A Discrete Model for Inelastic Deformation of Thin Shells

Yotam Gingold Adrian Secord

Jefferson Y. Han Eitan Grinspun

Denis Zorin*
Media Research Lab, New York University

August 21, 2004

Abstract

We introduce a method for simulating the inelastic defor-
mation of thin shells: we model plasticity and fracture of
curved, deformable objects such as light bulbs, egg-shells
and bowls. Our novel approach uses triangle meshes yet
evolves fracture lines unrestricted to mesh edges. We
present a novel measure of bending strain expressed in
terms of surface invariants such as lengths and angles.
We also demonstrate simple techniques to improve the
robustness of standard timestepping as well as collision-
response algorithms.

Introduction

Aluminum cans, dry autumn leaves, and straw hats are ev-
eryday examples of thin shells: thin, curved, deformable
objects. When strained, shells exhibit a broad range of
inelastic deformations, i.e., permanent changes in shape
such as the plastic deformation of a crushed soda can or
the fracture of a crushed dry leaf. While the modeling of
plasticity and fracture has long been a goal of the graphics
community [TF88], recent successful efforts [OH99] have
focused on solids, not thin shells.

Our approach to modeling the inelastic deformation of
thin shells follows recent advances in discrete formula-
tions for mechanics [Gre73, MWO01, GDHS03] and dif-
ferential geometry [MDSBO03, CSMO3]: we represent the
shell using an ordinary triangle mesh and formulate strain
in terms of quantities which do not depend on a (global
or local) coordinate frame, i.e., in terms of surface invari-
ants such as edge length, triangle area, and interior- and
dihedral-angles.

Contributions. Our main contributions are unified by
the concept of bending strain and the discretization of
bending strain defined over faces of a triangle mesh. This

*{gingold, ajsecord, jhan, eitan, dzorin} @mrl.nyu.edu

strain measure is simple to compute, captures a contin-
uous range of bending directions, and has a simple ex-
pression in terms of face areas, edge lengths, and dihedral
angles. Our bending strain is compatible with the usual
membrane strain, which makes it possible to treat both in
a uniform way.

Our strain discretizations form the foundation for a dis-
crete model for shell plasticity and fracture. To the best of
our knowledge, this is the first fracture method for com-
puter animation applications which is formulated for ob-
jects represented by triangle meshes while not constrain-
ing fractures to run along existing mesh edges.

Furthermore, we present three algorithmic techniques
that improve the robustness and quality of our simula-
tions. First, we demonstrate that a simple algorithm
to search for fracture events improves the robustness of
our fracture code. Second, we introduce vertex budging,
which improves mesh (and animation) quality by subtly
reparameterizing the surface during fracture events. Fi-
nally, we describe the modifications that make our col-
lision response code robust in the presence of fracture
events. We demonstrate the benefit of these three im-
provements in several animations including a punctured
sheet, breaking bowl, and shattered lightbulb.

Context

Our work applies techniques based on discrete differen-
tial operators recently developed for geometric model-
ing applications for physically based simulation. Most
closely related is the recent work of [GDHSO03] which
uses a purely geometric approach to deriving a discrete
model for elastic thin shells. We build on important re-
cent developments in discrete geometry: a simple formu-
lation for the discrete shape operator [CSMO03], used e.g.,
in [ACSD*03] for anisotropic remeshing and in [HP04]
for anisotropic smoothing.

These techniques make it possible to use conventional

Figure 1: We used our novel measure of discrete strain to model plasticity and fracture of thin shelled objects. Shown
are frames from our simulation of the shattering of a lightbulb.

continuum mechanics models for qualitative simulations
without incurring prohibitive computational penalties typ-
ical, in particular, for finite element simulations of shell
models, which remain an active research area in the engi-
neering community (see [COS00] and references therein).

Related work on fracture. Several papers in the com-
puter graphics literature have considered fracture. The
fracture of surfaces and solids was first demonstrated
in [TF88] who used curvature-controlled splines and later
by [NTB*91] who used mass-spring systems. While these
works showed examples of thin plates, which are flat in
their undeformed state, none showed examples of thin
shells. Furthermore, in both works the orientation of the
fracture line was not determined; rather fracture was ef-
fected by removing the connection between vertices. Con-
sequently the resulting fracture lines exhibited aliasing as
they followed only existing mesh edges. In contrast, our
approach determines the direction of the fracture line and
inserts mesh edges as needed. Also related is the proce-
dural approach of [NF99], who used a recursive pattern
generator to crack a plane into polygonal shards.

The engineering literature has a large body of work on
fracture, however the bulk of this work deals with solids
rather than shells. In a concurrent development dealing
with shell fracture for engineering simulations, [COPar]
use subdivision elements and cohesive edge elements to
model fractures occurring along existing mesh edges.

Recently in graphics, Shen and Yang [SY98] used hex-
ahedral volume meshes to simulate deformable objects
with fracture. O’Brien and Hodgins [OH99, OBHO2] pro-
duced appealing finite-element animations depicting brit-
tle and ductile fracture of solid objects, addressing many
of the shortcomings of the earlier approaches, most no-
tably the need to resolve the location and orientation of

fracture planes. While these approaches used volumet-
ric meshes, we are motivated to use surface meshes for
several reasons: first, the thin geometry of shells requires
volume elements with very large aspect ratios commonly
leading to poor conditioning of the resulting numerical
systems [COSO00]; second, implementation (e.g., chang-
ing mesh connectivity during fracture) is easier for surface
meshes; third, in graphics the vast majority of geometric
models are represented as (or easily converted to) triangle
meshes.

Related work on plasticity. Some recent graphics work
on 3D plastic deformation includes [OBHO02] which
modeled ductile fracture, [CLH96] which modeled soil,
and [DCO03] which modeled clay; for 2D deformation,
[GDHSO03] includes a simple model of plasticity by way
of updating the rest shape configuration.

Overview Our paper is structured as follows. First,
we derive continuous membrane and bending strains for
shells, and introduce their discrete analogues (Sec.).
These discrete measures serve as building blocks for dis-
crete models of shell elasticity, plasticity and fracture
(Sec.). A robust implementation of our model requires
consideration of timestep adjustment criteria and fracture-
aware collision detection (Sec.). We demonstrate our im-
plementation on several examples (Sec.).

Membrane and Bending Strains

The key result of this section is to characterize the local
deformation of a thin shell as the sum of membrane and
bending strains (preview Figure 3). We derive simple dis-
crete expressions for these strains, which serve as a foun-

dation for our discretizations of elasticity, plasticity and
the fracture of shells.

Continuous membrane and bending strains.

A geometry of a shell with (local) thickness 4 is typically
represented by a middle surface and its extrusion by h/2
in both the positive and negative normal directions (see
Figure 2). We assume that thickness & is much smaller
than the minimal radius of curvature of the middle surface.
We consider shells in undeformed and deformed states,
using the convention that quantities accented with tilde
(e.g., X vs. x) refer to the deformed state.

Assumptions. We make the common assumptions that
(i) the normal lines to the middle surface in the unde-
formed state are deformed into normal lines to the middle
surface in the deformed state (the Kirchhoff-Love assump-
tion), and (ii) the distances along the normal lines are pre-
served (the normal inextensibility assumption). Further-
more, we assume that (iii) strains are small. Note that
small strains do not imply small deformations; for ex-
ample, a felt hat can be bent drastically without severely
stretching the material.

middle surface

Figure 2: The shell is represented by its middle surface.
We use x and X to denote quantities related to the deformed
and undeformed surface configurations, respectively. n
denotes the unit normal to the surface.

—_—
T

-> N";_%‘\\‘

—

Figure 3: We express the planar strain, E(z), at an offset,
Z, as the sum of a membrane and bending term. (left) Con-
sider the tangent vector, r, to a point on the undeformed
middle-surface. (middle) First, we introduce a mem-
brane strain, E,, resulting in a deformed tangent, r; =
(I + En)ro. (right) Next, we bend the surface, compos-
ing the transformation with bending strain and resulting
in a deformed tangent, ry = (I + E.)r; = (I+ E,, + E.)ro,
where the approximate equality is valid for small strains.

Strain. Recall that for a map 1 mapping an undeformed
configuration of an object to a deformed configuration,
the strain measures the change in the squared distance be-
tween close points in deformed and undeformed config-
urations. A strain is a tensor, formally defined as £ =
(1/2) (VT Vy —I); this map can be three-dimensional
(“strain”) or two-dimensional (“planar strain”’). Consider
the distance between any two close points x and x + dx:
strain measures the change in squared distance caused by
the deformation, i.e., dx” Edx is (W(x +dx) —(x))?> —
dx*. For thin shells it is assumed that normal strain
can be neglected—the components of strain are purely
tangential —thus the planar strain completely describes
the deformation at any point of the shell. Strain is a purely
geometric concept, unrelated to any assumptions about
the physics of the materials. However many physical laws
describing elasticity, plasticity and fracture are expressed
in terms of strains.

Expressions for planar strain. Let f(x) be the middle
surface parameterized by the tangent plane coordinates x.
Locally we can regard a shell as the image of a 3D para-
metric domain Q = ® X [—h/2,h/2], where w is a domain
in the tangent plane of the middle surface. The maps
defining the undeformed and deformed shell are respec-
tively given by

®: QR
d: QR

®(x,2) = f(x) +-zn(x) ,
d(%,2) =f%) +m(x) .

Because of the inextensibility assumption, the corre-
spondence between material points is given by a map
A:Q — Q given by A(x,z) = (X(x),z) where X(x) is the
map between tangent planes induced by the correspon-
dence of middle-surface material points. Then the defor-
mation of the shell can be decomposed as ®oAod~ !
The transformation between differential volumes is given
by the differential of this map at (x = 0,z). The differ-
ential can be computed as a product of three linear 3D
operators: V() ®VA(x ;) (V(xP) ™", where V5) is the
gradient with respect to three variables (x1,x2,z). By def-
inition, A has block diagonal form, with a 2x2 block cor-
responding to planar variables, and 1 corresponding to the
normal coordinate z. The 2x2 block for planar variables
is § = VxX, i.e., the gradient of the deformation of the
middle surface.

Using the definition of the second fundamental form
expressed in tangent plane coordinates A;; = (t;- 9 x./.ﬁ) (0),
where T;, i = 1,2 are coordinate vectors, we can easily
compute

@0 = (7).

We note that the second fundamental form in tangent
plane coordinates represents the shape operator, i.e., the
operator A such that for any tangent vector t At is the
derivative of the unit normal in the direction of T. We
observe that it has block diagonal form with a 2x2 block
for planar variables, just as A. This shows that the de-
formation maps the plane parallel to the tangent plane of
the middle surface to itself, and is identity in the normal
direction. The planar transformation is computed as the
product of three planar map gradients and is

F(z) = (I+zA)S(I+zA)"". 0]

This expression allows us to compute the planar strain
at any point along the normal to the middle surface as fol-
lows. Expanding the last term in F(z) up to first order in
zx (recall that the eigenvalues of A are curvatures in the
chosen tangent plane basis), and dropping terms propor-
tional to z2, we obtain

F(z) = (I+zA)S(I —zA) = S+z(AS — SA) .

We are interested in planar strain E = (1/2)(FTF —1I),
which can be approximated by (1/2)(F +FT) —1. Us-
ing I +E, =~ (1/2)(S+S7), and dropping second-order
terms which are products of membrane strains and terms
of order Kh we obtain the following expression for E:

E(z) =En+zAA=E, +zE. .

The planar strain is the sum of the middle surface mem-
brane strain and a bending term proportional to the differ-
ence of second fundamental forms expressed in tangent
plane coordinates (see Figure 3). We call the second term
the bending strain, and its subscript refers to curvature.

Discretization of Strains

As we will see in the next section, the continuum mod-
els for elasticity, plasticity and fracture can be expressed
in terms of membrane and elastic strains defined above.
Thus, we can obtain discretizations of these models auto-
matically if we have discretizations for these strains.

In our discretization both strains are assumed to be
piecewise constant over triangles of a mesh approximat-
ing the shell surface. For the membrane strain, we rewrite
a well-known discretization in terms of only mesh invari-
ants. For the bending strain, we introduce a novel dis-
cretization with a number of features essential for model-
ing stiff shells. Both expressions for strain are designed
to be closely compatible thus leading to a straightforward
implementation.

Figure 4: Vectors and points used in the membrane and
bending strain calculations. The area of the triangle is
A=(1/2)|n|.

Membrane strain. Computation of the planar strain on
the triangle is well-known and standard both in engineer-
ing and graphics literature. As the map from the unde-
formed to the deformed triangle is affine, the strain is
directly determined by the matrix of the gradient of this
map: E, = 1/2(STS—1I). However, it is convenient to
express it in the form in which the dependence on the
changes of edge length is explicit. For this purpose we
introduce vectors t; in the triangle plane, which are per-
pendicular to the undeformed edges of the triangle, and
have the same length as corresponding edges. The vectors
pointing counterclockwise along the edges are denoted v;,
|vi| =&, i=1,2,3 (Figure 4).

We observe that by definition of strain, the edge lengths
satisfy

(i’ — 1) =V E,v; @)
where it does not matter in which coordinate frame the
tensors and the vectors are expressed. We adopt the nota-
tion s; = l:-z — 12, and (- ®-) for the outer product of two
vectors. It turns out to be convenient to use the tensor
basis t; @ t;, where (i, j,k) is a circular permutation of
(1,2,3). A straightforward calculation taking advantage
of orthogonality of v; and t; yields the following expres-
sion for the membrane strain:

1
En= @Zsi (ti @t +t ;)]

All factors except s; depend only on the undeformed state,
hence initially we precompute the outer products and ar-
eas, and at every timestep we reevaluate only s;, the
deformation-induced change in squared edge-lengths.

Bending strain. To compute the bending strain we need
to choose a shape operator discretization. There are many
possible ways to define curvature on a polygonal mesh,
all of which, under certain assumptions, would converge
to continuous curvatures.

One common approach is to consider curvature con-
centrated at edges, with principal curvatures 0 and ¢(8),
where 0 is the angle between the normals of the two trian-
gles joined at the edge and ¢(+) is a suitably chosen func-
tion, monotonic in 0. The principal curvature direction
corresponding to zero curvature is assumed to be aligned
with the edge.

The shape operator corresponding to this case is eas-
ily computed, as it has a single nonzero eigenvalue ¢(8),
and, therefore, can be expressed as @(0)(t®t)/l; where
t is the unit vector perpendicular to the average normal
of the adjacent triangles and the edge, and [is the edge
length. However, this approach suffers from an important
problem: the operator does not converge pointwise to the
shape operator of the smooth surface as the triangulation
is refined. Indeed, the principal curvature directions for
this operator do not depend on the principal curvature di-
rections of the sampled smooth surface.

It was proved, however, that the average of this operator
over a sufficiently large area converges to the integral of
shape operator as the triangulation is refined [CSMO3]. In
particular, averaging over vertex neighborhoods was used
in [ACSD*03, HPO4]. We consider an even simpler ap-
proach, which matches well our chosen discretization of
strain, that is, the averages on triangles. Following the
ideas in [HPO4], we define the triangle shape operators
using projections of the edges to the plane perpendicular
to the normal. In the case of triangle the normal is well
defined, and the resulting expression is remarkably sim-

ple:

E. =

P (Ag;)
A—A= t;®t; .
E 2AI; 1Ot

l

where Ag; = @(6;) — ¢(6;). Here the factor 1/2 accounts
for the fact that each edge is shared by two triangles, and
the factor 1/A takes into account the area over which the
operator is averaged. Once more, all factors except ¢; de-
pend only on the undeformed state. Hence after precom-
puting those factors, at every timestep we reevaluate only
¢;. Contrast this with vertex-based shape operators, which
yield a substantially more complex expressions. At the
same time, the triangle-centric approach has the needed
flexibility: it reproduces all curvature directions (see Fig-
ure 5), just as the vertex-centric approach.

o e &

Figure 5: The novel bending strain captures a contin-
uous range of bending directions. Shown are frames
from the accompanying video: bending direction changes
smoothly as dihedral angles are varied.

The remaining question is the choice of ¢(8), restricted
by the following considerations: for 0 close to zero the
function should behave as 0 to obtain convergence to cur-
vature for finer discretizations, and should monotonically
increase with 0. [CSMO3] uses simply 0, whereas [HP04]
uses 2sin(0/2). We found the choice 2tan(6/2) most
suitable as for large O it results in arbitrarily high bend-
ing strain. Our choice is motivated by the observation that
during crumpling deformations of real shells almost all of
the internal energy is distributed in the neighborhood of
ridge and cone formations [Wo002]: using 2tan(6/2) (as
opposed to 2sin(6/2) or 0) the fraction of total energy
away from ridge-like edges vanishes with increasing edge
sharpness.

Physical Models and Their Dis-
cretizations

In this section we consider continuum models for elastic-
ity, plasticity and fracture; all these models are defined
and discretized using membrane and bending strains dis-
cussed in the previous section.

Elasticity

Conceptually, it is convenient to describe internal elas-
tic shell behavior using elastic energy. As the geomet-
ric deformation of the shell at a given point is completely
described by the pair of strains E,, and E,, any such en-
ergy is a function of the invariants of these tensors. Our
discretization is based on the idea of representing these
tensors using invariant quantities (edge lengths and dihe-
dral angles). This ensures that invariant expressions for
any energy expressed in terms of membrane and bending
strains can be obtained by simple substitution of the dis-
crete expressions for strains.

We use energies that can be separated into two parts,
one depending only on the membrane strain and the other

only on the bending strain. The membrane surface energy
density is well-known and standard:

Winembrane = hﬁ ((1 - V)Tr(Ez) +V(TIE)2)
The coefficients ¥ and v are the Young modulus and the
Poisson ratio for the material. We consider two exam-
ples of bending energy. [GDHSO03] uses energy density
CAH? where AH? is the change in the mean curvature.
The use of that energy is based on purely geometric con-
siderations. (In the case of a flat undeformed configura-
tion it corresponds to the Willmore energy.) We observe
that change of the mean curvature is simply the trace of
our bending strain AH = TrE,, as for our choice of co-
ordinates the shape operators A; have curvatures as eigen-
values. Thus the “Discrete Shells” bending energy density
is simply

Wbliftding = C(TrEC)2
A more complex model derived from physics considera-
tions is Koiter’s shell model [Koi66]. It is obtained by
using the zero normal stress assumption to convert 3D
strains and stresses to two dimensions and a linear elas-
ticity constitutive law to derive the equation for energy.
Using our bending strain, this model yields an expression
for bending energy density which is remarkably similar to
the membrane energy density:

. Yh3

Wiine = Sy (1= T(ED) +v(1eE)?)
While this elastic energy is not the focus of our work
here, we have provided it for completeness, and a de-
tailed derivation will follow in a technical report. The total
elastic energy in both cases is Wyemprane + Weending. The
complete equations of motion for the discretized shell are
obtained by differentiating the discrete elastic energy ex-
pressions with respect to vertex positions to obtain forces
and adding external and damping forces.

Observe that the elastic energy density we get using
our strain discretizations is just a quadratic function of
changes of squared lengths, s;, and functions of dihedral
angles, A@(0);. Thus the complexity of this energy is
close to that of ad hoc edge-length and angle-based en-
ergies used in cloth simulation.

Temporal discretization using the Newmark scheme.
We integrate the system forward in time using the New-
mark scheme [WKMOOQ0]:

Xit1 = X +ALX+ Atiz((l/Z —B)Xi + BXis1) s

Xipt = X+AG((1—y)% +v%i1),

where At; is the duration of the it? timestep, and X; and X;
are the state velocity and acceleration at the beginning of
the i timestep, respectively. The adjustable parameters 3
and y are linked to the accuracy and stability of the time
scheme. Newmark is either an explicit (f = 0) or implicit
(B > 0) integrator: we used the standard = 1/4 for fi-
nal production, and 3 = 0 to aid in debugging. Newmark
gives control over numerical damping via its second pa-
rameter y, which is discussed in West et al. [WKMOO00].

Plasticity

Plasticity model for solids. Our plasticity formulation
for shells is based on the same 3D plasticity model as used
in [OBHO2].

We start with briefly explaining the plasticity model
for solids; more details can be found in many mechanics
texts. We found the general description in [HR99] use-
ful for derivation of the shell plasticity model. Typically,
plasticity models are defined in terms of stress and strain;
by assuming a linear elastic law, we describe plasticity in
terms of strain only.

The plasticity model that we use relies on the follow-
ing basic assumptions; these are easiest to understand in
the one-dimensional case, where the strain € is a scalar.
The state of a plastic object is characterized by plastic
strain, p, which is the strain that remains in the absence
of external (including body) forces. The simplest plastic
behavior is ideal plasticity: when the total strain, €, ex-
ceeds a threshold ¢, all further increase in the total strain
is converted to plastic strain. This model is not very re-
alistic: most materials have some form of hardening, i.e.,
the plastic threshold depends on the accumulated plastic
strain p. A simple model for this effect is to assume that
plastic regime starts when the elastic strain ¢, =€ —p
reaches €9 +yp, i.e., the threshold grows linearly with the
plastic strain. This model for hardening is called linear
kinematic hardening. The equation for the change in plas-
tic strain is immediately obtained from € — p = g9 + yp:
Ap = Ae/(1+7v). The analogues of this formula is usu-
ally referred to as plastic update.

The plastic update formula immediately shows how
plasticity can be implemented computationally. First,
compute the increment in total strain keeping plasticity
fixed; then update plastic strain using the plastic update
formula.

In 3D strain is no longer a scalar; we use a more gen-
eral yield function ¢(g.,p) defined for tensor strains to
determine the transition to the plastic regime and com-
puting the plastic update (the one-dimensional analogue
is € —yp —€p). Derivation of such functions is based on

physical observations; in particular, it was observed that
plastic deformation is primarily created by anisotropic
strain; for this reason, in the plasticity model that we use
the yield function depends only on the traceless part of the
strain, i.e., EED =g, — %Trs. The von Mises yield function
for ideal plasticity is simply the Frobenius norm of €2,

i.e., \/;(ef})? minus a plastic threshold. If hardening

is present, then, similar to the one-dimensional case, only
a part of anisotropic stress is used in the yield function:
¢(ge,p) = ||€? —yp|| — 0. The constant y in this formula-
tion is related to the standard kinematic hardening coeffi-
cient hy;, as y = hy, /2y where y is the Lamé constant for
the material.

Once the yield function becomes positive, we need
to define how the plastic strain is increased to return it
back to zero. Unlike the one-dimensional case, the linear
elasticity law and the condition @(e.,p) = 0 are insuffi-
cient to determine the plastic update uniquely. Additional
physical considerations (the principle of maximum plastic
work) result in the update formula of the form

Ap =Ml —yp),

where A = @(e, +Ae))/(1+7).

Shell plasticity. Just as it is the case for elasticity mod-
els, the plasticity model for shells can be derived from the
model for solids. An additional assumption that we make
is that for a given point on the middle surface all mate-
rial points along the normal are simultaneously in plastic
or elastic mode, with the yield function value obtained by
averaging the values along the normal.

We also use the planar stress assumption to convert 3D
strains and stresses to 2D. Once these assumptions are
made can obtain explicit formulas for plastic update by
routine calculations.

All 2D strain quantities at a point of the shell are char-
acterized using a pair of 2D tensors (A,;,A.), such that the
strain at distance z from the middle surface has the form
Ay + 7A¢; index m refers to the middle surface quantity, ¢
refers to the term associated with surface curvature, as it
was done for the elastic strain. In particular, we use the to-
tal strain E = (E,,, E.), plastic strain P = (P,,, P,), elastic
strain E¢ = E — P. For convenience we define a constant
¢=(1/6)(14v)/(1 —v). The expression for the yield
function and plastic updates are best expressed using an
auxiliary strain A:

Ai=cTtEI+E;— (1+y)P, i=m,c.

Using this strain, we can express the yield function ®
as follows:

q)(E’P) :F(E,P)fso)

h 2 n, P 2 2
F(E,P) = 5 (TrA;, + (TrAu))+ﬁ (TrAZ + (TrAc)?) .
We have introduced the function F(E,P), which in the
3d yield function corresponds to the norm of the trace-
less stress ||e2 — yp||. The update formulas for 2D strain
components are

O(E,P
ap = 2EL) by, @
I+y
Discretization. The only additional variable needed to

describe plastic materials with linear kinematic hardening
is plastic strain. In our discretization, we represented it
exactly in the same way elastic strain is represented, i.e.,
using per-triangle variables. For the membrane compo-
nent, we store a triple of squared edge length changes, and
for the bending component, a triple of angle changes. The
plastic update is performed explicitly at each time step:
we apply the continuous formulas for the yield function
and plastic update directly to the discrete strains.

Fracture

We model the fracture of a shell when in a small region the
magnitude of principal strain exceeds a material-specific
tensile or compressive threshold. Here principal strain
refers to an eigenvalue of the strain tensor, E(z); the as-
sociated eigenvector gives the principal strain direction.
The material fractures along the fracture line perpendicu-
lar to the principal strain direction. O’Brien [OH99] de-
scribed a similar model of fracture (with a different dis-
cretization), and explained that while the resulting behav-
ior is not truly physical, as the important plastic region
near the tip of a crack is not correctly modeled, it is ade-
quate for animating fracture of solid objects.

One can observe! that the principal strains, i.e., the
eigenvalues |A (z)| > |A2(z)] of E(z), take extremal values
for z=+h/2. In our model, the material instantaneously
fails at every point where |Aj(+h/2)| > A (respectively
|Mi(=h/2)| > Ag). Note that it would be very easy to as-
sign different thresholds to tensile (A (+7/2) > her > 0)
or compressive (A (+#/2) < As— < 0) strains.

I'The principal strain A; can be expanded in the form A + z(A§ (1 +
cos2p) 4+ Aj(1 —cos2f))/2 up to second order in z, where A" are the
eigenvalues of E,,, A{ are the eigenvalues of E., and f is the angle be-
tween the dominant eigenvectors of E,, and E..

Discretization of fracture. We simulate fracture events
per face: for every face, we compute eigenvalues of
E(h/2) and E(—h/2), and if any exceed A; then then the
face is deemed fractured and is split as shown in Figure 6.
Note that in general a face fractures due to a combination
of membrane and bending strains. Note that unlike earlier
approaches, we allow simultaneous failures at different
points in the surface, i.e., we do not impose an arbitrary
temporal ordering on fracture events. This improvement
is possible due to fracture-aware timestepping code. As
we will see in Section , a key consequence is that, unlike
in earlier work on simulating fracture, we do not need to
model the propagation of excess fracture energy to nearby
regions of material.

We have also experimented with plastic behavior near
the crack tip and have found this to be a good way to dis-
sipate excess energy during fracture (in Section we treat
plasticity). Immediately after a face is split into two, we
can absorb some percentage of the elastic strain into the
local plastic state. As expected, fractures propagate fur-
ther if less strain is absorbed plastically. While this tech-
nique is effective and provides a simple and elegant alter-
native to damping, the question of modeling behavior at
the crack tip remains open.

Figure 6: (left) We discretize fracture events by examin-
ing each mesh face in isolation, splitting those faces with
excessive strain along the unique fracture line e that is
perpendicular to the direction of greatest strain and in-
cident on a face vertex. (right) Splitting along e intro-
duces vg and vq. If the introduced vertices are interior
(away from surface boundary), then the adjacent face is
also split. This secondary split does not introduce new
vertices nor further splits.

Vertex budging improves mesh quality. The potential
to capture a continuous range of fracture orientations is a
mixed blessing. It allows for smooth, “antialiased,” frac-
ture boundaries, but it may demand that we create arbitrar-
ily thin “sliver” triangles. When a fracture line is nearly
the same as an existing mesh edge, we locally reparam-
eterize the surface by sliding the existing edge onto the
desired fracture line; we call this operation a vertex budge

Figure 7: Arbitrarily-oriented fractures can potentially
create arbitrarily-thin faces. To prevent this, we locally
reparameterize of the surface via vertex budging. (left)
If a proposed face split will introduce a vertex V' near an
existing vertex v (for clarity we have exaggerated the dis-
tance between the two), we instead plastically deform v to
the position of v/, thus aligning an existing mesh edge e
with the desired fracture line ¢’. Note that budging does
not alter strains. (right) We can effect fracture by splitting
along e.

because it amounts to repositioning a vertex in paramet-
ric space (see Figure 7). We regard vertex budge as a
change in discretization of a smooth surface we approxi-
mate. This implies that vertex budging should not modify
the strains on the mesh, even in the vicinity of the budge.
To implement a vertex budge, we measure the change in
strain, over each face, cause by the repositioning, and we
absorb the change plastically (Section).

The combination of arbitrary fracture orientations and
vertex budging allows our final animations to have smooth
fracture boundaries, where they should, and more gener-
ally to appear as if the coarse-mesh simulations were car-
ried out on a fine mesh (see Figure 8). Surprisingly, we
found that budging produced better results than increasing
mesh resolution, thus promising to be a great source for
reducing computational cost. We feel that budging should
be further explored in other physical-simulation settings.

Implementation

Several considerations lead to a more robust implementa-
tion:

Simulation Loop

Our simulation loop moves the simulation forward in time
while ensuring that important events are not missed. The
most important events to resolve are fractures and sudden
large forces. For a particular step forward in time, we
check a list of criteria and if any criteria are not satisfied

4

WS | S——

Figure 8: Budging drastically improves the quality of fracture edges; compare identical simulations (left) without
budging and (middle) with budging. Furthermore, budging produced better torn fringes than running the simulation
with (right) four times as many faces. The action of budging can be seen on the detailed mesh (far right).

then we reduce the time step and try again. This dynamic
search is controlled by the current search level k, which
dictates an effective time step of 27*Ar. The search level
is controlled by the SimulationLoop algorithm:

SimulationLoop
k:=0
While ¢ < t.q
t= l+2_kAt // proposed (level-k) timestep
compute proposed state att’' // sec.
if k > kpax or all criteria satisfied // sec.
t:=t"// successful timestep
accept proposed state
update plastic state // section
fracture over-strained faces // section
k:= max(k— 1,0) // pop search level
else
discard proposed state
k:=k-+1 // push search level

W W N U s W N

S SR
w N = o

All simulations for this paper were run using a maximum
search level kmax of ten, representing a search resolution
of roughly 1/1000™ of the current time step.

Timestep Adjustment Criteria

Limiting force rate. We limit the rate of change of
forces on the object over a time step so that objects can
respond naturally to large forces. For example, if we drop
an egg onto a floor it will fall freely until entering the
floor’s proximity region. If the time steps are large then
at time ¢ + At some area of the egg will have penetrated
deeply into the floor’s proximity region and received a
corresponding large force. This large force is an artifact of
the time step and the resulting behavior will disagree with

the real behavior. The most obvious result of overly-large
forces is an over-abundance of fracturing.

We compute the magnitude of the maximum force of
the proposed state, F; | o;, and compare it to the same quan-
tity of the current state. All simulations in this paper limit
the relative value r = (F;4a, — F;)/F; to 1.1, or a %10 in-
crease over the current state. In this way we limit dras-
tic changes to the state of the simulation and allow reac-
tions to proceed naturally. Note that since we dynamically
change the search level & the time step is automatically re-
duced for temporary events such as a floor bounce. The
search level decreases and the effective time step returns
to its previous size after the magnitudes of the forces have
diminished.

Resolving fracture events. In addition to large forces,
we also resolve fracture events. In essence, overstepping
a fracture event is an attempt to integrate over a sharp
discontinuity. Such an attempt leads to over-strained ele-
ments which experience large forces, and consequent un-
desirable artifacts, in particular extraneous fractures (see
Figure 9). Rather than overstepping and then using a
heuristic model for propagating excess strain, we discard
the proposed state. Fracturing at the correct time allows
nearby faces to relax with respect to the new boundary.

Fracture-aware collision detection and re-
sponse

Responding to collisions is a key ingredient for realistic
simulation. The case of surfaces is more difficult because,
unlike solids, surfaces do not have an inside/outside orien-
tation; Bridson et al. [BFA02] and Baraff et al. [BWKO03]
recently presented robust approaches to deal with colli-
sions in the surface setting. To deal with the lack of ori-
entation, we never accept a state in which there are inter-
sections, and we use the popular penalty force approach to

Figure 9: Searching in time for important simulation
events can eliminate undesirable artifacts. We demon-
strate this with a simulation of a dropped egg shell hit by a
very small force. (left) Searching in time creates only the
expected fractures; (right) in contrast, disabling the search
routine leads to large numbers of unexpected fractures and
brittle behavior.

Figure 10: To accommodate fracture, the repulsion field
is inset along mesh boundaries. The shaded region rep-
resents the repulsion field of a piece of mesh (left) before
insetting and (right) afterward: dashed lines indicate the
inset boundary; note that the repulsion field now lies en-
tirely within the area of the mesh.

prevent intersections [MW88]. Our contribution is a treat-
ment of fracture events which (a) alter mesh connectivity,
and (b) introduce abutting disconnected geometry.

Detection. For collision detection, we rely on a hierar-
chy of axis-aligned bounding boxes to cull the number
of pairwise triangle-intersection tests. The hierarchy is
initially constructed top-down. At every timestep the ex-
tents of the bounding boxes are update bottom-up. The
hierarchy structure is incrementally updated after frac-
ture events, since they locally modify mesh connectivity.
Furthermore, every constant (e.g., 60) number of frames,
the hierarchy structure is rebuilt from scratch to ensure
temporal-spatial coherence. More sophisticated culling
might be achieved by adapting curvature-based culling to
our setting [VCM95].

10

Response. Our approach to collision response builds on
the popular penalty force approach. We surround the tri-
angle mesh by a repulsive force field of thickness h/2.
We consider all vertex-face and edge-edge interactions be-
tween the triangles, applying equal and opposite repulsive
forces to interacting pairs. When fractures are created,
disconnected components are instantaneously coincident:
if not dealt with, the standard collision response would
inappropriately generate repulsive forces. Indeed, when
the material fractures, the collision code should not pre-
vent the abutting pieces from remaining where they are,
but it should prevent them from penetrating deeply. To
that end, we inser the repulsion field around boundary
edges (see Figure 10). The inset field allows the recently-
disconnected abutting geometry to not interact unless it
begins to penetrate. The drawback to the penalty-force
approach is that inset edges may penetrate by a small dis-
tance (O(h)); we have not found this to be a problem. An
alternative approach might be to use analytic constraints.

Results

We simulated the shattering of a glass lightbulb when hit
by a fast-moving projectile (see Figure 1). Observe the
high variance in the size of the shards, a typical charac-
teristic of glass materials. Note that during rendering we
added a slight thickness to the material. The simulation
took approximately 70min on a 2.4GHz P4 Xeon, includ-
ing collision detection.

We simulated the puncturing of sheets with varying
fracture thresholds (Figure 11), and with varying plastic
parameters. As a comparison, we also simulated a sheet
without the budging operation (Figure 8). Observe that
that we have intentionally omitted extraneous damping
from our simulation. These runs required between 8min
to 30min of computation time depending on processor, the
number of faces created during fracture, and the complex-
ity of collisions.

Although plasticity is vital for simulating a wide range
of fracturing materials, it also stands on its own, as we
demonstrate with a simulation of a dropped, then dented,
tube (see Figure 12). In the accompanying animation, ob-
serve that as the tube squishes, some of the deformation
is stored as elastic energy resulting in a bounce, while the
rest becomes plastic work resulting in a dent. The entire
computation took 11min on a P4 1.7GHz processor. The
accompanying video also contains animations of a projec-
tile shattering a diving board and a bowl; again plastic and
fracture coefficients are varied to demonstrate a range of
materials.

Figure 11: We simulate the puncture of an elastic sheet by a fast projectile. By varying the fracture threshold, A¢, we

obtain different behaviors. From left to right, Ay = 0.02,0.001,0.0001.

Figure 12: We model plasticity with kinematic hardening,
which gives us a range of inelastic materials. We simu-
late an elastoplastic tube as it falls, dents, and bounces off
boxes.

Conclusion. We derived a novel formulation for the
strain of a thin shell in terms of membrane and bend-
ing components, and we presented a simple and elegant
discretization of the strain expressed in terms of the sur-
face invariants of a triangle mesh. This per-triangle strain
measure serves as a unifying foundation for our models of
fracture and plasticity. Our current shell model does not
capture change in thickness due to deformation. Model-
ing the thinning of an object due to elastoplastic stretch-
ing or bending may help to capture the effects of an object
weakening due to strain, and we plan to extend our model
in this direction.

References

[ACSD*03] ALLIEZ P., COHEN-STEINER D., DEVILLERS
O., LEvY B., DESBRUN M.: Anisotropic polyg-
onal remeshing. ACM Transactions on Graphics
22,3 (July 2003), 485-493.

11

[BFA02]

[BWKO3]

[CLH96]

[COPar]

[COS00]

[CSMO03]

[DCO3]

[GDHS03]

[Gre73]

[HPO4]

BRIDSON R., FEDKIW R. P., ANDERSON J.: Ro-
bust treatment of collisions, contact, and friction
for cloth animation. ACM Transactions on Graph-
ics 21, 3 (July 2002), 594-603.

BARAFF D., WITKIN A., KASS M.: Untangling
cloth. ACM Transactions on Graphics 22, 3 (July
2003), 862-870.

CHANCLOU B., LUCIANI A., HABIBI A.: Physi-
cal models of loose soils dynamically marked by a
moving object. In Computer Animation *96 (June
1996), pp. 27-35.

CIRAK F., ORTIZ M., PANDOLFI A.: A cohesive
approach to thin-shell fracture and fragmentation.
Computer Methods in Applied Mechanics and En-
gineering (to appear).

CIRAK F., ORTIZ M., SCHRODER P.: Subdi-
vision surfaces: A new paradigm for thin-shell
finite-element analysis. Internat. J. Numer. Meth-
ods Engrg. 47, 12 (2000), 2039-2072.

COHEN-STEINER D., MORVAN J.-M.: Re-
stricted delaunay triangulations and normal cycle.
In Proc. 19th Annu. ACM Sympos. Comput. Geom.
(2003), pp. 237-246.

DEWAELE G., CANI M.-P.: Interactive global
and local deformations for virtual clay. In Pacific
Graphics (2003). Canmore, Canada.

GRINSPUN E., DESBRUN M., HIRANI A.,
SCHRODER P.: Discrete shells. In Proceedings
of ACM SIGGRAPH / Eurographics Symposium
on Computer Animation (2003), Breen D., Lin M.,
(Eds.).

GREENSPAN D.: Discrete Models. Addison-

Wesley, 1973.

HILDEBRANDT K., POLTHIER K.: Anisotropic
filtering of non-linear surface features. In Proceed-
ings of MINGLE Workshop (2004).

[HR99]

[K0i66]

[MDSBO03]

[MW388]

[MWO1]

[NF99]

[NTB*91]

[OBHO02]

[OH99]

[SY98]

[TF88]

[VCM95]

[WKMOO00]

HAN W., REDDY B. D.: Plasticity, vol. 9 of
Interdisciplinary Applied Mathematics. Springer-
Verlag, New York, 1999. Mathematical theory and
numerical analysis.

KOITER W. T.: On the nonlinear theory of thin
elastic shells. I, II, III. Nederl. Akad. Wetensch.
Proc. Ser. B 69 (1966), 1-17, 18-32, 33-54.

MEYER M., DESBRUN M., SCHRODER P., BARR
A. H.: Discrete differential-geometry operators
for triangulated 2-manifolds. In Visualization and
Mathematics 111, Hege H.-C., Polthier K., (Eds.).
Springer-Verlag, Heidelberg, 2003, pp. 35-57.

MOORE M., WILHELMS J.: Collision detection
and response for computer animation. In Com-
puter Graphics (Proceedings of SIGGRAPH 88)
(Aug. 1988), vol. 22, pp. 289-298.

MARSDEN J. E., WEST M.: Discrete mechanics
and variational integrators. Acta Numerica (2001),
357-514.

NEFF M., FIUME E. L.: A visual model for
blast waves and fracture. In Graphics Interface
"99 (June 1999), pp. 193-202.

NORTON A., TURK G., BACON B., GERTH J.,
SWEENEY P.: Animation of fracture by physical
modeling. The Visual Computer, 7 (1991), 210—
219.

O’BRIEN J. F., BARGTEIL A. W., HODGINS
J. K.: Graphical modeling and animation of duc-
tile fracture. In AMC Transactions on Graphics
(2002), ACM Press, pp. 291-294.

O’BRIEN J. F., HODGINS J. K.: Graphical mod-
eling and animation of brittle fracture. In Proceed-
ings of SIGGRAPH 99 (Aug. 1999), Computer
Graphics Proceedings, Annual Conference Series,
pp. 137-146.

SHEN J., YANG Y.-H.: Deformable object
modeling using the time-dependent finite element
method. Graphical Models and Image Processing
60, 6 (Nov. 1998), 461-487.

TERZOPOULOS D., FLEISCHER K.: Modeling
inelastic deformation: Viscoelasticity, plasticity,
fracture. In Computer Graphics (Proceedings of
SIGGRAPH 88) (Aug. 1988), vol. 22, pp. 269—
278.

VOLINO P., COURCHESNE M., MAGNENAT
THALMANN N.: Versatile and efficient techniques
for simulating cloth and other deformable objects.
In Proceedings of SIGGRAPH 95 (1995), ACM
Press, pp. 137-144.

WEST M., KANE C., MARSDEN J. E., ORTIZ
M.: Variational integrators, the newmark scheme,
and dissipative systems. In International Con-
ference on Differential Equations 1999 (Berlin,
2000), World Scientific, pp. 1009 — 1011.

12

[Wo0002]

WoobD J.: Witten’s lectures on crumpling. Phys-
ica A: Statistical Mechanics and its Applications
313, 1-2 (October 2002), 83-109.

