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Figure1: Activerefocusingof images. (a) Image acquired by projectinga sparsesetof illumination dotson the scene. (b) Thedotsare
automaticallyremovedfromtheacquired image, andthedefocusof thedotsanda color segmentationof the image are usedto computean
approximatedepthmapof thescenewith sharpboundaries.(c andd) Thedepthmapandthedot-removedimageareusedto smoothlyrefocus
thescene. (e)Therefocusingcanalsobedonefor an image takenimmediatelybeforeor afterbut illuminatedasdesired.

Abstract
We presenta systemfor refocusingimagesandvideosof dynamic
scenesusing a novel, single-view depthestimationmethod. Our
methodfor obtainingdepthis basedon thedefocusof a sparseset
of dotsprojectedonto the scene. In contrastto otheractive illu-
minationtechniques,theprojectedpatternof dotscanberemoved
from eachcapturedimageandits brightnesseasilycontrolledin or-
derto avoid under- or over-exposure.Thedepthscorrespondingto
theprojecteddotsandacolorsegmentationof theimageareusedto
computeanapproximatedepthmapof thescenewith cleanregion
boundaries.The depthmapis usedto refocusthe acquiredimage
afterthedotsareremoved,simulatingrealisticdepthof �eld effects.
Experimentson a wide variety of scenes,including close-upsand
liveaction,demonstratetheeffectivenessof ourmethod.
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1 Intro duction
A methodthatallows for therefocusingof imagesandvideosis a
potentiallypowerful tool for digital photography and�lm editing.
If oneacquiresanimagewith awidedepthof �eld, onecandefocus
theimageby convolving it with ablur kernelwhosesizedependson
thedepthof eachpixel [PotmesilandChakravarty1981].However,
to achieve this, oneneeds�rst to estimatethedepthat eachimage
pixel. While thereexistsanearlyendlessliteratureondepthestima-
tion from images,therequirementsfor therefocusingof adynamic
sceneseemto precludetheuseof mostexistingmethods.First,be-
causethesceneis dynamic,thedepthestimationneedsto bedoneat
a singlemomentin time – preventingtheuseof multi-frameactive
illuminationdepthestimationmethods.Second,becausewearere-
focusingthefull image,we needdepthestimatesfor every point in
theimage– preventingtheuseof multi-viewpointdepthestimation
methods.Third, becauseour goal is to refocustheoriginal image,
we cannotuseanactive illumination methodwhoseeffectscannot
beremovedfrom theoriginal image– preventingtheuseof existing
single-frameactive illuminationmethods.

In this paper, we presenta simplesingle-frameactive illumination
methodfor depthestimationandincorporateit within a systemfor
refocusingimagesandvideosof dynamicscenes.Our methodfor
estimatingdepthusesa singlecamera(with a wide depthof �eld)
andis basedon the defocusof a sparsesetof dotsprojectedonto
thescene(usinganarrow depthof �eld projector)(seeFig.1(a)).A
half-mirror is usedto co-locatethedots' centerof projectionwith
thecamera'sfocalpoint. In doingso,weensurethatall scenepoints
illuminatedby the projectorarealsoseenby thecameraandtheir
locationsin theacquiredimageareknown. This avoids thecorre-
spondenceandmissing-partproblemsinherentto multi-viewpoint
systems.The setof projecteddotsis distributedsparselyover the
camera's �eld of view both to avoid overlapof thedefocuseddots
andto simplify their removal from the image. While the sparsity
of the dotslimits the spatialresolutionof the depthestimates,we
couplethesparsedepthestimateswith asimplecolorsegmentation
algorithmto achieve a densedepthmapwith sharpobjectbound-
aries(seeFig. 1(b)). Suchan approximatedepthmapis adequate
sincetherefocusingof mostscenesonly requiresthesceneregions
to bewell segmented,with theproperorderingof depth.
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Figure2: Thestepsinvolvedin therefocusingmethod.(a) Acquired image; (b) image after removal of theprojecteddots; (c) sparsedepth
mapestimatedfromtheremoveddots; (d) color over-segmentationof thedot-removedimage in (b); (e) merging of segmentedregionsusing
thesparsedepthmapin (c); (f) depthmapafterboundaryre�nementusinga mattingalgorithm; (g-i) refocusedimageswith differentdepths
of �eld; and(j) refocusedimage for an image takenwith new lighting.

We have also developeda refocusingalgorithm which considers
partialocclusionsat objectboundaries.In particular, ouralgorithm
defocusesimagepointsby respectingvisibility changesfor differ-
entpointson a largeaperturelens,andby moreaccuratelymixing
foregroundandbackgroundpixelsin thedefocuscomputation.The
algorithmis usedwith the computeddepthmapto refocuseither
the original image(seeFigs.1(c) and(d)), or an imagetaken im-
mediatelybeforeor afterunderdifferentlighting (seeFig. 1(e)).
The rest of the paperis organizedas follows. In Section2, we
review relatedwork. In Section3, we give anoverview of our sys-
tem. In Section4, weprovidea radiometricandgeometricanalysis
of defocusedprojecteddots. In Sections5 and6, we presentthe
algorithmsfor depthcomputationandrefocusing,respectively. In
Section7, we presentresultsfor a varietyof imagesandvideosin-
cluding humanportraitsandlive action. Finally, in Section8, we
discussthelimitationsof ourmethod.

2 Related Work
Wereview therelevantrelatedwork,dividing it into two categories:
prior work ondepthestimationandprior work onimagerefocusing.
Depth Estimation: Weuseanactiveilluminationmethodfor depth
estimationfrom a single image. Passive approachesfor recover-
ing depthfrom a single image,suchas shapefrom shadingand
texture, cannothandledepthdiscontinuities,which play a crucial
role in refocusing.Otherpassive methodssuchasstereoandstruc-
ture from motion estimatedepthfrom multiple views usingtrian-
gulation. Apart from the inherentproblemof establishingcorre-
spondence,thesemethodscannotguaranteedepthestimatesfor all
pointsin asingleimagebecauseof partialocclusions.
Structuredlight methods(see[Salvi etal. 2004]for a review) solve
the correspondenceproblem by projecting light patternson the
scene.Theseapproachesalsocomputedepthbasedontriangulation
andhencecannotestimatedepthwithin partially occludedregions.
Furthermore,the projectedlight patternsareoften too complex to
removefrom theacquiredimages[ProesmansandVanGool1997].
Methodsbasedoncamerafocusanddefocusavoid correspondence

computationsand are not as adverselyaffectedby partial occlu-
sions. Depth from focus techniques(e.g., [Nayar andNakagawa
1994; Asadaet al. 1998]) capturea setof imagesunderdifferent
focussettings,anddepthis estimatedusinga focusoperator. These
approachescannotdealwith dynamicscenes,as they needto ac-
quirea sequenceof images(about10-12)while thesceneremains
stationary. In contrast,depthfrom defocusmethods(e.g.,[Pentland
1987;SubbaraoandSurya1994])requireprocessingonly afew im-
ages(about2-3)anddepthis estimatedby measuringrelativeblur.
Like stereoandstructurefrom motion, depthfrom focus/defocus
cannotproducedepthestimatesfor texturelesssceneregions. To
addressthis limitation, somemethods[Girod andScherock1989;
GirodandAdelson1990;Nayaretal. 1996]useactive illumination
to projecta textureontothescene.We have adoptedthis approach
in our system. Our depthestimationmethodis most closely re-
latedto [Girod andAdelson1990],whereapatternis projectedand
its defocusis usedto estimatescenedepthfrom a single image,
albeitwith blurredboundaries.Theprimaryobjectiveof thisprevi-
ouswork is to determinewhetherthecomputeddepthslies in front
of, or behind,thefocal plane.This is doneby projectinga pattern
consistingof asymmetricshapes.Theauthorssuggestthattheirpat-
ternscanberemovedfrom thecapturedimageusinglow-pass�lter -
ing. However, suchanapproachwill not work for texturedscenes
asit will signi�cantly degradethequalityof theimage.In contrast,
we show that by projectingdotson the sceneandusingratiosof
the acquiredimagewith a setof calibrationimages,the dotscan
be removed even for texturedscenes,without any noticeableloss
of imagequality. We alsoshow that the projectionof sparsedots
allows for controlof the intensityfalloff within thedepthrangeof
interest. By minimizing the intensity falloff, we avoid over- and
under-exposureof the defocuseddots and henceimprove the ro-
bustnessof depthestimationaswell asdot removal. Furthermore,
we show how a completedepthmapwith sharpboundariescanbe
obtainedfrom thesparsedotdepthsby applyingadepth-basedseg-
mentationalgorithmto thedot-removedimage.
ZhangandNayar[2006] recentlyproposeda methodthatcaptures
a setof images(around20) of a still scenewhile it is lit by a shift-



ing light pattern. The depthof a pixel is computedby analyzing
the temporalvariationof its brightnessdueto defocus.The com-
puteddepthmapis “image-complete”andcanbeusedfor refocus-
ing. Our work is alsocloselyrelatedto this previouswork, but we
computedepthwith asingleimage.Althoughourdepthestimation
is not asdense,it is applicableto imagesandvideosof dynamic
scenes.Ourdepthrecovery is similar in spirit to thework of Hoiem
et al. [2005] on automaticallyconstructingroughscenestructure
from a single image. As in our method,an over-segmentedim-
ageis computedwhich is subsequentlymergedinto geometrically
equivalentregions.However, theirmerging is basedonasetof pre-
de�ned appearance-basedclasses,while our merging usessparse
depthmeasurements.
Refocusing: A commonapproachto refocusingis to acquirea
setof differently focusedimages.In [RajagopalanandChaudhuri
1999;Subbaraoetal. 1995],depthfrom defocusis usedto estimate
the spatially varying blur of the sceneand then computean all-
focusedimage. This imagecanbe refocusedusingthe computed
blur. A similar approachis usedin [McGuire et al. 2005] where
two synchronizedvideo sequencesacquiredunderdifferent focus
settingsareusedto rendera new video in which the focussetting
canbecontrolled.Thesemethodsarepassivebut therangeof refo-
cusingeffectsthatcanbeachieved is limited becauseof thesmall
numberof acquiredimages.Othermethodscomputeanall-focused
imagefrom a larger setof acquiredimages[Burt andKolczynski
1993; Nayar and Nakagawa 1994; Haeberli1994; Krishnanand
Ahuja 1996; Agarwala et al. 2004]. Due to the large numberof
imagesneeded,thesemethodsaredif�cult to usein thecaseof dy-
namicscenes.
A differentapproachto refocusingis to measurethelight �eld asso-
ciatedwith ascene.In thiscase,themeasuredrayscanbecombined
to simulatenew depthof �eld settingswithout explicitly comput-
ing depth.Levoy andHanrahan[1996]computea light �eld from a
largenumberof images(between256and4096)anduseit to sim-
ulatesyntheticcameraapertures.This ideawasfurtherextendedin
[Isaksenet al. 2000]and[Levoy et al. 2004].Thedrawbackof this
approachis that it eitherrequiresthe sequentialcaptureof a large
numberof images(whichis notpossiblefor dynamicscenes)or the
useof a largecameraarray.
A novel approachto refocusingis to use integral photography,
wherethe light �eld is measuredusingan arrayof lensesplaced
either behind the cameralens [Ng et al. 2005] or in front of it
[Georgiev et al. 2006]. As with a cameraarray, themeasuredrays
canbecombinedto achieve refocusing.Theadvantageof this ap-
proachover oursis that it is passive – no projectedillumination is
used. On the otherhand,it comeswith a signi�cant reductionin
imageresolutionasa single imagedetectoris usedto simultane-
ouslycapturea largenumberof imagesof thescene.For instance,
with the systemin [Ng et al. 2005] the �nal refocusedimageis
292� 292pixelswhena detectorwith 4000� 4000pixels is used.
In contrast,our active methodproducesa refocusedimageat the
sameresolutionastheacquiredimage.
Theproblemof producinga limited depthof �eld imageof ascene
with known geometryhasalonghistory[Cooketal.1984;Potmesil
andChakravarty1981;Rokita1996].However, mostof theseprevi-
ousmethodsweredesignedto work on syntheticsceneswith com-
plete3D models.In ourcase,wedonothaveacomplete3D model
of the scenebut ratheran image-completedepthmap. In the ab-
senceof a 3D model,thevisibility effectsat objectboundariesare
not well-de�ned. Therearecommerciallyavailabletools, suchas
Photoshop's lensblur featureandIrisFilter [Sakurai2004],thatcan
refocusan imagewith a user-provideddepthmap. As we will see
in Section6, thesetoolsproduceundesirableartifactswhenthere-
focusingis donewith a large aperture.We have developedan al-
gorithmthatusesavisibility changemodelfor objectboundariesto
producerefocusingresultsof higherquality.

3 Overview of the Metho d
Thissectionpresentsanoverview of our refocusingmethod,which
is illustratedin Fig. 2. Theprocessingpipelineconsistsof thefol-
lowing mainsteps.
Calibration : Ourdepthestimationmethodis basedon thedefocus
analysisof a grid of dotsprojectedontothescene.Beforeacquisi-
tion, thedotsareprojectedontoacalibrationboard,which is swept
throughthe working volumeof the imagingsystem. The appear-
anceof the boardunderuniform projectedlight is also recorded.
This is a one-timecalibrationprocedure– the calibrationimages
areusedto processall sceneimagestaken with the samesystem
parameters.
Sparsedepth map fr om projection defocus: Given an imageof
thescenelit by thedots(Fig. 2(a)), thedegreeof defocusfor each
dot is estimatedby comparingits blur to the dots in the calibra-
tion images. This comparisonis doneby taking the appropriate
ratiosof brightnessesin theacquiredimagewith thecalibrationim-
ages.This resultsin the removal of dotsfrom theacquiredimage
(Fig. 2(b))aswell astheestimationof thedotdepths(Fig. 2(c)).
Depth map completion using segmentation: The dot-removed
imageis segmentedinto a largenumberof small regionsof nearly
uniform color (Fig. 2(d)). Next, the sparsedepthmappreviously
computedis usedto �t asurfaceto eachoneof thecolor segments,
which are then merged accordingto depthsimilarity (Fig. 2(e)).
Precisedepthestimationneardiscontinuitiesis obtainedusing a
mattingtechnique(Fig. 2(f)).

Image refocusing: Finally, the imagemay be refocusedwith dif-
ferent focal planeandaperturesettings,by convolving eachpixel
with a blur kernel whosesize is proportionalto the depthof the
pixel. Realisticdepthof �eld renderingsare achieved by taking
into accountpartialocclusionsatobjectboundaries(Figs.2(g-j)).

4 Projection Dot Defocus Analysis
We now describethecamera-projectorsystemwe have usedto ac-
quire sceneimageswith projecteddotsandpresentan analysisof
thedefocusfunctionassociatedwith aprojecteddot. Theresultsof
ouranalysisareusedto choosethesystemparameterssoasto avoid
under- andover- exposureof theprojecteddots.

4.1 System Design
Figure3 showsourbasicsetup.Weuseacameraandprojectorthat
areco-locatedbymeansof ahalf-silveredmirror. Consequently, the
sceneis imagedonto thecameravia thesameopticalpathusedto
projectthegrid of dotsontothescene.Thissetuphastheadvantage
of avoiding shadows, occlusionsand foreshorteningasymmetries
betweenthe camera's andprojector's viewpoints. In addition,the
locationsof all thedotsareknown in thecameraimage,obviating
theneedto solveacorrespondenceproblem.
The illumination patternwe useis composedof small squaredots
of brightnessBh regularly spacedover a backgroundof brightness
Bl , whereBh > Bl . NotethatweneedBl > 0 in orderto recover the
appearanceof thesurfaceregionswhich arenot illuminatedby the
dots. Theseparationbetweendotsis suchthat it preventsoverlap-
pingof adjacentdotsfor themaximumdefocuslevel.
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Figure3: Systemusedto acquire imagesfor refocusing.
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Figure4: Geometricandradiometricpropertiesof projecteddots.
(top) Camera imagesof a square dot of 3� 3 pixelsprojectedonto
different depths.(center)Thedot width Dw and radianceIw were
measured from the images and compared to the valuespredicted
by our models.(bottom)Theradiancevariation of a projecteddot,
within a chosenworkingrange of thesystem,maybecontrolled by
changingtheparametersof thesetup,such asthedistanceu f of the
focalplaneor thewidthw of thedots.

4.2 Defocus Geometry and Radiometry
Consideragain the projector-camerasystemillustratedin Fig. 3.
The projector is assumedto have a narrow depthof �eld (wide
aperture)while thecamerais assumedto haveawidedepthof �eld
(smallaperture).A point light sourceat p on theprojectorplaneis
focusedon a point p0 in thescene.If p is projectedontoa surface
point q which lies in front of the focusplane,it producesa circu-
lar patch(blur circle) of uniform brightnessin thecameraimage.1

Althoughtheshapeof illuminatedpatchon thesurfacearoundq is
a functionof the local surfacegeometry, theshapeof thepatchas
seenby theco-locatedcameraremainscircular. Usingthelenslaw,
thediameterD of theblur circle on thecamera's imageplanecan
bewrittenas

D = � 2fcr
�

1
u

�
1
uf

�
; (1)

where fc is thecamerafocal length,r is theradiusof theprojector
lens,uf is thedistanceof thefocalplanefrom thelens,andu is the
distanceof thesurfacefrom thelens.The“+ ” signholdswhenthe
projectoris focusedbehindthe scene(u � u f ), andthe “ � ” sign
holdswhentheprojectoris focusedin front of thescene(u > u f ).
TheradianceI of theimagedblur circle is proportionalto theirra-
dianceE of thesurfacepatchatq. In AppendixA weshow thatE is
proportionalto theratiobetweenthelight energy from thesourceat
p thatpassesthroughtheprojectorlensandtheareaof thesurface
patchthat is illuminatedby thesource.Consequently, theradiance
of theblur circlecanbewrittenas

I µ
dp

�
1� u=uf

� 2 ; (2)

wheredp is theareaof the light sourcecenteredat p. In practice,
projectorscannotproducein�nitesimally small light sources.If in-
stead,weprojectasquaredotof sizew� w (in theprojectorplane),

1For ouranalysishere,weassumetheblur functionto beapillbox. This
analysisis only usedto selectsystemparametersandhencea preciseblur
modelis notrequired.Ourdepthestimationis doneusingasetof calibration
imagesthataccuratelycapturetheblur functionof theprojectorusedin our
system.

the dot width Dw and the radianceIw of the blurredpatchin the
imageplaneare

Dw = D+ w
fc
v

; Iw µ
w2

�
�

�
1� u

uf

�
+ u w

vr

� 2 ; (3)

wherev is thedistanceof theprojectorplanefrom thelens.2 Again,
we referthereaderto theAppendixA for details.
The above modelsareapproximationsasthey assumethe pillbox
blur function and hencedo not accountfor the intensity falloff
within theblur circledueto diffractioneffectsandlensaberrations.
Nevertheless,we have experimentallyveri�ed that the modelsare
adequatefor selectingtheparametersof imagingsystem.Usinga
high resolution,linearcamerawe acquiredtheappearanceof a de-
focused3� 3 squarepatchprojectedontoawhiteboardatdifferent
depths. A few of theseimagesareshown in Figure4(top). The
width Dw andradianceIw of theseblur circlesweremanuallymea-
suredfrom the imagesandusedasinput to themodelsin Eq. 3 to
estimatetheparametersu f andw of thesetup(r, fc andv werees-
timatedseparately).We foundtheestimatedvaluesof u f andw to
bein goodagreementwith their known realvalues.Figure4 (cen-
ter)comparesthemeasuredvaluesof Dw andIw with onesobtained
from themodelsin Eq.3, usingtheestimatedvaluesfor u f andw.

4.3 Controlling Dynamic Range of Projected Dots
A key problemwith usingactive illumination is that sceneirradi-
ancefalls off with the inversesquareof the distance.As a result,
theoperablerangeof the imagingsystemtendsto bevery limited.
For example,�ash imagesoften suffer from saturationof nearby
objectsandweakillumination of distantones. In our system,we
avoid this by selectingappropriatevaluesfor the systemparame-
ters. From Eq. 3 we seethat both the width Dw of the blur circle
andits radianceIw canbecontrolledthroughthedistanceu f of the
focal planefrom thelens,theradiusr of thelensandsizew of the
projecteddots. Fig. 4(bottom)shows the effects of changingu f
andw within physically feasibleranges.Larger valuesof u f tend
to decreasethefalloff of thedot brightnesswithin theworking dis-
tance.Similar effectsmaybeobservedby increasingtheprojected
dot sizew. However, notethatincreasingu f andw resultsin larger
valuesof Dw, requiring the spacingbetweenneighboringdots to
be increasedto avoid overlap. Therefore,in practice,thereexists
a tradeoff betweenthespatialresolutionandthedynamicrangeof
theprojecteddotpattern.
As mentionedearlier, our illumination pattern is composedof
squaredotsof brightnessBh, regularly spacedover a background
of brightnessBl , whereBh > Bl . From Eq. 3 it canbe seenthat
the irradianceof thedot decreaseswith thedepthu whenthepro-
jectoris focusedin front of thescene.In contrast,theirradianceof
thebackgroundsurroundingadotalwaysdecreaseswith thedepth,
independentof wheretheprojectoris focused.As a consequence,
when the projector is focusedbehindthe scene,the contrastbe-
tweentheprojecteddotsandthebackgroundis greatest.Therefore,
in all ourexperiments,theprojectorwasfocusedbehindthescene.

5 Dot Removal and Depth Estimation
We now presentthedetailsof our algorithmfor removing thedots,
measuringthedepthsof thedots,andestimatinga completedepth
mapfrom a singleacquiredimage. For clarity we breakthealgo-
rithm down into anumberof simplesteps.

5.1 Calibration
Assumethatwearegivenadesiredworkingrange.Usingthemod-
elspresentedin theprevioussection,we selectthedepthu f of the

2Thesquarepatchis assumedto besmall. Hence,thedefocusedpatch
measuredby thecameraremainsa circularonewith moreor lessuniform
brightness(seeFig. 4(top)).
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Figure5: Depthfromdefocusof projecteddots.(top)Magni�ed re-
gionof thescenein Fig. 2,andtheimagepatch I b for which wewish
to computedepth. (center)Thecalibration images. A whiteboard
is movedthroughtheworkingrange and its image (only thepatch
correspondingto a singledot is shownhere) is acquiredwhenit is
lit by the dot (Fb;i) and by uniform illumination (Fc;i). Computed
image patchesI c;i that representhow Ib would appearunderuni-
form illumination if it had the depthcorrespondingto f Fb;i ;Fc;ig.
(bottom)Thecorrespondencebetweenthecalibration patchesand
the acquired patch can be determinedby �nding the i that mini-
mizesthevarianceof I c;i . Thisplot of thevarianceshowsthat the
depthof thepatch Ib is approximatelythesameasthedepthof the
calibrationpair f Fb;7;Fc;7g.

projectorfocal plane,thespacingbetweenthedots,thedot sizew,
thebrightnessBh of theprojecteddots,andthebackgroundbright-
nessBl .
With theseparameters�x ed,we acquirea seriesof calibrationim-
agesin which thegrid of dotsof brightnessBh over a background
of brightnessBl is projectedontoawhiteboardperpendicularto the
camera's opticalaxis. Theboardis placedat thebackof thework-
ing rangeandthensteppedforward,with onecalibrationimageac-
quiredat eachstep.We thenacquirea secondseriesof calibration
imagesby repeatingthis process,wherethegrid of projecteddots
is replacedby light from theprojectorof uniformbrightnessBl .

5.2 Dot Removal and Dot Depth Estimation
Let Ib be an imagepatchof size p � p pixels containingone of
the projecteddots. The imagepatchis suchthat the blurred dot
lies at its centerand its width p completelycontainsthe blurred
dot, i.e., p > Dw. For eachpatchIb, thereare N imagepatches
Fb;1; : : : ;Fb;N of the blurred dots acquiredfrom the calibration
boardimagesasmentionedabove. In addition,thereareN image
patchesFc;1; : : : ;Fc;N of theboardlit by uniform illumination (see
Fig. 5). Thesubscripti on bothFb;i andFc;i indicatesthat thecor-
respondingimageshave beenacquiredwhenthecalibrationboard
wasplacedat a distanceui from theprojector. Our goal is to esti-
matethedepthof thescenepoint imagedin I b by comparingit with
thecorrespondingpatchescapturedin thecalibrationimages.
Considera patchIb that correspondsto a sceneregion that is tex-
tureless. Let us assumethat the actualdepthux of the patch is
known. Then,the following relationholdstrue for eachandevery
point (pixel) in theimagepatch:

Fb;x

Fc;x
=

Ib

Ic;x
; (4)

Ns = 102 Ns = 60 Ns = 34 Ns = 17 Ns = 3
Figure6: Depthmapcompletion.Startingwith an over-segmented
image (left), the segmentsare iteratively merged basedon color,
texture anddepthusinga greedyalgorithm. Notehowthenumber
of segmentsNs decreaseswith theiterations(left to right).

(a) (b) (c) (d)
Figure7: Re�nementof depthdiscontinuities.(a) Completedepth
mapobtainedafter segmentationandmerging. Thedepthdisconti-
nuitieshavenoisyartifactsdueto limitationsof thesegmentation.
(b) Magni�ed region of thedepthmap. (c) Re�neddepthmapob-
tainedbyusingmatting. (d) Acquiredimagewith dotsremoved.

whereIc;x is the sceneimage(for the patchunderconsideration)
onewouldobtainif thescenewerelit by theprojectorwith uniform
illuminationof brightnessBl .
Eq.4 canbeusedto computetheunknown depthux of eachpatchin
thefollowing manner. GivenI b, we take theN pairsof calibration
imagesf Fb;i ;Fc;ig andcomputethe correspondingimagepatches
Ic;i (seeFigure 5(center)). For the depthui that is closestto ux,
Ic;i shouldbeanimageof thescenelit by uniform illumination– it
shouldnot includetheeffectsof theblurreddot. Therefore,we�nd
i by simply �nding the I c;i that haslowestvarianceof brightness
values(seeFig. 5(bottom)).
In orderto dealwith texturedsurfaces(textureby itself introduces
brightnessvariation),eachpatchI c;i is partitionedinto subregions
usingtheunsupervisedalgorithmdescribedin [FigueiredoandJain
2002], and a varianceis computedfor eachsubregion. Then, if
Ic;i = å Nri

j Ic;i j , whereNri is the numberof subregionsin I c;i , the
depthux is determinedas

ux � ui j argmin
i

(
Nri

å
j= 1

var(Ic;i j )

)

; (5)

wherevar(�) is thevarianceoperator. By repeatingtheabove pro-
cessfor all theprojecteddots,we obtainanimagewith all thedots
removed like the one in Fig. 2(b) and a sparsedepthmap as in
Fig. 2(c). The depthresolutionfor a dot dependson the number
of depthsusedto acquirethecalibrationimages.In our implemen-
tation,we performa re�nementof thecomputeddot depths.This
is doneby interpolatingthe calibrationimagesclosestto a com-
puteddot depthandusingthe above variancetestto �nd the �nal
ux, which may lie in betweenthe discretedepthsassociatedwith
thecalibrationimages.

5.3 Depth Map Completion Using Segmentation
Thusfar, wehaveestimateddepthsatasetof regularlyspacedpix-
els in the acquiredimage. To achieve our goal of refocusingthe
image,we needto have depthsat all pixels. To interpolatethedot
depthsandobtaina completedepthmapwe usea segmentation-
basedapproach. First, we apply the Mean-Shiftalgorithm [Co-
maniciuandMeer2002]to obtainanover-segmentationof thedot-
removedimage.
Each segment in the over-segmentedimage is characterizedby
threedistinct features:color (c), texture (t) anddepth(d). Color
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Figure8: Theproblemof partial occlusionsassociatedwith ren-
deringa refocusedimage with a wideaperture, givena singleall-
focusedimageanda depthmap.

and texture aredirectly measurablefrom the dot-removed image,
while depthis determinedfrom the computedsparsedepthmap.3

For segmentscontainingseveral pixels with known depth,we as-
signthemedianof thedepthsto thesegment.Theuseof themedian
enablesusto removeoutliersin thesparsedepthmap.Ontheother
hand,a segmentthatdoesnot containany pixel with known depth
is describedby just its color and texture. Next, we usea greedy
algorithmto groupthe imagesegments.The algorithmiteratively
mergesthetwomostsimilarneighboringsegmentsandre-computes
thefeaturesof thenew mergedsegment.
To measuresimilarity betweentwo segmentsSi andSj in iteration
k, weusethefollowing metric:4

sim(Si ;Sj ) = l c(k)d(ci ;c j ) + l t (k)d(t i ; t j ) + l d(k)d(di ;d j ) ; (6)

whered(�; �) is the Euclideandistance,andthe parametersl c(k),
l t (k) and l d(k) determinethe relative contributions of the three
features.To discouragethemerging of largeregionswith different
depths,l d(k) is setto a straightline function with positive slope,
while l t (k) andl c(k) aresetto straightline functionswith negative
slopes.In all thecases,thevalueof theslopeis inverselypropor-
tional to the numberof initial segmentsthat needto be merged.
Fig. 6 illustratesthe evolution of the segmentationprocessfor the
acquiredimagein Fig. 2(a).
As canbeseenin Fig.7(b),themergedimageincludesnoisearound
thedepthdiscontinuities.To reducetheseartifactsweautomatically
extractatrimapwhichseparatestheregionaroundadepthdisconti-
nuity intoaforegroundF, abackgroundGandanunknown layerU.
Usingthemattingalgorithmproposedby WangandCohen[2005]
we computean alpha-map, which assignsa probability pF of be-
longingto theforegroundto eachof thepixelsin U. Theprobability
pF is thenusedto estimatethedepthof thepixels in U asa linear
combinationof the depthof the closestpixel in F and the depth
of theclosestpixel in G. Theresultof this re�nementis shown in
Fig. 7(c). By comparingwith the original imagein Fig. 7(d), we
seethat the edgeartifactsareremoved andthe transitionbetween
thedifferentdepthsis smooth.

6 Algorithm for Realistic Refocusing
In this sectionwe presenta refocusingalgorithmthat usesan im-
agetaken with a wide depthof �eld cameraandits depthmapto
simulatenovel imagesof the scenewith differentdepthsof �eld.
Thesimulateddepthof �eld maybecontrolledin termsof sizeof
thelensapertureandthelocationof thefocal planeof thelens.To
renderrealisticdepthof �eld effectsit is importantto considerthe
following two issues.First, for anobjectboundary, differentparts
of thelensmay“see”differentviewsdueto partialocclusions.Sec-
ond,in realimages,pixelsatdepthdiscontinuitiesmayreceivecon-

3Textureis representedby derivativesof orientedGaussian�lters.
4In thecaseof videos,thesimilarity measureincludesa temporalcon-

straint– thedifferencebetweentheindicesof theframesin which theseg-
mentsappear.

(a) (b)

(c)

(e)

(d)

(f)

Figure9: Realisticrefocusing. (a) Original all-focusedimage. (b)
Refocusingresultobtainedusingtheproposedalgorithm. Thevir-
tual focal plane is placedon the background of the scene. (c-e)
Magni�ed regionsshowingrefocusingresultsfor (c) the proposed
algorithm,(d) Photoshop's lensblur tool, (e) theIrisFilter tool. (f)
Realimage takenwith a Canoncamera anda wideaperture.

tributionsfrom theforegroundandthebackground.Our refocusing
algorithmaddressesboththeseissues.

Partial occlusions: Considerthescenarioillustratedin Fig. 8; we
wantto computetheirradianceof animagepixel p which receives
light from a lenswith a large aperture,focusedbehindthe scene.
Two objectsA andB arein the�eld of view of p, whereA is located
in front of B. Thetotal light energy receivedby p is thesumof the
contributionsof all the light raysfrom the lens. Thecontributions
of theserayscanbedeterminedby tracingtheraysfrom thelensto
pointson thesurfacesof A andB. This computationis simpleand
canbedonewhenthecompletegeometryof thesceneis given.
In ourcase,however, wearegivenasingle,narrow-apertureview of
thesceneandthecorrespondingdepthmap.Therecouldberegions
of the objectsA andB that contribute to the irradianceof pixel p
in therefocusedimage,thatarenotcapturedin theacquiredimage.
This is illustratedin Fig. 8, wheretheacquiredimageis assumedto
be an orthographicview of the scene(dottedhorizontallines). In
this case,althoughwe needtheradiancesof thepointson objectB
thatlie betweenb2 andb3, they arenot includedin theacquiredim-
age.We recreatesuchmissingregionsby detectingdiscontinuities
in our depthmapandextendingtheoccludedsurfaceusingtexture
synthesis.

Foreground/background transitions: Note that the ray-tracing
basedmethodwe useto considerthepartialvisibility assumesthat
eachimagepixel belongseitherto the backgroundor to the fore-
ground,i.e., it assumesabruptdepthmaps.However, sincewehave
usedmattingto re�ne thedepthestimationatobjectboundaries,our
depthmapis not abruptandchangessmoothlyfrom foregroundto
backgroundat depthdiscontinuities.To handlethesesmoothdepth
changes,we blenda foregroundfocusedimagewith a background
focusedimagewithin theboundaryregion.
In particular, let us say we wish to refocusan imagewith three
typesof regions: a region F (foreground)with depthdF , a region
G (background)with depthdG, anda region C (boundary)with a
depththatsmoothlychangesfrom dF to dG. Ourmattingstepgives
usthecorrespondingalpha-mapA, whichrepresentstheprobability
of eachpixel of belongingto theforeground.Giventhis inputdata,
we then computetwo different refocusedimagesusing the tech-
niquedescribedto modelthepartialocclusions.First we compute
RC2F wherewehaveassignedadepthdF to all thepointsin C. The
secondrefocusedimage,RC2G, is computedby assigninga depth
dG to thepixelsin C. The�nal refocusedimageis computedas

R = RC2F � A + RC2G � (1� A) (7)

where1 is a matrix of onesof the samesizeasA, and� denotes
element-wisemultiplication.
Theproposedrefocusingalgorithmproducesbetterresultsthanex-
istingapproaches,especiallywhenthevirtual focalplaneis located
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Figure10: Refocusingresultsfor twodifferentscenes.In each case, weshow(fromleft to right), theimageacquiredby illuminatingthescene
with thedot pattern;theimage obtainedafter dot removal or takenundernew illumination; thecomputeddepthmap;two refocusingresults
where thefocalplaneis placeat theback andin thefrontof thescene;andtwo magni�ed regionsof therefocusedimages.In thecaseof the
pool table(aswell as theexamplesshownin Figs. 1 and2), thesparsedepthmapcomputedfromtheacquired image is usedto computea
completedepthmapcorrespondingto a secondimage takenwith differentlighting. In thiscase, refocusingis appliedto thesecondimage.

Original frame# 93 Refocusedframe# 73 Refocusedframe# 87 Refocusedframe# 92

Original frame# 7 Refocusedframe# 30 Refocusedframe# 54 Refocusedframe# 62

Figure11: Refocusingof videosof dynamicscenes.In each case, oneof the acquired framesis shownon the left and threedifferently
refocusedframesareshownon theright.

behindthescene.In Fig. 9 wecomparerefocusingresultsobtained
usingouralgorithmto resultsgeneratedusingPhotoshop'slensblur
tool andthe IrisFilter tool [Sakurai2004]. The magni�ed images
show that our result in Fig. 9(c) is closein appearanceto the real
imagein Fig. 9(f), while thepreviousmethodsproduceartifactsat
theboundaryof theforegroundobject.

7 Results
Theproposedmethodhasbeenusedto refocusbothsingleimages
aswell asvideosof dynamicscenes.Thesingleimageswerecap-
tured with a CanonEOS 20D camera(with 1728� 1152 pixels)
andthevideoswerecapturedwith aProsilicaCV640camera(with
659� 493pixels).Thedotilluminationpatternwasgeneratedusing

a Sanyo PLC XT11 digital projector(with 1024� 768pixels) that
is co-locatedwith thecamerausingahalf-mirror. Dot patternswith
resolution(numberof dots) rangingfrom 500 to 1000 dots were
used.Theworking rangefor our experimentsvariedfrom 0:5 me-
tersto 3 meters,althoughlarger rangescanbehandledby usinga
morepowerful projector.

Fig.10showssingle-imagerefocusingresultsfor two scenes.In the
�rst example,we seethat the dot-removed imageis of high qual-
ity andthedepthmaphasfour distinctdepthlayers– theball, the
hand,the faceandbody of the person,andthe background.The
refocusedimagesrevealthequality of thecomputedresults.In the
�rst refocusedimagethebackgroundis in focus,while in thesec-
ondimagethetennisball andthehandarebroughtinto focus.The



secondexamplein Fig. 10 shows a pool table. In this case,differ-
ent(but constant)depthsareassignedto theobjects(balls,handand
pool cue)on thetable.However, thetableitself lies on aninclined
plane.Sincethecolorof thetableis uniform,it isdeterminedtobea
singleregion. Thesparsedepthswithin this region areinterpolated
to obtainaninclinedsurfacewith theproperdepthgradient.5

The pool-tablescene,aswell asthe onesin Figs.1 and2, canbe
viewed asquasi-staticscenes.They includehumansin themand
humans�nd it hardto remainperfectlystill – it is dif�cult to cap-
turetwo consecutive imageswithout thescenechanging.Whenthe
scenechangesaresmall,ourapproachcanbeusedto captureasec-
ond imageof the scenewith a different illumination (say, studio
lighting) andusethesparsedepthmapcomputedfrom the�rst im-
ageto segmentandcomputea completedepthmapcorresponding
to thesecondimage. Then,thesecondimagecanberefocusedas
desired.This approachwastakento producetherefocusedimages
of the pool tableon the right of Fig. 10 aswell as the refocused
imagesshown in Figs.1(e)and2(j).
Fig. 11shows refocusingresultsfor two videosof dynamicscenes.
In the�rst example,thevideo(including150framescapturedat24
fps) is of milk beingpouredfrom a jar into a cup. Althoughmilk
exhibitssubsurfacescatteringeffects,weseethattheprojecteddots
areclearly visible in the acquiredframe(#93) shown on the left.
As a result, even for this complex scene,we are able to recover
a depthmapthat is of adequatequality to realisticallyrefocusthe
sequence.In therefocusedvideo,thedepthof �eld is continuously
variedwhile thescenechanges.In our lastexample,we show the
refocusingof thevideo(with 100 frames)of a scenethat includes
a soccerball, a tennisball anda baseball.The tennisballs in the
backgroundareactuallyapartof apictureona �at poster. Thereal
tennisball rolls towardsthecameraandrefocusingis usedto vary
thedistanceof thesimulatedfocal planeastheball approachesthe
camera.In this case,to reducemotionblur producedby therolling
ball (whichcanleadto erroneousdepthestimates),thecamerawas
operatedatahigherspeedof 66 fps.

8 Limitations of the Metho d
Although the proposedmethodworks well for a wide variety of
scenes,it suffers from the following limitations. (a) It usesactive
illumination andhenceis moreappropriatefor indoor scenes(or
a studio)ratherthanoutdoorsceneswith strongsunlight. (b) The
methodrequiresa reasonableover-segmentationof the imageto
startwith, wheresceneregionswith distinctdepthareassignedto
differentsegments.(c) Sincethe projectedlight patternis sparse,
�ne depthdetailsin thescenecannotbecaptured.(d) Translucent
objectsthat exhibit subsurfacescatteringcan causethe projected
patternto appeardefocusedevenwhenit is not. For suchobjects,
the estimateddot depthscanhave large errors. (e) Whenthe dots
areprojectedontoverydarkand/orhighly inclinedsurfaces(in our
experience,greaterthan 70� with respectto the optical axis) the
blurreddotscanbetooweakto detect.
Fig. 12 shows magni�ed regionsfrom two scenesshown in Figs.2
andFig. 10 thathighlight thelimitationsof themethod.In thecase
of thepool table,thepointsa andb shown in thedepthmapshould
have thesamedepth,but have differentdepthsdueto errorsin the
depthestimation.This leadsto subtlerefocusingerrors(theball is
infocus,while the table is not). In the secondexample,the holes
betweenthe hairs of the personare not preciselysegmentedand
areassignedinaccuratedepthestimatesdueto the sparsityof the

5Whendealingwith inclined surfaces,the algorithmdescribedin sec-
tion 5.3 is modi�ed slightly. In this case,the correspondinginterpolated
depthgradientis assignedto the surfaceasa depthattribute. Whencom-
paringa new region to theinclinedsurface,thesimilarity metricin Eq.6 is
computedwith respectto thedepthof theinclinedsurfaceclosestto thenew
region.

a
b

Figure12: Examplesthat showthe limitations of the method. In
each example, we showa region of the original image on the top
left, the depthmap on the bottomleft and the refocusingon the
right. In the caseof the pool table, the ball and the table are as-
signeddifferent depthsdue to errors in depthestimation. In the
secondcase, theholesbetweenthehairsof thepersonareassigned
incorrectdepthsdueto segmentationerrors.

projecteddots. Again, onecanseeerrorsin the refocusing(hair
andholesarerefocusedas if both regionshadequaldepth). It is
worth mentioningthat theseerrorsare not easily perceived from
therefocusedimagesunlessonecarefullyexaminesthem.

9 Conclusions
We have developeda simpletechniquefor refocusinga scenewith
theacquisitionof a singleimage.Themethodcanbeusedto refo-
cusimagesaswell asvideosof dynamicscenes.Themain limita-
tionsof themethodarisefrom thesparsityof thedepthestimation
anderrorsin the initial segmentationof the image. Despitethese
limitations,themethodis applicableto a wide varietyof scenesas
evidenceby our experimentalresults. We arecurrentlyexploring
waysto incorporatethemethodinto digital cameras.This requires
the designof new optical elementsthat canconvert the light gen-
eratedby a camera�ash into the dot illumination patternwe use.
Sincesomedigital camerasrecentlyintroducedin themarketplace
have infra-red�lters in their color mosaics,we arealsoexploring
theuseof aninfra-redsourcefor projectingthedotpattern.Theuse
of sucha sourceandcamerawould obviatethedot removal stepof
our algorithm and make the depthestimationmore robust in the
caseof highly texturedscenes.

A. Radiometry of a Projected Dot
Considerthe dot projectionsystemillustratedin Fig. 3. Light en-
ergy from a light sourceof areadp centeredat p is projectedby a
thin lensof radiusr ontoascenepatchof areadq centeredatq. The
projectorlensis focusedat a point p0behindthescene.Hence,the
patchdq representsa defocusedprojectionof dp. Our goal here
is to determinetheirradianceof thepatchdq. Basedon theimage
irradianceequationderived in [Horn 1986], it canbe shown that
thepower dP emittedfrom thesourcedp andfalling on thelensis
relatedto thebrightnessB of theprojectoras:

dP = v� 2Bpr2cosa 4dp; (8)

wherea is theanglethat the line from p to q makeswith the op-
tical axisof theprojector. Theforeshortenedareaof thepatchdq,
consideredfrom theviewpoint of theprojector, is a circularpatch
of radiusrq, whererq = r(1� u=u f ). Therefore,the irradianceof
thesurfacepatchdq is

E =
dP
dq

=
Bcosb cosa 4

v2
dp

�
1� u=uf

� 2 ; (9)

whereb is the anglethat the surfacenormalat q makeswith the
opticalaxisof theprojector.
Let usnow considerthesceneilluminatedby asmallsquaredpatch
of sizew � w asdepictedin Fig. 13. Fromsimpleplanargeometry,
it canbe shown that the foreshortenedareadw, consideredagain
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Figure13: Geometryof a projectedpatch.

from theviewpointof theprojector, is acircularpatchof radiusrw ,
whererw = r(1� u=u f ) + wu=uf . Consequently, theirradianceof
thesurfacepatchdw will benow:

Ew =
dP
dw

=
Bcosb cosa 4

v2
w2

�
1� u

uf
+ uw

vr

� 2 ; (10)

wherew = wv=u f is the sizeof the patchexpressedin projector
pixels.
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