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SUMMARY

In this paper, we analyze complex crack problems in elastic media using harmonic enrichment functions

in a higher-order extended finite element implementation. The numerically computed enrichment

function of a crack is the solution of the Laplace equation with discontinuous Dirichlet boundary

condition along the crack, and its interaction with branches or other cracks is realized by imposing

vanishing Neumann boundary conditions along those cracks. The classical finite element displacement

approximation is enriched by adding the enrichment function of a crack through the framework of

partition of unity. A nested subgrid mesh is used in the Laplace solve with a rasterized approximation

of a crack, which simplifies the numerical integration—no partitioning of finite elements is required.

Harmonic enrichment functions readily permit the extension to handle multiple interacting and

branched cracks without any special treatment around the junction points. Several numerical examples

are presented that affirm the accuracy and effectiveness of the method when applied to complex crack

configurations under mixed-mode loading conditions. Copyright© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the finite element method (FEM), conforming elements are used to model discontinuities

in the displacement field for fracture analyses. The elements in the vicinity of the crack-

tip must be refined to capture the singular stress field and as the crack grows, remeshing

is required to model the advance of the crack front. The extended finite element method

(X-FEM) [1, 2] takes advantage of a priori knowledge about the asymptotic solution for

crack problems by locally adding discontinuous and/or crack-tip asymptotic functions to

the approximation through the framework of partition of unity. This enables the modeling

of cracks without the need for remeshing, and optimal convergence rates are realized [3, 4].

Modeling branched and intersecting cracks is also possible using the X-FEM by introducing

the junction enrichment function, which must be added to the solution space to represent

the displacement field around the junction point [5–8]. Introduction of the junction function

is problem-dependent and requires additional checks in the implementation when cracks

branch or coalesce. In the X-FEM, stiffness matrix calculation over enriched elements involves

numerical integration of discontinuous and/or singular functions. Integration of discontinuous

functions is handled in one of several ways: integration over partitions [2], integration of

equivalent polynomials [9], quadratures with variable weights [10], conformal mapping [11],

or generalized Gaussian quadrature for discontinuous functions [12, 13]. For singular crack-tip

functions, higher-order quadratures [2] or singular mapping over the partitions [3, 4, 13–15]
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HIGHER-ORDER HX-FEM FOR COMPLEX CRACK PROBLEMS 3

is used. Numerical integration can be particularly cumbersome when dealing with multiple

intersecting or branched cracks. Using harmonic enrichment functions simplifies the numerical

integration and a single approach emanates for accurate integration over the enriched elements,

regardless of the cracks configuration or crack-element interaction.

Kaufmann et al. [16] proposed a new enrichment scheme in which the numerical enrichment

function of a crack is obtained through the solution of the Laplace equation with suitable

boundary conditions. The resulting (harmonic) enrichment function naturally generalizes to

the case of branched and intersecting cracks without any special considerations about the

junction point. Mousavi et al. [17] used the harmonic enrichment function to model cracks in

an extended finite element setting. Herein, we refer to this implementation as harmonic X-FEM

or HX-FEM. In this paper, we apply the higher-order HX-FEM (see References [4, 8, 18, 19]

for previous studies on higher-order X-FEM) to complex crack geometries and show that

harmonic enrichment functions provide a unifying procedure for modeling cracks with notable

simplifications in the implementation.

A brief description of the extended finite element method is given in Section 2. The algorithm

for constructing the harmonic enrichment functions is described with an illustrative example

in Section 3. Accurate numerical integration and quadrature requirements in the HX-FEM

are addressed in Section 4.1, and in Section 4.2, the rate of convergence of HX-FEM with

higher-order elements is studied. Several numerical examples, including cracks with complex

geometries, multiple closely interacting cracks and an array of branched cracks are solved and

the stress intensity factors (SIFs) are presented in Section 5. We close with our main findings

and a few final remarks in Section 6.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–29
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2. EXTENDED FINITE ELEMENT METHOD

Consider the domain Ω with boundary Γ = Γu∪Γt∪Γc. The displacement boundary condition

is prescribed over Γu and the traction is prescribed over Γt. The boundary Γc is composed of

all crack faces that are assumed to be traction-free. The strong form for elastostatics is:

∇ · σ = 0 in Ω

u = ū on Γu

σ · n = t̄ on Γt (1)

σ · n = 0 on Γc,

where σ is the Cauchy stress tensor, u is the displacement, n is the unit outward normal and

ū and t̄ are the prescribed displacements and tractions on Γu and Γt, respectively. On using

the linear elastic constitutive law σ = C : ε, the weak form of the boundary-value problem in

(1) is: find u ∈ U such that

∫
Ω

ε(u) : C : ε(v)dΩ =
∫

Γt

t̄ · vdΓ ∀v ∈ U0, (2)

where U and U0 are the trial and test spaces, which include functions that are discontinuous

across Γc, ε is the small-strain tensor, and C is the material moduli tensor. After discretizing

the domain, the trial function in the extended finite element method takes the following general

form [5]:

uh(x) =
∑
I∈N

NI(x)uI +
nc∑

c=1

∑
I∈Nc

NI(x)Hc(x)aIc

+
nt∑

t=1

∑
I∈Nt

4∑
α=1

NI(x)Φαt(x)bIαt +
nj∑

j=1

∑
I∈Nj

NI(x)Jj(x)cIj , (3a)
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with

{Φαt(x)}4
α=1 =

{√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin θ sin

θ

2
,
√
r sin θ cos

θ

2

}
, (3b)

where N is the set of all nodes in the mesh, Nc is the set of nodes whose shape function support

is cut by the interior of the crack c,Nt is the set of nodes whose shape function support contains

the crack-tip t andNj is the set of nodes that are enriched for the junction j. In addition, NI(x)

are the finite element shape functions, Hc(x) is the generalized Heaviside function defined with

respect to crack c, Φαt(x) in (3b) are the crack-tip asymptotic functions defined with respect

to crack-tip t (r and θ are the polar coordinates of a point in the coordinate system attached to

the crack-tip), Jj(x) is the junction function corresponding to the jth junction. The unknown

coefficients of node I corresponding to the classical, Heaviside, near-tip and junction shape

functions are uI , aIc, bIαt and cIj , respectively. The number of cracks, crack-tips and junctions

present in the domain are indicated by nc, nt and nj , respectively.

In (3), multiple near-tip and junction enrichment functions are required in addition to the

generalized Heaviside function to realize the correct displacement field in the presence of a

crack and its interactions with other existing cracks in the domain. On the other hand, the

harmonic enrichment function for a given crack is computed by considering its interactions

with its branches and all other intersecting cracks. Thus, flexibility accrues and the complexity

of the implementation is also reduced. The extended finite element approximation for crack

modeling with harmonic enrichment functions is [17]:

uh(x) =
∑
I∈N

NI(x)uI +
nc∑

c=1

∑
I∈Nc

NI(x)ψc(x)aIc, (4)

where ψc(x) is the harmonic enrichment function of crack c. On substituting the trial and test

approximations of the form (4) into (2), and using the arbitrariness of nodal variations, the
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6 S. E. MOUSAVI ET AL.

discrete system of equations are obtained.

3. HARMONIC ENRICHMENT FUNCTIONS

We construct the harmonic enrichment function of a crack via the solution of the Laplace

equation [16]:

∆ψc(x) = 0 in Ω`
c, (5)

with appropriate boundary conditions. In (5), ψc is the enrichment function of crack c, ∆ is

the Laplacian operator and Ω`
c contains all the elements that are enriched for crack c and

is called the Laplace domain of crack c. Solving the Laplace equation is a separate problem

that is done over a different discretization (D`
c) and is independent of the discretization used

for the elasticity problem (D). One can solve the Laplace equation and obtain the numerical

enrichment function by either finite differences as in Reference [16] or via finite elements as

adopted in Reference [17] and herein. We illustrate the construction of the harmonic enrichment

function through a sample problem with multiple cracks.

Consider the domain shown in Figure 1a with two cracks, one of which has a branch. The

branched crack is modeled as a main crack, MON , and a branch OP . A sample discretization

of the domain with linear quadrilateral elements is shown in Figure 1b. All the nodes whose

basis function supports are cut by a crack, are enriched for the crack. In Figure 1b, the nodes

that are enriched for cracks AB, MON and OP are marked with filled circles, empty squares

and asterisks, respectively.

First, we construct the enrichment function for the crack AB, namely ψAB . The domain over

which ψAB is evaluated during the element stiffness matrix calculations, is limited to the union

of the elements that are enriched for this crack; hence, the Laplace domain for crack AB, Ω`
AB ,

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–29
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(a) (b) (c)

(d) (e) (f) (g)

Figure 1. Algorithm for construction of harmonic enrichment functions. (a) geometry of the domain

and crack configuration; (b) enriched nodes and Laplace domains; (c) subgrid mesh and rasterized

approximation of the crack AB (Manhattan path); (d) enrichment function of crack AB; (e) subgrid

mesh and rasterized approximation of the crack OP ; (f) enrichment function of crack MON ; and (g)

enrichment function of crack OP .
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must be selected so that it covers all of the elements that are enriched for the crack AB. For

simplicity, we choose the Laplace domain of a crack, as the smallest box that contains all the

elements that are enriched for the corresponding crack (box 1 in Figure 1b). Note that there is

a minor difference between the way we pick Ω`
AB and the way it was decided in Reference [17]:

we choose a more compact domain for the Laplace equation, resulting in a faster solution

without loss of accuracy. The Laplace domain is discretized with m×m subelements over each

enriched element (nested discretization). We refer to the the discretization for crack AB as

D`
AB. The crack-path ΓAB is approximated with a zigzag line (called rasterized approximation

or Γr
AB) that passes through the subelements of D`

AB but does not cut them (see Figure 1c). In

order to model the discontinuity along the crack segments, the harmonic enrichment function

must be discontinuous along Γr
AB . To realize the discontinuity, the nodes of the Laplace mesh

that coincide with Γr
AB are duplicated and the connectivity of the subelements is modified

so that the ones above and below the crack are connected to distinct copies of a node with

the same coordinates. Dirichlet boundary conditions are imposed over the duplicated nodes:

ψAB = +1 and ψAB = −1 are assigned to the duplicated nodes above and below the crack,

respectively, and ψAB = 0 is assigned to the crack-tip node(s). At this point, if Ω`
AB contains

any other crack, for example, in the case of intersecting, closely interacting, or branched cracks,

a vanishing Neumann boundary condition must also be imposed along those cracks. To realize

this condition, the rasterized path of the interacting cracks are also extracted and the nodes

of the domain that coincide with the zigzag crack-path are duplicated. The subelements of

D`
AB are all alike which makes it possible to calculate the element stiffness matrix for one

and insert it into the appropriate rows and columns of the Laplace stiffness matrix. After

setting up the Laplace mesh and boundary conditions, a linear solver is used to obtain the

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–29
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HIGHER-ORDER HX-FEM FOR COMPLEX CRACK PROBLEMS 9

numerical enrichment function. Since the domain of the Laplace equation is restricted to the

crack size, the calculation of the harmonic enrichment function only entails a fraction of the

total computational cost for the problem. The enrichment function of crack AB is depicted

in Figure 1d.

The Laplace domain for the crack OP , i.e., Ω`
OP , is box 3 in Figure 1b and its discretization,

D`
OP , is shown in Figure 1e. After setting the Dirichlet boundary conditions for Γr

OP , it

is observed that Ω`
OP contains the crack MON , in addition to the branch OP . Therefore,

Γr
MON is found and the nodes of D`

OP that coincide with Γr
MON are duplicated to realize

a zero Neumann boundary condition along the crack MON . Γr
OP and Γr

MON are shown

in Figure 1e with zigzag lines. The enrichment function of cracks MON and OP are shown in

Figures 1f and 1g, respectively. Note that in Figure 1g the enrichment function of the branch

automatically takes on the form of the junction function of Daux et al. [5] in the region close

to the branching point; whereas far from it, the generalized Heaviside function is reproduced.

Consequently, a unified procedure emerges to construct the enrichment function for all the

cracks with no special considerations for the branched crack or the near-tip region.

The algorithm that follows summarizes the construction of the harmonic enrichment

function.

Algorithm: Construction of the harmonic enrichment function

Input: domain of the problem Ω with the discretization D using quadrilateral finite elements;

numc cracks {Γi}numc
i=1 ; number of divisions over each enriched element m×m

Output: harmonic enrichment function of crack c, ψc, which is numerically computed over its

corresponding discretization D`
c

1. Find Ω`
c: the smallest box containing all the elements enriched for crack c.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–29
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2. Discretize Ω`
c using m×m subelements over each enriched element and obtain D`

c.

3. Find Γr
c : the rasterized approximation of crack c over D`

c.

4. If Ω`
c contains any other crack, find their rasterized approximation as well: {Γr

i }i∈Ic with

Ic being the set of cracks interacting with crack c.

5. Duplicate all nodes of D`
c that are coincident with Γr

c and change the connectivity of the

subelements of D`
c so that the subelements above and below Γr

c are connected to distinct

copies of the nodes.

6. For the nodes in Γr
c and their copies, assign the Dirichlet boundary condition: ψc = +1

for the nodes connected to the subelements above Γr
c and ψc = −1 for the ones below

Γr
c . If crack c has a tip(s), assign ψc = 0 for the tip node(s).

7. Repeat step 5 for the cracks {Γr
i }i∈Ic .

8. Solve the Laplace equation with the prescribed Dirichlet and Neumann boundary

conditions and get ψc.

We described the algorithm for constructing harmonic enrichment functions for quadrilateral

elements and subelements used for discretizing Ω and Ω`
c. The reader can readily infer that

generalizing the algorithm to other types of elements, such as triangular or polygonal elements,

is straightforward and needs minor changes to the above algorithm.

4. NUMERICAL INTEGRATION AND CONVERGENCE STUDY

4.1. Numerical integration

A well-known issue in partition of unity methods with non-polynomial enriched basis functions

is the numerical integration of the basis function derivatives. In the X-FEM, the gradient of

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–29
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HIGHER-ORDER HX-FEM FOR COMPLEX CRACK PROBLEMS 11

the enrichment functions has discontinuities and/or singularities; therefore, the computation

of stiffness matrix entries in enriched elements requires additional care. Some of the methods

for the integration of discontinuous functions include integration by dividing the elements

into conforming partitions [2], integrating equivalent continuous polynomials [9], integration

using quadratures with variable weights [10], conformal mapping over the cut elements [11],

and generalized Gaussian quadratures for discontinuities [12, 13]. Similarly, the integration of

the singular functions over the crack-tip elements can be done using higher-order standard

Gaussian quadratures [2]. However, more efficient and accurate results can be obtained by

using transformations that resolve the singularity [3, 4, 13–15]. By contrast, the harmonic

enrichment function is the finite element solution of the Laplace equation: it is a piecewise

bilinear function within the subgrid elements, and hence integration of the weak form in the

HX-FEM can be done exactly using standard Gauss quadratures over the subgrid and there

is no need to introduce special quadrature rules over the enriched elements.

In general, an entry of the stiffness matrix of an element corresponding to the degrees of

freedom i and j can be written as:

kij =
∫

Ωe

BT
i CBjdV, (6)

where C is the material constitutive matrix, and Bi and Bj are the derivatives of the shape

functions corresponding to the extended degrees of freedom i and j. The material matrix is a

constant matrix for linear elastic fracture mechanics and for simplicity we replace it with the

identity matrix. On assuming i and j to be enriched degrees of freedom, (6) can be written as:

kij =
∫

Ωe

∇(Niψ) · ∇(Njψ)dV, (7)

where ψ is the harmonic enrichment function, which is bilinear with respect to x and y, and

Ni and Nj are the classical finite element shape functions. In this study, we adopt bilinear

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–29
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quadrilateral (Q4), biquadratic (serendipity) quadrilateral (Q8), and bicubic (serendipity)

quadrilateral (Q12) elements. The integrand of (7) has maximum orders (in each coordinate

direction) of 4, 6 and 8 for Q4, Q8 and Q12 finite elements, respectively. As a result, 3 × 3,

4 × 4 and 5 × 5 tensor-product rules over the subgrid are needed for exact integration over

bilinear, biquadratic, and bicubic elements, respectively. When i and/or j are classical degrees

of freedom, the term ψ is not present in (7), and a lower order quadrature suffices. Although

this is the requirement for exact numerical integration of the weak form, the error of the

numerical integration scheme is only required to be lower than the approximation error of

the method—a less-accurate quadrature may be adequate. To clarify this issue, we perform a

systematic study to determine the minimal quadrature in the HX-FEM.

Consider the well-known problem of an oblique center-crack in an infinite plate under biaxial

loading. The crack has unit length and is inclined at an angle of 45◦. This problem has an

analytical solution [20] and has been solved using X-FEM [13, 21] and HX-FEM [17]. The

goal here is to find the minimum quadrature requirement for different subgrid refinements

and element types so that the accuracy of SIF calculations is not compromised. The stress

intensity factors are calculated and presented in Figure 2 for bilinear, biquadratic and bicubic

elements and different levels of subgrid refinement. It is observed that a 2× 2 tensor-product

quadrature rule over the subgrid is sufficient to obtain accurate SIFs. In the convergence study

of Section 4.2 and in the numerical examples in Section 5, a 2 × 2 Gauss quadrature rule is

used over each subelement of the subgrid mesh.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–29
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(a) (b)
Figure 2. Inclined center-crack in an infinite plate: convergence of stress intensity factors with number

of integration points in each direction over the subgrid. A 40×40 mesh with bilinear, biquadratic and

bicubic elements is used. (a) Mode I stress intensity factor; and (b) Mode II stress intensity factor.

The thick solid lines represent the exact solutions.

4.2. Convergence study

Convergence of the HX-FEM for bilinear elements was studied in Reference [17], and a rate

of convergence of one-half in the energy norm was realized for fracture problems. The sub-

optimal rate of convergence is attributed to the fact that the harmonic enrichment function

does not reproduce all the terms that are present in the displacement field around the crack-tip,

whereas in the X-FEM with topological enrichment [3, 4], the analytic near-tip functions are

added to the solution space in a fixed area around the crack-tip, and as a result, the optimal

rate of convergence is recovered. Here, we study the convergence of HX-FEM for Q8 and Q12

elements, using the same problem that was considered in Reference [17].

Consider the rectangular plate covering the region (−1, 1) × (−1, 1) with a crack defined

as the line segment (−1, 0) − (0, 0). Young’s modulus E = 1 and the Poisson ratio ν = 0

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–29
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14 S. E. MOUSAVI ET AL.

are assumed for the material of the plate. Dirichlet boundary condition is assumed over the

four edges of the plate: mode I displacement field, corresponding to KI = 1 and KII = 0

(discontinuous along the crack) is imposed over the edges of the plate. The relative energy

norm of the error is evaluated as:

Erel =
||u− uh||E(Ω)

||u||E(Ω)
=

(∫
Ω
(ε− εh)T C (ε− εh)dΩ

)1/2(∫
Ω

εT C εdΩ
)1/2

, (8)

where u and uh are the exact and extended finite element solutions for the displacement field,

ε and εh are the exact and extended finite element solutions for the strain tensor, and C is

the constitutive matrix. A sequence of meshes is considered: 10× 10, 20× 20, 40× 40, 80× 80

and 160 × 160, with a 6 × 6 subgrid over the enriched elements, to calculate the harmonic

enrichment function. See Figure 3a for a sample mesh and the corresponding enriched nodes.

The relative error in the energy norm is depicted in Figure 3b for linear, quadratic and cubic

elements, and rates of convergence of 0.499, 0.502 and 0.502, respectively, are realized. The

rates of convergence agree with finite element theory for the solution of
√
r-singular problems.

The absolute error is reduced when higher-order elements are used, but the rate of convergence

is not improved. Similar rates of convergence are obtained when a 3×3 subgrid is used for the

enrichment function computations; however, the absolute error in the energy norm is greater

in this case.

5. NUMERICAL RESULTS

In this section, we present several numerical examples to show the capabilities of adopting

harmonic enrichment functions in the X-FEM. Our examples include multiple collinear cracks,

large zigzag cracks, array of branched cracks and finally multiple closely interacting cracks. In

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–29
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(a) (b)

Figure 3. Convergence of the HX-FEM with linear, quadratic and cubic elements. (a) enriched nodes;

and (b) relative energy norm of the error for Q4, Q8 and Q12 elements.

order to discretize the domain, we use bilinear and biquadratic finite elements. In the following

subsections, whenever the so-called standard version of the X-FEM with the generalized

Heaviside function and near-tip asymptotic functions is used, it is labeled as X-FEM; and

whenever the harmonic enrichment function is used, it is called HX-FEM. In all the examples,

the material is assumed to be homogeneous and isotropic with Young’s modulus E = 105 and

Poisson’s ratio ν = 0.3. Plane strain condition is used for the examples in Sections 5.1 to 5.4

and plane stress condition is assumed for the example in Section 5.5.

5.1. Three collinear cracks in a large finite plate

First, we solve the problem of three collinear cracks at the middle of a plate and two ligaments

between the interior crack tips. The plate is under uniaxial loading perpendicular to the crack

direction as shown in Figure 4a. In an infinite plate, this problem admits an exact solution [22].

We consider a large finite plate with dimensions 400× 400 and crack half-length of a = 1 with

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–29
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16 S. E. MOUSAVI ET AL.

Table I. Normalized mode I stress intensity factor for three collinear cracks in a large finite plate.a

SIFs
X-FEM HX-FEMb

Q4 Q8 Q4 Q8

KA
I /K

A∗
I 0.975 0.989 0.971 0.985

KB
I /K

B∗
I 0.988 0.991 0.970 0.982

KC
I /K

C∗
I 0.990 0.991 0.965 0.991

a Reference solution: KA∗
I = 1.9679, KB∗

I = 2.2749 and KC∗
I = 2.3421 [23].

b Each enriched finite element is divided into 3× 3 subgrid elements.

ligament length k = 1/2, similar to the one solved by Yavuz et al. [23]. Since the domain

is very large with respect to the crack dimensions, we use a Cartesian refinement of the

mesh: larger element size is used in the region far from the cracks, and in the vicinity of the

cracks smaller elements are employed so that a compromise between accuracy and efficiency

is attained. A sample of the discretization of the domain is illustrated in Figures 4b and 4c.

The harmonic enrichment function is shown in Figure 4d. The numerical results for the SIFs

are given in Table I which show good agreement with the ones obtained by Yavuz et al. [23].

5.2. Zigzag edge-crack in a semi-infinite plate

Consider a zigzag edge-crack in a semi-infinite plate under uniaxial loading as shown

in Figure 5a. The crack has N segments, each of which has a length of a and makes an angle of

45◦ with the horizontal. A uniform mesh with 400 linear elements in each direction is used over

the entire domain and the domain size is increased until the results converge to the ones from

the semi-infinite domain. We solve the case of N = 6 segments and a domain size of 160× 160

is taken for a crack-segment length of a = 1 to adequately represent a semi-infinite domain.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–29

Prepared using nmeauth.cls



HIGHER-ORDER HX-FEM FOR COMPLEX CRACK PROBLEMS 17

(a) (b)

(c) (d)

Figure 4. Three collinear cracks in a large finite plate. (a) geometry; (b) sample mesh; (c) Cartesian

refinement near the cracks; and (d) typical harmonic enrichment function.

The harmonic enrichment function is depicted in Figure 5b with a 3× 3 refinement over each

enriched element to obtain the mesh for the Laplace solve. This problem has been considered

by Brandinelli and Ballarini [24] using the singular integral method with/without a three-

segment approximation to the crack-path instead of considering the whole crack geometry. We

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 00:1–29
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18 S. E. MOUSAVI ET AL.

(a) (b)

Figure 5. Zigzag edge-crack in a semi-infinite plate. (a) geometry; and (b) harmonic enrichment

function.

Table II. Normalized stress intensity factors for a zigzag edge-crack in a semi-infinite plate.a

SIFs X-FEM
HX-FEM

subgrid 3× 3 subgrid 6× 6 subgrid 10× 10

KI/K
∗
I 1.018 0.990 0.995 0.997

KII/K
∗
II 0.994 0.968 0.979 0.985

a Reference solution: K∗
I = 3.069 and K∗

II = 1.510 [25].

compare our results in Table II with those from Reference [25].
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5.3. Large zigzag crack in an infinite plate

To further explore the capability of the harmonic enrichment function to resolve the

displacement field around a crack with a complicated geometry, we analyze an infinite plate

with a large zigzag crack with many segments under uniaxial loading perpendicular to the

crack direction (see Figure 6a for the geometry of the problem and loading). The straight part

of the crack has a length 2a and the first inclined segment has a length a. All other segments

have a length of 2a and the inclined segments make an angle of 45◦ with the horizontal.

Englund [26] applied the singular integral method to solve this problem with N corners when

N = 10 and N = 100. To represent the infinite domain, we set the plate size to 200 × 200

for N = 10 and 1600× 1600 for N = 100 and discretize the domain with linear elements that

are finer around the zigzag crack and larger far from it. For the case N = 10, we choose the

element size he = 4 far from the cracks and he = 0.25 in the vicinity of the cracks. For the

larger crack with N = 100 corners, he = 8 and he = 0.25 are used.

The calculated SIFs for the right crack-tip are given in Table III for a subgrid of 3 × 3

over each enriched element, and are found to be in excellent agreement with the results of

Englund [26]. We also present the SIFs for more refined elements in Table III for the case

N = 10. It is observed that our results approach those of the reference solution. The enrichment

function for N = 10 is shown in Figure 6b.

5.4. Multiple closely interacting cracks in a finite plate

In this example we apply the HX-FEM to analyze a finite plate with multiple closely interacting

cracks with kinks and branches, which is considered in Reference [23]. A schematic description

of the geometry of the problem is given in Figure 7a. The coordinates of the points A to J
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(a) (b)

Figure 6. Large zigzag crack in an infinite plate. (a) geometry: plate size is L× L; and (b) harmonic

enrichment function for N = 10.

Table III. Normalized stress intensity factors for the large zigzag crack in an infinite plate.a

Problem Mesh SIFs X-FEM HX-FEM

N = 10, L = 200 he = [4, 0.25] KI/K
∗
I 1.005 0.990

numel = 140× 80 KII/K
∗
II 1.018 0.984

he = [2, 0.125] KI/K
∗
I 0.998 0.997

numel = 250× 130 KII/K
∗
II 1.011 0.997

N = 100, L = 1600 he = [8, 0.25] KI/K
∗
I 1.004 0.996

numel = 820× 262 KII/K
∗
II 1.018 0.992

a Reference solution: K∗
I = 3.323 and K∗

II = −2.213 for N = 10 and K∗
I = 11.279 and

K∗
II = −5.338 for N = 100 [26].
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and A′ to J ′ that define the cracks are listed in Table IV. The plate is under mixed-mode

biaxial tension and shear loadings. We solve the problem for two different plate sizes: 20× 20

and 40 × 40; and discretize it using bilinear and biquadratic elements. Since the cracks are

concentrated in the center of the plate, we use a Cartesian refinement around the cracks with

an element size he = 0.02, and use he = 0.52 elsewhere. For a sample discretization of the

domain see Figure 7b. In Figure 7c, the enriched nodes are marked with open squares and

asterisks for the main cracks and branches, respectively. We use two subgrid refinements:

each enriched element is subdivided into 3 × 3 and 6 × 6 subelements to obtain the Laplace

discretization. Note that to calculate the enrichment function of each of the cracks, the union

of the elements that are enriched only for that crack is considered. Hence, the size of the

Laplace domain to calculate the enrichment function of each of the cracks is limited to the

region around that crack, and essential boundary conditions are imposed along the rasterized

approximation of the crack (see Figure 7d). If this region contains any other crack, e.g., in

the case of branched, intersecting or very close cracks, as one would expect, the vanishing

natural boundary conditions are also imposed along all other cracks that are present. This

algorithm results in multiple patches that cover enriched elements corresponding to each of

the cracks. See the enrichment function of the cracks JC and J ′C ′ in Figure 7d for the case

where the Dirichlet boundary condition is imposed along the branch and zero natural boundary

condition is imposed along the main crack—the resulting enrichment functions resemble the

junction function around the branching point.

Compared to the X-FEM, in the HX-FEM there is no need to partition the elements for the

numerical integration and Gauss quadrature is used inside each subgrid. Also, it is noteworthy

that our algorithm for the construction of the harmonic functions can be readily applied to
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(a) (b)

(c) (d)

Figure 7. Multiple closely interacting cracks in a finite plate. (a) geometry; (b) a sample mesh with

Cartesian refinement around the cracks; (c) enriched nodes; and (d) harmonic enrichment functions.

this problem without the need for any special treatment for multiple and/or branched cracks.

We use Q4 and Q8 finite elements for the discretization of the domain. 3×3 and 6×6 subgrid

elements are used over each enriched element to discretize the Laplace domain. The SIFs of

crack-tips B, C, and G are calculated and normalized with respect to the reference solution

of Yavuz et al. [23] (see Table V).
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Table IV. Coordinates of the points that define the cracks in the interacting cracks problem.

Point x y Point x y

A 0 0 A′ 6.170245 -1.5

B 3.585122 0.383273 B′ 2.585122 -1.116727

C 3.288217 0.807297 C ′ 2.882027 -0.692703

D 0.939693 0.342020 D′ 5.230552 -1.157980

E 1.705737 -0.300767 E′ 4.464508 -1.800767

F 0 -1 F ′ 6.170245 -2.5

G 0.707107 -0.292893 G′ 5.463138 -1.792893

H 1.705737 0.342020 H ′ 4.464508 -1.157980

I 2.571762 0.842020 I ′ 3.598482 -0.657980

J 2.645430 0.041253 J ′ 3.524815 -1.458747

5.5. Array of branched cracks in a finite plate

The problem of multiple branched cracks in an infinite plate has been solved previously using

the singular integral method [27] and the distributed dislocation approach [28], to name a

few. Here, as the last example, we consider an array of branched cracks in a finite plate under

uniaxial loading. Plane stress conditions are assumed, and the domain geometry and crack

configuration is shown in Figure 8a. The cracks are considered as four main cracks, AOC,

DPF , GQI and JRL and four branches OB, PE, QH and RK. Any other combination,

for example, AO and BOC for the upper-left branched crack, could equivalently be used

as demonstrated in Reference [17]. We discretize the domain with 301 × 301 uniform linear

elements and use a 3× 3 subgrid over each enriched element. The typical enrichment function
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Table V. Normalized stress intensity factors for closely interacting cracks in a finite plate.a

Crack-tip B C G

Plate size Mesh SIFs Subgrid Q4 Q8 Q4 Q8 Q4 Q8

20× 20 he = [0.52, 0.02] KI/K∗
I 3× 3 0.975 0.995 0.972 0.989 0.947 0.974

numel = 375× 225 6× 6 0.976 0.989 0.975 0.992 0.949 0.974

KII/K∗
II 3× 3 0.961 0.958 1.002 0.979 1.008 0.981

6× 6 0.976 0.976 1.017 1.032 1.013 1.002

40× 40 he = [0.52, 0.02] KI/K∗
I 3× 3 0.977 0.997 0.977 0.990 0.955 0.975

numel = 400× 275 6× 6 0.978 0.990 0.980 0.993 0.959 0.977

KII/K∗
II 3× 3 0.961 0.963 0.964 0.981 1.036 0.938

6× 6 0.975 0.976 0.981 1.009 1.036 0.992

a Reference solution for plate size 20 × 20: KB∗
I = 1.9932, KB∗

II = 2.4042, KC∗
I = −1.6920,

KC∗
II = −0.1337, KG∗

I = −0.5317 and KG∗
II = 0.1885. Reference solution for plate size 40× 40:

KB∗
I = 1.8181, KB∗

II = 2.2483, KC∗
I = −1.4996, KC∗

II = −0.1783, KG∗
I = −0.4943 and

KG∗
II = 0.1119. Reference solutions are from Yavuz et al. [23].

for a pair of cracks is shown in Figures 8b and 8c for a main crack and a branch, respectively.

We compare our results with those obtained via the hypersingular formulation of the boundary

element method (BEM) proposed by Garćıa et al. [29] where quadratic elements are used for

each side of the external boundaries, discontinuous quadratic elements for the crack segments

and quarter-point elements for the crack-tip elements (see Table VI). The calculated mode I

and mode II SIFs of the crack-tips A to F are in good agreement with the reference solutions.
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(a)

(b) (c)

Figure 8. An array of branched cracks in a finite plate. (a) geometry; and (b) and (c) typical harmonic

enrichment functions of a main crack and a branch, respectively.

Table VI. Stress intensity factors for the array of branched cracks in a finite plate.

Crack-tip A B C D E F

K∗ a
I 2.0925 1.0191 1.2117 2.2172 0.8176 1.1475

KI/K
∗
I 0.991 0.994 0.988 0.988 1.001 0.993

K∗ a
II 0.08235 -0.9527 0.9989 -0.02288 -0.8929 1.0574

KII/K
∗
II 0.959 0.965 0.967 0.965 0.975 0.967

a Reference solution obtained via the boundary element method presented in Reference [29].
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6. CONCLUDING REMARKS

In this paper, numerically constructed (harmonic) enrichment functions were used for crack

modeling within the extended finite element method that automatically generalizes to the case

of branched, intersecting and closely interacting cracks. Coding the harmonic X-FEM (HX-

FEM) is straightforward and does not involve accounting for specific scenarios that arise as

cracks branch or coalesce. We construct the enrichment function through the solution of the

Laplace equation over the smallest box that contains all elements that are enriched for a crack

(Laplace domain) with discontinuous Dirichlet and vanishing Neumann boundary conditions.

The interaction of any two cracks is modeled by imposing zero Neumann boundary conditions

along one crack in the Laplace domain of the other crack. The harmonic enrichment function

reproduces the generalized Heaviside function in the interior of the crack and the junction

function close to the branching/intersecting points. In the neighborhood of the crack-tip, the

harmonic enrichment function resembles the discontinuous near-tip enrichment function that is

used in the X-FEM. In the HX-FEM, the enrichment function is a piecewise polynomial over

each subgrid element. Therefore, numerical integration of the weak form integrals over the

enriched elements is done with tensor-product Gauss quadrature rules, and partitioning is not

required. Quadrature study of the HX-FEM revealed that a 2× 2 Gauss quadrature rule over

each subgrid was adequate for higher-order elements with different levels of subgrid refinement.

The rate of convergence of HX-FEM was studied for linear, quadratic and cubic elements—a

rate of one-half was realized, in agreement with finite element theory for
√
r-singularities.

Several numerical examples were solved with HX-FEM and accurate stress intensity factors

were obtained in all cases, which reveals that harmonic enrichment function can successfully be

applied to complex crack configurations when there are multiple interacting/branched cracks.
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Application of the HX-FEM to more complicated problems such as many edge cracks in a

long strip-shaped plate [30] and especially tree-shaped cracks [31, 32], which have not yet been

attempted using X-FEM, is promising. In the case of tree-shaped cracks, handling the branches

and partitioning of the elements containing the junction points can become exponentially

burdensome as the cracks grow and branch, whereas in the HX-FEM, the enrichment functions

of all the branches can be handled similarly as long as the length of the branch is kept fixed.
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