
To appear in the ACM SIGGRAPH conference proceedings

Efficient Simulation of Inextensible Cloth

Rony Goldenthal1,2 David Harmon1 Raanan Fattal3 Michel Bercovier2 Eitan Grinspun1

1Columbia University 2The Hebrew University of Jerusalem 3University of California, Berkeley

Abstract

Many textiles do not noticeably stretch under their own weight.
Unfortunately, for better performance many cloth solvers disregard
this fact. We propose a method to obtain very low strain along the
warp and weft direction using Constrained Lagrangian Mechanics
and a novel fast projection method. The resulting algorithm acts as
a velocity filter that easily integrates into existing simulation code.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation

Keywords: Physically-based Modeling, Cloth simulation, Con-
strained Lagrangian Mechanics, Constraints, Stretching, Inextensi-
bility, Isometry

1 Introduction

Our eyes are very sensitive to the behavior of fabrics, to the extent
that we can identify the kind of fabric simply from its shape and mo-
tion [Griffiths and Kulke 2002]. One important fact is that most fab-
rics do not stretch under their own weight. Unfortunately, for many
popular cloth solvers, a reduction of permissible stretching is syn-
onymous with degradation in performance: for tractable simulation
times one may settle for an unrealistic 10% or more strain (compare
1% and 10%, adjacent figure). Our work alleviates this problem by
introducing a numerical solver that excels at time-stepping quasi-
inextensible surfaces (stretching below 1%).

The solver builds on a framework of Constrained Lagrangian Me-
chanics (CLM) [Marsden 1999]. Warp and weft, the perpendicular
sets of strands that make up a textile, are prohibited from stretching
by enforcing constraint equations, not by integrating spring forces.
We present numerical evidence supporting the observation that a
constraint-based method is inherently well-suited to operate in the
quasi-inextensible regime. In contrast, for this regime spring-based
methods are known to experience a range of difficulties, leading to
the adoption of various strain limiting [Provot 1995] and strain rate
limiting algorithms.

We are motivated by the work of Bridson et al. [2002], who viewed
strain limiting as one of multiple velocity filtering passes (another
being collision handling). The velocity filter paradigm enables the
design of modular systems with mix-and-match flexibility.

Figure 1: Importance of capturing inextensibility. For efficiency,
many simulation methods allow 10% or more strain, whereas many
fabrics do not visibly stretch. A 1m2 patch, pinned at two corners
1m apart, is allowed to relax under gravity. We compare (left to
right) three simulations of progressively smaller permissible strain
with an actual denim patch.

Contributions We propose a novel CLM formulation that is im-
plicit on the constraint gradient (§4.1). We prove that the implicit
method’s nonlinear equations correspond to a minimization prob-
lem (§4.2): this result motivates a fast projection method for en-
forcing inextensibility (§4.3). We describe an implementation of
fast projection as a simple and efficient velocity filter, as part of a
framework that decouples timestepping, inextensibility, and colli-
sion passes (§4.4). Consequently, the fast projection method easily
incorporates with a code’s existing bending, damping, and collision
models, to yield accelerated performance (§5).

Before discussing these contributions, we summarize the relevant
literature (§2) and describe the basic discrete cloth model (§3).

2 Related Work

For brevity, we review work on stretch resistance; for broad surveys
on cloth simulation see [House and Breen 2000; Choi and Ko 2005].

The most general approach is to treat cloth as an elastic material
[Terzopoulos et al. 1987; Breen et al. 1994; Eberhardt et al. 1996;
Baraff and Witkin 1998; Choi and Ko 2002]. To reduce visible
stretching, elastic models typically adopt large elastic moduli or
stiff springs, degrading numerical stability [Hauth et al. 2003].

To address the stiffness of the resulting differential equations,
Baraff and Witkin [1998] proposed implicit integration, allowing
for large, stable timesteps; adaptive timestepping was required
to prevent over-stretching. Eberhardt [2000] and Boxerman et
al. [2003] adopted implicit-explicit (IMEX) formulations, which
treat only a subset of forces implicitly. Our method is closely re-
lated to the IMEX approach, in the sense that stretching forces are
singled out for special treatment.

These works, and many of their sequels, improved performance
by allowing some perceptible stretch of the fabric. In the quasi-
inextensible regime, however, implicit methods encounter numeri-
cal limitations [Volino and Magnenat-Thalmann ; Boxerman 2003;
Hauth et al. 2003]: the condition number of the implicit system
grows with the elastic material stiffness, forcing iterative solvers
to perform many iterations; additionally, timestepping algorithms
such as Backward Euler and BDF2 introduce undesirable numeri-
cal damping when the system is stiff [Boxerman 2003].

1



To appear in the ACM SIGGRAPH conference proceedings

Given a stiff differential equation, an alternative to implicit integra-
tion is to reduce the stiff component and reformulate it as a con-
straint [Hairer et al. 2002]. In the smooth setting, the penalty-force
and constraint-based approaches are equivalent in the limit of an
infinitely stiff penalty term [Bercovier and Pat 1984]. In the dis-
crete setting, the constraint-based approach may be implemented
with various iterative or global algorithms, as surveyed below:

Iterative enforcement. Provot [1995] corrected edge lengths by
iteratively displacing the incident vertices on stretched springs.
While simple to implement, this approach suffers from poor conver-
gence since each displacement may stretch other incident springs.
Therefore, Provot’s method is used in cases where tight tolerances
are not required, e.g., [Desbrun et al. 1999; Meyer et al. 2001;
Fuhrmann et al. 2003]. Bridson et al. [2002; 2003] used Provot’s
approach in conjunction with strain rate limiting (SRL), bounding
the rate of change of spring length per timestep to 10% of the cur-
rent length. Müller et al. [2006] used a non-linear Gauss-Seidel
approach to enforce inextensibility on each constraint separately.
Bridson et al. observe that iterative strain limiting algorithms be-
have essentially as Jacobi or Gauss-Seidel solvers. In this light, it
is not surprising that for finely-discretized quasi-inextensible fab-
rics, iterative constraint enforcement requires a prohibitive number
of iterations (see §5).

Global enforcement. In contrast to iterative constraint enforce-
ment, House et al. [1996] used Lagrange multipliers with CLM to
treat stretching, and presented a hierarchical treatment of the con-
straint forces. The Lagrange multiplier approach alleviates the dif-
ficulties associated with poor numerical conditioning and artificial
damping. House et al. later encountered difficulties in handling col-
lision response within the proposed framework [2000]. By building
on the velocity-filter paradigm, our method handles both inextensi-
bility and complex collisions.

House et al. formulated constraints as in [Witkin et al. 1990], which
is subject to numerical drift that may be exacerbated by the discon-
tinuities introduced during collision response. Drift may be atten-
uated using constraint-restoring springs, but the authors reported
difficulty in adjusting the spring coefficients. We postulate that one
reason for their difficulties with drift was consequent to the lin-
earization of the constraint equation, which permitted higher order
errors to accumulate over time. Our method avoids a linearization
of the constraint equations, and is not subject to drift.

Recently, Tsiknis [2006] proposed triangle-based strain limiting to-
gether with a global stitching step for stable constraint enforcement.
Hong et al. [2005] used a linearized implicit formulation in order to
improve stability of constrained dynamics. This allowed for larger
timesteps and reduced the need for springs to maintain the cloth on
the constraint manifold. Both of these approaches enforce inexten-
sibility only for strain exceeding 10%.

In summary, when the tolerance for stretching is very small, model-
ing stretch response with spring-based or strain-limiting approaches
is costly and even intractable; constraint-based methods present a
promising alternative. The remainder of this paper discusses algo-
rithms that excel at simulating quasi-inextensible cloth.

3 Cloth Model

Woven fabrics are not a continuous material, rather they are a com-
plex mechanical network of interleaving yarn [Breen et al. 1994].
Since the constituent yarn is often quasi-inextensible, the material’s
warp and weft directions do not stretch perceptibly. In contrast,
shearing modes excite only a mechanical interaction of warp and
weft and not a stretching of yarn, and therefore fabric often does

shear perceptibly. Therefore, we model shear using non-stiff stretch
springs applied on both diagonals of each quad.

In imposing inextensibility on all edges of a triangle mesh, one
quickly runs into parasitic stiffness in the bending modes, or lock-
ing [Zienkiewicz and Taylor 1989], since locally-convex regions of
a triangle mesh are rigid under isometry. Instead, we consider warp-
weft aligned quadrilateral meshes with a sparse number of trian-
gles (quad-dominant meshes). A degree of freedom (DOF) count-
ing argument suggests that constraining all edges of a quad mesh
may circumvent the rigidification that occurs with triangle meshes:
Given n vertices, we have 3n positional DOFs; their triangulation
(resp. quadrangulation) introduces approximately 3n (resp. 2n)
edges, with corresponding inextensibility constraints. Subtracting
constraints from positional DOFs leaves nearly zero DOFs for a tri-
angulation. In the case of a quadrangulation, O(n) DOFs remain,
and we see that in a flat configuration they correspond to the nor-
mal direction at each vertex. Furthermore, under general mesh po-
sitions, the constraints are linearly independent, with a full-rank
Jacobian treatable by a direct solver (§4).

We ask that a warp- or weft-aligned quad edge, (pa,pb), maintain
its undeformed length, l, by enforcing

C(pa,pb) = ‖pb−pa‖
2/l − l = 0 . (1)

The solve will require the constraint gradient

∇pb
C(pa,pb) = 2(pb−pa)/l . (2)

The complete model of in-plane deformation is compatible with
an existing code’s quad- or triangle-based treatment of bending
and collisions. With this simple formulation of inextensibility con-
straints in place, what is needed is an efficient method for enforcing
constraints. In the following, we develop such a method.

4 Constrained Dynamics

Given a quadrilateral mesh with n vertices and m edges, the nu-
merical integration algorithm for constrained dynamics can be de-
veloped directly from the augmented Lagrange equation [Marsden
1999],

L(x,v) =
1

2
vT Mv−V (x)−C(x)T

λλλ ,

where x(t) is the time-varying 3n-vector of vertex positions, v(t) =
ẋ(t) is its time derivative, M is the 3n× 3n mass matrix, and V (x)
is the stored energy (e.g., bending, shear, and gravity), λλλ is the m-
vector of Lagrange multipliers C(x) is the m-vector of constraints,

with the ith entry corresponding to the violation of inextensibility
of the ith edge, as computed by (1). The corresponding Euler-
Lagrange equations are

Mv̇ =−∇V (x)−∇C(x)T
λλλ , (3)

C(x) = 0 , (4)

where ∇≡∇x is the gradient with respect to position, and −∇V (x)
is the potential force; −∇C(x)T λλλ may be viewed as the constraint-

maintaining force. In the latter, the factors −∇C(x)T and λλλ deter-
mine the direction and scaling for the force, respectively. ∇C(x) is
a rectangular matrix whose dimensions are m×3n.

For simulation, we must discretize (3) and (4) in time using one
of various schemes, each with benefits and drawbacks. One may
choose differing explicit or implicit schemes for the potential and
the constraint forces (similarly, potential forces are split and sepa-
rately discretized in [Ascher et al. 1997]). The discrete equations re-
place x(t) and v(t) with {x0,x1,x2, . . .} and {v0,v1,v2, . . .}, where

2



To appear in the ACM SIGGRAPH conference proceedings

xn and vn are the position and velocity of the mesh at time t = nh,
and h is the size of the timestep.

One widely-used family of discretizations includes SHAKE and
RATTLE, which extend the (unconstrained) Verlet scheme [Hairer
et al. 2002] by considering a constraint force direction, −∇C(x)T ,
evaluated at the beginning of the timestep.

Unfortunately, enforcing length-preserving constraints with
SHAKE fails for four common geometric configurations, which
we refer to as (Q1)–(Q4) and depict in Figure 2. This figure is
a reproduction from [Barth et al. 1994], which discusses these
drawbacks in SHAKE but does not offer a solution. In the figure,
solid and hollow dots represent edge endpoints at the start and
end of the timestep, as the particles would evolve if no constraints
were applied. If −∇C(x)T is evaluated at the beginning of

timestep positions xn, as in SHAKE, then no choice of λλλ
n+1

satisfies C(xn+1) = 0; numerically, for (Q2)–(Q4) this observation
manifests as a singular Jacobian in Newton’s method. These four
cases correspond to rapid change in edge length or orientation; in
practice, they occur often.

(Q1) (Q2) (Q3) (Q4)

Figure 2: Failure modes of methods using an explicit constraint
direction. Reproduced from a discussion of SHAKE in [Barth et al.
1994].

4.1 Implicit constraint direction (ICD)

Consider evaluating the constraint direction, −∇C(x)T , at the end
of the timestep. We observe (and prove in Appendix A) that this
prevents (Q1), (Q2) and (Q4) from generating a singular matrix;
(Q3) remains, but is automatically remedied by decreasing the
timestep. Consider the ICD timestep, which treats potential forces
explicitly1:

vn+1 = vn−hM−1
(

∇V (xn)+∇C(xn+1)T
λλλ

n+1
)

,

xn+1 = xn +hvn+1 ,

C(xn+1) = 0 .

Define xn+1
0 =xn +hvn−h2M−1∇V (xn), i.e., xn+1

0 is the position

at the end of an unconstrained timestep. Next, eliminate vn+1 by

rewriting the above system as two equations, F(xn+1,λλλ n+1) = 0

and C(xn+1) = 0, where

F(xn+1,λλλ n+1)=xn+1−
(

xn+1
0 −h2M−1

∇C(xn+1)T
λλλ

n+1
)

.

F(xn+1,λλλ n+1) and C(xn+1) are the residuals of the discretization
of (3) and (4), respectively. In particular, F measures the devia-
tion of the trajectory away from that dictated by the governing (po-
tential and constraint) forces; C measures the deviation from the
constraint manifold (in our case, the extensibility of the material).
To implement ICD, we solve for the roots of F and C up to a de-
sired tolerance using Newton’s method. Solving for an ICD step is

1For an implicit treatment, write ∇V (xn+1) in place of ∇V (xn).

Algorithm 1 Fast projection is a velocity filter that enforces con-
straints. It combines the robustness of using an implicit constraint
direction with the efficiency of approximate manifold projection.

Input: ṽn+1 // candidate end-of-step velocity

1: xn+1
0 ← xn + ṽn+1h // unconstrained timestep

2: while strain exceeds threshold do

3: δλλλ ←−
[

∇C(xn+1
j )∇C(xn+1

j )T )
]−1

C(xn+1
j )

4: δx← ∇C(xn+1
j )T δλλλ

5: xn+1
j+1 ← xn+1

j +δx

6: j← j +1
7: end while
8: vn+1← (xn+1−xn)/h

Output: vn+1 // constraint-enforcing velocity

costly, because there are many unknowns (≈ 5n), and each Newton
step requires the solution of an indefinite linear system, whose ma-
trix is costly to assemble. In §4.3, we develop an approximation to
ICD that addresses these drawbacks without sacrificing constraint
accuracy or robustness. To arrive at this fast projection method,
the following section considers ICD from a alternative, geometric
viewpoint.

4.2 Step and project (SAP)

Consider for a moment an alternative approach to constrained inte-
gration in two steps: (a) step forward only the potential forces to ar-

rive at the unconstrained position, xn+1
0 ; (b) enforce the constraints

by projecting onto the constraint manifold M = {xn+1|C(xn+1) =
0}. Methods of this form are known as manifold-projection meth-
ods [Hairer et al. 2002]. To define a specific method, we must
choose a projection operator. In the method we refer to as SAP,

the projection of xn+1
0 onto M is the stationary point with respect

to [xn+1,λλλ ]T of the objective function

W (xn+1,λλλ ) =
1

2
‖xn+1−xn+1

0 ‖2−C(xn+1)T
λλλ , (5)

where ‖ · ‖ is the usual Euclidean norm. Simply put, we choose the

point on the constraint manifold closest to xn+1
0 .

Theorem 1: ICD ≡ SAP

Proof: The stationary point of W (xn+1,λλλ ) satisfies

[

∇xn+1W
∇λλλW

]

=

[

xn+1−xn+1
0 −∇xn+1 C(xn+1)T λλλ

C(xn+1)

]

=

[

0
0

]

(6)

Substituting λλλ = h2M−1λλλ
n+1

recovers ICD:

F(xn+1,λλλ n+1) = 0 and C(xn+1) = 0.

Corollary In 4.1, we interpreted the roots of C and F from the
ICD view. We can interpret these roots from the SAP view as fol-
lows: C(xn+1) = 0 corresponds to finding some point on the con-

straint manifold. C(xn+1) = 0 with F(xn+1,λλλ n+1) = 0 corresponds
to finding the closest point on the constraint manifold.

4.3 Fast projection method

Starting with the unconstrained position, xn+1
0 , we propose to find

a close, but not necessarily closest, point on the constraint mani-

fold. To find this nearby point, fast projection starts at xn+1
0 , and

3



To appear in the ACM SIGGRAPH conference proceedings

takes a sequence of steps, xn+1
j , j = 1,2, . . ., toward the constraint

manifold, with each step minimizing the distance of xn+1
j+1 to its pre-

decessor, xn+1
j . In comparison, to would solve SAP we minimize

(5) using Newton’s method: each iteration would improve upon a

guess for the shortest step from xn+1
0 onto the constraint manifold.

A step of fast projection Formally, each step of fast projection,

xn+1
j+1 = xn+1

j +δx, minimizes the objective function

W̃ (δx,δλλλ ) =
1

2
‖δx‖2−C(xn+1

j +δx)T
δλλλ , (7)

with respect to the step increment, δx, and an auxiliary variable,

δλλλ . Using C(xn+1
j + δx) ≈ C(xn+1

j ) + ∇C(xn+1
j )δx, we obtain

a quadratic objective function whose stationary equations with re-
spect to δx and δλλλ are

δx = ∇C(xn+1
j )T

δλλλ ,

∇C(xn+1
j )δx =−C(xn+1

j ) .

We eliminate δx, and solve a linear system in δλλλ :

(

∇C(xn+1
j )∇C(xn+1

j )T
)

δλλλ =−C(xn+1
j ) . (8)

Finally, we compute the increment δx = ∇C(xn+1
j )T δλλλ .

As with ICD/SAP, a fast projection step requires a linear solve.
However, fast projection’s system, (8), is smaller (≈ 2n× 2n com-
pared to ≈ 5n× 5n), positive definite (compared to indefinite) and
sparser. As a result it is considerably cheaper to evaluate, assemble,
and solve than its ICD/SAP counterpart.

Fast projection algorithm We repeatedly take fast projection
steps until the maximal strain is below a threshold, i.e., the con-
straint may be satisfied up to a given tolerance. This process is
summarized in Algorithm 1.

Fast projection finds a manifold point, xn+1, that is close, but not

closest, to the unconstrained point, xn+1
0 . Referring to the Corol-

lary, we conclude that fast projection exactly solves C = 0 while it
approximates F = 0.

One important question is whether the fast projection’s error in
F is acceptable. Compare a sequence of fast projection itera-
tions to ICD/SAP’s sequence of Newton iterations. The first it-
eration of these methods is identical. At the end of this first it-
eration, F,C ∈ O(h2). Additional fast projection iterations seek

C → 0, and since C ∈ O(h2), increments in x are O(h2), there-

fore F remains in O(h2). Observe that F ∈ O(h2) is considered
acceptable in many contexts, e.g., [Baraff and Witkin 1998; Choi
and Ko 2002] halt the Newton process after a single iteration.

0 0.2 0.4 0.6 0.8 1
0.0

0.5

1.5

2.5

3.5 x 10
-4

simulation time

p
e
r 

v
e
rt

e
x
 F

 e
rr

o
r after first iteration

after last iteration

As recorded in the adjacent fig-
ure of a typical run, the first iter-
ation of the fast projection method
eliminates first-order error. The re-
maining iterations perturb F only to
higher-order (often decreasing the
error further).

4.4 Implementation

We implemented fast projection as a velocity filter, enabling easy
integration into our existing cloth simulation system; refer to Algo-
rithm 1. Step 3 requires solving a sparse symmetric positive definite

10
-1

allowed strain (%)

ti
m

e
 (

s
e
c
o
n
d
s
)

10
 0

10
1

10
1

10
2

10
0

(a)

number of vertices

ti
m

e
 (

s
e
c
o
n
d
s
)

40

30

20

10

0
80604020

Fast Projection
Implicit Spring

(b)

Figure 3: Performance of fast projection vs. implicit springs. For
a 1D chain simulated in MATLAB, we plot the computation time of
one simulated second, as a function (a) of permissible strain (log-
log plot for 80 vertices), and (b) of discretization resolution (linear
plot for 1% permissible strain).

allowed strain (%)
ti
m

e
 (

s
e

c
o

n
d

s
)

10
4

10
3

10
2

10
1

10
-1

10
 0

10
1

(a)

number of vertices

ti
m

e
 (

s
e

c
o

n
d

s
)

Fast-Projection
ICD
Shake
 SL-Gauss-Seidel
SL-Jacobi

15

10

5

0
0 100005000

(b)

x10
2

Figure 4: Performance of several constraint-enforcing methods.
For a 2D cloth, simulated in C++, we plot the computation time
of one simulated second, as a function (a) of permissible strain
(log-log plot for 5041 vertices), and (b) of discretization resolution
(linear plot for 1% permissible strain).

linear system; we use the PARDISO [Schenk and Gärtner 2006]

solver. Each row of ∇C(xn+1
j ) corresponds to one edge, and is

computed using (2). The right-hand side, C(xn+1
j ), is given by (1).

Note that Algorithm 1 is derived from the SAP point of view, there-
fore the terms h2 and M−1 are omitted, incorporating them in, as
in ICD, should merely scale the Lagrange multipliers. We tested
both approaches, using a direct linear solver, both methods exhib-
ited similar performance.

5 Results

One-dimensional chain Our first experiment compared the per-
formance of fast projection against an implicit treatment of stiff
springs. We observed the scaling of computational cost as a func-
tion of (a) permissible strain and (b) mesh resolution.

The physical setup consisted of a chain pinned at the top node and
released to free fall under gravity. The simple 1D chain resists
stretching, but not bending.

In this didactic example, timings refer to MATLAB’s (sparse) di-
rect solver. Our method shows asymptotically better performance
as permissible strain vanishes (see Figure 3a). Likewise, our al-
gorithm enjoys favorable performance as mesh resolution increases
(see Figure 3b). Using 80 vertices and 1% strain, the fast projection
method achieved a 25× speedup. Note that there exists consid-
erable difficulty in setting spring coefficients a priori to satisfy a
given strain limit. For settings more pragmatic than a simple chain,
such as the following draping experiment, we were unable (despite
considerable effort) to set spring coefficients that achieve a pre-

4



To appear in the ACM SIGGRAPH conference proceedings

(a) (b)

Figure 5: Qualitative visual comparison. Snapshot of a cloth
draped using (a) fast projection and (b) implicit constraint direc-
tion.

scribed small strain. This explains why spring methods are often
treated with strain-limiting procedures.

Draping cloth The next experiment compared fast projection,
ICD, SHAKE, and the strain limiting approach. Our goal was to
evaluate how the spatial discretization and permissible strain affect
performance of these four algorithms. The setup consisted of drap-
ing a cloth over a polygonal model of a sphere. We measured strain
before the collision reaction pass.

For the strain limiting algorithms, we iterate until strain is in the
permissible range. Both Jacobi and Gauss-Siedel approaches were
tested; with Gauss-Siedel, a random permutation was applied in or-
der to reduce bias resulting from the particular edge ordering. The
SHAKE method used the acceleration suggested in [Barth et al.
1994] to rebuild the matrix once per step or when it fails to con-
verge. As a consequence, the algorithm required extremely small
timesteps to converge, but each timestep was computationally in-
expensive, as matrix re-assembly and re-factoring was infrequent.
ICD was able to use larger timesteps than the SHAKE method and
still converge, however, since each timestep is substantially more
expensive than a SHAKE step, the overall time is higher. Figure
4a shows timing comparison of these methods, and Figure 4b com-
pares performance as the stiffness is increased for a ≈ 5000 vertex
cloth. All CLM methods show similar good scaling performance,
asymptotically better than the strain limiting approach, with the fast
projection being the fastest. As the resolution is refined and strain
of 1% is allowed (Figure 4b), the fast projection method outper-
forms the other methods.

Figure 5 shows the same frame from simulations performed using
the fast projection and ICD method, with qualitatively comparable
results. Figures 6 and 7 show still frames from more complex sim-
ulations demonstrating that fast projection is capable of producing
complex, realistic simulations of cloth. Simulations were run on
one CPU of a 2.66GHz Intel Core 2 Duo.

6 Discussion

Our experiments have focused on measuring the performance of en-
forcing inextensibility using CLM compared to strain limiting and
stiff springs. In addition to the direct benefit of fast projection on
computation times, further benefits can be reaped from the result-
ing inextensibility. For example, the work of Bergou et al. [2006]
assumes inextensibility in order to accelerate bending computa-
tion. In adopting the velocity-filtering viewpoint, we have gained
speed, simplicity, and software modularity—all key to a practical
and maintainable implementation. This has, however, come at a

Figure 6: Inextensibility and dynamics. Inextensiblity ensures that
the tight-fitting pants do not drop past the dancer’s narrow waist.
Using fast projection, an implicit treatment of shear and bending,
and a mesh with 10600 vertices, the average simulation time per
(30Hz) frame was 9 seconds.

theoretical cost: there is no longer an efficient way to perfectly en-
force both ideal inextensibility and ideal collision handling, since
one must execute one filter before the other, and both ideals corre-
spond to sharp constraints. To enforce both perfectly would require
combining them in a single pass, an elegant and exciting prospect
from the standpoint of theory, but one which is likely to introduce
considerable complexity and convergence challenges. Practically,
we observe that this drawback does not cause artifacts in our simu-
lation, for several reasons: first, we execute collision-handling last,
to avoid glaring collision artifacts, yet we assert that empirically our
strain remains negligible, as required. Second, unlike constraint-
enforcement approaches such as [Witkin et al. 1990], the inextensi-
bility filter does not assume that the constraint is maintained at the
beginning of the timestep and errors are not accumulated during the
simulation.

Conclusion Despite the fact that the most common fabrics do
not visibly stretch when draped over the body, the trend in our
community is to favor stretching formulations based on penalty-
springs. The consequent numerical difficulties are then addressed
by a combination of (a) considerably relaxing realism, allowing
strain ≈ 10%, and (b) simple iterative strain and strain-rate al-
gorithms with poor convergence behavior. With Constrained La-
grangian Mechanics as our alternative point of departure, we have
demonstrated a straightforward filter, with good convergence be-
havior, for enforcing inextensibility. We provide one immediate
and pragmatic approach to fast and realistic fabric simulation using
CLM, and we hope that it will spur a renascence of activity along
this direction.

Acknowledgments We thank OptiTex for providing the 3D gar-
ment geometry as well as the animated figurines. We are grate-
ful to David Ismailov for setting up the cloth models, and Ruzz
Oved and Yaniv Gorali for lighting and shading our scenes. This
work has benefited from the valuable insights of Jerrold E. Mars-
den, Ari Stern, and Max Wardetzky, and from the generous support
of the NSF (MSPA 0528402, CSR 0614770, CAREER 0643268),
Autodesk, mental images, NVIDIA, and Elsevier.

5



To appear in the ACM SIGGRAPH conference proceedings

Figure 7: Enforcing inextensibility using fast projection yields lively motion with detailed wrikles and folds. Frames from ballet and runway
sequences simulated using fast projection. The elastic term was integrated implicitly (top) and explicitly (bottom), respectively. The cloth
contains 8325 (top) and 10688 (bottom) vertices, with average simulation time per (30Hz) frame of 5.2 and 7.8 seconds, respectively.

References

ASCHER, U. M., RUUTH, S. J., AND SPITERI, R. J. 1997.
Implicit–explicit Runge–Kutta methods for time-dependent par-
tial differential equations. Applied Numerical Mathematics:
Transactions of IMACS 25, 2–3, 151–167.

BARAFF, D., AND WITKIN, A. 1998. Large steps in cloth sim-
ulation. In Proceedings of SIGGRAPH 98, ACM Press / ACM
SIGGRAPH, New York, NY, USA, 43–54.

BARTH, E., KUCZERA, K., LEIMKUHLER, B., AND SKEEL, R.
1994. Algorithms for Constrained Molecular Dynamics. March.

BERCOVIER, M., AND PAT, T. 1984. A C0 finite element method
for the analysis of inextensibile pipe lines. Computers and Struc-
tures 18, 6, 1019–1023.

BERGOU, M., WARDETZKY, M., HARMON, D., ZORIN, D., AND

GRINSPUN, E. 2006. A quadratic bending model for inexten-
sible surfaces. In Fourth Eurographics Symposium on Geometry
Processing, 227–230.

BOXERMAN, E. 2003. Speeding up cloth simulation. Master’s
thesis, University of British Columbia.

BREEN, D. E., HOUSE, D. H., AND WOZNY, M. J. 1994. Pre-
dicting the drape of woven cloth using interacting particles. In
Proceedings of ACM SIGGRAPH 1994, ACM Press/ACM SIG-
GRAPH, New York, NY, USA, 365–372.

BRIDSON, R., FEDKIW, R. P., AND ANDERSON, J. 2002. Robust
treatment of collisions, contact, and friction for cloth animation.
ACM Transactions on Graphics 21, 3 (July), 594–603.

BRIDSON, R., MARINO, S., AND FEDKIW, R. 2003. Simulation
of clothing with folds and wrinkles. In Symposium on Computer
animation, 28–36.

CHOI, K.-J., AND KO, H.-S. 2002. Stable but responsive cloth.
ACM Transactions on Graphics” 21, 3, 604–611.

CHOI, K.-J., AND KO, H.-S. 2005. Research problems in clothing
simulation. Computer-Aided Design 37, 6, 585–592.

DESBRUN, M., SCHRÖDER, P., AND BARR, A. 1999. Interactive
animation of structured deformable objects. In Graphics Inter-
face ’99, 1–8.

EBERHARDT, B., WEBER, A., AND STRASSER, W. 1996. A fast,
flexible, particle-system model for cloth draping. IEEE Comput.
Graph. Appl. 16, 5, 52–59.

6



To appear in the ACM SIGGRAPH conference proceedings

EBERHARDT, B., ETZMUSS, O., AND HAUTH, M. 2000. Implicit-
explicit schemes for fast animation with particle systems 137–
154.

FUHRMANN, A., GROSS, C., AND LUCKAS, V. 2003. Interactive
animation of cloth including self collision detection. In WSCG
’03, 141–148.

GRIFFITHS, P., AND KULKE, T. 2002. Clothing movement—
visual sensory evaluation and its correlation to fabric properties.
Journal of sensory studies 17, 3, 229–255.

HAIRER, E., LUBICH, C., AND WANNER, G. 2002. Geometric
Numerical Integration. No. 31 in Springer Series in Computa-
tional Mathematics. Springer-Verlag.

HAUTH, M., ETZMUSS, O., AND STRASSER, W. 2003. Analysis
of numerical methods for the simulation of deformable models.
The Visual Computer 19, 7-8, 581–600.

HONG, M., CHOI, M.-H., JUNG, S., WELCH, S., AND TRAPP, J.
2005. Effective constrained dynamic simulation using implicit
constraint enforcement. In International Conference on Robotics
and Automation, 4520–4525.

HOUSE, D. H., AND BREEN, D. E., Eds. 2000. Cloth modeling
and animation. A. K. Peters, Ltd., Natick, MA, USA.

HOUSE, D. H., DEVAUL, R. W., AND BREEN, D. E. 1996.
Towards simulating cloth dynamics using interacting particles.
International Journal of Clothing Science and Technology 8, 3,
75–94.

MARSDEN, J. 1999. Introduction to Mechanics and Symmetry.
Springer.

MEYER, M., DEBUNNE, G., DESBRUN, M., AND BARR, A. H.
2001. Interactive animation of cloth-like objects in virtual real-
ity. The Journal of Visualization and Computer Animation 12, 1
(Feb.), 1–12.

MÜLLER, M., HEIDELBERGER, B., HENNIX, M., AND RAT-
CLIFF, J. 2006. Position based dynamics. In Proceedings of Vir-
tual Reality Interactions and Physical Simulation (VRIPHYS),
C. Mendoza and I. Navazo, Eds., 71–80.

PROVOT, X. 1995. Deformation constraints in a mass-spring model
to describe rigid cloth behavior. In Graphics Interface, 147–154.

SCHENK, O., AND GÄRTNER, K. 2006. On fast factorization
pivoting methods for sparse symmetric indefinite systems. Elec.
Trans. Numer. Anal 23, 158–179.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically deformable models. In Computer Graphics
(Proceedings of ACM SIGGRAPH 87), ACM Press, New York,
NY, USA, 205–214.

TSIKNIS, K. D. 2006. Better cloth through unbiased strain limiting
and physics-aware subdivision. Master’s thesis, The University
of British Columbia.

VOLINO, P., AND MAGNENAT-THALMANN, N. Comparing effi-
ciency of integration methods for cloth simulation. Computer
Graphics International.

WITKIN, A., GLEICHER, M., AND WELCH, W. 1990. Interac-
tive dynamics. Computer Graphics (Proceedings of ACM SIG-
GRAPH 90) 24, 2, 11–21.

ZIENKIEWICZ, O. C., AND TAYLOR, R. C. 1989. The finite ele-
ment method. McGraw Hill. 2.

Appendix A

We briefly explain why ICD and fast projection (FP) are not trou-
bled by configurations (Q1), (Q2), and (Q4), and are resilient to
(Q3). Facts about the behavior of SHAKE are taken from [Barth

et al. 1994]. Q1: SHAKE’s force ∇C(xn)T λλλ
n+1

cannot reduce the

single edge’s length back to l; our force ∇C(xn+1
j )T λλλ

n+1
can re-

duce that edge’s length back to l. Q2: here ∇C(xn+1
j ) and ∇C(xn)T

are both full-rank, yet SHAKE fails since ∇C(xn+1
j )M−1∇C(xn)T

is singular; ICD and FP use ∇C(xn+1
j )D∇C(xn+1

j )T , where D is

symmetric full-rank, and this product is not singular. Q4: here
∇C(xn) is rank-deficient, so SHAKE fails; ICD and FP do not

use ∇C(xn). Regarding Q3, ICD and FP may fail if ∇C(xn+1
j ) is

rank-deficient; for sufficiently small timestep, h, this case is always
avoidable.

7


