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Figure 1: Activerefocusingof images. (a) Image acquired by projectinga sparse setof illumination dotson the scene (b) Thedotsare

automaticallyremoredfromthe acquired image, andthe defocusof the dotsand a color segmentatiorof the image are usedto computean

approximatedepthmapof thescenewith sharpboundaries(c andd) Thedepthmapandthedot-remaredimage are usedto smoothlyrefocus
thescene (e) Therefocusingcanalsobedonefor animage takenimmediatelybefore or after but illuminatedasdesied.

Abstract

We presenta systemfor refocusingimagesandvideosof dynamic
scenesusing a novel, single-viev depthestimationmethod. Our
methodfor obtainingdepthis basedon the defocusof a sparseset
of dots projectedonto the scene. In contrastto other active illu-

minationtechniquesthe projectedpatternof dotscanbe removed
from eachcapturedmageandits brightnessasilycontrolledin or-

derto avoid under or over-exposure.The depthscorrespondingo

theprojecteddotsanda color segmentatiorof theimageareusedto

computean approximatedepthmapof the scenewith cleanregion
boundaries.The depthmapis usedto refocusthe acquiredimage
afterthedotsareremoved,simulatingrealisticdepthof eld effects.
Experimentson a wide variety of scenesincluding close-upsand
live action,demonstratéhe effectivenesf our method.
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1 Intro duction

A methodthatallows for the refocusingof imagesandvideosis a
potentially powerful tool for digital photograpk and Im editing.
If oneacquiresanimagewith awide depthof eld, onecandefocus
theimageby corvolving it with ablur kernelwhosesizedependsn
thedepthof eachpixel [PotmesilandChakraarty 1981]. However,
to achieve this, oneneedsrst to estimatethe depthat eachimage
pixel. While thereexistsanearlyendlesditeratureon depthestima-
tion from imagestherequirementgor therefocusingof adynamic
sceneseento precludethe useof mostexisting methodsFirst, be-
causdhescends dynamicthedepthestimatiomeedgo bedoneat
asinglemomentin time — preventingthe useof multi-frameactive
illumination depthestimatiormethods Secondbecauseve arere-
focusingthe full image,we needdepthestimategor every pointin
theimage— preventingthe useof multi-viewpoint depthestimation
methods.Third, becauseur goalis to refocusthe original image,
we cannotusean actie illumination methodwhoseeffectscannot
beremovedfrom theoriginalimage— preventingthe useof existing
single-frameactive illumination methods.

In this paper we presenta simplesingle-frameactive illumination
methodfor depthestimationandincorporatet within a systemfor
refocusingimagesandvideosof dynamicscenes Our methodfor
estimatingdepthusesa singlecamerawith a wide depthof eld)
andis basedon the defocusof a sparsesetof dotsprojectedonto
thescendqusinganarrav depthof eld projector)(seeFig. 1(a)). A
half-mirror is usedto co-locatethe dots' centerof projectionwith
thecamerasfocalpoint. In doingso,we ensurehatall scenegoints
illuminated by the projectorarealsoseenby the cameraandtheir
locationsin the acquiredimageareknown. This avoidsthe corre-
spondencend missing-parfproblemsinherentto multi-viewpoint
systems.The setof projecteddotsis distributed sparselyover the
cameras eld of view bothto avoid overlapof the defocusediots
andto simplify their removal from the image. While the sparsity
of the dotslimits the spatialresolutionof the depthestimateswe
couplethe sparsalepthestimatesvith a simplecolor segmentation
algorithmto achieve a densedepthmapwith sharpobjectbound-
aries(seeFig. 1(b)). Suchan approximatedepthmapis adequate
sincetherefocusingof mostscene®only requiresthe sceneegions
to bewell sgmentedwith the properorderingof depth.
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Figure2: Thestepsinvolvedin therefocusingmethod.(a) Acquiredimage; (b) image after remaoval of the projecteddots; (c) sparsedepth
mapestimatedromthe remaeddots; (d) color over-segmentatiorof the dot-remavedimage in (b); () meging of sgmentedegionsusing
the sparsedepthmapin (c); (f) depthmapafter boundaryre nementusinga mattingalgorithm; (g-i) refocusedmageswith differentdepths

of eld; and(j) refocusedmage for animage takenwith new lighting.

We have also developeda refocusingalgorithm which considers
partialocclusionsat objectboundariesin particular our algorithm
defocusesmagepointsby respectingvisibility changedor differ-
entpointson a large aperturdens,andby moreaccuratelymixing
foregroundandbackgroungixelsin thedefocuscomputationThe
algorithmis usedwith the computeddepthmapto refocuseither
the original image(seeFigs. 1(c) and(d)), or animagetakenim-
mediatelybeforeor afterunderdifferentlighting (seeFig. 1(e)).

The rest of the paperis organizedas follows. In Section2, we
review relatedwork. In Section3, we give anoverview of our sys-
tem. In Sectior4, we provide aradiometricandgeometricanalysis
of defocusedorojecteddots. In Sectionss and 6, we presentthe
algorithmsfor depthcomputationandrefocusing respectiely. In

Section7, we presentesultsfor a variety of imagesandvideosin-

cluding humanportraitsandlive action. Finally, in Section8, we

discusghelimitationsof our method.

2 Related Work

We review therelevantrelatedwork, dividing it into two cateyories:
prior work ondepthestimatiorandprior work onimagerefocusing.

Depth Estimation: We useanactiveilluminationmethodfor depth
estimationfrom a singleimage. Passve approachegor recorer
ing depthfrom a single image, suchas shapefrom shadingand
texture, cannothandledepthdiscontinuities which play a crucial
role in refocusing.Otherpassie methodssuchassterecandstruc-
ture from motion estimatedepthfrom multiple views usingtrian-
gulation. Apart from the inherentproblemof establishingcorre-
spondencethesemethodscannotguaranteelepthestimatedor all
pointsin asingleimagebecausef partialocclusions.

Structuredight methodgsee[Salvi etal. 2004]for areview) solve
the correspondenc@roblem by projecting light patternson the
sceneTheseapproachealsocomputedepthbasedntriangulation
andhencecannotestimatedepthwithin partially occludedregions.
Furthermorethe projectedlight patternsare oftentoo comple to
remove from theacquiredmagegProesmanandVanGool 1997].

Methodsbasedn camerdocusanddefocusavoid correspondence

computationsand are not as adwersely affected by partial occlu-
sions. Depthfrom focustechniquede.g.,[Nayar and Nakagwa
1994; Asadaet al. 1998]) capturea setof imagesunderdifferent
focussettingsanddepthis estimatedusingafocusoperator These
approachegsannotdeal with dynamicscenesasthey needto ac-
quire a sequencef images(about10-12)while the sceneremains
stationary In contrastdepthfrom defocusmethodge.g.,[Pentland
1987;Subbara@ndSuryal994])requireprocessin@nly afew im-

ageg(about2-3) anddepthis estimatecdy measuringelative blur.

Like stereoand structurefrom motion, depthfrom focus/defocus
cannotproducedepthestimatedor texturelesssceneregions. To
addresghis limitation, somemethodgGirod and Scherock1989;
GirodandAdelson1990;Nayaretal. 1996]useactive illumination
to projectatexture ontothe scene We have adoptedhis approach
in our system. Our depth estimationmethodis mostclosely re-
latedto [Girod andAdelson1990],wherea patternis projectedand
its defocusis usedto estimatescenedepthfrom a single image,
albeitwith blurredboundariesThe primaryobjectie of this previ-
ouswork is to determinevhetherthe computeddepthdiesin front
of, or behind,thefocal plane. This is doneby projectinga pattern
consistingof asymmetricshapesTheauthorssuggesthattheirpat-
ternscanberemovedfrom thecapturedmageusinglow-passlter -
ing. However, suchan approachwill notwork for texturedscenes
asit will signi cantly degradethequality of theimage.In contrast,
we shav that by projectingdots on the sceneand using ratios of
the acquiredimagewith a setof calibrationimages,the dotscan
be removed even for textured sceneswithout ary noticeableloss
of imagequality. We alsoshow thatthe projectionof sparsedots
allows for control of the intensityfalloff within the depthrangeof
interest. By minimizing the intensity falloff, we avoid over and
underexposureof the defocuseddots and henceimprove the ro-
bustnesof depthestimationaswell asdot removal. Furthermore,
we shav how a completedepthmapwith sharpboundariecanbe
obtainedrom the sparsalot depthsby applyingadepth-basedey-
mentatioralgorithmto the dot-remaedimage.

ZhangandNayar[2006] recentlyproposech methodthat captures
a setof images(around20) of a still scenewnhile it is lit by a shift-



ing light pattern. The depthof a pixel is computedby analyzing
the temporalvariationof its brightnessdueto defocus. The com-

puteddepthmapis “image-complete’andcanbe usedfor refocus-
ing. Ourwork is alsocloselyrelatedto this previous work, but we

computedepthwith a singleimage.Althoughour depthestimation
is not asdense,it is applicableto imagesand videosof dynamic
scenesQurdepthrecoveryis similarin spirit to thework of Hoiem

etal. [2005] on automaticallyconstructingrough scenestructure
from a singleimage. As in our method,an over-segmentedim-

ageis computedwhich is subsequentlyneigedinto geometrically
eguvalentregions.However, theirmeigingis basedn asetof pre-

de ned appearance-basedasseswhile our memging usessparse
depthmeasurements.

Refocusing A commonapproachto refocusingis to acquirea

setof differently focusedimages.In [Rajagopalarand Chaudhuri
1999;Subbaraetal. 1995],depthfrom defocuss usedto estimate
the spatially varying blur of the sceneand then computean all-

focusedimage. This imagecanbe refocusedusingthe computed
blur. A similar approachis usedin [McGuire et al. 2005] where
two synchronizedsideo sequenceacquiredunderdifferentfocus
settingsare usedto rendera new videoin which the focussetting
canbecontrolled. Thesemethodsarepassie but therangeof refo-

cusingeffectsthatcanbe achiezedis limited becausef the small

numberof acquiredmages.Othermethodscomputeanall-focused
imagefrom a larger setof acquiredimages[Burt and Kolczynski
1993; Nayar and Nakagwa 1994; Haeberli1994; Krishnanand
Ahuja 1996; Agarwala et al. 2004]. Due to the large numberof

imagesneededthesemethodsaredif cult to usein the caseof dy-

namicscenes.

A differentapproacho refocusings to measurehelight eld asso-
ciatedwith asceneln thiscasethemeasuredayscanbecombined
to simulatenew depthof eld settingswithout explicitly comput-
ing depth.Levoy andHanraharj1996]computealight eld froma
large numberof images(betweer?256 and4096)anduseit to sim-

ulatesyntheticcameraaperturesThis ideawasfurtherextendedn

[Isakseretal. 2000]and[Levoy etal. 2004]. Thedravbackof this
approachs thatit eitherrequiresthe sequentiataptureof alarge
numberof imageqwhichis notpossiblefor dynamicscenespr the
useof alargecamerearray

A novel approachto refocusingis to use integral photograpl,

wherethe light eld is measuredising an array of lensesplaced
either behind the cameralens [Ng et al. 2005] or in front of it

[Geomiev etal. 2006]. As with a cameraarray the measuredays
canbe combinedto achieve refocusing.The adwantageof this ap-
proachover oursis thatit is passve — no projectedillumination is

used. On the otherhand,it comeswith a signi cant reductionin

imageresolutionas a singleimage detectoris usedto simultane-
ously capturea large numberof imagesof the scene.For instance,
with the systemin [Ng et al. 2005] the nal refocusedmageis

292 292pixelswhena detectowith 4000 4000pixelsis used.
In contrast,our active methodproducesa refocusedmageat the
sameresolutionastheacquiredmage.

The problemof producinga limited depthof eld imageof ascene
with known geometnhasalonghistory[Cooketal. 1984;Potmesil
andChakraarty 1981;Rokital1996]. However, mostof theseprevi-
ousmethodsweredesignedo work on syntheticscenesvith com-
plete3D models.In our casewe do nothave acomplete3D model
of the scenebut ratheran image-completalepthmap. In the ab-
senceof a 3D model,thevisibility effectsat objectboundariesare
not well-de ned. Therearecommerciallyavailabletools, suchas
Photoshogs lensblur featureandlrisFilter [Sakurai2004],thatcan
refocusanimagewith a userprovided depthmap. As we will see
in Section6, thesetools produceundesirablartifactswhenthere-
focusingis donewith a large aperture.We have developedan al-
gorithmthatusesavisibility changemodelfor objectboundariego
producerefocusingresultsof higherquality.

3 Overview of the Metho d

This sectionpresentanovervien of our refocusingmethodwhich
is illustratedin Fig. 2. The processingipelineconsistsof the fol-
lowing mainsteps.

Calibration : Ourdepthestimatiormethodis basednthedefocus
analysisof a grid of dotsprojectedontothe scene.Beforeacquisi-
tion, thedotsareprojectedontoa calibrationboard whichis swept
throughthe working volume of the imaging system. The appear
anceof the boardunderuniform projectedlight is alsorecorded.
This is a one-timecalibrationprocedure- the calibrationimages
are usedto processall sceneimagestaken with the samesystem
parameters.

Sparsedepth map from projection defocus Given animageof

the scendit by the dots(Fig. 2(a)), the degreeof defocusfor each
dot is estimatedby comparingits blur to the dotsin the calibra-
tion images. This comparisonis doneby taking the appropriate
ratiosof brightnesses theacquiredmagewith thecalibrationim-

ages. This resultsin the removal of dotsfrom the acquiredimage
(Fig. 2(b)) aswell asthe estimationof thedot depthg(Fig. 2(c)).

Depth map completion using segmentation The dot-remwed
imageis segmentednto alarge numberof smallregionsof nearly
uniform color (Fig. 2(d)). Next, the sparsedepthmap previously
computeds usedto t asurfaceto eachoneof thecolor sggments,
which are then meiged accordingto depthsimilarity (Fig. 2(e)).
Precisedepth estimationnear discontinuitiesis obtainedusing a
mattingtechniqueg(Fig. 2(f)).

Image refocusing Finally, the imagemay be refocusedwith dif-

ferentfocal planeandaperturesettings,by convolving eachpixel

with a blur kernelwhosesizeis proportionalto the depthof the
pixel. Realisticdepthof eld renderingsare achiesed by taking
into accountpartial occlusionsat objectboundariegFigs.2(g-j)).

4 Projection Dot Defocus Analysis

We now describethe camera-projectosystemwe have usedto ac-
quire sceneimageswith projecteddotsand presentan analysisof
thedefocusfunctionassociateavith a projecteddot. Theresultsof
ouranalysisareusedto choosehesystenparametersoasto avoid
under andover- exposureof the projecteddots.

4.1 System Design

Figure3 shaws our basicsetup.We usea cameraandprojectorthat
areco-locatedy meanf ahalf-silveredmirror. Consequentithe
scends imagedonto the cameravia the sameoptical pathusedto
projectthegrid of dotsontothescene This setuphastheadwantage
of avoiding shadavs, occlusionsand foreshorteningasymmetries
betweenthe cameras and projectors viewpoints. In addition, the
locationsof all the dotsareknown in the cameramage,obviating
theneedto solve a correspondencgroblem.

Theillumination patternwe useis composedf small squaredots

of brightnessBy, regularly spacedver a backgroundf brightness
B,, whereBy, > B;. NotethatweneedB, > 0in orderto recoverthe

appearancef the surfaceregionswhich arenotilluminatedby the

dots. The separatiorbetweendotsis suchthatit preventsoverlap-

ping of adjacentotsfor the maximumdefocudevel.
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Figure3: Systenusedto acquire imagesfor refocusing
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Figure4: Geometricand radiometricpropertiesof projecteddots.
(top) Camen imagesof a squae dotof 3 3 pixelsprojectedonto
differentdepths. (center) Thedot width D,y and radiancel,, were
measued from the images and compaed to the valuespredicted
by our models.(bottom)Theradiancevariation of a projecteddot,
within a chosenworkingrange of the systemmaybe contolled by
changingthe parametes of the setup sud asthedistanceu; of the
focal planeor thewidth w of the dots.

4.2 Defocus Geometry and Radiometry

Consideragain the projectorcamerasystemillustratedin Fig. 3.
The projectoris assumedo have a narrav depthof eld (wide
aperturewhile thecamerds assumedo have awide depthof eld
(smallaperture) A pointlight sourceat p onthe projectorplaneis
focusedon a point p®in the scene.If p is projectedontoa surface
point g which lies in front of the focusplane,it producesa circu-
lar patch(blur circle) of uniform brightnessn the cameramage?l
Althoughthe shapeof illuminatedpatchon the surfacearoundq is
a function of the local surfacegeometrythe shapeof the patchas
seenby theco-locateccameraemainscircular Usingthelenslaw,
the diameterD of the blur circle on the cameras imageplanecan
bewrittenas

D= 2fcr i 1. Q)

c u U )

wheref is thecamerdocal length,r is theradiusof the projector
lens,us is thedistanceof thefocal planefrom thelens,andu is the
distanceof the surfacefrom thelens. The“+” signholdswhenthe
projectoris focusedbehindthe scene(u  ug), andthe® ” sign
holdswhenthe projectoris focusedn front of thescengu > us).
Theradiancd of theimagedblur circle is proportionalto theirra-
dianceE of thesurfacepatchatq. In AppendixA we shav thatE is
proportionato theratio betweerthelight enegy from thesourceat
p thatpasseshroughthe projectorlensandthe areaof the surface
patchthatis illuminatedby the source.Consequentlythe radiance
of theblur circle canbewritten as
dp

1 u=u¢

I 55 )
wheredp is the areaof thelight sourcecenteredat p. In practice,
projectorscannotproducein nitesimally smalllight sourceslf in-
steadwe projectasquaralotof sizew w (in theprojectorplane),

1For our analysishere we assumeheblur functionto bea pillbox. This
analysisis only usedto selectsystemparametersindhencea preciseblur
modelis notrequired.Ourdepthestimationis doneusinga setof calibration
imagesthataccuratelycapturethe blur function of the projectorusedin our
system.

the dot width Dy, andthe radiancely, of the blurred patchin the
imageplaneare
Dw = D+W%; Iw 1 W 5 )

u w
1 Ut + Uy

wherev is thedistanceof theprojectorplanefrom thelens2 Again,
we referthereaderto the AppendixA for details.

The abore modelsare approximationsasthey assumethe pillbox
blur function and hencedo not accountfor the intensity falloff
within theblur circle dueto diffractioneffectsandlensaberrations.
Neverthelesswe have experimentallyveri ed thatthe modelsare
adequatdor selectingthe parametersf imagingsystem.Using a
high resolution linearcamerave acquiredthe appearancef ade-
focused3 3 squargratchprojectedontoawhite boardat different
depths. A few of theseimagesare shavn in Figure 4(top). The
width Dy, andradiancd,y of theseblur circlesweremanuallymea-
suredfrom the imagesandusedasinput to the modelsin Eq. 3 to
estimatethe parametersis andw of the setup(r, fc andv werees-
timatedseparately) We found the estimatedraluesof u; andw to
bein goodagreementvith their known realvalues.Figure4 (cen-
ter) compareshemeasuredaluesof Dy andly, with onesobtained
from themodelsin Eq. 3, usingthe estimatedsaluesfor us andw.

4.3 Controlling Dynamic Range of Projected Dots

A key problemwith usingactive illumination is that scenerradi-

ancefalls off with the inversesquareof the distance.As a result,
the operablerangeof theimagingsystentendsto be very limited.

For example, ash imagesoften suffer from saturationof nearby
objectsand weak illumination of distantones. In our system,we

avoid this by selectingappropriatevaluesfor the systemparame-
ters. From Eq. 3 we seethat both the width Dy, of the blur circle
andits radiancd,y, canbecontrolledthroughthedistanceu; of the
focal planefrom thelens,theradiusr of thelensandsizew of the
projecteddots. Fig. 4(bottom)shaws the effects of changingus

andw within physically feasibleranges.Larger valuesof us tend
to decreas¢hefalloff of the dot brightnesswithin the working dis-

tance.Similar effectsmaybe obsered by increasinghe projected
dotsizew. However, notethatincreasingus andw resultsin larger
valuesof Dy, requiringthe spacingbetweenneighboringdotsto

be increasedo avoid overlap. Therefore,in practice,thereexists
atradeof betweerthe spatialresolutionandthe dynamicrangeof

theprojecteddot pattern.

As mentionedearlier our illumination patternis composedof
squaredots of brightnessBy, regularly spacedover a background
of brightnessB,, whereBy > B;. From Eq. 3 it canbe seenthat
theirradianceof the dot decreasewith the depthu whenthe pro-
jectoris focusedn front of the sceneIn contrasttheirradianceof
thebackgrounasurroundinga dot alwaysdecreasewith thedepth,
independenbf wherethe projectoris focused.As a consequence,
when the projectoris focusedbehindthe scene the contrastbe-
tweenthe projecteddotsandthe backgrounds greatestTherefore,
in all ourexperimentsthe projectorwasfocusedbehindthescene.

5 Dot Removal and Depth Estimation

We now presenthe detailsof our algorithmfor removing the dots,
measuringhe depthsof the dots,andestimatinga completedepth
mapfrom a singleacquiredimage. For clarity we breakthe algo-
rithm down into a numberof simplesteps.

5.1 Calibration

Assumethatwe aregivenadesiredwvorking range.Usingthe mod-
elspresentedn the previous section,we selectthe depthus of the

°The squarepatchis assumedo be small. Hence the defocusecpatch
measuredy the cameraremainsa circular onewith moreor lessuniform
brightnesqseeFig. 4(top)).
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Figure5: Depthfromdefocusof projecteddots. (top) Magni ed re-
gionofthescenen Fig. 2, andtheimage patd | , for which wewish
to computedepth. (center)Thecalibration images. A white board
is movedthroughthe working range andits image (only the patch
correspondingo a singledotis shownhere) is acquiredwhenit is
lit by the dot (Fy;j) and by uniform illumination (Fc;j). Computed
image patcesl¢; that representhow |, would appearunderuni-
formillumination if it had the depthcorrespondingo f Fy;i; Fcig.
(bottom)Thecorrespondenceetweerthe calibration patcthesand
the acquired patch can be determinedby nding thei that mini-
mizesthe varianceof | ;. This plot of the varianceshowsthat the
depthof the patch |, is approximatelythe sameasthe depthof the
calibration pair f Fy.7; F¢.70.

projectorfocal plane,the spacingbetweerthe dots,the dot sizew,
the brightnes$By, of the projecteddots,andthe backgroundright-
nessB.

With theseparametersx ed, we acquirea seriesof calibrationim-
agesin which the grid of dotsof brightnessB;, over a background
of brightness is projectedbntoawhite boardperpendiculato the
cameras optical axis. Theboardis placedat the backof the work-
ing rangeandthensteppedorward,with onecalibrationimageac-
quiredat eachstep. We thenacquirea secondseriesof calibration
imagesby repeatingthis processwherethe grid of projecteddots
is replacedy light from the projectorof uniform brightnesd;.

5.2 Dot Removal and Dot Depth Estimation

Let I, be animagepatchof sizep p pixels containingone of
the projecteddots. The imagepatchis suchthat the blurred dot
lies at its centerandits width p completelycontainsthe blurred
dot, i.e., p> Dy. For eachpatchly, thereare N imagepatches

Fig. 5). Thesubscript onbothFy,; andF¢; indicatesthatthe cor
respondingmageshave beenacquiredwhenthe calibrationboard
wasplacedat a distanceu; from the projector Our goalis to esti-
matethedepthof thescenepointimagedin |, by comparingt with
the correspondingatchesapturedn the calibrationimages.
Considera patchl, thatcorrespond$o a sceneregion thatis tex-
tureless. Let us assumethat the actualdepth uyx of the patchis
known. Then,thefollowing relationholdstrue for eachandevery
point (pixel) in theimagepatch:
F: I
bx _ b . (4)

Fex lex

Ns= 102 Ns= 60 Ns= 34 Ns= 17 Ns= 3
Figure6: Depthmapcompletion.Startingwith an oversegmented
image (left), the segmentsare iteratively meiged basedon color,
texture and depthusinga greedyalgorithm. Notehowthe number
of sggmentd\s decreaseswith theiterations(left to right).

G (b) (©) (d)
Figure7: Re nemenwf depthdiscontinuities.(a) Completedepth
mapobtainedafter ssgmentatiorand meiging. Thedepthdisconti-
nuitieshavenoisyartifacts dueto limitations of the sggmentation.
(b) Magni ed region of the depthmap. (¢) Re neddepthmapob-
tainedby usingmatting (d) Acquiredimage with dotsremaed.

wherel ¢y is the sceneimage (for the patchunderconsideration)
onewould obtainif thescenewerelit by the projectorwith uniform
illumination of brightness;.

Eq.4 canbeusedio computeheunknovn depthuy of eachpatchin
thefollowing manner Givenly, we take the N pairsof calibration
imagesf Fy;; Fc;ig and computethe correspondingmage patches
I¢i (seeFigure 5(center)). For the depthu; thatis closestto uy,
I ;i shouldbeanimageof thescendit by uniformillumination—it
shouldnotincludethe effectsof theblurreddot. Thereforewe nd

i by simply nding thel; that haslowestvarianceof brightness
values(seeFig. 5(bottom)).

In orderto dealwith texturedsurfaces(texture by itself introduces
brightnessvariation),eachpatchl ¢;; is partitionedinto subrgjions
usingtheunsupervisedlgorithmdescribedn [FigueiredoandJain
2002], and a varianceis computedfor eachsubrgion. Then, if
lei = é']-\"' Icij» whereN;; is the numberof subrgjionsin I, the
depthuy is determinedas ( )
Nri
o U ] amgmin é‘lvar(lc;ij) : (5)
J:

wherevar( ) is the varianceoperator By repeatinghe abore pro-
cesdfor all the projecteddots,we obtainanimagewith all thedots
removed like the onein Fig. 2(b) and a sparsedepthmap asin
Fig. 2(c). The depthresolutionfor a dot dependon the number
of depthsusedto acquirethe calibrationimages.In ourimplemen-
tation, we performa re nementof the computeddot depths. This
is doneby interpolatingthe calibrationimagesclosestto a com-
puteddot depthandusingthe above variancetestto nd the nal
Uy, which may lie in betweenthe discretedepthsassociatedvith
thecalibrationimages.

5.3 Depth Map Completion Using Segmentation

Thusfar, we have estimatediepthsat a setof regularly spacedix-

elsin the acquiredimage. To achieve our goal of refocusingthe
image,we needto have depthsat all pixels. To interpolatethe dot

depthsand obtaina completedepthmap we usea segmentation-
basedapproach. First, we apply the Mean-Shiftalgorithm [Co-

maniciuandMeer2002]to obtainanover-segmentatiorof thedot-

removedimage.

Each segmentin the over-sggmentedimage is characterizedby

threedistinct features:color (c), texture (t) anddepth(d). Color
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Figure 8: The problemof partial occlusionsassociatedwith ren-
dering a refocusedmage with a wide apertuse, givena singleall-
focusedmage anda depthmap.

andtexture are directly measurabldrom the dot-remwoed image,
while depthis determinedrom the computedsparsedepthmap?
For sggmentscontainingseveral pixels with known depth,we as-
signthemedianof thedepthgo thesegment.Theuseof themedian
enablesisto remove outliersin the sparsedepthmap.Ontheother
hand,a segmentthatdoesnot containary pixel with known depth
is describedby just its color andtexture. Next, we usea greedy
algorithmto groupthe imageseyments. The algorithmiteratively
meigesthetwo mostsimilarneighboringsggmentsandre-computes
thefeaturesof thenew meigedsegment.

To measuresimilarity betweertwo segmentsS andS; in iteration
k, we usethefollowing metric#

sim(§; §)) = I c(K)d(ci;cj) + Te(K)d(tist)) + I g(K)d(di;dj); (6)

whered( ; ) is the Euclideandistance,andthe parameters ¢(k),

I'+1(k) andl 4(k) determinethe relative contritutions of the three
features.To discouragehe meiging of large regionswith different
depths,! 4(K) is setto a straightline function with positive slope,
while I ¢(k) and/ ¢(Kk) aresetto straightline functionswith negative

slopes.In all the casesthe value of the slopeis inverselypropor

tional to the numberof initial sggmentsthat needto be memged.
Fig. 6 illustratesthe evolution of the sggmentationprocesdor the

acquiredmagein Fig. 2(a).

As canbeseenn Fig. 7(b), themegedimageincludesnoisearound
thedepthdiscontinuities To reduceheseartifactswe automatically
extractatrimapwhich separatetheregion aroundadepthdisconti-
nuity into aforegroundr, abackgrounds andanunknavn layerU .

Usingthe mattingalgorithmproposedy WangandCohen[2005]

we computean alpha-map which assighsa probability pg of be-
longingto theforegroundto eachof thepixelsin U. Theprobability
pr is thenusedto estimatethe depthof the pixelsin U asalinear
combinationof the depthof the closestpixel in F andthe depth
of the closestpixel in G. Theresultof this re nementis shovn in

Fig. 7(c). By comparingwith the original imagein Fig. 7(d), we

seethat the edgeartifactsareremoved andthe transitionbetween
thedifferentdepthsis smooth.

6 Algorithm for Realistic Refocusing

In this sectionwe presenta refocusingalgorithmthat usesanim-
agetaken with a wide depthof eld cameraandits depthmapto
simulatenovel imagesof the scenewith differentdepthsof eld.

The simulateddepthof eld may be controlledin termsof size of
thelensapertureandthe locationof thefocal planeof thelens. To
renderrealisticdepthof eld effectsit is importantto considerthe
following two issues.First, for an objectboundarydifferentparts
of thelensmay“see” differentviews dueto partialocclusions Sec-
ond,in realimages pixelsatdepthdiscontinuitiesnayreceve con-

3Textureis representedly derivativesof orientedGaussianlters.

“In the caseof videos,the similarity measurencludesa temporalcon-
straint— the differencebetweerthe indicesof the framesin which the seg-
mentsappear

(© (d)

(C) ®
@ (b)

Figure9: Realisticrefocusing (a) Original all-focusedimage. (b)

Refocusingesultobtainedusingthe proposedalgorithm. Thevir-

tual focal planeis placedon the badkground of the scene (c-e)
Magni ed regionsshowingrefocusingresultsfor (c) the proposed
algorithm, (d) Photoshogs lensblur tool, (e) thelrisFilter tool. (f)

Realimage takenwith a Canoncamen anda wide apertue.

tributionsfrom theforegroundandthe backgroundOur refocusing
algorithmaddresseboththeseissues.

Partial occlusions Considerthe scenaridllustratedin Fig. 8; we

wantto computetheirradianceof animagepixel p which receves
light from a lenswith a large aperture focusedbehindthe scene.
Two objectsA andB arein the eld of view of p, whereA is located
in front of B. Thetotal light enegy recevedby p is the sumof the
contrikutionsof all the light raysfrom the lens. The contrikutions
of theserayscanbedeterminedy tracingtheraysfrom thelensto

pointson the surfacesof A andB. This computationis simpleand
canbedonewhenthe completegeometryof the scends given.

In ourcasehowever, we aregivenasingle,narrav-aperturesiew of

thesceneandthecorrespondinglepthmap. Therecouldberegions
of the objectsA and B that contribute to the irradianceof pixel p

in therefocusedmagethatarenot capturedn theacquiredmage.
Thisis illustratedin Fig. 8, wheretheacquiredmageis assumedo

be an orthographicview of the scene(dottedhorizontallines). In

this case althoughwe needthe radiance®f the pointson objectB

thatlie betweerb, andbg, they arenotincludedin theacquiredm-

age.We recreatesuchmissingregionsby detectingdiscontinuities
in our depthmapandextendingthe occludedsurfaceusingtexture
synthesis.

Foreground/background transitions: Note that the ray-tracing
basednethodwe useto considerthe partial visibility assumeshat
eachimagepixel belongseitherto the backgroundor to the fore-

ground,i.e.,it assumesbruptdepthmaps.However, sincewe have

usedmattingto re ne thedepthestimatiorat objectboundariespur

depthmapis not abruptandchangesmoothlyfrom foregroundto

backgroundat depthdiscontinuities.To handlethesesmoothdepth
changeswe blenda foregroundfocusedmagewith a background
focusedmagewithin theboundaryregion.

In particular let us say we wish to refocusan imagewith three
typesof regions: aregion F (foreground)with depthdg, aregion

G (backgroundwith depthdg, anda region C (boundary)with a
depththatsmoothlychangesrom dr to dg. Our mattingstepgives
usthecorrespondinglpha-magA, whichrepresentgheprobability
of eachpixel of belongingto theforeground.Giventhis inputdata,
we then computetwo differentrefocusedmagesusing the tech-
niquedescribedo modelthe partial occlusions.First we compute
Rc2F Wherewe have assignea depthdg to all thepointsin C. The
secondrefocusedmage,Rc2, is computedby assigninga depth
dg to thepixelsin C. The nal refocusedmageis computedas

R=Rcor A+Rcog (1 A) (7)
wherel is a matrix of onesof the samesizeasA, and denotes

element-wisenultiplication.

Theproposedefocusingalgorithmproducesetterresultsthanex-
isting approachesspeciallywhenthevirtual focal planeis located
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Figure10: Refocusingesultsfor two differentscenesin eat case weshow(fromleft to right), theimage acquiredbyilluminatingthescene
with the dot pattern; theimage obtainedafter dotremaval or takenundernew illumination; the computediepthmap; two refocusingesults
whete thefocal planeis placeat thebadk andin thefront of the scene;andtwo magni ed regionsof therefocusedmages. In the caseof the

pool table (aswell asthe examplesshownin Figs. 1 and 2), the spaisedepthmapcomputedromthe acquiredimage is usedto computea

completedepthmapcorrespondingo a secondmage takenwith differentlighting. In this case refocusings appliedto the secondmage.

Original frame# 93 Refocusedrame# 73 Refocusedrame# 87 Refocusedrame# 92

Original frame# 7 Refocusedrame# 30 Refocusedrame# 54 Refocusedrame# 62
Figure 11: Refocusingof videosof dynamicscenes.In eat case one of the acquired framesis shownon the left and three differently

refocusedramesare shownon theright.

behindthe sceneln Fig. 9 we comparerefocusingresultsobtained
usingouralgorithmto resultsgeneratedisingPhotoshogslensblur

tool andthe IrisFilter tool [Sakurai2004]. The magni ed images
shaw that our resultin Fig. 9(c) is closein appearancéo thereal

imagein Fig. 9(f), while the previous methodsproduceartifactsat

theboundaryof theforegroundobiject.

7 Results

The proposednethodhasbeenusedto refocusboth singleimages
aswell asvideosof dynamicscenesThe singleimageswerecap-
turedwith a CanonEOS 20D camera(with 1728 1152 pixels)
andthevideoswerecapturedwith a ProsilicaCV640camergwith

659 493pixels). Thedotillumination patternrwasgeneratedising

a Saryo PLC XT11 digital projector(with 1024 768 pixels) that
is co-locatedvith the camerausinga half-mirror. Dot patternswith
resolution(numberof dots) rangingfrom 500 to 1000 dots were
used. Theworking rangefor our experimentsvariedfrom 0:5 me-
tersto 3 meters.althoughlargerrangescanbe handledby usinga
morepowerful projector

Fig. 10showns single-imageefocusingesultsfor two scenesin the
rst example,we seethatthe dot-remwed imageis of high qual-
ity andthe depthmaphasfour distinctdepthlayers— the ball, the
hand,the faceand body of the person,andthe background.The
refocusedmagesreveal the quality of the computedresults.In the
rst refocusedmagethe backgrounds in focus,while in the sec-
ondimagethetennisball andthe handarebroughtinto focus. The



secondexamplein Fig. 10 shavs a pool table. In this case differ-
ent(but constantgepthsareassignedo theobjects(balls,handand
pool cue)on thetable. However, the tableitself lies on aninclined
plane.Sincethecolorof thetableis uniform,it is determinedo bea
singleregion. The sparsadepthswithin this region areinterpolated
to obtainaninclined surfacewith the properdepthgradient?

The pool-tablesceneaswell asthe onesin Figs.1 and2, canbe
viewed as quasi-staticscenes.They include humansin themand
humansnd it hardto remainperfectlystill — it is dif cult to cap-
turetwo consecutie imageswithoutthe scenechanging Whenthe
scenechangesresmall,ourapproactcanbeusedto captureasec-
ond imageof the scenewith a differentillumination (say studio
lighting) andusethe sparsedepthmapcomputedrom the rst im-
ageto sggmentand computea completedepthmapcorresponding
to the secondmage. Then,the secondmagecanbe refocusedas
desired.This approachwastakento producetherefocusedmages
of the pool table on the right of Fig. 10 aswell asthe refocused
imagesshavn in Figs.1(e)and2(j).

Fig. 11 shaws refocusingresultsfor two videosof dynamicscenes.
In the rst example thevideo(including150framescapturedat 24
fps) is of milk beingpouredfrom a jar into a cup. Although milk
exhibits subsurécescatteringeffects,we seethatthe projecteddots
are clearly visible in the acquiredframe (#93) shavn on the left.
As a result, even for this complex scene,we are able to recover
adepthmapthatis of adequateuality to realisticallyrefocusthe
sequenceln therefocusedrideo,thedepthof eld is continuously
variedwhile the scenechanges.In our lastexample,we shav the
refocusingof the video (with 100 frames)of a scenethatincludes
a soccerball, a tennisball anda baseball. The tennisballsin the
backgroundareactuallya partof apictureona at poster Thereal
tennisball rolls towardsthe cameraandrefocusingis usedto vary
thedistanceof the simulatedfocal planeasthe ball approachethe
cameraln this caseto reducemotionblur producedoy therolling
ball (which canleadto erroneousiepthestimates)the cameravas
operatedata higherspeedf 66 fps.

8 Limitations of the Metho d

Although the proposedmethodworks well for a wide variety of
scenesit suffers from the following limitations. (a) It usesactve
illumination and henceis more appropriatefor indoor scenegor
a studio) ratherthanoutdoorsceneawith strongsunlight. (b) The
methodrequiresa reasonablever-sggmentationof the imageto
startwith, wheresceneregionswith distinctdepthareassignedo
differentsegments. (c) Sincethe projectedlight patternis sparse,
ne depthdetailsin the scenecannotbe captured.(d) Translucent
objectsthat exhibit subsurice scatteringcan causethe projected
patternto appeardefocusedevenwhenit is not. For suchobjects,
the estimateddot depthscanhave large errors. (e) Whenthe dots
areprojectedontovery darkand/orhighly inclinedsurfaces(in our
experience greaterthan 70 with respectto the optical axis) the
blurreddotscanbetoo weakto detect.

Fig. 12 shavs magni ed regionsfrom two sceneshavn in Figs.2

andFig. 10thathighlight thelimitations of the method.In thecase
of thepooltable,the pointsa andb shavn in the depthmapshould
have the samedepth,but have differentdepthsdueto errorsin the
depthestimation.This leadsto subtlerefocusingerrors(the ball is

infocus, while the tableis not). In the secondexample,the holes
betweenthe hairs of the personare not preciselysegmentedand
are assignednaccuratedepthestimatedue to the sparsityof the

SWhen dealingwith inclined surfaces the algorithm describedn sec-
tion 5.3 is modi ed slightly. In this case,the correspondingnterpolated
depthgradientis assignedo the surfaceasa depthattribute. Whencom-
paringa new region to theinclined surface,the similarity metricin Eq.6 is
computedwith respecto thedepthof theinclinedsurfaceclosesto thenew
region.

¥:|
*b

Figure 12: Examplegshat showthe limitations of the method. In

ead example we showa region of the original image on the top

left, the depthmap on the bottomleft and the refocusingon the
right. In the caseof the pool table the ball and the table are as-
signeddifferent depthsdue to errors in depthestimation. In the
secondtase theholesbetweerthe hairs of the personare assigned
incorrectdepthsdueto segmentatiorerrors.

projecteddots. Again, one canseeerrorsin the refocusing(hair
andholesarerefocusedasif both regionshadequaldepth). It is
worth mentioningthat theseerrorsare not easily perceved from
therefocusedmagesunlessonecarefullyexamineshem.

9 Conclusions

We have developeda simpletechniquefor refocusinga scenewith

the acquisitionof a singleimage. The methodcanbe usedto refo-

cusimagesaswell asvideosof dynamicscenesThe mainlimita-

tions of the methodarisefrom the sparsityof the depthestimation
anderrorsin the initial sggmentationof the image. Despitethese
limitations, the methodis applicableto a wide variety of sceness
evidenceby our experimentalresults. We are currently exploring

waysto incorporatethe methodinto digital camerasThis requires
the designof new optical elementghat canconvert the light gen-
eratedby a cameraash into the dot illumination patternwe use.
Sincesomedigital camerasecentlyintroducedin the marketplace
have infra-red Iters in their color mosaicswe arealsoexploring

theuseof aninfra-redsourcefor projectingthedot pattern.Theuse
of sucha sourceandcamerawould obviate the dot removal stepof

our algorithm and make the depth estimationmore robust in the
caseof highly texturedscenes.

A. Radiometry of a Projected Dot

Considerthe dot projectionsystemillustratedin Fig. 3. Light en-
ergy from alight sourceof areadp centeredat p is projectedby a
thin lensof radiusr ontoascenepatchof areadq centeredhtq. The
projectorlensis focusedat a point p® behindthe scene Hence the
patchdq represents defocusedprojectionof dp. Our goal here
is to determingheirradianceof the patchdq. Basedon theimage
irradianceequationderived in [Horn 1986], it canbe shavn that
thepower dP emittedfrom the sourced p andfalling onthelensis
relatedto the brightnessB of the projectoras:

dP=v 2Bprlcosa‘dp; (8)
wherea is the anglethatthe line from p to g makeswith the op-
tical axis of the projector The foreshortenedreaof the patchdq,
consideredrom the viewpoint of the projector is a circular patch

of radiusrg, whererq = r(1 u=uf). Therefore theirradianceof
thesurfacepatchdq is

dP _ Bcosbcosa®  dp
E= —=
dq V2
whereb is the anglethatthe surfacenormalat g makeswith the
opticalaxisof the projector

Let usnow considetthescenélluminatedby asmallsquaregatch
of sizew w asdepictedn Fig. 13. Fromsimpleplanargeometry
it canbe shavn thatthe foreshortenedreadw, consideredagain

; 9)
1 u=u¢ 2
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Figure13: Geometryof a projectedpatch.

from theviewpointof theprojector is a circularpatchof radiusr,
wherery, = r(1 u=us) + wu=us. Consequentlytheirradianceof
thesurfacepatchdw will benow:

_ dP _ Bcosbcosa? w2 _
T dw V2 2

1 G+

wherew = wv=us is the size of the patchexpressedn projector
pixels.
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