
Efficient Simulation of Inextensible Cloth

Rony Goldenthal1,2 David Harmon1 Raanan Fattal3 Michel Bercovier2 Eitan Grinspun1

1Columbia University 2The Hebrew University of Jerusalem 3University of California, Berkeley

Abstract

Many textiles do not noticeably stretch under their own weight.
Unfortunately, for better performance many cloth solvers disregard
this fact. We propose a method to obtain very low strain along the
warp and weft direction using Constrained Lagrangian Mechanics
and a novel fast projection method. The resulting algorithm acts as
a velocity filter that easily integrates into existing simulation code.
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1 Introduction

Our eyes are very sensitive to the behavior of fabrics, to the extent
that we can identify the kind of fabric simply from its shape and
motion [Griffiths and Kulke 2002]. One important fact is that most
fabrics do not stretch under their own weight. Unfortunately, for
many popular cloth solvers, a reduction of permissible stretching is
synonymous with degradation in performance: for tractable simu-
lation times one may settle for an unrealistic 10% or more strain
(compare 1% and 10%, Figure 1). Our work alleviates this prob-
lem by introducing a numerical solver that excels at timestepping
quasi-inextensible surfaces (stretching below 1%).

The solver builds on a framework of Constrained Lagrangian Me-
chanics (CLM) [Marsden 1999]. Warp and weft, the perpendicular
sets of strands that make up a textile, are prohibited from stretching
by enforcing constraint equations, not by integrating spring forces.
We present numerical evidence supporting the observation that a
constraint-based method is inherently well-suited to operate in the
quasi-inextensible regime. In contrast, for this regime spring-based
methods are known to experience a range of difficulties, leading to
the adoption of various strain limiting [Provot 1995] and strain rate
limiting algorithms.

We are motivated by the work of Bridson et al. [2002], who viewed
strain limiting as one of multiple velocity filtering passes (another
being collision handling). The velocity filter paradigm enables the
design of modular systems with mix-and-match flexibility.

Figure 1: Importance of capturing inextensibility. For efficiency,
many simulation methods allow 10% or more strain, whereas many
fabrics do not visibly stretch. A 1m2 patch, pinned at two corners
1m apart, is allowed to relax under gravity. We compare (left to
right) three simulations of progressively smaller permissible strain
with an actual denim patch.

Contributions We propose a novel CLM formulation that is im-
plicit on the constraint gradient (§4.1). We prove that the implicit
method’s nonlinear equations correspond to a minimization prob-
lem (§4.2): this result motivates a fast projection method for en-
forcing inextensibility (§4.3). We describe an implementation of
fast projection as a simple and efficient velocity filter, as part of a
framework that decouples timestepping, inextensibility, and colli-
sion passes (§4.4). Consequently, the fast projection method easily
incorporates with a code’s existing bending, damping, and collision
models, to yield accelerated performance (§5).

Before discussing these contributions, we summarize the relevant
literature (§2) and describe the basic discrete cloth model (§3).

2 Related Work

For brevity, we review work on stretch resistance; for broad surveys
on cloth simulation see [House and Breen 2000; Choi and Ko 2005].

The most general approach is to treat cloth as an elastic material
[Terzopoulos et al. 1987; Breen et al. 1994; Eberhardt et al. 1996;
Baraff and Witkin 1998; Choi and Ko 2002]. To reduce visible
stretching, elastic models typically adopt large elastic moduli or
stiff springs, degrading numerical stability [Hauth et al. 2003].

To address the stiffness of the resulting differential equations,
Baraff and Witkin [1998] proposed implicit integration, allowing
for large, stable timesteps; adaptive timestepping was required
to prevent over-stretching. Eberhardt [2000] and Boxerman et
al. [2003] adopted implicit-explicit (IMEX) formulations, which
treat only a subset of forces implicitly. Our method is closely re-
lated to the IMEX approach, in the sense that stretching forces are
singled out for special treatment.

These works, and many of their sequels, improved performance
by allowing some perceptible stretch of the fabric. In the quasi-
inextensible regime, however, implicit methods encounter numeri-
cal limitations [Volino and Magnenat-Thalmann 2001; Boxerman
2003; Hauth et al. 2003]: the condition number of the implicit
system grows with the elastic material stiffness, forcing iterative
solvers to perform many iterations; additionally, timestepping al-
gorithms such as Backward Euler and BDF2 introduce undesirable
numerical damping when the system is stiff [Boxerman 2003].



Given a stiff differential equation, an alternative to implicit integra-
tion is to reduce the stiff component and reformulate it as a con-
straint [Hairer et al. 2002]. In the smooth setting, the penalty-force
and constraint-based approaches are equivalent in the limit of an
infinitely stiff penalty term [Bercovier and Pat 1984]. In the dis-
crete setting, the constraint-based approach may be implemented
with various iterative or global algorithms, as surveyed below:

Iterative enforcement Provot [1995] corrected edge lengths by
iteratively displacing the incident vertices on stretched springs.
While simple to implement, this approach suffers from poor conver-
gence since each displacement may stretch other incident springs.
Therefore, Provot’s method is used in cases where tight tolerances
are not required, e.g., [Desbrun et al. 1999; Meyer et al. 2001;
Fuhrmann et al. 2003]. Bridson et al. [2002; 2003] used Provot’s
approach in conjunction with strain rate limiting, bounding the rate
of change of spring length per timestep to 10% of the current length.
Müller et al. [2006] used a non-linear Gauss-Seidel approach to en-
force inextensibility on each constraint separately. Bridson et al.
observed that iterative strain limiting algorithms behave essentially
as Jacobi or Gauss-Seidel solvers. In this light, it is not surprising
that for finely-discretized quasi-inextensible fabrics, iterative con-
straint enforcement requires a prohibitive number of iterations (see
§5).

Global enforcement In contrast to iterative constraint enforce-
ment, House et al. [1996] used Lagrange multipliers with CLM to
treat stretching, and presented a hierarchical treatment of the con-
straint forces. The Lagrange multiplier approach alleviates the dif-
ficulties associated with poor numerical conditioning and artificial
damping. House et al. later encountered difficulties in handling col-
lision response within the proposed framework [2000]. By building
on the velocity-filter paradigm, our method handles both inextensi-
bility and complex collisions.

House et al. formulated constraints as in [Witkin et al. 1990], which
is subject to numerical drift that may be exacerbated by the discon-
tinuities introduced during collision response. Drift may be atten-
uated using constraint-restoring springs, but the authors reported
difficulty in adjusting the spring coefficients. We postulate that one
reason for their difficulties with drift was consequent to the lin-
earization of the constraint equation, which permitted higher order
errors to accumulate over time. Our method does not linearize the
constraint equations, and therefore it is not subject to drift.

Recently, Tsiknis [2006] proposed triangle-based strain limiting to-
gether with a global stitching step for stable constraint enforcement.
Hong et al. [2005] used a linearized implicit formulation in order to
improve stability of constrained dynamics. This allowed for larger
timesteps and reduced the need for springs to maintain the cloth on
the constraint manifold. Both of these approaches enforce inexten-
sibility only for strain exceeding 10%.

In summary, when the tolerance for stretching is very small, model-
ing stretch response with spring-based or strain-limiting approaches
is costly and even intractable; constraint-based methods present a
promising alternative. The remainder of this paper discusses algo-
rithms that excel at simulating quasi-inextensible cloth.

3 Cloth Model

Woven fabrics are not a continuous material, rather they are a com-
plex mechanical network of interleaving yarn [Breen et al. 1994].
Since the constituent yarn is often quasi-inextensible, the material’s
warp and weft directions do not stretch perceptibly.

In imposing inextensibility on all edges of a triangle mesh, one
quickly runs into parasitic stiffness in the bending modes, or lock-
ing [Zienkiewicz and Taylor 1989], since locally-convex regions of
a triangle mesh are rigid under isometry. Instead, we consider warp-
weft aligned quadrilateral meshes with a sparse number of trian-
gles (quad-dominant meshes). A degree of freedom (DOF) count-
ing argument suggests that constraining all edges of a quad mesh
may circumvent the rigidification that occurs with triangle meshes:
Given n vertices, we have 3n positional DOFs; their triangulation
(resp. quadrangulation) introduces approximately 3n (resp. 2n)
edges, with corresponding inextensibility constraints. Subtracting
constraints from positional DOFs leaves nearly zero DOFs for a tri-
angulation. In the case of a quadrangulation, O(n) DOFs remain,
and we see that in a flat configuration they correspond to the nor-
mal direction at each vertex. Furthermore, under general mesh po-
sitions, the constraints are linearly independent, with a full-rank
Jacobian treatable by a direct solver (§4).

We ask that a warp- or weft-aligned quad edge, (pa,pb), maintain
its undeformed length, l, by enforcing

C(pa,pb) = ‖pb−pa‖
2/l − l = 0 . (1)

The solve will require the constraint gradient

∇pbC(pa,pb) = 2(pb−pa)/l . (2)

Since shearing modes excite only a mechanical interaction of warp
and weft, and not a stretching of yarn, fabric does indeed shear per-
ceptibly. Therefore, we model shear using non-stiff stretch springs
applied on both diagonals of each quad.

The complete model of in-plane deformation is compatible with
an existing code’s quad- or triangle-based treatment of bending
and collisions. With this simple formulation of inextensibility con-
straints in place, what is needed is an efficient method for enforcing
constraints. In the following, we develop such a method.

4 Constrained Dynamics

Given a quadrilateral mesh with n vertices and m edges, the nu-
merical integration algorithm for constrained dynamics can be de-
veloped directly from the augmented Lagrange equation [Marsden
1999],

L(x,v) =
1

2
vTMv−V (x)−C(x)Tλλλ ,

where x(t) is the time-varying 3n-vector of vertex positions, v(t) =
ẋ(t) is its time derivative, M is the 3n× 3n mass matrix, and V (x)
is the stored energy (e.g., bending, shear, and gravity). C(x) is

the m-vector of constraints, with the ith entry corresponding to the
violation of inextensibility of the ith edge, as computed by (1); λλλ
is the m-vector of Lagrange multipliers. The corresponding Euler-
Lagrange equations are

Mv̇=−∇V (x)−∇C(x)Tλλλ , (3)

C(x) = 0 , (4)

where ∇≡∇x is the gradient with respect to position, and −∇V (x)
is the potential force. The term −∇C(x)Tλλλ may be viewed as

the constraint-maintaining force, where the factors −∇C(x)T and
λλλ determine the direction and scaling for the force, respectively.
∇C(x) is a rectangular matrix whose dimensions are m×3n.

For simulation, we must discretize (3) and (4) in time using one
of various schemes, each with benefits and drawbacks. One may



choose differing explicit or implicit schemes for the potential and
the constraint forces (similarly, potential forces are split and sepa-
rately discretized in [Ascher et al. 1997]). The discrete equations re-
place x(t) and v(t) with {x0,x1,x2, . . .} and {v0,v1,v2, . . .}, where
xn and vn are the position and velocity of the mesh at time t = nh,
and h is the size of the timestep.

One widely-used family of discretizations includes SHAKE and
RATTLE, which extend the (unconstrained) Verlet scheme [Hairer
et al. 2002] by considering a constraint force direction, −∇C(x)T ,
evaluated at the beginning of the timestep.

Unfortunately, enforcing length-preserving constraints with
SHAKE fails for four common geometric configurations, which
we refer to as (Q1)–(Q4) and depict in Figure 2. This figure is
a reproduction from [Barth et al. 1994], which discusses these
drawbacks in SHAKE but does not offer a solution. In the figure,
solid and hollow dots represent edge endpoints at the start and end
of the timestep, as the particles would evolve if no constraints were
applied. If the constraint direction, −∇C(x)T , is evaluated at the
beginning of the timestep, xn, as in SHAKE, then no scaling, λλλ ,
of the constraint direction yields a satisfied end-of-timestep con-
straint, C(xn+1) = 0. Numerically, for (Q2)–(Q4) this observation
manifests as a singular Jacobian in Newton’s method. These four
cases correspond to rapid change in edge length or orientation; in
practice, they occur often.

(Q1) (Q2) (Q3) (Q4)

Figure 2: Failure modes of methods using an explicit constraint
direction. Reproduced from a discussion of SHAKE in [Barth et al.
1994].

4.1 Implicit constraint direction (ICD)

Consider evaluating the constraint direction, −∇C(x)T , at the end
of the timestep. We observe (and prove in Appendix A) that this
resolves (Q1), (Q2) and (Q4); (Q3) remains, but is automatically
remedied by decreasing the timestep. Consider the ICD timestep,
which treats potential forces explicitly1:

vn+1 = vn−hM−1
(

∇V (xn)+∇C(xn+1)Tλλλ n+1
)

,

xn+1 = xn+hvn+1 ,

C(xn+1) = 0 .

Define xn+10 =xn+hvn−h2M−1∇V (xn), i.e., xn+10 is the position at

the end of an unconstrained timestep; define δxn+1 = xn+1−xn+10 ,

i.e., δxn+1 is the correction of the unconstrained step. Next,
eliminate vn+1 by rewriting the above system as two equations,

F(δxn+1,λλλ n+1) = 0 and C(xn+1) = 0, in the free variables δxn+1

and λλλ n+1, keeping in mind that xn+1 is a linear function in δxn+1,
and defining

F(δxn+1,λλλ n+1) = δxn+1+h2M−1∇C(xn+1)Tλλλ n+1 .

F(δxn+1,λλλ n+1) and C(xn+1) are the residuals of the discretization
of (3) and (4), respectively. In particular, F measures the deviation

1For an implicit treatment, write ∇V (xn+1) in place of ∇V (xn).

of the trajectory away from that dictated by the governing (potential
and constraint) forces; equivalently, it states that the correction of
the unconstrained step is due to the constraint forces. C measures
the deviation from the constraint manifold (in our case, the extensi-
bility of the material). To implement ICD, we solve for the roots of
F and C up to a desired tolerance using Newton’s method. Solving
for an ICD step is costly, because there are many unknowns (≈ 5n),
and each Newton step requires the solution of an indefinite linear
system, whose matrix is costly to assemble. In §4.3, we develop
an approximation to ICD that addresses these drawbacks without
sacrificing constraint accuracy or robustness. To arrive at this fast
projection method, the following section considers ICD from an al-
ternative, geometric viewpoint.

4.2 Step and project (SAP)

Consider for a moment an alternative approach to constrained inte-
gration in two steps: (a) step forward only the potential forces to ar-

rive at the unconstrained position, xn+10 ; (b) enforce the constraints

by projecting onto the constraint manifoldM = {xn+1|C(xn+1) =
0}. Methods of this form are known as manifold-projection meth-
ods [Hairer et al. 2002]. To define a specific method, we must
choose a projection operator. In the method we refer to as SAP, we
write the projection of the unconstrained point onto the constraint

manifold as xn+10 + δxn+1, so that the projected point extremizes
the objective function

W (δxn+1,λλλ n+1) =
1

2h2
(δxn+1)

T
M(δxn+1)+C(xn+1)Tλλλ n+1 ,

with respect to the free variables δxn+1 and λλλ n+1. Simply put, we

choose the point on the constraint manifold closest to xn+10 . To de-
fine closest, we need a measure of distance. TakeM as the physical
mass matrix (usually arising from a finite-basis representation of x
and a surface mass density). Then the choice (δxn+1)TM(δxn+1)
corresponds to the L2 norm of the mass-weighted displacement of

the mesh as it moves from xn+10 to xn+1. Formally, it is a discretiza-
tion of the smooth integral

∫

S
‖xn+1−xn+10 ‖

2ρ dA ,

evaluated over the reference (material) domain, S. Here xn+1 and
xn+10 are the piecewise linear immersion functions mapping each

point of S into R
3, and ρ is the (possibly nonuniform) surface mass

density. We use ‖ · ‖ to denote the Euclidean norm in R
3.

Theorem 1: ICD ≡ SAP .

Proof: The stationary equations forW (δxn+1,λλλ n+1) are the ICD

equations, F(δxn+1,λλλ n+1) = 0 and C(xn+1) = 0.

Corollary In 4.1, we interpreted the roots of C and F from the
ICD view. We can interpret these roots from the SAP view as
follows: C(xn+1) = 0 corresponds to finding some point on the

constraint manifold. C(xn+1) = 0 with F(δxn+1,λλλ n+1) = 0 cor-
responds to finding the closest point on the constraint manifold.

4.3 Fast projection method

To solve SAP, one might extremize W (δxn+1,λλλ n+1) using New-
ton’s method: each iteration would improve upon a guess for the

shortest step, δxn+1 that projects xn+10 onto the constraint manifold.



Algorithm 1 Fast projection is a velocity filter that enforces con-
straints. It combines the robustness of using an implicit constraint
direction with the efficiency of approximate manifold projection.

Input: ṽ // candidate velocity
Input: x̃ // known start-of-step position
1: j← 0
2: x0← x̃+hṽ // unconstrained timestep
3: while strain of x j exceeds threshold do
4: Solve linear system (7) for δλλλ j+1
5: Evaluate (5) to obtain δx j+1
6: x j+1← x j+δx j+1
7: j← j+1
8: end while
Output: 1h (x j− x̃) // constraint-enforcing velocity

Fast projection also uses a sequence of iterations, but it relaxes the

requirement of SAP: starting with the unconstrained position, xn+10 ,
we propose to find a close, but not necessarily closest, point on
the constraint manifold, by taking a sequence of “smallest” steps.

Fast projection starts at xn+10 , and takes a sequence of steps, δx
n+1
j ,

j = 1,2, . . ., toward the constraint manifold, with each step as short
as possible.

A step of fast projection Projection onto the constraint manifold
occurs at a fixed instant in time. Therefore, we omit the superscripts
(n+1), which refer to time, in order to emphasize the subscripts, j,
which refer to a specific iteration of fast projection, e.g., we write

the input position, xn+10 , as x0, and progressively closer approxima-
tions to the constrained position as x1,x2, . . ..

Formally, the ( j+ 1)th step of fast projection, x j+1 = x j+ δx j+1,
extremizes the objective function

W (δx j+1,δλλλ j+1) =
1

2h2
(δx j+1)

T
M(δx j+1)+C(x j+1)

T δλλλ j+1 ,

with respect to the step increment, δx j+1, and the auxiliary variable

δλλλ j+1. Expanding the constraint to first order,

C(x j+1) = C(x j+δx j+1)≈ C(x j)+∇C(x j)δx j+1 ,

we obtain a quadratic objective function, whose stationary equa-
tions with respect to δx j+1 and δλλλ j+1 are

δx j+1 =−h2M−1∇C(x j)
T δλλλ j+1 , (5)

∇C(x j)δx j+1 =−C(x j) . (6)

Substituting (5) into (6), we eliminate δx j+1 and solve a linear sys-

tem in δλλλ j+1:

h2
(

∇C(x j)M
−1∇C(x j)

T
)

δλλλ j+1 = C(x j) . (7)

Since the linear system matrix involves M−1, the assembly of this
system is most efficient for diagonal (e.g., lumped) mass matrices.
Finally, we compute the increment (5) to obtain x j+1 = x j+δx j+1.

As with ICD/SAP, a fast projection step requires a linear solve.
However, fast projection’s system, (7), is smaller (≈ 2n× 2n com-
pared to ≈ 5n× 5n), positive definite (compared to indefinite) and
sparser. As a result it is considerably cheaper to evaluate, assemble,
and solve than its ICD/SAP counterpart.
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Figure 3: Effect of fast projection on the residual. Using the ballet
dancer sequence, at each timestep (horizontal axis) we measured
the residual, F (vertical axis), after the first and last iterations of
fast projection (dashed-red and solid-blue curves, respectively).
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Figure 4: Performance of fast projection vs. implicit springs. For
a 1D chain simulated in MATLAB, we plot the computation time of
one simulated second, as a function (a) of permissible strain (log-
log plot for 80 vertices), and (b) of discretization resolution (linear
plot for 1% permissible strain).

Fast projection algorithm We repeatedly take fast projection
steps until the maximal strain is below a threshold, i.e., the con-
straint may be satisfied up to a given tolerance. This process is
summarized in Algorithm 1.

Fast projection finds a manifold point, xn+1, that is close, but not

closest, to the unconstrained point, xn+10 . Referring to the Corol-
lary, we conclude that fast projection exactly solves C= 0 while it
approximates F= 0.

One important question is whether the fast projection’s error in F
is acceptable. Compare a sequence of fast projection iterations to
ICD/SAP’s sequence of Newton iterations. The first iteration of
these methods is identical. At the end of this first iteration, F,C ∈
O(h2). Additional fast projection iterations seek C→ 0, and since
C∈O(h2), increments in x areO(h2), therefore F remains inO(h2).
Observe that F ∈ O(h2) is considered acceptable in many contexts,
e.g., [Baraff and Witkin 1998; Choi and Ko 2002] halt the Newton
process after a single iteration.

To verify this claim, we measured F throughout the ballet dancer
sequence. As recorded in Figure 3, the first iteration of the fast pro-
jection method eliminates first-order error. The remaining iterations
perturb F only to higher-order (often decreasing the error further).

4.4 Implementation

We implement fast projection as a velocity filter, enabling easy inte-
gration into our existing cloth simulation system; refer to Algorithm
1. Step 3 requires solving a sparse symmetric positive definite linear
system; we use the PARDISO [Schenk and Gärtner 2006] solver.

Each row of ∇C(xn+1j ) corresponds to one edge, and is computed

using (2). The right-hand side,C(xn+1j ), is given by (1).
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Figure 5: Performance of several constraint-enforcing methods.
For a 2D cloth, simulated in C++, we plot the computation time
of one simulated second, as a function (a) of permissible strain
(log-log plot for 5041 vertices), and (b) of discretization resolution
(linear plot for 1% permissible strain).
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Figure 6: Qualitative visual comparison. Snapshot of a cloth
draped using (a) fast projection and (b) implicit constraint direc-
tion.

5 Results

We describe several experiments comparing various stretch-
enforcement methods. All timings are with reference to a single
process on a 2.66GHz Intel Core 2 Duo.

One-dimensional chain Our first experiment compares the per-
formance of fast projection against an implicit treatment of stiff
springs. We observe the scaling of computational cost as a function
of (a) permissible strain and (b) mesh resolution.

The physical setup consists of a chain pinned at the top node and re-
leased to free fall under gravity. The simple 1D chain resists stretch-
ing, but not bending.

In this didactic example, timings refer to MATLAB’s (sparse) di-
rect solver. Our method shows asymptotically better performance
as permissible strain vanishes (see Figure 4a). Likewise, our algo-
rithm exhibits favorable performance as mesh resolution increases
(see Figure 4b). Using 80 vertices and 1% strain, the fast projection
method achieves a 25× speedup. Note that there exists considerable
difficulty in setting spring coefficients a priori to satisfy a given
strain limit. For settings more pragmatic than a simple chain, such
as the following draping experiment, we are unable (despite con-
siderable effort) to set spring coefficients that achieve a prescribed
small strain. This explains why spring methods are often treated
with strain-limiting procedures.

Draping cloth The next experiment compares fast projection,
ICD, SHAKE, and the strain limiting approach. We evaluate how
the spatial discretization and permissible strain affect performance
of these four algorithms. The setup consists of draping a cloth over
a polygonal model of a sphere. We measure strain before the colli-
sion reaction pass.

Figure 7: Inextensibility and dynamics. Inextensibility ensures that
the tight-fitting pants do not drop past the dancer’s narrow waist.
Using fast projection, an implicit treatment of shear and bending,
and a mesh with 10600 vertices, the average simulation time per
(30Hz) frame was 9 seconds.

For the strain limiting algorithms (both Jacobi and Gauss-Siedel),
we iterate until strain is in the permissible range. With Gauss-
Siedel, we apply a random permutation to reduce bias resulting
from the particular edge ordering. For SHAKE, we use the acceler-
ation suggested in [Barth et al. 1994] to rebuild the matrix once per
step or when it fails to converge. As a consequence, the algorithm
requires extremely small timesteps to converge, but each timestep
is relatively inexpensive, as matrix re-assembly and re-factoring is
infrequent. ICD is able to use larger timesteps than SHAKE and
still converge, however, since each timestep is substantially more
expensive than a SHAKE step, the overall time is higher. Figure 5a
shows a timing comparison of these methods, and Figure 5b com-
pares performance as the stiffness is increased for a cloth mesh with
approximately 5000 vertices. All CLM methods scale equally well,
asymptotically better than the strain limiting approach, with the fast
projection being the fastest. As we refine the resolution, and allow
strain of 1% (Figure 5b), the fast projection method outperforms
the other methods.

Figure 6 shows the same frame from simulations that use the fast
projection and ICD methods, with qualitatively similar results. Fig-
ures 7 and 8 show still frames from more complex simulations
demonstrating that fast projection is capable of producing complex,
realistic simulations of cloth.

6 Discussion

Our experiments focus on measuring the performance of enforc-
ing inextensibility using CLM compared to strain limiting and stiff
springs. In addition to the direct benefit of fast projection on com-
putation times, further benefits can be reaped from the resulting
inextensibility. For example, the work of Bergou et al. [2006] as-
sumes inextensibility in order to accelerate bending computation.
In adopting the velocity-filtering viewpoint, we gain speed, sim-
plicity, and software modularity—all key to a practical and main-
tainable implementation. However, this comes at a theoretical cost:
there is no longer an efficient way to perfectly enforce both ideal
inextensibility and ideal collision handling, since one filter must



execute before the other, and both ideals correspond to sharp con-
straints. To enforce both perfectly would require combining them in
a single pass, an elegant and exciting prospect from the standpoint
of theory, but one which is likely to introduce considerable com-
plexity and convergence challenges. Practically, we observe that
this drawback does not cause artifacts in our simulation, for several
reasons: first, we execute collision-handling last, to avoid glaring
collision artifacts, yet we assert that empirically our strain remains
negligible, as required. Second, unlike constraint-enforcement ap-
proaches such as [Witkin et al. 1990], the inextensibility filter does
not assume that the constraint is maintained at the beginning of the
timestep and errors are not accumulated during the simulation.

Conclusion Despite the fact that the most common fabrics do not
visibly stretch when draped over the body, the trend in our commu-
nity is to favor stretching formulations based on penalty-springs.
The consequent numerical difficulties are then addressed by a com-
bination of (a) relaxing realism by allowing 10% strain, and (b)
adopting simple iterative strain and strain-rate algorithms that have
poor convergence behavior. With Constrained Lagrangian Mechan-
ics as our alternative point of departure, we demonstrate a straight-
forward filter, with good convergence behavior, for enforcing inex-
tensibility. We provide one immediate and pragmatic approach to
fast and realistic fabric simulation using CLM, and we hope that it
will spur a renaissance of activity along this direction.
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Appendix A

We briefly explain why ICD and fast projection (FP) are not trou-
bled by configurations (Q1), (Q2), and (Q4), and are resilient to
(Q3). Facts about the behavior of SHAKE are taken from [Barth
et al. 1994].

Q1 SHAKE’s force ∇C(xn)Tλλλ n+1 cannot reduce the single

edge’s length back to l; our force ∇C(xn+1j )Tλλλ n+1 can reduce that

edge’s length back to l.

Q2 ∇C(xn+1j ) and ∇C(xn)T are both full-rank, yet SHAKE

fails since ∇C(xn+1j )M−1∇C(xn)T is singular; FP uses

∇C(xn+1j )M−1∇C(xn+1j )T , and ICD uses ∇C(xn+1j )D∇C(xn+1j )T ,

where D is a symmetric full-rank matrix; in both cases this product
is not singular.

Q3 ICD and FP may fail if ∇C(xn+1j ) is rank-deficient; for suffi-

ciently small timestep, h, this case is always avoidable.

Q4 ∇C(xn) is rank-deficient, so SHAKE fails; ICD and FP do not
use ∇C(xn).


