
tion, we consider both cases.

Vertex-triangle collision: There are 6
vertex-triangle collision cases. Without loss of generality, we
consider the first vertex Xj

1 of tj in collision with ti. Then, for
problem (10), a3 = 1−a1−a2, β1 = 1, β2 = β3 = 0, and we can
simplify the problem using reduced parameters. Let a = Dã + b,
where ã =

ˆ
α1 α2

˜T ,

D =

»
1 0 −1 0 0 0
0 1 −1 0 0 0

–T
and b = [0 0 1 −1 0 0]

T
.

Substitution into (10), yields the reduced problem,

minimize
ãTDTMDã+ 2bTMDã+ bTMb

ãTDTGDã+ 2bTGDã+ bTGb
subject to α1 ≥ 0, α2 ≥ 0, α1 + α2 ≤ 1.

(11)

0 1

1
In Appendix C, we show that the optimum of
this problem is achieved in the interior of the
domain only at certain situations which can be
verified by solving 3 1-D quadratic equations.

If the optimum happens in the interior of the domain, computing
the optimum value requires solving two cubic equations, one of
which has only a single real root. For most cases in practice, the
optimum is on the boundary defined by three segments. A boundary
point corresponds to a case where a vertex touches an edge. The
optimum on each boundary segment can be computed by solving a
1-D quadratic equation. Please see the detailed derivation of these
equations in Appendix C. For all 6 vertex-triangle collisions, we
need to solve 36 quadratic equations and in very rare cases solve
cubic equations.

Edge-edge collision: There are 9 edge-edge collision cases.
Again, without loss of generality, we consider the edge connect-
ingXi

1 andXi
2 on ti in collision with the edge connectingXj

1 and
Xj

2 on tj . This corresponds to a2 = 1− a1, a3 = 0, β2 = 1− β1

and β3 = 0 in (10), and we can construct a reduced problem using
a = Dã+ b, where ã =

ˆ
α1 β1

˜T ,

D =

»
1 −1 0 0 0 0
0 0 0 1 −1 0

–T
and b = [0 1 0 0 −1 0]

T
.

Problem (10) now becomes

minimize
ãTDTMDã+ 2bTMDã+ bTMb

ãTDTGDã+ 2bTGDã+ bTGb
subject to 0 ≤ α1 ≤ 1, 0 ≤ β1 ≤ 1.

(12)

0 1

1
Similar to problem (11), the optimum oc-
curs in the interior of the domain very rarely.
Checking such situations involves 4 quadratic
equation solves. For most cases, the optimum
is on the boundary where a vertex touches an
edge. Note that all these boundary cases were
considered when we solved the boundary op-
timum values for vertex-triangle collisions (11), therefore we can
safely ignore all of them. For all 9 edge-edge collisions, we need to
solve 36 1-D quadratic equations and very infrequently solve cubic
equations. See Appendix C for derivations.

6.2 Certificate for an entire sub-mesh
The certificate E for an entire triangle sub-mesh T simply takes
the minimum of Eij over all possible pairs of triangles, i.e., E =
minti,tj∈T Eij . However, processing through all triangle pairs on
a large sub-mesh can be impractical. Instead, we use a two-pass al-
gorithm. In the first pass, we quickly compute a cheap lower bound
Ẽij of Eij for all triangle pairs, i.e., Ẽij ≤Eij . In the second pass,
we process the triangle pairs in order of ascending Ẽij . The compu-
tation of Eij can be immediately skipped if the so-far encountered
smallest E value is less than Ẽij of the current triangle pair. Similar
ideas have been used in [Barbič and James 2010].

We first compute a lower bound vij and an upper
bound wij for the numerator and denominator of
the generalized Rayleigh quotient (9). Then we
have Ẽij = vij/wij ≤Eij . Note that the numera-
tor of (9) measures the squared Euclidean distance
between the two touching points in undeformed
mesh configuration. We compute the circumcenter
pi and the circumradius Ri of each triangle. The
Euclidean distance of any two points on triangle
pair i, j must be no less than ‖pi−pj‖2−Ri−Rj .
An upper bound of the denominator of (9) can be
derived by noticing that G is symmetric positive
semidefinite and a satisfies the constraints in (10):

aTGa ≤ max
k=1..3

Gkk + max
k=4..6

Gkk −
X

k 6=t,Gkt<0

Gkt.

(a) (b)

Figure 6: Weakly coupled sub-meshes with separation plane

and so a lower bound for Eij is

Ẽij =
(‖pi − pj‖2 −Ri −Rj)2

max
k=1..3

Gkk + max
k=4..6

Gkk −
X

k 6=t,Gkt<0

Gkt
.

Discussion: Note that if T has disconnected components, one of
the mesh components can collide with the other component under
rigid translation. Consequently, certificates on such sub-meshes are
always zero and provide no culling capability at runtime. Therefore,
we ignore disconnected BV nodes or node pairs in Algorithm 2
and leave them to be handled by traditional BVH intersection tests.
A pathological case comes with a mesh whose BV nodes are al-
most all disconnected, e.g., the squishy ball in Figure 1, preventing
meaningful certificates at most of its BV nodes. We discuss BVH
optimizations to improve connectivity in §7.

Certificates for weakly connected BV nodes: To achieve fur-
ther performance, we take special care of pairs of weakly connected
BV nodes (see Figure 6a). Due to the weak connectivity, these node
pairs can yield very low certificate values which can easily fail with
small deformations at runtime. However, we note that a weakly
connected pair of nodes can often be easily separated by a separa-
tion plane ax+ by + cz + 1 = 0 (see Figure 6b). Formally, let us
define the vertex sets of the weakly connected nodes n1 and n2 as V1

and V2 respectively, and a plane equation f(x) = ax+by+cz+1.
Then following the separating plane theorem, the absence of inter-
sections between n1 and n2 is guaranteed if the following condition
is satisfied (for a suitably oriented plane),

f(v) < 0, ∀v ∈ V1 − V1 ∩ V2

f(v) > 0, ∀v ∈ V2 − V1 ∩ V2
(13)

Finding the optimal separation plane f(x) = 0 is a classical prob-
lem of finding the maximum-margin hyperplane in linear Support
Vector Machines [Burges 1998]. Essentially we are classifying two
sets of nodes, V1 − V1 ∩ V2 and V2 − V1 ∩ V2, with a separation
plane in 3D space. For each pair of weakly connected nodes, we
compute a maximum-margin separation plane based on their unde-
formed positions. At runtime, for each vertex in V1 − V1 ∩ V2 and
V2 − V1 ∩ V2, we first transform it to the node’s initial frame us-
ing the already-computed affine shape matching (recall §5.1), and
then check whether (13) is satisfied if the corresponding certificates
fail. In practice, we only apply separation-plane checks at low-level
BV nodes (leaf nodes and their parents), and observe up to 11%
speedup over the implementation without separation planes.

7 Extensions

Optimizing mesh connectivity of BV nodes: While ESCC cer-
tificates can be applied to any BVH, sub-meshes with disconnected
or weakly connected triangles will degrade culling performance.
We therefore propose a method to construct an AABB-based BVH
whose nodes have well-connected sub-meshes. To split a BV node
into child nodes, n1 and n2, we randomly sample two triangles, and

Example
Complexity Precomputation Runtime (in ms) Culling

Tri Vtx Intra-node Inter-node Cover G Cert sep. plane sep. plane AABB ESCC Speedup difficulty
certificates certificates ratio, r cost (s) cost (s) num cost (s) measure

squishy ball 1064216 532110 260059 467162 0.92 5469.7 548.7 297002 1064 3100 270 11.5× 0.72
monkeys 108928 54468 30246 61371 0.96 966.8 201.2 40867 144.3 379.4 49.7 7.6× 0.41
flowing cloth 51200 25921 10164 10605 0.98 467.0 183.6 11109 77.6 124.6 6.5 19.1× 0.10
16 bunnies‡ 14964 7484 2324 4652 0.99 112.3 37.6 2332 14.7 448.2 29.3 15.3× 0.21
dragon‡ 77203 38602 2434 4870 0.78 140.9 36.7 6323 48.3 320.8 12.3 26.1× 0.22
spring wire‡ 16000 8000 10163 3820 0.99 129.0 17.4 2002 10.3 33.2 1.2 25.6× 0.10
snake? 18354 9179 5275 9433 0.99 230.2 76.0 6667 45.7 44.0 4.9 9.0× 0.71
dance? 14118 7061 3896 7174 0.98 223.5 36.6 3207 34.5 33.1 5.8 5.7× 0.55
flag? 13436 6906 2524 3300 0.92 136.1 27.7 3324 24.2 41.5 5.0 8.3× 0.29
bunny (low res.)† 13632 6818 1712 3278 0.99 123.7 25.4 1424 10.4 41.7 7.6 5.5× 0.42
bunny (high res.)† 54528 27266 6534 13443 0.99 453.9 256.6 6238 44.5 169.7 41.1 4.2× 0.36
bunny (noisy)† 54528 27271 4068 8526 0.62 403.4 158.5 2865 18.9 185.7 55.9 3.3× 0.78
bunny (spiky)† 54528 27271 1993 4237 0.54 238.4 147.2 1126 8.0 194.9 95.5 2.0× 1.30
cloth sphere† 20000 10201 4080 6251 0.99 216.3 59.6 7867 50.1 54.4 12.0 4.5× 0.40
cat† 41184 20631 4919 9142 0.99 344.6 73.4 3900 28.1 130.1 31.9 4.1× 0.66
collapsing horse†∗ 25344 12674 2999 5529 0.94 138.7 45.0 2608 17.7 108.7 78.2 1.4× 4.12
cloth-sphere 2◦ 91470 46216 9198 16217 0.99 516.8 176.2 10685 62.8 52.4 15.5 3.4× 0.98

Table 1: Example statistics for triangle/vertex counts, the number of precomputed certificates, intra-node coverage, precomputation timings
for Green’s function G matrices and certificates, separating planes for weakly connected inter-nodes. Runtime performance timings (per
frame) for our optimized AABB SCD test, and the same code with ESCC culling enabled, demonstrate significant ESCC speedups on most
examples. The lowest speedups are for examples with significant interpenetration or dynamic close-proximity scenarios as indicated by the
culling difficulty measure defined as the ratio of the number of inter-node overlap tests between disconnected leaf nodes to the total number
of leaf nodes. Examples from prior work are indicated using † for [Schvartzman et al. 2010], ‡ for [Barbič and James 2010], ? for [Briceño
et al. 2003; James and Twigg 2005], and ◦ for [Curtis et al. 2008].

perform region growing using a cost based on the Euclidean dis-
tance between the centroids of two triangles [Cohen-Steiner et al.
2004]. We compute a cost C(n1, n2) for the split, and repeat the
sampling T times and use the one with least cost to create child
nodes; we use T = 60000 in our examples. Our cost function tries
to minimize both the difference in submesh areas, A1 and A2, and
the bounding-box surface areas, B1 and B2:

C(n1, n2) = |A1 −A2|+ 0.1 (B1 +B2). (14)

This metric is similar to the “surface area heuristics” used in previ-
ous BV optimization methods [Goldsmith and Salmon 1987].

Continuous Self-Collision Culling: Our method can also be
used in continuous self-collision detection, such as for cloth sim-
ulation [Bridson et al. 2002]. For example, consider a piecewise-
linear deformation of a sub-mesh from displacement u(0) at t= 0

to u(1) at t = 1, such that u(t) = (1 − t)u(0) + tu(1), t ∈ [0, 1].

Now the energy function E(t) =E(u(t)) =‖Lu(t)‖22 might not be
convex in u, therefore we cannot cull SCD tests by simply val-
idating certificates at t = 0 and t = 1. The problem comes
from a continuously changing affine pull-back, however, we can
circumvent it by fixing the affine pull-back. For example, we es-
timate the affine pull-back based on u(0.5) computed by interpo-
lating u(0) and u(1). We then use the resulting affine transforma-
tion to pull back the mesh at both t = 0 and t = 1, and eval-
uate corresponding energy values Ē(0) and Ē(1). With this fixed
affine pull-back, the deformation energy change from Ē(0) to Ē(1)

is convex in t. It follows that Ē(t) ≤max(Ē(0), Ē(1)), t ∈ [0, 1].

Example AABB ESCC Speedup
monkey 2.1s 0.22s 9.2×
dragon 2.3s 0.078s 29.3×

cloth sphere 0.3s 0.061s 4.9×

Table 2: Speedup of CCD

Thus if the cer-
tificate indicates a
collision-free state
at both endpoints,
then no collision
can occur along
the piecewise linear
trajectory. If at least one endpoint’s certificate fails, then we
must recurse and perform additional checks. In this way, the
ESCC certificates can be used to augment traditional BVH-based
continuous SCD queries as in [Barbič and James 2010]. We
implemented such continuous SCD, and found that ESCC offers a

Squishy ball

Flag

bounding box update affine est. energy eval.

Spring wire 0.395 s

1.205 s

1.625 s

90.72 s

Flowing cloth

38% 35% 27%

29% 33% 38%

35% 23% 42%

19% 31% 50%

Figure 7: Timing breakdown of post-deformation update

slightly larger speedup than that in discrete SCD (see Table 2).

8 Results

Numerous results and statistics are shown in Table 1 for a range of
animated mesh examples, including ones made by us and from prior
works [Briceño et al. 2003; James and Twigg 2005; Barbič and
James 2010; Schvartzman et al. 2010; Curtis et al. 2008]. Please see
the supplemental video for animations and detailed performance in-
formation. All reported timings were measured on a dual Intel Xeon
X5570 (2.93 GHz) processor machine with 8 physical cores. Due
diligence has been taken to exploit multi-core parallelization for
accelerating both the AABB-Tree updates and queries, and ESCC
certificate precomputation and runtime energy evaluation. We also
profiled the performance of single-core computation and observed
that our parallel ESCC implementation using Intel’s TBB achieved
2.1x-3.4x speedups over the single-core computation, depending on
the mesh size. Code and data will be made available online. Culling
effectiveness versus BVH levels is illustrated in Figure 3. Detailed
runtime timing breakdowns for post-deformation tree updates are
shown in Figure 7. The impact of various optimizations on runtime
SCD are shown in Figure 8.

Squishy Ball: Our most challenging example is the million-
triangle squishy ball, simulated using 22176 Oriented Parti-
cles [Müller and Chentanez 2011] (recall Figure 1). Although it has
many hair-like “tentacles” in close proximity, ESCC still achieves
significant culling and an 11.5× speedup (see Figure 10).

Comparison to SSCC: We evaluated ESCC on many SSCC
datasets from [Barbič and James 2010], and observe that ESCC

0

0.02

0.04

0.06

0.08

0.10

50 100 150 200 250 300 350 400

SC
D

 c
os

t (
se

c)

Animated frame

Intra- and inter- cert. + separation plane + optimized traversal
Intra- and inter- cert. + optimized traversal
Intra- and inter- cert.

Intra. cert. w/o hierarchical eval.
Intra-node cert.

Figure 8: Benefits of ESCC optimizations for runtime SCD

0 50 100 150 200 250

0.02

0.04

0.06

0.08

0.10

0.12

0.14

SC
D

 c
os

t (
se

c)

Animated frame

0.99

0.89

0.79

0.59

0.39

(a) Flowing cloth

20 400 60 80 100 120 140

0.99
0.96
0.93
0.87
0.75

0.005

0.010

0.015

0.020

0.025

0.030

SC
D

 c
os

t (
se

c)

Animated frame

(b) Cloth sphere

Figure 9: SCD performance vs cover ratio, r

Figure 10: ESCC Culling: Bottom view of the squishy ball during
impact. Colors indicate ESCC culling level, with nodes traversed
to the leaf level in red. Despite many mashed tentacles, widespread
high-level culling is observed as indicated by many blue nodes.

also achieves significant speedups but without needing to exploit
any subspace information (see Table 1). We were also able to per-
form comparisons of SSCC to ESCC on the same computer; the
speedups compared as (SSCC|ESCC) are: bunny (29.1x|15.3x),
dragon (15.1x|23.2x), and spring wire (127.1x|25.6x). See the
video for more comparisons. Our method outperforms SSCC on
dragon due to a relatively large impact deformation at one point
where SSCC is much slower than ESCC. However, when there is
no or little deformations, SSCC is faster on subspace motions.

Comparison to Star Contours: We evaluated ESCC on chal-
lenging datasets from “Star Contours” [Schvartzman et al.
2010]. In comparison, we always observe larger speedups
than “Star Contours” method; the speedups compared as (Star-
Contours|ESCC) are: bunnylowres (1.8x|5.5x), bunnyhighres
(2.2x|4.2x), bunnynoisy (1.1x|3.3x), bunnyspiky (0.83x|2.0x), cloth
(1.5x|4.5x) horse (1.05x|1.4x), and cat (1.2x|4.1x). Combining
these methods might provide additional speedups.

Performance versus certificate coverage: As presented in §3
and Algorithm 2, we use certificate-based culling only when the
number of triangles on a node is less than a threshold Tc; in our im-
plementation, we use Tc = 2500 for all examples, except the giant

First Frame Last FrameAnimated Frames

collapsing horse
�ag
dragon
cloth sphere
cat

Figure 11: Conservativeness

squishy ball where we only used Tc = 128. One natural question
is how Tc will affect the culling performance. To indicate the frac-
tion of nodes where certificates are applied, we use a cover ratio,
r, defined as the ratio of the number of computed intra-node certifi-
cates to the total number of BV nodes. Table 1 shows the r values
used for all the examples. Furthermore, Figure 9 shows the SCD
cost with different cover ratios. For smooth small deformations
(e.g., Figure 9a), the SCD cost decreases as we use more certifi-
cates. However, for fairly large deformations (e.g., Figure 9b), the
certificates on high-level BV nodes fail more frequently. Conse-
quently, the payoff of using certificates on high-level BV nodes is
smaller than the overhead of evaluating deformation energy, since
higher nodes usually have many triangles. Thus too many high-
level certificates can hurt the performance slightly (see Figure 9b).

Conservativeness: We designed a metric to reflect the conserva-
tiveness of the certificates. Validating certificates at each node can
be a waste of computation if it can not cull SCD tests for collision-
free nodes. Therefore, we count the number, A, of succeed cer-
tificate validations which cull the SCD tests as expected, as well
as the number, B, of false positive leaf-node intersection tests for
which there is no self collision, but certificate validations cannot
cull the tests. We use the ratio B/A as a conservativeness metric.
Figure 11 shows how it changes for different examples. This met-
ric varies a lot for different test cases. In the examples with lots of
self collisions (e.g., the collapsing horse), many triangles that are
geodesically far on the mesh are close to each other under the mesh
deformation. On the BVH, those triangles are in a single BV node
or connected BV nodes only when the nodes are at high levels of the
BVH. Certificates on those high-level nodes are less conservative,
and are more easily violated with small deformations. This metric
is also generally consistent with our culling difficulty measure in
Table 1 to reflect the effectiveness of self-collision culling.

Memory overhead: At runtime, we load the precomputed cer-
tificates, the sparse Laplace-Beltrami matrices and the coefficients
of separating planes into memory. In practice, all the certificates,
the Laplace-Beltrami matrices, and separating plane coefficients are
stored in single precision (32-bit floats). The memory requirements
of this ESCC data for our examples were: squishy ball (354.8 MB),
monkeys (83.2 MB), flowing cloth (24.9 MB), dragon (37.5 MB),
dance (8.3 MB), low-resolution bunny (7.9 MB), high-resolution
bunny (34.8 MB), and cloth sphere (9.5 MB),

Difficult Cases: As reported in Table 1, there are certain cases
where ESCC produces little speedup. Those are the examples in-
volving large deformations and self-collisions in many parts of the
mesh, e.g., the “collapsing horse” in [Schvartzman et al. 2010]. For
those examples, our conservative certificate-based culling is inef-
fective, and the method has to traverse the BVH to the leaf level to
detect triangle-triangle collisions. In the last column of Table 1, we
use a metric defined as the ratio of the number of inter-node over-
lap tests between disconnected leaf nodes to the total number of leaf

nodes to indicate the culling difficulty. For the examples where this
ratio is large, the ESCC method could not offer good speedups.

The techniques proposed in this paper focus on fast self-collision
detection. In practice, inter-object collision detection is another ex-
pensive part for resolving collisions. For simulations where many
objects close to each other are involved (such as the “flamenco
dancer” in [Curtis et al. 2008]), inter-object collision tests can dom-
inate collision processing timings, especially as self-collision tests
are reduced greatly. In such cases, the overall speedup would be
low. However, our method is complementary to other types of intra-
object and inter-object collision detection techniques, and combin-
ing ESCC with other methods may produce higher performance.

9 Conclusion

We have introduced energy-based self-collision culling (ESCC), a
new technique for accelerating self-collision detection (SCD) for
triangle meshes undergoing arbitrary deformations. Using bound-
ing volume hierarchies augmented with ESCC certificates enables
significant speedups, as demonstrated on numerous examples. Our
certificate preprocess enables rapid computation of certificates by
exploiting numerous algorithmic and mathematical insights.

Limitations and Future Work: ESCC certificates are comple-
mentary to many existing SCD approaches, and future work
should investigate combining ESCC culling with other methods for
narrow-phase culling, such as [Curtis et al. 2008; Schvartzman et al.
2010]. Our precomputed sub-mesh certificates require a fixed BVH
topology, and so one cannot adapt the BVH at runtime, which may
reduce speedups for highly deformable models such as cloth. Our
ESCC method can be further accelerated if some runtime energy
computations can be shared with other code, e.g., a physics simula-
tor which already computes, Lx. Future work should investigate the
possibility of other energy models. Our affine-invariant Laplacian-
based energy model enables fast runtime evaluation, material pa-
rameter independence, and a fast certificate preprocess; however,
one could use more sophisticated deformation energy models pro-
vided that the runtime and precomputation costs were fast enough.
For example, a user simulating cloth with a hyperelastic potential
energy model might also use that model for ESCC, thereby bene-
fitting from embedded energy computations. Finally, while we be-
lieve that BVHs are ideal for exploiting ESCC certificates, it may
be possible to use ESCC certificates with other SCD approaches,
e.g., spatial partitionings [Teschner et al. 2005].

A Analytical Solution of LCQP Problem (8)

Here we present the analytical solution to the LCQP problem (8)
which evaluates the optimal deformation energy for specified con-
tact locations given by the barycentric coordinates α and β. Sup-
pose there are n vertices on the mesh, then the displacement vec-
tor u is of length 3n, and K is a 3n × 3n matrix. First, we in-
troduce some notations: let a = [α1 α2 α3 −β1 −β2 −β3]T , B =
[Xi

1 Xi
2 Xi

3 X
j
1 X

j
2 X

j
3]T , and

A=[0 ... α1I α2I α3I ... 0 ... −β1I −β2I −β3I ... 0] ,
where I is a 3× 3 identity matrix, A is a 3× 3n sparse matrix, and
the positions of the 3 × 3 block matrices αtI,−βtI, t= 1, 2, 3 in
A correspond to the positions of vertices Xi

t ,X
j
t , t= 1, 2, 3 in the

vector u. Consequently, the equality constraint of (8) becomes

Au+ BTa = 0. (15)

Using Lagrange multipliers, the displacement u should satisfy the
following equation at the optimum,

Ku=ATλ, (16)

where λ ∈ R3 are Lagrange multipliers. Note that although K is
rank-3 deficient (recall §4), equation (16) can be exactly satisfied
with an infinite number of u. This is because the null space of
K spans the displacements of rigid translation, and the matrix A,
whose sum of each row is always zero, has vanished projection on
the null space of K. All the solutions of (16) yield the same energy
value uTKu, and can be expressed as u = K†ATλ, where K† is
the Moore-Penrose pseudo-inverse of K. Then λ can be determined
using the constraint (15). Namely,

Au = AK†ATλ = −BTa. (17)

Note that the K matrix can be seen as an n × n block matrix, in
which each block is a scaled 3 × 3 identity matrix, aI3×3, and
similarly A can be seen as a 1× n block matrix. We first condense
K into a n × n matrix K̃, where each element K̃ij is the scalar of
the corresponding 3 × 3 block in K. It can be shown that K̃ is a
rank-1 deficient matrix, and its pseudo-inverse K̃† is the condensed
version of K†. Moreover, A is sparse, having only non-zero blocks
corresponding to the involved 6 vertices. The left-hand side of (17)
can be written as a 6× 6 quadratic form,

AK†AT =aT K̃†saI3×3,

where K̃†s is a 6 × 6 sub-matrix of K̃†, consisting of the elements
of K̃† at the positions corresponding the 6 involved vertices. There-
fore, λ has the quotient form,

λ=
−BTa

aT K̃†sa
.

And hence the optimum energy value is

Êij = uTKu = uTATλ = −(Ba)Tλ =
aTBBTa

aT K̃†sa
. (18)

B Fast Precomputation of Green’s function

As shown in appendix A, the certificate precomputation involves
computing the Green’s function G = K̃† of the n × n matrix
K̃ condensed from K. Direct computation requires the SVD or
eigen-decomposition of K̃ (recall that K̃ is a rank-1 deficient sym-
metric positive semi-definite matrix). Let the thin SVD of K̃ be
K̃ = VSVT , where V is n × (n − 1) orthonormal matrix, and S is
an (n − 1) × (n − 1) diagonal matrix, then the pseudo-inverse is
K̃†=VS−1VT . This computation requiresO(n3) work for SVD or
eigen-decomposition.

In this section, instead of computing K̃† directly, we present a fast
computation of a matrix G equivalent to K̃† in the sense that

aTGa=aT K̃†a (19)
for all possible a, where a corresponds to barycentric coordi-
nates of two points on the triangle, and has the form a =
[0 ... α1 α2 α3 ... 0 ... −β1 −β2 −β3 ... 0], with α1 + α2 + α3 = 1
and β1 + β2 + β3 = 1. The equivalence (19) is sufficient for the
certificate computation using (18).

First, note that the null space of K̃† is spanned by the vector v =
[1 1 ... 1]T1×n, and vTa=0. Then the vector a can be written using
the eigen-matrix of K̃ as a=Vk. Now given an n× (n−1) matrix
U such that VTU is a (n−1)×(n−1) full-rank matrix, then UT K̃U

is invertible, and G = U(UT K̃U)−1UT is equivalent to K̃† in the
sense of (19). This is because

aTU(UT K̃U)−1UTa = kTVTU(UTVSVTU)−1UTVk

= kTS−1k = kTVTVS−1VTVk

= aT K̃†a.

In practice, we use a sparse matrix U =
ˆ
In×n 0n×1

˜T , and then
UT K̃U is just the (n − 1) × (n − 1) upper-left sub-matrix of K̃.
We compute G̃ = (UT K̃U)−1 using the sparse Cholesky factoriza-
tion of UT K̃U (with complexity O(n

3
2)) and a solve (UT K̃U)G̃ =

I(n−1)×(n−1) (with complexity O(n2 lgn)). Both the factoriza-
tion and back-substitution for the solve can be efficiently performed
in parallel using the PARDISO direct solver [Schenk and Gärtner
2004]. Finally, the n× n G matrix is a simple expansion of G̃,

G = UG̃UT =

»
G̃ 0
0 0

–
.

For complexity estimates, we used the fact that a 2D grid Lapla-
cian on n vertices suggests an O(n

3
2) cost for sparse Cholesky fac-

torization, and O(n2 lgn) for back-substitution (or less if done in
parallel) to get G assuming the Cholesky factors require O(n lgn)
space [Demmel 1997].

C Exact Evaluation of Tri-Tri Certificates

In this section, we present the details of computing the triangle-
triangle certificate by solving optimization problems (11) and (12).
Both problems are instances of the more general problem,

minimize
xTAx+ aTx+ cu
xTBx+ bTx+ cd

subject to x ∈ C,
(20)

where both A and B are symmetric positive-definite matrices, x =
[x y]T is a 2D vector, and C is a convex set on 2D space. Recall
that C is a triangle for problem (11), and a square for problem (12).

C.1 Optimum value on the boundary

0 (i)

(ii)
(iii)

1

1First we consider the optimum value on
the boundary of C. As presented in §6.1,
a boundary point of problem (11) corre-
sponds to a case where a vertex touches an
edge, and so does a boundary point of prob-
lem (12). Therefore, we only need to compute the boundary
optimum for (11). There are 3 segments on the boundary: (i)
x = [a 0]T , a ∈ [0, 1], (ii) x = [0 a]T , a ∈ [0, 1], and (iii)
x = [a 1−a]T , a ∈ [0, 1]. Substituting them respectively into (20),
we obtain a 1D objective function,

f(a) =
Aua

2 +Bua+ Cu
Ada2 +Bda+ Cd

.

For the segment (i),

Au = A11, Bu = a1, Cu = cu

Ad = B11, Bd = b1, Cd = cd.

For the segment (ii),

Au = A22, Bu = a2, Cu = cu

Ad = B22, Bd = b2, Cd = cd

For the segment (iii),

Au = A11 − 2A12 + A22,

Bu = 2(A12 − A22) + a1 − a2,

Cu = A22 + a2 + cu

Ad = B11 − 2B12 + B22,

Bd = 2(B12 − B22) + b1 − b2,
Cd = B22 + b2 + cd.

x

y

(a)

y

x

(b)

Figure 12: Simplification of the objective function: (a) The nu-
merator and denominator of the objective function in (20) are plot-
ted as two elliptical contours. (b) We apply an affine transforma-
tion to regularize the objective function into a simpler form (21), in
which the numerator has a circular contour and the denominator
has an axis-aligned elliptical contour centered at the origin.

To compute the optimum on a segment, taking f ′(a) = 0, we get
a cubic equation. Fortunately, we observe that for all cases the 3rd-
order coefficient always vanishes, and therefore we only need to
solve the quadratic equation Aqa2 + Bqa+ Cq = 0, where Aq =
AuBd − BuAd, Bq = 2(CdAu − CuAd), and Cq = CdBu −
CuBd. If the solution of these quadratic equations is in [0, 1], we
compute its corresponding optimum value f(a). Otherwise, the
optimum occurs at the segment end-points, i.e., f(0) or f(1).

C.2 Optimum value in the interior of domain

Next we check if an optimum appears in the interior of C. For each
interior optimum, we compute the optimum value, compare it with
the boundary optimum values, and take the minimum. This case is
more involved. To ease the derivation, we first regularize the prob-
lem (20) into a simpler form. Both the numerator and denominator
of (20) are 2-D quadratic forms, representing two sets of ellipse
contours on the 2-D plane (see Figure 12a). Using an affine trans-
formation ψ : x 7→ Fax+ ta, we simplify (20) into the following
form (see Figure 12b),

minimize
(u− cx)2 + (v − cy)2 + c̃u

au2 + bv2 + c̃d

subject to [u v]T ∈ ψ[C].
(21)

In practice, this simplification is performed in three steps: (i) we
compute the eigen-decomposition, A = VΣVT , to simplify the nu-
merator of (20), and using x = VΣ−1/2VTy, the objective func-
tion of (20) becomes into

yTy + aTVΣ−
1
2 y + cu

yTΣ−
1
2 VTBVΣ−

1
2 y + bTVΣ−

1
2 y + cd

≡ yTy + ãTy + cu

yT B̃y + b̃Ty + cd
,

(ii) next we compute the eigen-decomposition, B̃ = UDUT , to di-
agonalize the denominator: using z = Uy further transforms the
above objective function into

zTz + ãTUz + cu

zTDz + b̃TUz + cd
≡ zTz + âTz + cu

zTDz + b̂Tz + cd
,

and (iii) we take the translation z = v − 1
2

D−1b̂, and finally sim-
plify the objective function into

vTv + (â− D−1b̂)Tv + cu + 1
4
b̂TD−2b̂− 1

2
âTD−1b̂

vTDv + cd − 1
4
b̂TD−1b̂

.

0

(a)

(b)

(c)

0

0

Figure 13: Contour optimum: The optimum of objective func-
tion (21) on elliptical contours form the red curve which can be
analytically determined. (a) shows the general case, and (b) and
(c) illustrate the special cases where the center of the circular con-
tours of the numerator is on x- or y- axes.

This form of objective function agrees with (21): let p ≡ â−D−1b̂,
then cx = −p1/2, cy = −p2/2, a = D11, b = D22,

c̃u = cu +
1

4
b̂TD−2b̂− 1

2
âTD−1b̂− c2x − c2y, and

c̃d = cd −
1

4
b̂TD−1b̂.

Affine transformation preserves convexity of a domain, therefore
ψ[C] is still a convex set. Since the simplified problem (21) is
equivalent to (20), from now on, we check if the optimum of (21)
can be achieved in the interior of ψ[C], and then compute the op-
timum value if it is inside of ψ[C]. Let n(u, v) and d(u, v) de-
note the numerator and denominator respectively in the objective
function of (21). Consider the objective value on a single contour
ΩC : d(u, v) = C (see blue ellipse in Figure 13). The method
of Lagrange multipliers shows that the local optimum of the objec-
tive function n(u,v)

d(u,v)
on the contour ΩC occurs when a contour of

n(u, v) meets ΩC tangentially (see green circle in Figure 13a). Let
τ denote the optimum point on d(u, v) = C. If τ is outside of
ψ[C], then the optimum on the set ΩC ∩ψ[C] (see the gray polygon
in Figure 13a) is on the boundary of ψ[C], in which case the opti-
mum has been computed as presented in Appendix C.1. Otherwise,
we need to compute the interior-point optimum.

Now put together the optimum points of all contours of d(u, v).
We observe that they form a curve Cp (see red curve in Figure 13a)
which is analytically determined by the following function,

y =
1

CAx+ CB
− 1

CB
, (22)

where CA = −(b−a)2
abcxcy

and CB = b−a
acy

. Then we determine if the
curve Cp intersects with the domain ψ[C] by checking the intersec-
tion ofCp and the piecewise boundary segments ofψ[C]. In particu-
lar, to check the intersection of Cp and a boundary segment defined
by its two end points (x1, y1) and (x2, y2), we solve a quadratic
equation Aba2 +Bba+ Cb = 0, where
Ab = CACB(x1 − x2)(y1 − y2),

Bb = C2
B(y1 − y2) + CA[(x1 − x2) + CB(x1y2 + x2y1 − 2x2y2)],

Cb = C2
By2 + CA(x2 + CBx2y2).

The curve Cp intersects with the boundary segment if a root a of
this quadratic equation is in [0, 1]. For problem (11), its domain
has 3 boundary segments, hence it requires 3 quadratic solves, and
for problem (12), it needs 4 quadratic solves to check intersections.
If Cp is separated from ψ[C], no further computation is needed,

because the optimum will occur on the boundary of ψ[C], and the
optimum values have been computed in Appendix C.1. Otherwise,
we compute the local optimum q of the objective function n(u,v)

d(u,v)
on

the curveCp. If q is outside of ψ[C], then again the optimum on the
set Cp ∩ ψ[C] is on the boundary of ψ[C], and hence the optimum
of the entire domain ψ[C] occurs on the boundary. If q is in the
interior of ψ[C], we compare its objective value with the minimum
value from the boundary (computed in Appendix C.1) and take the
minimum. q is computed as follows. Substituting (22) into the
objective function of (21), we get a single variable rational function
r(x). The optimum occurs when r′(x) = 0. This equation is a 6th-
order polynomial equation, which fortunately can be factorized into
two cubic equations, i.e. r′(x) = p(x)q(x) = 0. The first cubic
equation p(x) = Pax

3 + Pbx
2 + Pcx+ Pd has the coefficients

Pa = (a− b)3,
Pb = 3(a− b)2bcx,
Pc = 3(a− b)b2c2x, and

Pd = b2cx(bc2x + ac2y).

The discriminant of this cubic equation is always negative, indicat-
ing this equation has only one real root. The second cubic equation
q(x) = Qax

3 +Qbx
2 +Qcx+Qd has the coefficients

Qa = a(a− b)cx,
Qb = (b− a)(ac̃u − c̃d) + ac2x(2b− a) + abc2y,

Qc = −cx(c̃d(a− 2b) + ab(c̃u + c2x + c2y)), and

Qd = −bc̃dc2x.

We solve these cubic equations using the method of Nick-
alls [1993]. In practice, the curve Cp is separated from the domain
ψ[C] in most of the cases. In practice, we only need to solve cubic
equations for less than 0.2% of the triangle-triangle certificates.

Care needs to be taken for two special cases where Cp produces
lines parallel to the X or Y axes: (i) cx = 0 and (ii) cy = 0. Both
cases largely simplify the computation. When cx = 0, Cp are the
lines x = 0 and y = a

a−bcy (See Figure 13b); when cy = 0, Cp are
the lines y = 0 and x = b

b−acx (see Figure 13c). Determining the
intersection of these straight lines with the convex domain is trivial.
When cx = 0, the optimum on the curve Cp always occurs on Y-
axis, and is determined by a quadratic equationAyy2+Byy+Cy =
0 (instead of a cubic equation), where

Ay = 2bcy, By = 2[c̃d − b(c̃u + c2y)], and Cy = −2c̃dcy.

Symmetrically, when cy = 0, the optimum on the curve Cp
appears on X-axis, and is computed by the quadratic equation
Axx

2 +Bxx+ Cx = 0, where

Ax = 2acx, Bx = 2[c̃d − a(c̃u + c2x)], and Cx = −2c̃dcx.

Acknowledgments: We thank the anonymous reviewers for their
constructive feedback, and Jernej Barbic for early discussions. This
work was supported in part by the National Science Foundation
(HCC-0905506), fellowships from the Alfred P. Sloan Foundation
and the Guggenheim Foundation, and donations from Pixar and Au-
todesk. This research was conducted in conjunction with the Intel
Science and Technology Center – Visual Computing. Any opin-
ions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation or others.

References

BARBIČ, J., AND JAMES, D. L. 2010. Subspace Self-Collision
Culling. ACM Transactions on Graphics 29, 4 (July), 81:1–81:9.

BRICEÑO, H. M., SANDER, P. V., MCMILLAN, L., GORTLER,
S., AND HOPPE, H. 2003. Geometry videos: a new representa-
tion for 3D animations. In Symposium on Computer Animation,
136–146.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust
Treatment of Collisions, Contact, and Friction for Cloth Anima-
tion. ACM Transactions on Graphics 21, 3, 594–603.

BURGES, C. 1998. A tutorial on support vector machines for pat-
tern recognition. Data mining and knowledge discovery 2, 2,
121–167.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004.
Variational shape approximation. ACM Transactions on Graph-
ics 23, 3 (Aug.), 905–914.

CURTIS, S., TAMSTORF, R., AND MANOCHA, D. 2008. Fast
collision detection for deformable models using representative-
triangles. In Proc. ACM Symp. Interactive 3D Graphics and
Games, 61–69.

DEMMEL, J. 1997. Applied numerical linear algebra. SIAM,
Philadelphia, PA.

GAO, J., GUIBAS, L., AND NGUYEN, A. 2006. Deformable span-
ners and applications. Computational Geometry: Theory and
Appl. 35, 1-2, 2–19.

GOLDSMITH, J., AND SALMON, J. 1987. Automatic creation of
object hierarchies for ray tracing. IEEE Computer Graphics and
Applications 7, 5, 14–20.

GOTTSCHALK, S., LIN, M., AND MANOCHA, D. 1996. OBB-
Tree: A Hierarchical Structure for Rapid Interference Detection.
In Proceedings of SIGGRAPH 96, Computer Graphics Proceed-
ings, Annual Conference Series, 171–180.

GOVINDARAJU, N., KNOTT, D., JAIN, N., KABUL, I., TAM-
STORF, R., GAYLE, R., LIN, M., AND MANOCHA, D. 2005.
Interactive collision detection between deformable models using
chromatic decomposition. ACM Transactions on Graphics 24, 3,
991–999.

GOVINDARAJU, N., LIN, M., AND MANOCHA, D. 2005. Quick-
CULLIDE: Fast inter-and intra-object collision culling using
graphics hardware. In Proc. IEEE Virtual Reality, 59–66.

GRINSPUN, E., AND SCHRÖDER, P. 2001. Normal bounds for
subdivision-surface interference detection. In IEEE Visualiza-
tion 2001, 333–340.

GUIBAS, L., NGUYEN, A., RUSSEL, D., AND ZHANG, L. 2002.
Collision Detection for Deforming Necklaces. In Proc. of the
ACM Symposium on Computational Geometry, 33–42.

GUIBAS, L. 2004. Kinetic Data Structures. In Handbook of Data
Structures and Applications. Chapman and Hall/CRC.

HEIDELBERGER, B., TESCHNER, M., AND GROSS, M. 2004. De-
tection of collisions and self-collisions using image-space tech-
niques. Journal of WSCG 12, 3, 145–152.

HUBBARD, P. M. 1995. Collision Detection for Interactive Graph-
ics Applications. PhD thesis, Department of Computer Science,
Brown University.

JAMES, D. L., AND PAI, D. K. 2004. BD-Tree: Output-sensitive
collision detection for reduced deformable models. ACM Trans-
actions on Graphics 23, 3 (Aug.), 393–398.

JAMES, D. L., AND TWIGG, C. D. 2005. Skinning mesh anima-
tions. ACM Transactions on Graphics 24, 3 (Aug.), 399–407.

KLOSOWSKI, J. T., HELD, M., MITCHELL, J. S. B., SOWIZRAL,
H., AND ZIKAN, K. 1998. Efficient Collision Detection Using
Bounding Volume Hierarchies of k-DOPs. IEEE Trans. Vis. &
Comp. Graphics 4, 1, 21–36.

MEYER, M., DESBRUN, M., SCHRÖEDER, P., AND BARR, A. H.
2002. Discrete differential geometry operators for triangulated
2-manifolds. In Proceedings of VisMath.

MÜLLER, M., AND CHENTANEZ, N. 2011. Solid simulation with
oriented particles. ACM Transactions on Graphics 30 (Aug.),
92:1–92:10.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless deformations based on shape
matching. ACM Trans. on Graphics 24, 3, 471–478.

NICKALLS, R. 1993. A new approach to solving the cubic: Car-
dan’s solution revealed. The Mathematical Gazette 77, 480, 354–
359.

PROVOT, X. 1997. Collision and Self-Collision Handling in Cloth
Model Dedicated to Design Garments. In Graphics Interface,
177–189.

RIVERS, A. R., AND JAMES, D. L. 2007. FastLSM: Fast Lat-
tice Shape Matching for Robust Real-Time Deformation. ACM
Transactions on Graphics 26, 3, 82:1–82:6.

SCHENK, O., AND GÄRTNER, K. 2004. Solving unsymmetric
sparse systems of linear equations with PARDISO. Future Gen-
eration Computer Systems 20, 3, 475–487.

SCHVARTZMAN, S. C., GASCÓN, J., AND OTADUY, M. A. 2009.
Bounded normal trees for reduced deformations of triangulated
surfaces. In Symp. on Computer Animation (SCA), 75–82.

SCHVARTZMAN, S. C., LVARO G. PÉREZ, AND OTADUY, M. A.
2010. Star-contours for efficient hierarchical self-collision de-
tection. ACM Transactions on Graphics 29, 4 (July), 80:1–80:8.

STEINEMANN, D., OTADUY, M. A., AND GROSS, M. 2008. Fast
adaptive shape matching deformations. In Symposium on Com-
puter Animation, 87–94.

SUD, A., GOVINDARAJU, N., GAYLE, R., KABUL, I., AND
MANOCHA, D. 2006. Fast Proximity Computation Among De-
formable Models using Discrete Voronoi Diagrams. ACM Trans-
actions on Graphics 25, 3, 1144–1153.

TANG, M., CURTIS, S., YOON, S.-E., AND MANOCHA, D. 2009.
Interactive continuous collision detection between deformable
models using connectivity-based culling. IEEE Trans. on Visu-
alization and Computer Graphics 15, 544–557.

TESCHNER, M., ET AL. 2005. Collision Detection for Deformable
Objects. Computer Graphics Forum 24, 1, 61–81.

VAN DEN BERGEN, G. 1997. Efficient Collision Detection of Com-
plex Deformable Models using AABB Trees. Journal of Graph-
ics Tools 2, 4, 1–14.

VOLINO, P., AND MAGNENAT-THALMANN, N. 1994. Efficient
Self-Collision Detection on Smoothly Discretized Surface Ani-
mations using Geometrical Shape Regularity. Computer Graph-
ics Forum 13, 3, 155–166.

