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Abstract

Finite element solvers are a basic component of simulation appli-
cations; they are common in computer graphics, engineering, and
medical simulations. Althoughadaptivesolvers can be of great
value in reducing the often high computational cost of simulations
they are not employed broadly. Indeed, building adaptive solvers
can be a daunting task especially for 3D finite elements. In this
paper we are introducing a new approach to produceconforming,
hierarchical, adaptive refinement methods(CHARMS). The basic
principle of our approach is to refine basis functions, not elements.
This removes a number of implementation headaches associated
with other approaches and is a general technique independent of
domain dimension (here 2D and 3D), element type (e.g., triangle,
quad, tetrahedron, hexahedron), and basis function order (piece-
wise linear, higher order B-splines, Loop subdivision, etc.). The
(un-)refinement algorithms are simple and require little in terms of
data structure support. We demonstrate the versatility of our new
approach through 2D and 3D examples, including medical applica-
tions and thin-shell animations.
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1 Introduction

Many applications of computer graphics require the modeling of
physical phenomena with high visual or numerical accuracy. Ex-
amples include the simulation of cloth [House and Breen 2000],
water [Foster and Fedkiw 2001], human tissue [Wu et al. 2001] and
engineering artifacts [Kagan and Fischer 2000], among many oth-
ers. Typically the underlying formulations require the solution of
partial differential equations (PDEs). Such equations are also at the
base of many geometric modeling [Celniker and Gossard 1991] and
optimization problems [Lee et al. 1997]. Most often the continuous
equations are discretized with the finite element (FE) or finite differ-
ence (FD) method before a (non-)linear solver can be used to com-
pute an approximate solution to the original problem. For exam-
ple, Terzopoulos and coworkers described methods to model many
physical effects for purposes of realistic animation [1987]. Their

Figure 1:Examples run within the CHARMS framework demon-
strating a variety of simulations which benefit from our general
adaptive solver framework: surgery simulation, modelling cloth
pillows, inflating a metal-foil balloon. For details see Section4.

discretization was mostly based on simple, uniform FD approxima-
tions. Later Metaxas and Terzopoulos employed FE methods since
they are more robust, accurate, and come with more mathematical
machinery [1992]. For this reason, human tissue simulations have
long employed FE methods (e.g., [Gourret et al. 1989; Azar et al.
2001] and references therein).

For better performance it is highly desirable to constructadap-
tive discretizations, allocating resources where they can be most
profitably used. Building such adaptive discretizations robustly is
generally very difficult for FD methods and very little theoretical
guidance exists. For FE methods many different approaches ex-
ist. They all rely on the basic principle that the resolution of the
domain discretization (“mesh”) should be adjusted based on local
error estimators. For example, Debunne et al. superimposed tetra-
hedral meshes at different resolutions and used heuristic interpola-
tion operators to transfer quantities between the disparate meshes
as required by an error criterion [2001]. Empirically this worked
well for real-time soft-body deformation, though there exists no
mathematical analysis of the method. A strategy based on precom-
puted progressive meshes (PM) [Hoppe 1996] was used by Wu et
al. [2001] for surface based FE simulations. Since the PM is con-
structed in a pre-process it is unclear how well it can help adapt to
the online simulation. O’Brien and Hodgins followed a more tradi-
tional approach by splitting tetrahedra in their simulation of brittle
fracture (mostly to accommodate propagating cracks) [1999]. Such
refinementalgorithms and their associated unrefinement operators
have the advantage that they come with well established theory [Co-
hen et al. 2001] and result in nested meshes, and by implication
nested approximation spaces. Since the latter is very useful for
many multi-resolution techniques we have adopted refinement as
our basic strategy.



Typical mesh refinement algorithms approach the problem of re-
finement as one of splittingelementsin isolation. Unfortunately
this leads to a lack ofcompatibility (“cracks”); to deal with this
issue one may: (1) “snap” T-vertices to the neighboring edge; (2)
use Lagrange multipliers or penalty methods to numerically enforce
compatibility; or (3) split additional elements through insertion of
conforming edges as in “red/green” triangulations or bisection al-
gorithms (the technique used by O’Brien and Hodgins [1999], for
example). Each one of these approaches works, but none is ideal.
For example, penalty methods lead to stiff equations with their asso-
ciated numerical problems, while red/green triangulations are very
cumbersome to implement in 3D because of the many cases in-
volved [Bey 2000]. As a result various different, specialized al-
gorithms exist for different element types such as triangles [Bank
and Xu 1996; Rivara and Inostroza 1997], tetrahedra [Arnold et al.
2001] and hexahedra [Langtangen 1999].

This lack of a general approach at times coupled with daunt-
ing implementation complexity (especially in 3D) has no doubt
contributed to the fact that sophisticated adaptive solvers are not
broadly used in computer graphics applications or general engi-
neering design. The situation is further complicated by the need of
many computer graphics applications for higher order (“smooth”)
elements. For example, [Celniker and Gossard 1991] used higher
order FEs for surface modeling with physical forces and geomet-
ric constraints (see also [Halstead et al. 1993] and [Mandal et al.
1997] who used Catmull-Clark subdivision surfaces and [Terzopou-
los and Qin 1994] who used NURBS). None of these employed
adaptivity in their solvers. In fact, for basis functions such as B-
splines or those induced by subdivision, elements cannot be refined
individually without losing nestedness of approximation spaces.
For example, Welch and Witkin, who used tensor product cubic
B-splines as their constrained geometric modeling primitive, en-
countered this difficulty [1992]. To enlarge their FE solution space
they added finer level basis functions, reminiscent of hierarchical
splines [Forsey and Bartels 1988], instead of refining individual el-
ements. Later, Gortler and Cohen used cubic B-spline wavelets to
selectively increase the solution space for their constrained varia-
tional sculpting environment [1995].

Contributions The use of hierarchical splines and wavelets in
a FE solver framework are specialized instances of a general class
of conforming, hierarchical, adaptive refinement methods, for short
CHARMS, which we introduce here. Instead of refining elements,
CHARMS are based on the refinement of basis functions. From an
approximation theory point of view, this is a simple statement, but it
has a number of very important and highly practical consequences.
Our adaptive solver frameworkrequires onlythat the basis func-
tions are refinable. It makesno assumptionsas to (1) the dimen-
sion of the domain; (2) the actual element types, be they triangles,
quadrilaterals, tetrahedra, hexahedra, or more general domains; (3)
the approximation order; and (4) the connectivity of the support
of the basis functions. The approach isalways globally compati-
ble without requiring any particular enforcement of this fact. Con-
sequently, all the usual implementation headaches associated with
maintaining compatibility are entirely eliminated. What does need
to be managed are tesselations of the overlap between basis func-
tions, possibly living at very different levels of the refinement hi-
erarchy. However, we will show that very short and simple algo-
rithms, based on simple invariants, keep track of these interactions
in a guaranteed fashion. While we were originally motivated by the
need to find a refinement strategy for higher order basis functions,
CHARMS has significant advantages even when only piecewise lin-
ear basis functions are used.

A single programmer implemented and debugged our basic
CHARMS algorithm for 1D problems within a day (using an ex-
isting non-adaptive FE solver). Extending the implementation to
2D and 3D problems took another day. This forcefully attests to the

simplicity and generality of the underlying framework. We demon-
strate the versatility of our approach by applying it to several dif-
ferent FE simulations, involving both surface and volume settings
(Fig. 1).

2 Motivation

In this section we consider a very simple example to elucidate the
difference between finite element and basis function refinement,
before we describe the general (un-)refinement algorithms in Sec-
tion 3. To serve our exposition we will examine aboundary value
problem. Initial value problems, which unfold in time from given
initial conditions, are very common in animation applications, and
are also accommodated by our framework.

2.1 Piecewise Linear Approximation in 1D

As a canonical example of a second order boundary value problem
consider Laplace’s equation with prescribed displacements at the
boundary

−∆u(x) = 0 , u|∂Ω = 1 , x ∈ Ω ⊂ Rd . (1)

A FE method typically solves the weak form of this equation, se-
lecting from thetrial spacethe solutionU which satisfies

a(U, v) =

∫
Ω

∇U · ∇v dx = 0

for all v in sometest space. We write the solutionU = g + u as
a sum of the functiong that satisfies the inhomogeneous essential
boundary condition, and of the trial functionu that satisfies the ho-
mogeneous boundary conditionu|∂Ω = 0. In the Galerkin method,
which we adopt in this discussion, these test and trial spaces coin-
cide.

Since the bilinear forma(·, ·) contains only first derivatives, we
may approximate the solution using piecewise linear basis functions
for both spaces. The domain is discretized into a disjoint union
of elements of finite extent. Each such element has an associated
linear function (e.g., Fig.2 for d = 1). This results in a linear
system

Ku = b

where thestiffness matrixentrieskij describe the interaction of de-
grees of freedom (DOFs) at vertexi andj under the action ofa(·, ·);
the right hand sideb incorporates the inhomogeneous boundary
conditions; andu is the unknown vector of DOFs.

Up to now we have made no reference to the number of spa-
tial dimensions. We turn our attention to the 1D case (d=1), and
consider afterwardsd > 1. We shall discuss the discretization from
two perspectives, which we will refer to as the (finite)elementpoint
of view and thebasis(function) point of view respectively (Fig.2).

Finite Elements In the element point of view, the approxima-
tion function is described by its restriction onto each element.

Basis Functions In the basis point of view, the approximation
function is chosen from the space spanned by the basis functions.

We now consider adaptive refinement and observe that the strate-
gies suggested by the alternative points of view are quite different.

Element Refinement In the most simple scheme, we bisect an
element to refine, and merge a pair of elements to unrefine. In bi-
secting an element, the linear function over the element is replaced
by a piecewise linear function comprised of linear segments over
the left and right subelements. The solution remains unchanged if
the introduced node is the mean of its neighbors. This style of re-
finement is very attractive since it is entirely local: each element
can be processed independently of its neighbors (Fig.3, left).



Figure 2: Illustration of the finite-element(left) andbasis-function
(right) points of view using linear B-splines. In the element point
of view, the solution is described over each element as a linear
function interpolating the function values at the endpoints of the
element. In the basis point of view, the solution is written as a lin-
ear combination of the linear B-spline functions associated with the
mesh nodes.

Basis Refinement Alternatively, we may reduce the error by
enlarging the approximation space with additional basis functions.
To refine, we augment the approximation space with “finer” (more
localized spatially) functions; conversely to unrefine we eliminate
the introduced functions. One possibility is to add a dilated basis
function in the middle of an element to affect the exact same change
as in the element bisection approach (Fig.3, middle). The solution
remains unchanged if the coefficient of the introduced function is
zero. We refer to suchdetail or oddcoefficients in deliberate anal-
ogy with the use of these terms in the subdivision literature [Zorin
and Schr̈oder 2000]. Bases constructed in this fashion are exactly
the classicalhierarchical basesof the FE literature [Yserentant
1986]. Note that in this setup there may be entries in the stiffness
matrix corresponding to basis functions with quite different refine-
ment levelsj.

Figure 3:Comparison of element refinement (left), and basis refine-
ment in hierarchical (middle) or quasi-hierarchical fashion (right).
For linear B-splines, each hierarchical introduction of a finer odd
basis function (middle) affects the same change as element bisec-
tion (left). Quasi-hierarchical refinement (right) uses the refinement
relation between the coarse basis function and its dilates.

Alternatively we may take advantage of the fact that the hat func-
tion observes arefinement relation: it can be written as the sum of
three dilated hats (Fig.3, right). We may replace one of the ba-
sis functions by three dilated versions. Once again with appropri-
ately chosen coefficients the solution is unaltered. To distinguish
this approach we will later refer to it asquasi-hierarchical(Fig. 3,
right). Here too we will have entries in the stiffness matrix which
correspond to basis functions from different levels. In practice the
disparity between levels will not be high since coarser functions
are entirely replaced by finer functions, not just augmented, as in
the hierarchical basis refinement method. To further illustrate this,
consider uniformly refining the original coarse-level basis: the re-
sulting hierarchical basis consists of both coarse- and finer-level
functions, whereas the corresponding quasi-hierarchical basis con-
sists entirely of finer-level functions, i.e., it has aflat, not hierarchi-
cal structure.

2.2 Higher Order Approximation in 1D

Because piecewise linear functions were sufficient for the dis-
cretization of the weak form of Laplace’s equations, we have seen

very few differences between the element and basis points of view,
except when considering adaptive refinement strategies. This will
now change as we consider a fourth order elliptic problem, the bi-
laplacian with prescribed displacements and normal derivatives at
the boundary,

∆2u(x) = 0 , u|∂Ω = 1 ,
∂u

∂n
|∂Ω = 0 , x ∈ Ω ⊂ Rd . (2)

This kind of functional is often used in geometric modeling ap-
plications (e.g., [Gortler and Cohen 1995] and references therein).
Its weak form involves second derivatives, favoring the use of basis
functions which areC1 (more precisely, they must be inH2 [Strang
and Fix 1973]).

One of the advantages of the element point of view was that
each element could be considered in isolation from its neighbors.
To maintain this property and satisfy theC1 condition a natural
approach is to raise the order of the local polynomial over each el-
ement. The natural choice that maintains symmetry is the Hermite
cubic interpolant (Fig.4). Two DOFs, displacement and derivative,
are now associated with each vertex. Note that in using Hermite
interpolants the dimension of our solution space has doubled and
non-displacement DOFs were introduced—these are quite unnatu-
ral in applications which care about displacements, not derivatives.

As an alternative basis we can use quadratic B-splines (Fig.4).
They satisfy theC1 requirement, require only displacement DOFs,
and lead to smaller linear systems. Perhaps most importantly, we
will see in Section2.4 that in the bivariate, arbitrary topology set-
ting, Hermite interpolation becomes considerably more cumber-
some, while generalizations of B-splines such as subdivision meth-
ods continue to work with no difficulties.

We again compare the two perspectives for adaptive refinement,
and learn that basis refinement applies where element refinement
does not.

Element Refinement Using Hermite cubic splines it is easy to
refine a given element through bisection. A new vertex with associ-
ated value and derivative coefficients is introduced in the middle of
the element and the single cubic over the parent element becomes a
pair ofC1 cubics over the two child elements. This refinement can
be performed without regard to neighboring elements.

For quadratic (and higher order) B-splines refinement of an ele-
ment in isolation, i.e., without regard to its neighbors, is not pos-
sible. The reason for this is that a given B-spline of degree two or
higher overlaps more than two elements.

Figure 4:Basis functions of cubic Hermites (left) and quadratic B-
splines (right) give rise toC1 approximations. The Hermite ba-
sis functions are centered at nodes and supported over adjacent
elements hence allow either element or basis refinement, but they
require non-displacement DOFs and do not easily generalize to
higher dimensions. The B-spline basis functions have larger sup-
port hence allow only basis refinement.

Basis Refinement Hermite basis functions admit basis refine-
ment and the picture is substantially the same as in the hat function
case. Quadratic (and higher order) B-splines, which do not admit
isolated element refinement, do admit basis refinement since they
all observe a refinement relation.



2.3 Piecewise Linear Approximation in 2D

In the 2D setting, we find new differences between the element and
basis perspectives that were not apparent in 1D. Again we may ap-
proximate the solution to Laplace’s equation (1) using a piecewise
linear, i.e.,C0 function, but this time over a triangulation of the do-
main. The DOFs live at the vertices and define a linear interpolant
over each triangle. As before, we view the discretization alternating
between theelementandbasispoints of view. The element point of
view definesu(x) by its restrictionover each element, whereas the
basis function point of view definesu(x) as alinear combination
of basis functions, each of which spans several elements.

Once more we compare the two perspectives for adaptive refine-
ment, and shed new light on the simplicity of basis refinement:

Element Refinement One possibility is to quadrisect only
those triangles that are “too big.” A new problem appears that
did not reveal itself in the 1D setting: this approach produces a
mesh with T-vertices, i.e., incompatibly placed nodes (Fig.5). Such
nodes are problematic since they introduce discontinuities. Intro-
duction of conforming edges (“red/green” triangulations) can fix
these incompatibilities [Bey 2000]. Alternatively one may use bi-
section of the longest edge instead of quadrisection [Rivara and In-
ostroza 1997]. This approach is limited to simplices only and be-
comes cumbersome in higher dimensions [Arnold et al. 2001].

Figure 5:Refinement of an elementin isolationproduces T-vertices,
or incompatibilities with adjacent elements. In the case of 2D trian-
gulations (left) incompatibilities may be addressed by introducing
conforming edges. In other settings, e.g., quadrilateral meshes, 3D
tetrahedral meshes or hexahedral meshes (right), the analogy to
insertion of conforming edges is more involved. Basis refinement
never leads to such incompatibilities.

Basis Refinement Alternatively, we may augment the approxi-
mation space with finer, more compactly supported functions. Con-
sider refining the original mesh globally via triangle quadrisection,
which preserves all the existing vertices and introduces new vertices
on the edge midpoints. Every node in this finer mesh associates to
a (finer) nodal basis function supported by its (finer) incident tri-
angles. We may now augment our original approximation space
(induced by the coarser triangulation) with any of the nodal basis
functions of the finer mesh. As such, the result is simply an ex-
panded linear combination with additional functions. With this ap-
proach compatibility is automatic; we don’t deal with problematic
T-vertices.

If we augment the current basis with onlyodd finer basis func-
tions, we generate ahierarchical basis. If instead we replace a
coarser function with all finer (evenand odd) functions of its re-
finement relation, we generate aquasi-hierarchicalbasis.

2.4 Higher Order Approximation in 2D

Consider the bilaplacian (2) in 2D; this kind of functional appears in
thin-plate and thin-shell problems. As in Section2.2 its discretiza-
tion is built ofC1 basis functions; here the element point of view
has a serious handicap. Building polynomials over each element
and requiring that they match up globally withC1 continuity leads
to high order and cumbersome Hermite interpolation problems. On

the other hand, constructing basis functions over arbitrary triangu-
lations using, for example, Loop’s [1987] subdivision scheme is
quite easy and well understood. Such basis functions are supported
on more than a 1-ring of triangles. Consequently, locally refining
the triangulation induces a new function space which does not in
general span (a superset of) the original space. In the basis point
of view, the original space is augmented, thus the original span is
preserved.

Summary and Preview Element refinement becomes more
cumbersome or even impossible as the number of dimensions or
approximation order is increased. In contrast, basis refinement ap-
plies uniformly to any refinable function space.

What are needed in the basis refinement strategy are efficient
data structures and algorithms to (1) keep track of non-zero entries
in the stiffness matrices and (2) manage a tesselation of the domain
suitable for evaluation of the associated integrals.

In traditional, piecewise-linear elements, non-zero entries in the
stiffness matrix are trivially identified with the edges of the FE
mesh. When using higher order B-splines or subdivision basis func-
tions their enlarged support implies that there are further interac-
tions, which must be identified and managed. Additionally, interac-
tions induced between active members of the refinement hierarchy
lead to inter-level interactions. Similarly, for numerical integra-
tion, the cells of the FE mesh are a suitable tesselation when using
piecewise linear elements, while for the basis refinement methods
suitable tesselations must be explicitly constructed.

Some of these issues were confronted by earlier researchers who
wished to enrich cubic B-spline tensor product surfaces with finer
functions in selected regions. This was done by enforcing “buffer
regions” of control points which were not allowed to move [Forsey
and Bartels 1988; Welch and Witkin 1992] or through explicit
wavelets which were resolved into B-splines based on the refine-
ment relation [Gortler and Cohen 1995].

These earlier approaches are specialized instances of CHARMS
and we now proceed to the general algorithms which rely solely on
refinability.

3 Algorithms

To establish a context for our discussion, we put down a framework
that might be used in an animation application to adaptively solve a
nonlinear initial value problem using basis refinement:

IntegratePDE
1 While t < tend

2 predict: measure error and construct setsB+ andB−
3 adapt:
4 B := B ∪ B+\B−
5 maintain basis: remove redundant functions fromB
6 solve:Rt(ut) = 0
7 t := t+ ∆t

Each simulation step has three stages: predict, adapt and solve.
First, an oracle predicts which regions of the domain require more
(resp. less) resolution, and constructs a set of basis functions to be
introduced to (resp. removed from) the approximation space (line
2). Next, the approximation space is adapted: the set of active basis
functions is updated (line 4), functions redundant to the basis are
removed (line 5). The removal of redundant functions ensures that
the setB is linearly independent; in certain settings this is impor-
tant for numerical stability, in others this step may be skipped. The
solution at timet is found by solving a system of linear or nonlinear
equations (line 6). For a nonlinear systemRt(·) we linearize and
solve with Newton’s method; therefore, the Jacobian matrixKt and



the “load” termbt need to be assembled. Note that the structure of
Kt depends on which basis functions are active.

The framework above is one of many that could be adopted; all
will have an adaptation stage, and our discussion focuses on laying
out definitions and then algorithms for managing the data structures
which represent the approximation spaceB and quantities depend-
ing onB, e.g.,K.

3.1 Refinable Functions

In order to formally describe our algorithms we need to fix a num-
ber of ideas, foremost amongst them the notion of a refinable func-
tion. Traditionally, the theory of such functions (e.g., Strang and
Nguyen [1996]) is pursued in theregular Euclidian setting, i.e., as
functions fromRd to R, coupled with a regular tesselation. In this
case functions are linear combinations of their own dilates. Exam-
ples from 1D include B-splines and Deslauriers-Dubuc interpolat-
ing functions [1989]. In contrast, we are interested in a more gen-
eral formulation: consider arbitrary topology surfaces and subsets
of R3; in both settings the domain will in general not admit regular
tesselations. We need a broader context: the theory and algorithms
of subdivisionprovide such a framework [Lounsbery et al. 1997;
Zorin 2000; Zorin and Schr̈oder 2000]. In this case the finer level
functions are not all strict dilates of a coarser level function, but the
subdivisionstencilsstill supply the basic ingredients for therefine-
ment relationwe need. Another setting of importance to us is that
of elements with locally supported polynomials up to some desired
order. The elements may be split into finer elements each carry-
ing dilations of the coarser polynomials. The associated theory is
that ofmulti-scaling functionrefinement [Strela et al. 1999; Alpert
1993]. Such bases have been used with great success in wavelet
radiosity simulations [Gortler et al. 1993].

Our algorithms will cover both cases. To simplify the exposition
we use surface subdivision as the canonical example, but will en-
sure that more general approaches such as volume subdivision, and
multi-scaling functions defined relative to elements, are captured as
well.

3.2 Building Blocks

For our purposes ameshconsists of sets of topological entities
together with the usual incidence relations:vertices, V = {vi};
edges, E = {ej}; faces, F = {fk}; and (in 3D)cells, C = {cl}.
We assume that the incidence relations define a manifold (with
boundary). Typical examples include triangle, quad, tetrahedra, and
hexahedra meshes. The termelementrefers to faces in the bivariate
and cells in the trivariate setting.

The mesh carriescoefficientsassociated with basis functions.
These coefficients may describe the geometric shape, e.g.,(x, y) ∈
R2 or (x, y, z) ∈ R3 or functions defined over the shape such as
displacement, density, force, etc. Coefficients may “live” at any of
the topological quantities. Most of the time coefficients will be as-
sociated with vertices; some schemes have coefficients associated
with elements. Similarly, polynomials over individual elements will
often result in coefficients associated with elements.

A topological refinementoperator describes how topological en-
tities are split and a finer mesh constructed with them. In develop-
ing our theory, we considerglobal refinement (all entities are split);
in practice we implement adaptive refinement aslazy evaluationof
a conceptually global and infinite refinement hierarchy. Most topo-
logical refinement operators split elements or vertices (Fig.6). Less
typical (but accommodated here) are 4-8 [Velho and Zorin 2001]
and

√
3 [Kobbelt 2000] schemes.

A coefficient refinementoperator associated with a given topo-
logical refinement operator describes how the coefficients from the
coarser mesh are used to compute coefficients of the finer mesh.

Figure 6:Examples of topological refinement operators: quadri-
section for quadrilaterals and triangles.

We assume that these operators are linear, finitely supported, of lo-
cal definition, and depend only on connectivity.

A subdivision schemeis a pairing of topological- and coefficient-
refinement operators. Examples of common subdivision schemes
include linear splines over triangles or tetrahedra; bilinear or trilin-
ear tensor product splines over quadrilaterals and hexahedra; Doo-
Sabin [1978], Catmull-Clark [1978] and their higher order [Zorin
and Schr̈oder 2001; Stam 2001] and 3D [Bajaj et al. 2002] gen-
eralizations; Loop [1987], Butterfly [Dyn et al. 1990; Zorin et al.
1996], and

√
3 [Kobbelt 2000] schemes for triangles. In the case of

primal subdivision schemes, i.e., those with coefficients at vertices
and splitting of faces/cells as their topological refinement opera-
tor, we distinguish betweenevenandodd coefficients. The former
correspond to vertices that the finer mesh inherits from the coarser
mesh, while the latter correspond to newly created vertices.

A basis functionis the limit of repeated subdivision beginning
with a single coefficient set to unity and all others set to zero. In
this way a basis function is associated in a natural way with each
entity carrying a coefficient, such as vertices in the case of lin-
ear splines (both triangles and tetrahedra) or Loop’s scheme, and
faces in schemes such as Doo-Sabin1 or Alpert’s multi-scaling func-
tions [1993].

A refinement relationis observed by all functions defined
through subdivision. It states that a basis function from a coarser
level can be written as a linear combination of basis functions from
the next finer level

φ
(j)
i (x) =

∑
k

a
(j+1)
ik φ

(j+1)
k (x) (3)

wherej indicates the level of refinement (j = 0 corresponding to
the original, coarsest mesh), andi, respectivelyk index the basis
functions at a given level. The coefficientsa(j+1)

ik can be found by
starting with a single 1 at positioni on levelj, applying a single
subdivision step and reading off all non-zero coefficients. Note that
thea(j+1)

ik generally depend oni, but for stationary schemes they
do not depend onj. Since we assume that the subdivision scheme is
finitely supported only a finite number ofa(j+1)

ik will be non-zero.
In the case of multi-scaling functions we will have matrix valued
a
(j+1)
ik . Thechildren of a basis functionare given by

C(φ
(j)
i ) = {φ(j+1)

k |a(j+1)
ik 6= 0},

while theparentsfollow from the adjoint relation

C?(φ(j)
i ) = {φ(j−1)

k |φ(j)
i ∈ C(φ

(j−1)
k )}.

Thenatural support set, S(φ
(j)
i ), of a basis function is the minimal

set of elements at levelj, which contain the parametric support of
the basis function. For example, linear splines,φ

(j)
i are supported

on the triangles (tetrahedra) incident tovi at mesh refinement level
j; a Loop basis function has the 2-ring of triangles surrounding

1This is not the usual way Doo-Sabin (or other dual schemes) are de-
scribed, but our description can be mapped to the standard view by dualiz-
ing the mesh [Zorin and Schr̈oder 2001]. From a FE point of view this turns
out to be more natural as it ensures that elements from finer levels are strict
subsets of elements from coarser levels.



the given vertex as its natural support set (Fig.7); and a Doo-Sabin
basis function, which is centered at an element in our dualized view,
has a natural support set containing the element and all elements
that share an edge or vertex with it. The adjoint,S?(εjl ), returns the
set of basis functions whose natural support contains the element
εjl . Thedescendants of an element,D(εji ), are all elements at levels
> j which have non-zero intersection (in the parametric domain)
with the given element. Theancestorrelation is defined through
the adjoint,D?(εji ).

Figure 7:Examples of natural support sets. Left to right: linear
splines, Loop basis, bilinear spline, and Catmull-Clark basis.

3.3 Putting It All Together

Synopsis of Theory Given a coarsest-level mesh, consider
the infinite sequence of meshes generated by some subdivision
scheme. Coefficienti on mesh levelj associates to the basis func-
tion φ

(j)
i (x). To describe the current approximation space, we

choose a finite subsetB ⊂ ∪i,jφ(j)
i (x) of all available basis func-

tions; B is theset of active basis functions. The span ofB must
always include the span of the coarsest-level basis∪iφ(0)

i (x). Re-
finement enlarges the space, span

{
Bold

}
⊂ span{Bnew}; unrefine-

ment reduces it. See also our companion paper [Krysl et al. 2002].

0

0
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0

0

1

1

2

2
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Figure 8: Illustrative example of the data structures. Shown in bold
are a pair of active basis functions on mesh levels 0 and 1. The as-
sociated data structures are:B = {φ(0)

0 , φ
(1)
2 }, E = {ε00, ε12, ε13},

S(φ
(0)
0 ) = {ε00, ε01}, S(φ

(1)
2 ) = {ε12, ε13}, Bs(ε00) = {φ(0)

0 },

Ba(ε00) = ∅, Bs(ε12) = {φ(1)
2 }, Ba(ε12) = {φ(0)

0 }, Bs(ε13) =

{φ(1)
2 },Ba(ε13) = {φ(0)

0 }.

Data Structures Our algorithm maintainsB, as well as an asso-
ciated set of active integration elementsE ; recall thatelementrefers
to a face in 2D and a cell in 3D. The set of active basis functions is
useful for error indicators, for example, which iterate over currently
active basis functions to see which must be refined and which can
be unrefined (deactivated) (line 2 ofIntegratePDE). The set of ac-
tive integration cells is required to evaluate the weak-form integrals,
e.g., to compute stiffness matrix entries. These sets are initialized
asB = {φ(0)

i } andE = {ε0i }, i.e., all basis functions (resp. integra-
tion cells) at the coarsest level. For each integration cellε ∈ E we
need to keep track of the active functions whose natural support sets
overlap it: those from the same levelBs(ε) and those from ancestor
levelsBa(ε) (Fig. 8). Initially Ba(ε) = ∅ andBs(ε) = S?(ε) for
ε ∈ E .

Algorithms To evaluate the stiffness matrix, we need to be able
to compute the action of the operator on pairs of basis functions.

Traditionally this is done by iterating over all active elements, com-
puting local interactions and accumulating these into the global
stiffness matrixK. With the data structures described above, we
have all necessary tools at hand to effect this computation:

ComputeStiffness(E)
1 ForEach ε ∈ E do
2 ForEach φ ∈ Bs(ε) do
3 kφφ+= Integrate(φ,φ,ε)
4 ForEachψ ∈ Bs(ε) \ {φ} do
5 kφψ+= Integrate(φ,ψ,ε)
6 kψφ+= Integrate(ψ,φ,ε)
7 ForEachψ ∈ Ba(ε) do
8 kφψ+= Integrate(φ,ψ,ε)
9 kψφ+= Integrate(ψ,φ,ε)

Here we used+= (and later∪= and\=) in C-language fashion to
indicate a binary operation with the result assigned to the left hand
side. ComputeStiffnessconsiders interactions between every pair
of overlapping basis functionsat the coarsest level that captures
the interaction: if coarser functionφc overlaps finer functionφf ,
we evaluate the bilinear form over cells in the natural support set of
φf which also supportφc: {ε | ε ∈ S(φf ) ∧ D?(ε)∩S(φc) 6= ∅}.
With this approach every interaction is considered exactly once, at
a sufficiently fine resolution. To implement this approach, we it-
erate over each active cell (line 1), and consider only interactions
between every same-level active function (line 2) and every active
function either on the same level (lines 3-6) or ancestral level (lines
7-9). For symmetricK appropriate calls toIntegrate can be omit-
ted. In practice, we do not callComputeStiffnessevery time the
basisB is adapted, rather we make incremental modifications toK.

In some settings it may not be possible or desirable to express
the integrand as a bilinear form, e.g., explicit dynamics simulators
may directly compute non-linear forces. In this case, the use of a
stiffness matrix is abandoned and integration is carried out over a
set oftile cells that has the following properties: (a) the set tiles the
integration domain and (b) each tile cell is at least as fine as every
active cell that overlaps it. Given the set of active cells one can
construct this tile set from scratch but it is preferable to maintain it
incrementally.

During the course of the solution process, basis functions are
(de)activated (lines 4-5 ofIntegratePDE) and the data structures
described above must be updated. When a basis functionφ is acti-
vatedB andE as well asBs andBa must be updated:

Activate(φ)
1 B ∪= {φ}
2 ForEach ε ∈ S(φ) do
3 Bs(ε) ∪= {φ}
4 // upon activation initialize ancestor list

5 If ε /∈ E thenBa(ε) ∪= Ancestor(ε) ; E ∪= {ε} fI
6 // add to ancestor lists of active descendants

7 ForEach γ ∈ (D(ε) ∩ E) doBa(γ) ∪= {φ}

Ancestor(ε)
1 ρ := ∅
2 ForEach γ ∈ D?(ε) ∩ E do
3 ρ ∪= Bs(γ) ∪Ba(γ)
4 return ρ

Activate first augments the set of active functions (line 1), and then
iterates over each cell in the natural support set ofφ (lines 2-7).
Sinceφ is active, it belongs in the table of same-level active func-
tions of every supporting cell (line 3). Furthermore sinceφ is active
its supporting cells are active (line 5): they are activated (if inactive)



by adding them to the set of active cells and initializing their table
of ancestral active-functions. Note here the call toAncestor(ε),
which returns all active coarser-level basis-functions whose natural
support set overlapsε. Finally, all active descendants of the sup-
porting cell also supportφ, hence we update their tables of ancestral
active-functions (line 7).

Conversely, to deactivate a basis functionφ we proceed as fol-
lows:

Deactivate(φ)
1 B \= {φ}
2 ForEach ε ∈ S(φ) do
3 Bs(ε) \= {φ}
4 // deactivate element?

5 If Bs(ε) = ∅ then E \= {ε}
6 // update ancestor lists of active descendants

7 ForEach γ ∈ D(ε) ∩ E doBa(γ) \= {φ}

As before, we first update the set of active functions (line 1) and
then iterate over the supporting cells (lines 2-7). Sinceφ has be-
come inactive, it is removed from the table of same-level active-
functions of every supporting cellε (line 3) and from the table
of ancestral active-functions of every active descendant ofε (line
7). Furthermore if the supporting cell is left with an empty active-
function table then it is deactivated (line 5).

Assuming that an appropriate error estimator is at hand we can
consider a wide variety of adaptive solver strategies built on top
of Activate. Here we present two refinement strategies, hierarchi-
cal and quasi-hierarchical, as applications ofActivate andDeacti-
vate (there are other attractive strategies, e.g., selectively activat-
ing individual functions). The refinement algorithms take some ac-
tive basis functionφ ∈ B, modify the basis and update the vec-
tor of DOFsu. Similarly, the unrefinement algorithms take some
previously-refined basis functionφ 6∈ B.

HierarchicalRefine(φ)
1 ForEachψ ∈ C(φ) do
2 If ψ /∈ B ∧ Odd(ψ) then Activate(ψ) ; uψ := 0 fI

HierarchicalUnrefine(φ)
1 ForEachψ ∈ C(φ) do
2 If ψ /∈ B ∧ Odd(ψ) then Deactivate(ψ)

QuasiHierarchicalRefine(φ)
1 Deactivate(φ)
2 ForEachψ ∈ C(φ) do
3 If ψ /∈ B then Activate(ψ) ; uψ := 0 fI
4 uψ+= aφ,ψuφ

QuasiHierarchicalUnrefine(φ)
1 Activate(φ) ; initialize uφ
2 ForEachψ ∈ C(φ) do
3 If ψ /∈ B then Deactivate(ψ)

Hereuψ is the coefficient associated withψ, andaφ,ψ is the weight
of ψ in the refinement relation ofφ (Eqn.3). Refinement is “loss-
less,” whereas unrefinement must be “lossy” except in the special
case that the current approximation lies inside the new unrefined
approximation space (as noted in the literature, unrefinement error
can be hidden using interpolation techniques). Line 1 ofQuasi-
HierarchicalUnrefine initializesuφ by projecting the current ap-
proximation into the unrefined space, e.g., by choosing theuφ that
(for some given norm‖ · ‖) minimizes∥∥∥∥∥∥uφφ(x)−

∑
ψ∈C(φ)

uψψ(x)

∥∥∥∥∥∥ .

In certain settings, it is important that the active functions are
linearly independent. This is the case, for example, in classical FE
applications, as a linear dependency in the basis leads to a singular
stiffness matrix. If only hierarchical refinement is applied then the
active set is always a proper basis. If other refinement strategies are
used (e.g., quasi-hierarchical, and selective (de)activation of indi-
vidual functions) then maintaining a proper basis requires special
care. Our companion paper [Krysl et al. 2002] treats the specific
case of CHARMS applied to classical FEs, i.e., a setting in which
basis functions are supported on a 1-ring. There we present effi-
cient algorithms for maintaining linear independence of the active
setB during (un)refinement. In more general settings, approaches
such as those used by Kraft may be adopted [1997]. Finally, in
some settings, such as our explicit time-integration of non-linear
thin-shells (Section4), we observe that the solution process remains
well-behaved even without linear independence of the active set.

With this, all the basic elements are in place to build simula-
tors. What remains to be added are standard solvers for the result-
ing (non-)linear algebraic systems, error estimators appropriate for
the equation to be solved, and a quadrature routine.

4 Example Applications

Here we show that CHARMS can be profitably applied to many ap-
plication domains including animation, modeling, engineering, and
medical simulation/visualization. To that end, we present exam-
ple applications covering different types of elements, in 2D and 3D
settings, with different basis functions, using hierarchical as well
as quasi-hierarchical refinement. Although we have implemented
these examples, our aim here is to provide a survey of the applica-
tions; to that end we have omitted details including problem specific
error estimators. These are best left to the original literature.

The 2D examples employ subdivision basis functions to simu-
late thin flexible structures including a balloon, a metallic cylinder,
and a pillow. The 3D examples employ linear tetrahedra and tri-
linear hexahedra to address bio-medical problems: (1) brain vol-
ume deformation during surgery; (2) stress distribution in a human
mandible; and (3) potential fields in the human thorax for electro-
cardiography (ECG) modeling.

4.1 Non-Linear Mechanics of Thin-Shells

The thin-shell equations describe the behavior of thin flexible struc-
tures. Examples include aluminium cans, cloth, Mylar, and paper
among others. The underlying PDEs, based on the classic Kirch-
hoff Love theory [Timoshenko and Woinowsky-Krieger 1959], de-
scribe the mechanical response of the surface to external forces in
terms of the first and second fundamental forms of the original and
deformed surfaces. Thin-shellsare closely related to thin-plates,
which are useful for variational geometric modeling and intuitive
direct manipulation of surfaces. Thin-plate equations assume that
the undeformed geometry is flat: the resulting equations are easier
to solve but cannot capture subtleties of the nonlinear dynamic be-
havior of more complex shapes (Figs.1 and below). Thin-shell
equations accommodate arbitrary initial configurations and cap-
ture nonlinearities important for accurate modeling of stability phe-
nomena, e.g., complex wrinkling patterns, buckling and crushing
(Figs.9 and11). Subdivision bases are ideal for discretizing thin-
shell PDEs. For example, Loop basis functions (a) naturally satisfy
theH2 smoothness requirement of these fourth order PDEs; (b)
are controlled by displacements (not derivative quantities); and (c)
easily model arbitrary topology. Cirak introduced the discretiza-
tion of thin-shells using Loop basis functions and presented non-
adaptive simulations [2000; 2001]. Adaptivity is essential for ef-
ficiently modeling complex material phenomena such as wrinkling
and buckling; such simulations were the original motivation behind



Figure 9:Thin-shell simulation of inflating metal-foil balloon (left);
red spheres represent active basis functions (right). Note the con-
centration of finer basis functions near wrinkles and folds.

the development of CHARMS. Here we present one static and two
dynamic simulations that demonstrate the application of CHARMS
to thin-shells using Loop basis functions; the accompanying movie
(filename: CHARMS.mov) is on the Conference Proceedings CD-
ROM and DVD-ROM.

Inflating Balloon We simulated the dynamic behavior of a
rapidly inflating metal-foil balloon (Fig.9). The initial flat config-
uration has 50 nodes, and the fully-inflated configuration has 1000
active nodes. We applied internal pressure to the balloon and used
quasi-hierarchical refinement over the course of the 5ms simulated
inflation. Figure10shows the distribution of active nodes and cells
near the end of the simulation; note the sparsity at the finest levels.
Non-adaptive approaches require a very fine grid throughout this
simulation, in contrast our adaptive approach begins with a coarse
mesh and adds only necessary detail.

Poking Balloon We poked the inflated balloon with a “finger”
and used quasi-hierarchical refinement as well as unrefinement to
adapt the basis near the contact region.

Figure 10:Visualization of the active nodes and cells at the end of
inflation. The second through fourth levels of the six-level hierarchy
are shown (left to right); the fourth and finer levels are sparsely
populated.

Pillow Using the balloon-inflation technique we modeled a pil-
low (Fig. 1). Starting with two rectangular pieces of fabric, we
applied internal pressure and solved for the equilibrium state. The
adapted solution captures the fine wrinkles of the fabric. The pillow
uses a thicker material (cloth) than the balloon (metal-foil), thus it
forms characteristically different wrinkling patterns.

Crushing Cylinder We animated the dynamic behavior of an
aluminium cylinder under compression (Fig.11). The crushing was
applied as follows: the bottom rim of the cylinder was fixed; the
vertical velocity (only) of the top rim was prescribed using a linear
ramp. The final animation shows the rapid buckling patterns in
slow-motion.

4.2 Volume Deformation as Surgery Aid

Surgeons plan a brain operation based on landmarks from a time-
consuming, pre-operative, high-resolution volume scan of the pa-
tient [Warfield et al. 2000]. After opening the skull, the surgeons
may acquire additional low-resolution volume scans, which show

Figure 11:Thin-shell simulation of a crushing cylinder. (left) re-
gions with high bending force density are indicated in red; (middle)
these regions have a high concentration of finer basis functions,
(right) consequently the animation captures the buckling mode and
its sharp folds.

the deformation of the brain boundary surface, e.g., collapsing un-
der gravity. However, these rapid scans do not encode landmarks.
Warfield uses physical simulation with tetrahedral finite elements to
infer the volume deformation from the position of the brain bound-
ary [2000]. He maps the high-resolution scan via the computed
volume deformation, and shows surgeons the shifted landmarks.
CHARMS adapts the discretization to maintain high accuracy.

We modeled the volumetric deformation of the brain following
the removal of cancerous tissue in the left hemisphere. Our mate-
rial model is an isotropic elastic continuum [Zienkiewicz and Taylor
2000]; as the deformations are small we adopted linearized equa-
tions of equilibrium.

Figure 12:The initial and refined models. Dorsal (cut-away) view
at the location of the resection.

The initial model has 2,898 nodes (5,526 DOFs) and 9,318 tetra-
hedral elements. We first solve for the coarse displacement field,
and then refine quasi-hierarchically to 64,905 DOFs, aiming for
error equidistribution. Our error metric is the strain energy den-
sity. Figure12 shows the initial and refined meshes side by side.
For comparison, a uniformly finer mesh with the same precision as
the finest regions of the adapted grid would involve approximately
300,000 DOFs. Solving the volume deformation problem for the
refined mesh takes 38s on a 600MHz PIII laptop with 256MB: with
a two- or four- CPU PC our simulation is fast enough for actual
surgical interventions.

Figure13 shows the refined FE model viewed in the caudal di-
rection (left). The cavity after resection is visible in this view. Note
that very little refinement is introduced next to the cavity itself. The
deformation of the brain due to sagging under gravity is visualized
in Fig. 1 (color coded displacement amplitude with zero: red and
maximum: purple), where the skull has been included as a visual
aid.

4.3 Stress Distribution in Human Mandible

Numerical simulations are widely used in biomechanics to visual-
ize response of skeletal structures to mechanical loads, as planning



Figure 13:Refined FE model of the brain in a caudal view with
color coded displacement amplitude (zero: purple; maximal: red).
Notice the cavity resulting from the surgical removal of tissue in
the left hemisphere. On the right color coded lateral displacement
amplitude displayed on a dorsal cutting plane.

Figure 14:Adaptive refinement in response to stress. Unstressed
mandible composited with skull (left); chewing on hard candy ex-
erts a force on the jaw (right). The model (1,700 DOFs) is refined
(4,200 DOFs) in the vicinity of the applied force as well as near the
corner and attachment points.

aid for operative treatments, design of implants, and exploration of
ostheosynthesis methods [Kober and Muller-Hannemann 2000].

Here we present an adaptive simulation of the response of the
human mandible to the pressure involved in biting on a hard object.
The internal structure of the bone is very complex, but for the pur-
pose of this simulation we consider the bone to be homogeneous
and isotropic. The initial model is a coarse approximation of the
geometry of the human mandible. Figure14shows the original and
refined FE model.

CHARMS refinement is achieved through octasection of each
cube in the[−1, 1]3 reference configuration with odd vertices
placed at edge, face, and cell barycenters. The initial mesh con-
sists of 304 hexahedral, trilinear cells (1,700 DOFs; Figure14, left).
The hierarchically refined model, based on strain-energy error in-
dication, captures the stress concentration immediately underneath
the pressure point and in the thinner extremities of the mandible.
It has approximately 4,200 DOFs (Fig.14, right). We also ran this
simulation with quasi-hierarchical refinement with practically iden-
tical results. Figure15 shows a close-up of the refined hierarchical
model. Active basis functions are shown as green dots, and are sup-
ported on the cells sharing that vertex. The refined basis consists of
functions on three levels in the mesh hierarchy.

4.4 Potential Field in the Human Torso

Inverse problems, in which heart surface potentials are determined
from measurements on the outer surfaces of the upper torso, are
of particular importance in computer-assisted electrocardiography
(ECG). An adaptive procedure for this problem has been outlined

Figure 15:Mandible FE model with a hierarchical basis. Green
dots indicate nodes associated with active basis functions. Top row:
quadrature cells from all levels with active nodes; cells supporting
basis functions on level 1 are colored blue. Bottom row: cells sup-
porting basis functions on level 2 and 3 are respectively colored
purple and tan. Note that cells at different levels overlap, and the
basis functions active on the finer levels vanish along the internal
boundaries of their supporting cells, thereby guaranteeing compat-
ibility.

Figure 16:ECG field analysis example. On the left the initial grid;
on the right the quasi-hierarchically refined grid (four levels). Red
balls indicate active basis functions, cells of different colors indi-
cate the support of basis function on different levels. Initial surface
grid courtesy of the Center for Scientific Computing and Imaging,
University of Utah.

by Johnson [2001]. Here we show how CHARMS can be applied
to a subproblem of inverse ECG, the adaptive solution of the gen-
eralized Laplace equation.

Figure 16 (left) shows the initial grid with 900 nodes; (mid-
dle) a three-level quasi-hierarchically refined grid with 8,500 nodes;
(right) the computed field of a dipole located on the epicardial sur-
face is visualized through isopotential surfaces (assuming isotropic,
homogeneous conductivity).

5 Conclusion and Future Work

CHARMS provide a simple framework for the construction of
adaptive solvers for PDEs with applications in computer graphics,
engineering, and bio-medical computing. The methods exploit re-
finability of basis functions and use it as a literal prescription for
adaptive enrichment of approximation spaces used in Galerkin dis-
cretizations of PDEs.

On the theory side, CHARMS provide no surprises; the approach
can reproduce many well studied adaptive approximation spaces of
interest. The main advantage of CHARMS lies in the implemen-
tation ease. Traditional, element based, adaptive refinement strate-



gies are difficult to implement, especially in 3D. Some bases, such
as higher order B-splines or subdivision surfaces do not even sup-
port elementwise refinement. In contrast, the algorithmic issues of
compatibility are entirely circumvented in CHARMS, leading to
rapid development and efficient management of adaptive solvers.
For animations, the refinability property also avoids troublesome
“popping” artifacts during refinement.

In future work we hope to explore hierarchical solvers. In prin-
ciple all the machinery to apply multigrid and wavelet precondi-
tioning techniques are in place, because of our use of refinement
relations.
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