
Exploiting Temporal Coherence for Pre-computation Based

Rendering

Ryan S. Overbeck

Submitted in partial fulfillment of the

requirements for the degree

of Master of Science

in the Graduate School of Engineering and Applied Sciences

COLUMBIA UNIVERSITY

2006

c©2006

Ryan S. Overbeck

All Rights Reserved

ABSTRACT

Exploiting Temporal Coherence for

Pre-computation Based Rendering

Ryan S. Overbeck

Precomputed radiance transfer (PRT) generates impressive images with complex illumi-

nation, materials and shadows with real-time interactivity. These methods separate the

scene’s static and dynamic components allowing the static portion to be computed as a

preprocess. In this work, we hold geometry static and allow either the lighting or BRDF

to be dynamic. To achieve real-time performance, both static and dynamic components

are compressed by exploiting spatial and angular coherence. Temporal coherence of the

dynamic component from frame to frame is an important, but unexplored additional form

of coherence. In this thesis, we explore temporal coherence of two forms of all-frequency

PRT: BRDF material editing and lighting design. We develop incremental methods for

approximating the differences in the dynamic component between consecutive frames. For

BRDF editing, we find that a pure incremental approach allows quick convergence to an

exact solution with smooth real-time response.

For relighting, we observe vastly differing degrees of temporal coherence accross levels of

the lighting’s wavelet hierarchy. To address this, we develop an algorithm that treats each

level separately, adapting to available coherence. The proposed methods are othogonal to

other forms of coherence, and can be added to almost any PRT algorithm with minimal

implementation, computation, or memory overhead. We demonstrate our technique within

existing codes for nonlinear wavelet approximation, changing view with BRDF factorization,

and clustered PCA. Exploiting temporal coherence of dynamic lighting yields a 3×–4× per-

formance improvement, e.g., all-frequency effects are achieved with 30 wavelet coefficients,

about the same as low-frequency spherical harmonic methods. Distinctly, our algorithm

smoothly converges to the exact result within a few frames of the lighting becoming static.

Contents

1 Introduction 2

2 Previous Work 6

3 Background 8

3.1 PRT for Relighting . 8

3.2 PRT for BRDF editing . 9

4 Basic Incremental for BRDF editing 13

4.1 BRDF Editing vs. Relighting . 15

5 Analysis of Temporal Coherence for Relighting 17

5.1 Comparison of Incremental and Non-Incremental 17

5.2 Detailed Analysis of Temporal Coherence 20

6 Per-Band Incremental Wavelet Algorithm 23

6.1 Basic Per-Band Algorithm . 23

6.2 Selecting When to Update Incrementally . 25

6.2.1 Exhaustive Search . 25

6.2.2 Simple and Fast Per-Band Test . 26

6.2.3 Dealer Algorithm . 27

6.3 Results and Discussion . 27

7 Integration with PRT methods 30

7.1 Basic Image Relighting . 30

i

7.2 Changing View with BRDF Factorization 31

7.3 Clustered PCA . 33

8 PBI for Spherical Harmonics 37

9 Conclusions and Future Work 42

Bibliography 43

ii

List of Figures

1.1 Comparison of our algorithm (per-band incremental or PBI) with standard

(non-incremental) PRT for relighting. 5

3.1 Editing the BRDF of pearl earrings. 12

4.1 BI compared to standard NWA for BRDF editing. 16

5.1 Comparison of lighting approximations with 30 wavelet terms, for rotating

the Grace Cathedral cubemap. 18

5.2 Rendered images for the lighting sequence in Figure 5.1 19

5.3 Coverage maps and histograms of BI and NWA for some frames from Figure 5.1. 21

5.4 A study of temporal coherence, independent of any algorithm. 22

6.1 Pseudocode for Per-Band Incremental Wavelet Algorithm (PBI). 24

6.2 Comparison of lighting accuracy over time for different algorithms 26

6.3 Comparison of images from PBI and basic incremental BI. 28

6.4 Incremental vs non-incremental updates for different bands using PBI. . . . 29

7.1 Comparison of different numbers of wavelet terms for PBI and standard NWA 31

7.2 Comparison of images with standard PRT and PBI for 30 wavelets, as well

as standard PRT with 100 wavelets . 33

7.3 CPCA, using our temporal coherence algorithm. 34

8.1 SetupBands() procedure for Per-Band Incremental Spherical Harmonics. . . 39

iii

8.2 PBI for Spherical Harmonics using rotations from Figure 5.1. 40

8.3 Comparing 25 to 100 term approximation using linear spherical harmonics

and NWA. 41

iv

ACKNOWLEDGEMENTS

This thesis would not exist without the overwhelming amount of support and guidance I

received from a few specific individuals. First and foremost, I must thank Assistant Professor

Ravi Ramamoorthi, my thesis advisor. He, along with Assistant Professor Eitan Grinspun,

introduced me to the fundamental ideas that led to this work and, more generally, to the

computer graphics research process as a whole. Their enthusiasm was my fuel throughout

this past year.

I began this project as an offshoot of Aner Ben-Artzi’s work on real-time BRDF editing.

Aner and I work very closely, and many of the ideas in this thesis are equally his. I also

must thank him for introducing me to shower crayons.

1

Chapter 1 2

Chapter 1

Introduction

Precomputed radiance transfer (PRT) addresses an important goal in computer graphics:

real-time rendering with dynamic natural lighting, realistic materials and complex cast

shadows [SKS02]. We focus on all-frequency PRT methods, which use wavelet represen-

tations for intricate lighting and shadowing effects. In their simplest form, these methods

compute [NRH03]

B = MV, (1.1)

where B is a vector of outgoing light intensities (or image pixels), M is a matrix rep-

resentation of the static light transport, and V is a dynamic vector. To be specific, for

relighting,

B = TL, (1.2)

where L is the dynamic lighting environment and T is commonly known as the transport

matrix where each column Ti represents the appearance of the scene under basis light Li.

For BRDF editing,

B = T ′c (1.3)

where T ′ is the transport integrated with a 4D BRDF quotient and c is a 1D BRDF curve

(see [BOR06] for details). In both cases the matrix M(T or T ′) is multiplied against the

vector V (L or c) at real-time rates.

PRT can be viewed as a compressed, accelerated matrix-vector multiplication for equa-

tion 1.1. Ng et al. [NRH03] compressed L in equation 1.2 using a nonlinear wavelet approx-

CHAPTER 1. INTRODUCTION 3

imation (NWA), with only 100-200 terms. Liu et al. [LSSS04] and Wang et al. [WTL04]

extended NWA to glossy materials with changing view via BRDF factorization. While these

works exploited angular coherence in L, Liu et al. [LSSS04] also exploited spatial coher-

ence in the scene to compress the transport matrix T using clustered principal component

analysis (CPCA).

We identify a fundamentally new form of coherence: in real-time rendering, the dynamic

vector V in equation 1.1 is temporally coherent. We design more efficient algorithms by

incrementally compressing the difference in V between consecutive frames. Besides further

accelerating PRT, our approach naturally yields a solution which quickly and smoothly

converges to an exact representation of V when held static. This qualitatively enhances the

user’s experience. Our specific contributions are:

Analysis of Temporal Coherence: This thesis identifies temporal coherence as a

key avenue for further research and compression in PRT methods. We find that a basic

incremental (BI) approach (see Chapter 4) suffices for 1D BRDF curve editing since edits

tend to be local. However for relighting, a series of experiments (see Chapter 5) on a rotating

lighting environment exposes (i) the approximations and artifacts of alternative algorithms,

and (ii) the inherent spatio-temporal coupling of the coherence in complex illumination (see

Figure 5.4).

Per-Band Incremental (PBI) Wavelet Algorithm: We develop an algorithm (see

Chapter 6) that adapts to the temporal coherence of each wavelet level, dynamically choos-

ing an incremental update over standard NWA when profitable. The results, compared to

standard PRT methods, are often dramatic (see Figure 1.1), and free of the flickering and

ghosting artifacts of a straightforward basic incremental (BI) method (Chapter 4). When

the evolution of the lighting is slow, static or changes only over a sparse set of directions,

PBI is able to incrementally update all the wavelet bands, preserving or approaching a

nearly exact solution. Even when the lighting changes rapidly, PBI preserves temporal

coherence of the coarser wavelets.

Integration with PRT Methods: PBI integrates easily into existing all-frequency

methods: it leaves open the alternatives for precomputing and representing T . We demon-

CHAPTER 1. INTRODUCTION 4

strate PBI in the context of the original image relighting method [NRH03], the extension

to changing view using BRDF factorization [WTL04], and clustered PCA [LSSS04] (see

Chapter 7). In all cases, only about 100 lines of additional code is required, and the time

and memory overheads are negligible.

While the lighting is changing dynamically, our method can usually lead to improvements

by a factor of three or four. We obtain high-quality all-frequency effects with only 30

wavelet lighting terms (see Figure 1.1), comparable to the coefficient budget of low-frequency

spherical harmonic methods. Within a few frames of the lighting remaining static (the user

being idle), we converge to the exact result. The exact solution is maintained even under

changing viewpoint in methods such as [LSSS04, WTL04].

CHAPTER 1. INTRODUCTION 5

Standard PRT

(30 Wavelets)

Our Algorithm

(30 Wavelets)

Figure 1.1: Comparison of our algorithm (per-band incremental or PBI) with stan-

dard (non-incremental) PRT for relighting. PBI integrates easily into existing frameworks,

such as image relighting (top) and clustered PCA (bottom). PBI (right) captures all-frequency

effects including caustics (top) and sharp shadows (bottom) which at these framerates are blurred

by non-incremental methods (left). Insets compare the quality of the lighting approximation.

Chapter 2 6

Chapter 2

Previous Work

We discuss previous precomputation-based rendering methods, and techniques for exploiting

temporal coherence in other domains. We focus on PRT relighting since Ben-artzi et al.

only recently applied PRT to BRDF editing in [BOR06]. We briefly summarize PRT for

BRDF editing in Section 3.2.

Precomputation-based relighting or radiance transfer (PRT) was introduced by Sloan et

al. [SKS02, SHHS03, SLS05] , building on prior work on design of time-dependent lighting

by Dorsey et al. [DAG95] and others. Much of this work focuses on low-frequency effects,

using spherical harmonics [RH01]. We will briefly discuss these methods in Chapter 8, but

we focus primarily on all-frequency relighting [NRH03], which reproduces a richer class of

visual effects and stands to benefit more from leveraging temporal coherence.

We work with the fundamental algorithms [NRH03, WTL04, LSSS04], that form the

basic building blocks for all-frequency PRT. Our focus is on real-time rendering—thus, we

do not consider all-frequency triple product algorithms [NRH04, ZHL+05] that are not real-

time. Recent advances (e.g., translucent materials [WTL05]) fit into our approach as they

are variants of equation 1.2, differing only in the transport matrix T . Since we change the

representation of L only, our method can be easily integrated into most existing or future

PRT algorithms.

In general, the literature in rendering, and even beyond graphics, is rich in its coverage

of temporal coherence. Since most of these previous approaches are not suitable for PRT

algorithms, we give only a brief survey.

CHAPTER 2. PREVIOUS WORK 7

One may imagine applying video compression [SS00] to a pre-defined lighting sequence.

However, the size of the lighting is small compared to the size of the transport matrix T .

Moreover, the lighting sequence in an interactive system is not predetermined. Finally, our

goal is really to accelerate the matrix-vector multiplication in equation 1.1, which is not

sped up by compression techniques such as optical flow or sparse bitrate coding.

For offline rendering of dynamically-lit animations, Wan et al. [WWL05] exploit tempo-

ral coherence in importance sampling environment maps to reduce flickering. They build

adaptive spherical quad-trees for creating point-samples in a raytracing framework, whereas

PRT necessitates an orthonormal (wavelet) basis in equation 1.1. While reduced flicker is a

side benefit of our approach, our main focus is on improved efficiency for real-time rendering.

In frameless rendering [BFMZ94, DWWL05], pixels update asynchronously, while in our

approach, wavelet lighting coefficients update asynchronously; combining these orthogonal

approaches remains future work. Similarly, in ray tracing, there are numerous ways to

exploit temporal coherence. For example, [WDP99] reproject points that have already been

shaded. Finally, our approach can loosely be interpreted as a form of multiplexing, because

we update a small number of wavelet coefficients at each time frame, but ensure that a very

much larger number are updated over a longer contiguous sequence of frames.

Chapter 3 8

Chapter 3

Background

Here we present some of the fundamentals of PRT applied to both relighting and BRDF

editing. PRT methods begin with the reflection equation

B (x, wo) =

∫
Ω4π

L (wi) V (x, wi) ρ (wi, wo) cos θidwi, (3.1)

where L is the distant lighting environment, V is the binary visibility, ρ is the BRDF, and wi

and wo are incoming and outgoing directions at the point x. Depending on the application,

x is either position of the vertices or position as seen through each pixel in the rendered

image. Hence B will be the final color of either pixels or vertices. To make this integral

tractable for real-time rendering, we seek an equation of the form of 1.1. Note that while

the integral in equation 3.1 only represents direct illumination, it can be extended to global

illumination as in [NRH03], and as shown in Figure 1.1. For now we use equation 3.1 for

simplicity in the following derivations.

3.1 PRT for Relighting

If we fix the scene geometry and remove dependence on wo by either restricting ourselves

to Lambertian BRDFs or fixing the viewpoint, we can lump together the visibility, BRDF,

and cosine term into the static light transport matrix T :

T (x, wi) = V (x, wi) ρ (wi) cos θi. (3.2)

CHAPTER 3. BACKGROUND 9

T (x, wi) and L (wi) can be viewed as discrete vectors in wi (often represented as cubemaps)

allowing us to compute integral in 3.1 as a dot-product:

B (x) = T (x) · L (3.3)

When taken over all pixels in the image (or all vertices in the scene) x, we can view L as

a vector and T as a matrix whose rows are the visibility at each pixel (or vertex) over all

wi, and columns are images of the scene as lit by basis light Li over all x. The dot product

in 3.3 grows to a matrix-vector product,

B = TL. (3.4)

This is the standard PRT per-pixel image relighting equation. It is also used for per-vertex

relighting with changing view and strictly diffuse surfaces. We will discuss extensions of

PRT relighting to changing view with glossy materials in Section 7.2. T now contains

all of the static elements of equation 3.1 and is computed as a preprocess. Finally, we

project T and L into some orthonormal and compressible basis (usually wavelets [NRH03]

or spherical harmonics [SKS02]) allowing us to approximate this matrix-vector product in

real-time while arbitrarily varying the dynamic lighting vector L.

Ng et al. [NRH03] demonstrate that while computing B at image pixels allows arbitrary

light transport effects such as reflection and caustics, it requires fixing the viewpoint. There-

fore more recent work, [SKS02], [SHHS03], [LSSS04], [SLS05], [WTL04], and [WTL05] to

name a few, compute B at scene vertices to permit real-time changing view with somewhat

limited transport effects.

3.2 PRT for BRDF editing

Equation 3.4 is the most common factorization of the reflection equation 3.1 and can render

complex shadows while changing view and lighting in real-time. Ben-Artzi et al. [BOR06]

propose a different factorization for curve based editing of 1D BRDF factors. They assert

that any BRDF ρ (wi, wo) can be expressed as:

ρ (wi, wo) = ρq (wi, wo) c (θh (wi, wo)) , (3.5)

CHAPTER 3. BACKGROUND 10

where c is the editable 1D BRDF curve and ρq is the 4D quotient BRDF (the BRDF with

c divided out). In this example, the editable dimension is θh, the half-angle, a 1D function

of wi and wo, but other BRDF parameterizations provide other variable dimensions. We

then discretize c by projecting it into a linear combination of J basis functions ([BOR06]

use Daubechies 4 wavelets with J = 256),

c (θh (wi, wo)) =
J∑

j=1

cjbj (θh (wi, wo)) , (3.6)

and plug it into equation 3.5 then equation 3.1, and pull cj outside the integral:

B (x, wo) =
∑

j

cj

∫
Ω4π

L (wi) V (x, wi) ρq (wi, wo) bj (θh (wi, wo)) cos θidwi. (3.7)

If we fix the viewpoint (wo = wo (x)) and lighting, we can factor out lighting, visibility,

BRDF basis functions, and the cosine term into a new static light transport matrix:

T ′

j (x) =

∫
Ω4π

L (wi)V (x, wi) ρq (wi, x) bj (wi, x) cos θidwi. (3.8)

Integration of the Tj ’s with the bj ’s projects them into the same 1D basis as the cj ’s. We

are left with the matrix-vector product

B = T ′c, (3.9)

with variable coefficients cj .

A smart BRDF factorization in equation 3.5 leads to coefficients cj that are either linked

to variables of an analytic BRDF or are themselves physically meaningful parameters of

a measured BRDF. Again, since both T ′ and c are represented in a compressible basis

(Daubechies 4 wavelets), we can approximate the matrix-vector product in real-time.

[BOR06] show how to factor basis functions out of the Cook-Torrance, Ashikhmin-

Shirley, and other models as well as useful parameterizations of measured BRDFs.

For the examples in this thesis, we use the Cook-Torrance model [CT82] and measured

BRDFs. The Cook-Torrance model,

ρ =
Fn,e (θd) G (wi, wo) Dσ (θh)

4π (wi · N) (wo · N)
, (3.10)

CHAPTER 3. BACKGROUND 11

has three variables of interest: the Fresnel index of refraction n, the Fresnel extinction

coefficient e, and the mean slope distribution σ. When changing σ, the editable curve is

actually the slope distribution function,

c (θh) = Dσ (θh) , (3.11)

which can be computed in real-time in respone to changes in σ. In reference to equation 3.7,

the cj ’s are Dσ (θh) projected onto wavelets along θh, and ρq is the rest of ??:

ρq =
Fn,e (θd)G (wi, wo)

4π (wi · N) (wo · N)
. (3.12)

Measured BRDFs can be represented in many physically meaningful 3D and 4D pa-

rameterizations, and there are several options for factoring these high-dimensional data.

Ben-Artzi et al. [BOR06] use homomorphic factorization [MAA01] for 3D isotropic BRDFs

and non-negative matrix factorization [LRR04] for full 4D anisotropy.

To evaluate equations 3.9 or 3.4 in real-time we have to drop the smallest wavelet

coefficients in L or c, keeping only a small fraction. If we simply recompute the product

each frame, as per NWA, we achieve only a rough estimate of B. In this thesis, we aim to

reuse results from previous frames to leverage both accuracy and real-time user response.

Figure 3.1 shows an example of using curve based edits of c to alter the appearance,

B, of a pair of pearl earrings and a velvet cloth. The earrings use Cook-Torrance for their

specular component and the cloth uses homomorphic factorization to separate the BRDF.

CHAPTER 3. BACKGROUND 12

CT : θ−diff

π 4 π 2

4.

0
0

CT : θ−half

freehand edit, intuition

π 4 π 2

10

0
0

CT : θ−half

σ = 0.1

π 4 π 2

25

0
0

π 4 π 2

22

0
0

HF : P(θ−in/out)

π 4 π 1

6

0
0 π 4 π 2

0
0

CT : θ−half

σ = 0.01

π 4 π 2

11

0
0

mea- freehand

edit,
nrgb = 1.4, 1.4, 1.4 nrgb = 2.3, 2.9, 1.8

CT : θ−half

σ = 0.5

π 4 π 2

4

0
0

Gold Posts
LVrgb = 0.3, 0.7, 0.4

LVrgb = 0.2, 0.4, 0.3

π 4 π 2

1

0
0

CT : θ−diff

n = 1.5

Pearls

HF : Q(θ−half)

measured

π 4 π 2

1.

0
0

Draped Cloth

Curves edited prior to (a)-(e)

Earrings on Cloth : prior to edits (b)-(e)(a) pearls : shininess increased pearls : secondary reflection added

cloth : artistic edits posts : fresnel changed/colorized

(b) (c)

(d) (e) (f)

Figure 3.1: Editing the BRDF of pearl earrings. A sample editing session shows before

(a) and after (e) of a scene with pearl earrings on a cloth draped over a pedestal, as illuminated

in Grace Cathedral. The pearls and posts use a Cook-Torrance specular term + LV diffuse

term. The cloth uses homomorphic factorization as in [MAA01] to factor a measured BRDF.

The session begins by setting some initial values for the editable BRDF curves (f), and loading

data for red velvet. First (b), the pearls are given sharper reflections. The “hazy” secondary

reflection, the signature of a real pearl, is added in (c). In (d) the user artistically edits the

curve to produce blue velvet. Finally (e), the Fresnel term of the posts is adjusted to give them

a metallic gold appearance. This is Figure 2 from [BOR06].

Chapter 4 13

Chapter 4

Basic Incremental for BRDF

editing

Consider a basic incremental wavelet algorithm that leverages temporal coherence in V from

equation 1.1(or c in 1.3 or L in 1.2). This algorithm, which motivates the remainder of the

thesis, will need significant improvement for relighting, so we call it basic incremental (BI).

To be concrete, consider equation 1.31 and [NRH03] (NWA) as the initial, non-incremental

framework for our discussion. c is the BRDF vector in a full wavelet basis (typical size 256).

First, we rewrite equation 1.3 to make the approximation explicit,

B = T ′c̃ , (4.1)

where c̃ = Approx(c) is the (compressed) dynamic vector in a truncated wavelet basis

(typical dimension 10-30). Our basic idea is to consider the change in the vector from the

previous frame, 4c, replacing equation 4.1 with the incremental update,

Bnew = Bold + 4B (4.2)

4B = T ′ 4 c . (4.3)

The computational and memory overhead is minimal. Storage of the previous frame Bold

is negligible compared to the size of T ′, and the cost of computing equation 4.2 is negligible

relative to the matrix-vector multiplication in equation 4.3 (or equation 4.1).

1Recall that this is equivalent to equation 1.2 for relighting.

CHAPTER 4. BASIC INCREMENTAL FOR BRDF EDITING 14

Our insight is that 4c is much more compressible than c. Therefore we write,

4 c = Approx (cnew − c̃) , (4.4)

c̃ = c̃ + 4c . (4.5)

We use a tilde for c̃ in equation 4.5, to signify that it is a wavelet approximation to the

vector, which is updated at each frame.

Basic Incremental (BI) algorithm: Equations 4.2, 4.3, 4.4 and 4.5 make up the most

basic approach to an incremental BRDF update. The method leverages the observation

that cnew − c̃ can be more aggressively and sparsely approximated than cnew. To initialize2,

we usually assume c̃0 = c0 at the intial frame 0. In our BRDF editing implementation, we

adopted the Daubechies 4 wavelet basis on a 256 element BRDF curve. However, there is

nothing in the above discussion that restricts the basis representation used. For example,

our relighting system uses a 2D Haar wavelet basis on a 6 × 64 × 64 cubemap [NRH03].

Besides the high compressibility of 4c, a useful property of BI is that it progressively

converges to the exact result when the user is idle (cnew is static) in a design session.

Observe that a constant cnew acts as a fixed point under repeated iteration of BI. Indeed,

if the vector is fixed,

4c = Approx (c − c̃)

c̃ = c̃ + 4c,

where we drop the superscript since the vector is static.

This progressive convergence holds even in the extreme case of a wavelet basis truncated

to a single term. Of course, when a more reasonable wavelet budget is used, convergence

is very rapid. Since BRDF curve edits tend to be local, often a single incremental update

achieves convergence. In contrast to an approximation to the static solution in equation 1.3

as per non-incremental NWA, the BRDF designer sees the exact result. In summary, BI

2 To initialize, we compute the full matrix-vector multiply in equation 1.3. This takes a few seconds,

which is generally small compared to the time required to load the (large) transport matrix T
′ into memory

from disk, and initialize other auxiliary data structures that the relighting framework needs. An alternative

is to initialize c̃
0 to the non-incremental NWA of c

0.

CHAPTER 4. BASIC INCREMENTAL FOR BRDF EDITING 15

takes advantage of available CPU cycles to progressively improve a static (or slowly chang-

ing) image, whereas for NWA, error is always capped by wavelet budget.

Figure 4.1 shows a frame from a BRDF curve editing session. (a) Is the final pearl

material from Figure 3.1. BI allows real-time BRDF curve edits under complex lighting

with exact results in (a) and (c).

4.1 BRDF Editing vs. Relighting

BI may suffice for 1D BRDF curve editing. However, as we see in Chapter 5, BI applied to

relighting causes significant artifacts when the entire wavelet hierarchy is subject to change.

BRDF edits tend to be localized, usually amplifying, suppressing, or translating indi-

vidual peaks in the curve, allowing incremental updates to focus on the locus of change.

Some relighting edits are likewise localized. Sparse lighting changes, such as positioning

and changing the area of a single light source, are well approximated by BI. NWA must ap-

proximate both static and dynamic portions of the environment, while BI converges rapidly

on the static environment, and thereafter allocates the full wavelet budget to represent the

localized dynamic lighting component. Environment rotation, on the other hand, changes

every pixel, and hence every wavelet, in the environment cubemap.

The size of the vectors in equations 1.2 and 1.3 also determine BI’s utility. The 1D

BRDF curve tends to be only 256 bins in length. If we restrict ourselves to updating only

30 wavelets per frame, we are still able to touch 12% of the BRDF curve each frame. The

entire curve can change and we are still guaranteed to converge in at most 9 frames. The

environment cubemap for relighting, on the other hand, tends to be 6 × 64 × 64 = 24576.

30 represents about .1% of this vector, which is simply not enough to keep up with global

changes to the wavelet hierarchy within a reasonable number of frames. Our experiments

have shown that increasing the wavelet budget to 150-200 wavelets allows environment

rotations without distracting artifacts, but at a high cost to interactivity. In chapter 6, we

solve this problem by introducing a per-band incremental algorithm.

CHAPTER 4. BASIC INCREMENTAL FOR BRDF EDITING 16

Incremental Standard Non-Linear

(a) Final Placement

π 4 π 2

10

0
0 π 4 π 2

10

0
0

Curve approximation - θh curve of pearls’ CT model

RMS error: 0.12RMS error: 4.8x10-8

(b)

Closeup with only specular BRDF component visualized(c)

Figure 4.1: BI compared to standard NWA in BRDF editing. (a) uses the final pearl

material from Figure 3.1. Changes to the θh BRDF curve (b) are incrementally approximated.

(c) shows only the specular component being edited. This is Figure 5 in [BOR06].

Chapter 5 17

Chapter 5

Analysis of Temporal Coherence

for Relighting

We now turn to the study of BI in the context of relighting to better understand BI and

more generally temporal coherence of dynamic lighting. In this case, instead of equation 4.1,

we have:

B = TL̃. (5.1)

The observations in this section motivate the robust, efficient PBI method in Chapter 6.

5.1 Comparison of Incremental and Non-Incremental

Consider the rotation of the Grace Cathedral lighting environment. Figures 5.1 and 5.2

depict temporal evolution of the lighting cubemap and the rendered image, respectively

(see also Figure 6.4–bottom). This example is representative of numerous experiments

spanning a range of light manipulations, scenes, and shading complexities. Rotations are

the most challenging test because the illumination is dynamic almost everywhere and they

do not fit the special cases discussed above. We compare NWA, reference, BI, and (for

completeness) PBI, always using 30 wavelet terms.

Initial Frames: Initially (frame 0) L̃0 = L0, and BI’s lighting approximation exactly

matches the reference. Indeed, early on, while rotation is relatively slow, BI’s lighting

CHAPTER 5. ANALYSIS OF TEMPORAL COHERENCE FOR RELIGHTING 18

Exact

Exact

Still Good
Ghosting

and Artifacts

Converging

Still Ghosts
Converged

No Ghosts

Drop High

Frequencies
Converging Converged

Non-

Incremental

30 Wavelets

Reference

24576

Wavelets

Basic

Incremental

30 Wavelets

Per-Band

Incremental

30 Wavelets

Still Good

Frame = 1 : Initial 30 : Initial 125 : Intermediate-Final75 : Intermediate 400 : Final

1a

1b

1c

3a

3b

3c

2a

2b

2c

4a

4b

4c

1a 1b 1c 2a 2b 2c
Frame 75

4a 4b 4c3a 3b 3c
Frame 125

Ghosting Artifacts Converging,

Still Artifacts
Ghosting

a = Reference b = Basic Incremental c = PBI a = Reference b = Basic Incremental c = PBI

Figure 5.1: Comparison of lighting approximations with 30 wavelet terms, for

rotating the Grace Cathedral cubemap. The top row is NWA (non-incremental PRT),

followed by the reference image, the basic incremental BI algorithm from Chapter 4, and the

per-band incremental PBI method to be developed in Chapter 6. The bottom row shows details

that reveal the performance and artifacts of the different algorithms.

approximation is significantly sharper and more accurate than NWA’s (see frame 30, Fig-

ure 5.1). The resulting images (see Figure 5.2) also display much sharper shadows, accu-

rately matching the reference. This is because BI needs only to approximate the change in

the lighting at each frame.

Intermediate Behavior and Artifacts: Next, consider intermediate times (see frame

75 in Figures 5.1 and 5.2). The lighting now differs significantly from its intial state, and

rotation rate is relatively fast. BI’s quantitative error is still smaller than NWA’s. Even so,

CHAPTER 5. ANALYSIS OF TEMPORAL COHERENCE FOR RELIGHTING 19

Reference

24576

Wavelets

Non-

Incremental

30 Wavelets

Blurred Shadows and Highlights

Basic

Incremental

30 Wavelets

Ghost Shadow Exact

Frame = 30 75 400

Figure 5.2: Rendered images for the lighting sequence in Figure 5.1, comparing NWA

(top), the reference (middle), and basic incremental BI (bottom). A comparison of BI with the

PBI method is shown later, in Figure 6.3.

while BI’s shadows and lighting continue to be sharper than NWA’s, they are inaccurate

and spurious in many locations.

Figure 5.1-(1a/1b) highlights undesirable ghosting artifacts. For instance, consider the

small bright light in the inset. As it rotates, a purely incremental technique such as BI

must zero it in its old location as well as add it to the new location—an operation that

can be more expensive than simply approximating it in the standard way with a coarser

representation. With its limited wavelet budget, BI cannot keep up, with lights leaving

trails or ghosts in the old locations. This can lead to spurious sharp shadows in the images

(see frame 75, Figure 5.2). There are also significant high-frequency artifacts (see insets 2a–

2b, Figire 5.1) where BI cannot approximate the lighting sharply enough. In Chapter 6, we

introduce a per-band incremental algorithm (PBI) which avoids these artifacts by using an

incremental update only for wavelet bands that have sufficient temporal coherence; compare

Figure 5.1-(1b/1c) or 5.1-(2b/2c).

CHAPTER 5. ANALYSIS OF TEMPORAL COHERENCE FOR RELIGHTING 20

Final Frames and Convergence: We stop the rotation sequence at frame 99, and let

the lighting be static. As discussed in Chapter 4, this allows the incremental algorithm

to converge to the correct lighting. Since we are using 30 wavelets per timestep, frame

125 in Figure 5.1 is effectively using a 750-term wavelet approximation, and some regions

have begun to converge (compare insets 4a and 4b). However, the previous ghosting is

severe enough that some regions still show artifacts (compare insets 3a and 3b). Moreover,

note from the insets that the PBI method in Chapter 6 is essentially converged at frame

125. Finally, at frame 400, the incremental algorithm has converged fully, and the image

in Figure 5.2 accurately matches the reference. By contrast, the non-incremental algorithm

does not improve with time, when the lighting is static.

5.2 Detailed Analysis of Temporal Coherence

We now show some more detailed results, characterizing the nature of temporal coherence.

These observations will be taken into account in the Chapter 6, to design the improved PBI

algorithm.

Coverage of Wavelets in Incremental and Non-Incremental: In Figure 5.3, we

compare which wavelets are updated at each frame (what the coverage of the lighting is) for

non-incremental NWA, versus incremental BI. Similar results also hold for the PBI method.

From the top of Figure 5.3, we see that BI by design updates different regions of the

environment at adjacent frames (once a wavelet is updated, the change in the next frame

will not usually warrant it being updated immediately again). By contrast, essentially the

same wavelets are chosen at adjacent frames for non-incremental NWA. In these images,

a pixel is shaded based on how many of the wavelet levels that overlap it are chosen at

each frame. Coarser blocks indicate coarser wavelet coverage, and finer blocks indicate finer

coverage in those regions. The bottom of Figure 5.3 considers the cumulative result over

5 frames of lighting motion. The non-incremental algorithm has a cumulative or average

coverage that looks very similar to each individual frame. By contrast, BI updates a large

number of wavelets with much finer frequencies over a 5 frame interval.

The bottom of Figure 5.3 also shows a histogram of how many wavelets are updated at

CHAPTER 5. ANALYSIS OF TEMPORAL COHERENCE FOR RELIGHTING 21

Basic

Incremental

30 Wavelets

Non-

Incremetal

30 Wavelets

Basic

Incremental

30 Wavelets

Non-

Incremetal

30 Wavelets

20

40

60

80

100

120

0
4166425610244096

20

40

60

80

100

120

0

Single Frame Coverage

Frame = 29 30 74 75 124 125

5 Frame Accumulated Coverage and Histograms

20

40

60

80

100

120

0

Frame = 26 30 71 75 121 125

Wavelet Areas Wavelet Areas Wavelet Areas

N
u
m

b
e
r

C
h
o
s
e
n

N
u
m

b
e
r

C
h
o
s
e
n

N
u
m

b
e
r

C
h
o
s
e
n

4166425610244096 4166425610244096

Coverage Color Key

(overlapping colors add)

Wavelet Area 4166425610244096

Basic

Incremental

Non-

Incremental

Figure 5.3: Top: Coverage maps for incremental (BI) and non-incremental (NWA) algo-

rithms for some frames from Figure 5.1. Bottom: Histogram and averages, over a 5 frame in-

terval, of which wavelets and wavelet levels are chosen by incremental (BI) and non-incremental

(NWA) algorithms.

each level. NWA must always choose low-frequency coarse wavelets, that usually have the

greatest energy. In fact, levels finer than 256 are not chosen at all, so the effective resolution

of the environment map is only 6 × 8 × 8. However, we will see that these coarse wavelets

also exhibit the greatest temporal coherence, and BI can therefore update them only once

every several frames, while still maintaining an accurate approximation. Hence, many more

terms can be devoted to finer wavelets, producing a more uniform distribution into finer

levels, and higher-quality images that use an effectively higher resolution environment map.

It is also instructive to compare the three frames (columns) in Figure 5.3. On the left

(frame 30), BI can keep track of very high frequencies, as seen in the histogram. In the

middle (frame 75), the lighting rotation is faster, and more updates must be given to lower

frequencies, somewhat reducing the effective resolution. Towards the end (frame 125), the

lighting is static and the approximation is converging, with work focused exclusively on

CHAPTER 5. ANALYSIS OF TEMPORAL COHERENCE FOR RELIGHTING 22

Spatial Wavelet Area

T
e
m

p
o
ra

l
W

a
v
e
le

t
S

iz
e

4096 1024 256 64 16 4

128

64

32

16

8

4

2

Figure 5.4: A study of temporal coherence, independent of any algorithm. We show

the norm of energy (darker is more) in each spatio-temporal wavelet band, as measured for the

(uncompressed reference) rotation sequence of Figure 5.1. Columns correspond to spatial bands,

rows to temporal bands, and the evident diagonal structure implies that progressively finer spatial

bands exhibit progressively diminishing temporal coherence.

the higher-frequency or smaller wavelet bands. By contrast, non-incremental NWA always

updates essentially the same (coarse) wavelet levels.

Relation of Spatial Frequency and Temporal Coherence: Figure 5.4 visualizes

temporal coherence, independent of any specific practical algorithm. We take the first 128

frames of the rotation sequence, wavelet transformed along the spatial (angular) dimensions

in the normal way, and then apply a 1D Haar transform along the time dimension. In

Figure 5.4, we plot the total energy for given spatial and temporal wavelet bands, with

darker regions having more energy. The coarsest spatial wavelets with area 4096 = 64× 64

have almost all of their temporal energy in the lowest frequency temporal band (size 128)—

this follows from the observation that rotation does not significantly change the overall

energy. As we go to finer spatial wavelets, there is more energy in finer temporal wavelets—

the visible diagonal structure indicates that the extent of temporal coherence decreases

with spatial wavelet frequency, with more coherence in low-frequency bands than in high-

frequency bands. Unfortunately, the basic incremental algorithm treats each band similarly,

which (due to the dark upper-right quarter of Figure 5.4) can lead to ghosting and artifacts

at high spatial frequencies.

Chapter 6 23

Chapter 6

Per-Band Incremental Wavelet

Algorithm

Building on these observations, we propose a per-band incremental (PBI) lighting update

algorithm that treats each wavelet band separately, choosing either an incremental or non-

incremental approach, based on the available temporal coherence.

6.1 Basic Per-Band Algorithm

First, we group wavelets having area 4096 = 64 × 64 (the coarsest wavelet and scaling

function) into one band, those with area 1024 = 32 × 32 (the next coarsest) into another

band and so on. Since we consider cubemaps with resolution 64 × 64, there will in general

be 6 wavelet levels or bands (1 to 6). For each band separately, we will decide whether to

update it incrementally, as per Chapter 4, or in the standard non-incremental fashion, as

per equation 4.1.

The details of our algorithm are summarized in Figure 6.1. First, we set up all the

bands, determining whether they are updated incrementally or not (lines 2 and 5). How

we do this optimally is a critical part of our algorithm, discussed in Section 6.2. Then, we

must choose which wavelets to update (line 3). This is straightforward, since we simply

need to sort them in the standard way based on their magnitudes. We use area weighting

for choosing wavelets, as recommended in [NRH03], but transport (or any other) weighting

CHAPTER 6. PER-BAND INCREMENTAL WAVELET ALGORITHM 24

Per-Band Incremental Wavelets (PBI)

Procedure SetupBands() // Described in Sec. 6.2

1. for all Bands i

2. IsIncri = Incremental(i); // Should band i be incremental

3. W i = Wavelets(i) ; // Which wavelets in i to update

4. end ;

Procedure PBI() // Per-Band Algorithm

5. SetupBands() ;

6. for all Bands i

7. if IsIncri // Update incrementally

8. for all chosen wavelets j in W i

9. 4Lj = Lnew
j − L̃j ; // Equation (4.4)

10. L̃j = Lnew
j ; // Equation (4.5)

11. Bi = Bi + Tj 4 Lj ; // Equations (4.2) and (4.3)

12. end;

13. else // Update non-incrementally

14. Bi = 0 ; L̃Band i = 0 ; // Zero or reset lights and image

15. for all chosen wavelets j in W i

16. L̃j = Lnew
j ; // Equation (4.5)

17. Bi = Bi + TjL̃j ; // Equation (4.1)

18. end;

19. end ;

20. B =
∑6

i=1 Bi ; // Sum over all bands

Figure 6.1: Pseudocode for Per-Band Incremental Wavelet Algorithm (PBI).

or unweighted selection could also be used. If a band is updated non-incrementally, as

in standard PRT, we use the area-weighted magnitude of wavelet j, Area(j) | Lnew
j | for

sorting; otherwise, we use the difference Area(j) | 4Lj |= Area(j) | Lnew
j − L̃j |.

We treat each band separately (line 6), eventually summing their contributions (line

CHAPTER 6. PER-BAND INCREMENTAL WAVELET ALGORITHM 25

20). If the band is updated incrementally (lines 8-11), we use equations 4.2–4.5. For each

wavelet j in that band’s approximation, we compute the change 4Lj relative to the current

value L̃j (line 9), and also bring the current value up to date (line 10). In line 11, we add

the contributions to the band image Bi. Since we are considering a single wavelet j, we will

use a single column Tj of the transport matrix. Note that our method easily integrates with

standard PRT, and can make use of any optimizations, such as division of the image into

blocks for better caching [NRH03]. If the band does not have sufficient temporal coherence

for an incremental update, it is simply updated as in standard PRT (line 17). We still

update L̃j = Lnew
j in line 16, because future frames can (and usually will) still choose to

update the band incrementally.

6.2 Selecting When to Update Incrementally

We need to know when there is enough temporal coherence to update a band incremen-

tally. One possibility is to let the user specify a threshold, with coarser bands updating

incrementally, and finer bands using standard PRT. However, a static threshold is difficult

to specify or adapt to different speeds of motion. Ideally, we would like the algorithm to

automatically pick coarser bands for incremental updates when the lighting changes rapidly,

and finer bands for slower lighting changes where there is more temporal coherence. We

have tested three automated approaches that range from exhaustive and expensive, to very

simple and efficient.

6.2.1 Exhaustive Search

We consider every possibility for incremental vs non-incremental update over all bands,

and pick the one that results in the least error for the lighting. For N wavelet bands, there

are 2N possibilities. While this method imposes too much computational overhead to be

practical, it is exhaustive (optimal within the scope of one frame) by design and therefore

serves as a useful baseline to compare alternatives. In an offline setting, another possible

baseline might have involved a spacetime optimization over all frames, but in our interactive

application the lighting is not known a priori.

CHAPTER 6. PER-BAND INCREMENTAL WAVELET ALGORITHM 26

 0

 5

 10

 15

 20

 25

 30

P
e
rc

e
n
ta

g
e
 A

re
a
-W

e
ig

h
te

d
 L

1
 E

rr
o
r

Frame
 0 50 100 150 200

BI

30 Wavelets

NWA

500 Wavelets

PBI Simple

30 Wavelets

NWA

30 Wavelets

NWA

60 Wavelets

NWA

100 Wavelets

 12

 13

 14

 15

 16 Per-Band

Incremental

30 Wavelets

Simple
Dealer
Exhaustive

55 8570

Figure 6.2: Comparison of lighting accuracy over time for different algorithms

(standard or non-incremental NWA, incremental BI, per-band incremental PBI). The inset

compares the three selection methods for PBI.

6.2.2 Simple and Fast Per-Band Test

At the other extreme, we simply test each band separately, determining whether it is better

approximated incrementally or not. To do so, we compare the norm1 for each band ‖

Lnew − L̃ ‖ with ‖ Lnew ‖. If the former has a smaller error, we use an incremental update,

using non-incremental otherwise. Note that non-incremental updating can be thought of

as incremental with a previous value of 0, and our comparison is equivalent to seeing if the

new lighting is closer to 0 or to the current approximation L̃. This makes it explicit that

the lighting can sometimes drift so far from the current approximation, that it is better to

reset or zero the band. The method is greedy because the error comparison is done once at

the beginning, before knowing how many wavelet terms are actually allocated to the band.

Because of its simplicity, this algorithm has little computational overhead, and is very easy

to implement.

1In practice, we find the L1 norm best for the perceptual quality of the final images. Similar quantitative

results are also obtained with L2.

CHAPTER 6. PER-BAND INCREMENTAL WAVELET ALGORITHM 27

6.2.3 Dealer Algorithm

The dealer algorithm “deals” out one wavelet coefficient at a time. It introduces some

computational overhead, while providing a marginally better result than the simple per-

band test. A wavelet coefficient is greedily “dealt” to the band where the net error will

decrease the most. This decrease is measured as the maximum of net error decrease over

two alternatives—non-incremental or incremental update of the band—holding all other

bands fixed. Dealing then repeats until the wavelet budget is exhausted. In summary, this

method simultaneously allocates wavelet coefficients to bands, while determining whether

or not to update them incrementally.

6.3 Results and Discussion

We now discuss some properties of the PBI algorithm and compare it with basic incremental

BI and non-incremental NWA methods.

Figure 6.2 plots the area-weighted L1 error for the sequence in Figure 5.1. PBI clearly

out-performs BI and non-incremental NWA. Moreover, it converges faster than BI. Note

that BI always performs better quantitatively than NWA, but has relatively large errors in

the middle of the rotation sequence because of the ghosting and artifacts. Its performance is

close to PBI in the early part of the sequence, when both methods accurately approximate

the lighting.

The inset in Figure 6.2 compares the three methods just discussed for selecting whether

or not to update incrementally in PBI. In most cases, all three approaches perform nearly

identically—we do not show all 3 curves in the main plot since one cannot distinguish

them at that scale (the error axis in the inset is magnified). There are only marginal

improvements for dealer and exhaustive over the simple per-band test. Hence, because

of its implementation simplicity and low computational overhead, we will always use the

simple test.

We can also attempt to see how many wavelets are needed in standard PRT to produce

equal quality results as PBI. Because of the fundamentally different nature of the algorithms,

we plot a number of curves in Figure 6.2. PBI with 30 wavelets is essentially always

CHAPTER 6. PER-BAND INCREMENTAL WAVELET ALGORITHM 28

Per-Band Incremental (PBI)
(30 Wavelets)

No Ghosts or Artifacts

Higher Frequencies Removed

Basic Incremental (BI)
(30 Wavelets)

Ghosts and Artifacts

Frame 75 : Intermediate

Figure 6.3: Comparison of images from PBI and basic incremental BI.

better than standard non-incremental NWA with 60 wavelets. Moreover, approximately

100 wavelets in non-incremental are needed to be comparable (sometimes better, sometimes

worse) to PBI over the full sequence, while the lighting is rotating. However, if we include

the static regions, where PBI converges, even a 500 wavelet non-incremental approximation

cannot achieve equal quality as our method within 25 time steps of stopping rotation.

Figure 6.3 compares PBI to BI (for intermediate frame 75 from Figure 5.2). We can

clearly see a sharp shadow without the ghosting and artifacts. Similarly, Figures 1.1 and

5.1, and the closeups, clearly show that PBI significantly outperforms BI and standard

PRT.

Figure 6.4 shows the characteristic behavior of PBI for different wavelet sizes or bands.

The vertical lines correspond to frames where that band was updated non-incrementally.

As can be seen, the bands update incrementally most of the time, but are occasionally reset

or zeroed out, updating non-incrementally for that frame. This follows our intuition—as the

solution moves further away from the stored value, it is better to restart occasionally. The

frequency of restarting (non-incremental frames) depends on the speed of motion (lighting

change) and wavelet level. Coarser wavelets exhibit greater temporal coherence—in fact,

the two coarsest levels (sizes 4096 and 1024) always update incrementally. As the wavelet

CHAPTER 6. PER-BAND INCREMENTAL WAVELET ALGORITHM 29

4096

1024

256

64

16

4

 0 11 99

40

30 75 125

W
a
v
e
le

t
A

re
a

10

20

30

R
o
ta

ti
o
n
 A

n
g
le

(d
e
g
re

e
s
)

Time

Time (Frames)

Rotation Starts Rotation Ends

Figure 6.4: (top) Incremental (horizontal line) vs non-incremental (vertical line)

updates for different bands using PBI. (bottom) Rotation angle for the lighting ro-

tation sequence. Bands are occasionally reset, or evaluated non-incrementally, when they drift

too far from the stored value, with more frequent resets for higher frequency or finer wavelets.

level gets finer, restarting becomes more frequent. PBI automatically adapts the frequency

of restarts, or non-incremental updates, to the rate of illumination change and wavelet level.

Finally, we consider the computational and memory overhead for PBI. The memory

overhead is primarily the stored value or previous frame’s (floating point 512 × 512) image

for each of the 6 wavelet bands. Together with (small) auxiliary data structures, the total

extra storage is 19.2 MegaBytes. By comparison, the transport matrix and auxiliary struc-

tures for the scene in Figure 5.1 occupy 229 MB, and this can be larger for more complex

scenes. Hence, the memory overhead is only 8% for this scene. The computational over-

head comes primarily from adding the per-band images in line 20 of Figure 6.1. This is a

fixed cost, and the relative time decreases as we increase the wavelet budget. Even if we

only update 1 wavelet per frame, the overhead is only 20%. For realistic wavelet budgets,

such as the dynamic lighting sequence in Figure 5.1 with 30 wavelets, the overhead is less

than 5%—PBI averaged 14.2 frames per second, and standard NWA averaged 14.8 fps.

Since the computational overhead for PBI is minimal, we refer to the number of wavelets

used to quantify performance through out this thesis (rather than running times that are

implementation and machine-specific).

Chapter 7 30

Chapter 7

Integration with PRT methods

In this section, we integrate our per-band incremental (PBI) wavelet algorithm into three

methods that form the basic building blocks for all all-frequency PRT algorithms, showing

a variety of results.

7.1 Basic Image Relighting

We start with basic image relighting [NRH03], which we have already used to understand

and develop the key ideas. For implementation, we simply modified the code framework

in [NRH03] to incorporate PBI. The modifications affected only the lighting approximation

and matrix multiplication phases, and required only about 100 lines of additional code. As

seen in Figures 1.1 (top), 5.1 and 6.3, PBI is accurate, and produces significantly higher

quality results than standard PRT without artifacts.

Figure 7.1 shows another example on a 512×512 image of the plant scene with intricate

shadowing. We compare closeups as we increase the number of terms in both PBI and

standard PRT. For equal time (30 or 100 wavelets), PBI has significantly sharper shadows

in dynamic lighting. Three to four times as many terms are needed in standard PRT for

equal quality across a fair range of wavelet approximations (about 100 in standard for 30

wavelets in PBI, and 300 in standard for 100 in PBI). Finally, within 5 frames of stopping

lighting motion, PBI has essentially converged, and a 30 term approximation is comparable

to 300 terms in standard PRT.

CHAPTER 7. INTEGRATION WITH PRT METHODS 31

30 Wavelets 100 Wavelets 300 WaveletsNWA (30 Wavelets)PBI (30 Wavelets)

Frame 45
(While rotating)

Frame 117
(5 frames after

stopping)

PBI PBI PBI

PBIPBIPBI

NWANWANWA

NWA NWA NWA

Figure 7.1: Comparison of different numbers of wavelet terms for PBI and stan-

dard NWA, while rotating (top) and within 5 frames of stopping (bottom). On top, we see

that three to four times as many wavelet terms are needed for equal quality in standard PRT.

Moreover, about 10 times as many terms is needed within a few frames of stopping (bottom).

For equal time, with the same number of wavelets, PBI consistently has much sharper shadows

than standard PRT.

Since the quality of the image (such as the sharpness of shadows) in PBI depends on

the speed of lighting variation, the shadows will get softer or sharper as the user speeds up

or slows down the change in lighting. In many applications, such as lighting design, this is

a very desirable behavior, with progressive refinement any time the user stops or even slows

to make fine adjustments.

7.2 Changing View with BRDF Factorization

We now consider the extension to varying view as well as lighting, taking glossy materials

into account. This section integrates PBI into a simple implementation of [LSSS04, WTL04].

Those methods use an in-out factorization of the BRDF,

ρ(ωi, ωo) =
K∑

k=1

gk(ωi)hk(ωo), (7.1)

where ρ is the BRDF, factored into products gk and hk with a total of K terms. As reported

in [LSSS04, WTL04], 3 to 10 terms suffice even for fairly shiny materials.

For PRT, one now folds the incident angle-dependent factor gk(ωi) into the transport

CHAPTER 7. INTEGRATION WITH PRT METHODS 32

matrix, with a separate Tk for each BRDF term. The outgoing dependence hk(ωo) is

independent of the incident lighting, and simply modulates the final result,

B(x, ωo) =
K∑

k=1

hk(ωo)(TkL), (7.2)

where the term (TkL) in parentheses is a matrix-vector multiplication, like equation 1.1,

and the weighting by hk(ωo) allows for view-variation. There is minimal overhead for the

addition above.

To take advantage of temporal coherence, we simply apply PBI to the lighting once,

and then use this lighting approximation for all k, and each matrix-vector multiplication

TkL. The weighting by hk(ωo) to obtain the final result in equation 7.2 proceeds as before.

In general, both the standard implementation and the method with PBI integrated operate

much the same way as [NRH03], but are always per-vertex instead of per-pixel, and require

K matrix-vector computations, as well as K times as much storage.

As before, the PBI method can be integrated in less than a hundred lines of code, and

involves negligible computational or memory overhead. When the lighting is dynamic, we

obtain a speedup (or increase in quality) by a factor of 3 or 4, and the solution rapidly

converges to the exact result when the lighting is static.

Figure 7.2 shows a scene with 40,029 vertices (largely on the ground plane to capture

intricate shadows), and complex BRDFs (note the fairly sharp Phong highlights on the

street lamps, especially in the right column—we use K = 4 BRDF terms). We render this

complex scene at real-time rates with PBI, with much sharper shadows than standard PRT,

using only 30 wavelet terms. As seen in the bottom row, even 100 wavelet terms in standard

PRT performs somewhat worse than PBI. To stress the generality of our method, the first

two columns show two types of light manipulation—rotation as before, and interpolating

two environments (Grace and StPeters), as one would for example when moving between

two spatial locations in a video game. Note that the view can also simultaneously change

in these examples. In the third column, we change viewpoint only. Since the lighting is

static, the PBI algorithm very rapidly converges to the exact solution, which is accurately

maintained while changing view, and is much sharper than the 100 term standard PRT

comparison.

CHAPTER 7. INTEGRATION WITH PRT METHODS 33

Non-

Incremental

(NWA)

30 Wavelets

Non-Incremental

(NWA)

100 Wavelets

PBI Simple

30 Wavelets

Rotating the Lighting

Environment

Interpolating

the Lighting

Environment
Changing View

(Constant Lighting)

Figure 7.2: Comparison of images with standard PRT and PBI for 30 wavelets,

as well as standard PRT with 100 wavelets (which is marginally worse quality than the

30 term PBI approximation). For dynamic lighting (first two columns), PBI produces much

sharper shadows than PRT with the same number of wavelet terms. We obtain exact results

when only the view is changing in the right column—in this case, PBI is much sharper than the

100 term non-incremental result.

7.3 Clustered PCA

Clustered PCA [LSSS04, SHHS03] or CPCA compresses the transport matrices T using

spatial coherence, for greater compactness and efficiency. The vertices of the scene are

broken into clusters, each of which is approximated with a low-dimensional PCA basis.

We emphasize that our method can be applied “blindly” with any representation of T ,

CHAPTER 7. INTEGRATION WITH PRT METHODS 34

Non-Incremental (NWA)

100 Wavelets, 6 PCA Base

PBI + Incremental PCA Bases

100 Wavelets, 6 PCA Bases

2 PCA Bases 4 PCA Bases 6 PCA Bases 25 PCA Bases Non-Incremental

Wavelets (300)

+

Incremental

Bases

Non-Incremental

Wavelets (300)

+

Non-Incremental

Bases

CPCA Clusters

Figure 7.3: CPCA, using our temporal coherence algorithm. On left, we show the

CPCA clusters color coded—we use several to accurately capture sharp shadows. On right, we

compare our method with standard CPCA, clearly showing the higher quality in the images. The

closeups below show the effect of changing the number of incremental terms in the second step

of CPCA, and we see that S/4 = 6 is enough for very high quality (in the closeups, we always

use high quality non-incremental updates for the lighting projection (first) step, so we can focus

only on comparing incremental and non-incremental PCA bases).

including CPCA, since we simply modify the lighting approximation L. However, even

greater speedups can be obtained if we understand the CPCA method, and modify it to be

fully incremental, as described below.

In the first rendering step, CPCA computes per-cluster coefficients,

P c
i = M c

i L, (7.3)

where the superscript denotes the cluster number c, and the subscript denotes the PCA basis

function i. M c
i can be thought of as a K × N matrix, where N is the lighting resolution

(in our case 6 × 32 × 32). Each row of M c
i corresponds to a specific term k in the BRDF

factorization, and each element of the K element vector P c
i is a dot product of this row in

M c
i and the lighting vector L.

In the second rendering step, the per-vertex weights are used to blend the coefficients

P c
i , with

Uv =

S∑
i=1

wv
i P

c(v)
i , (7.4)

CHAPTER 7. INTEGRATION WITH PRT METHODS 35

where v is the vertex, c(v) is its corresponding cluster, wv
i is the weight for vertex v and

basis function i, and we sum over all S PCA basis functions i. Note that Uv is a K element

vector, with a separate value for each term of the BRDF. The final step weights by the

BRDF factors hk,

Bv(ωo) =
K∑

k=1

hk(ωo)U
v
k . (7.5)

Step 3, (equation 7.5) is usually very efficient, since K is small, and we compute it

in the standard way. In [LSSS04], step 2, (equation 7.4) is expensive, since it is done for

each vertex—but is usually much more efficient than standard PRT, since one needs to

sum over only S basis functions. In their case, step 1 (equation 7.3) is relatively fast,

especially with wavelet approximation of the lighting, since it needs to be done only once

per cluster. However, in our experience, getting very sharp all-frequency shadows requires

a large number of clusters, as well as more PCA basis functions than used by [LSSS04].

In this regime, steps 1 and 2 have comparable computational expense (as they do in the

related technique of [NBB04]), and we would ideally like both steps to exploit temporal

coherence.

Step 1 (equation 7.3) has essentially the same form as equations 1.1 and 4.1, and we can

directly apply the PBI method to L, as for the previous algorithms. Step 2 (equation 7.4) is

more interesting. For a given BRDF term k and cluster c, we can concatenate the weights

wv
i for all i into a large matrix W , whose rows correspond to vertices and columns to

coefficients i. In that case, step 2 becomes

U = WP, (7.6)

where P is an S-element vector of (dynamically-changing) coefficients for that cluster. We

now have a very similar form to equation 1.1, with P as the dynamic vector V . Since there

is no clear concept of bands, we apply the basic incremental algorithm of Chapter 4, which

works well since S is usually small. We usually choose the number of incremental terms to

be S/4, which gives us a four-fold improvement, while maintaining a high accuracy solution

that avoids ghosting. In summary, we perform both steps of CPCA rendering incrementally,

with PBI wavelets used for step 1 (lighting approximation and per-cluster coefficients), and

basic incremental used for step 2 (per-vertex weights).

CHAPTER 7. INTEGRATION WITH PRT METHODS 36

Figure 7.3 shows a complex scene, with 398 clusters and S = 25 PCA bases, which we

render using 100 PBI wavelet lighting terms and 6 incremental basis functions per cluster.

Another example is shown in the bottom of Figure 1.1. In both cases, our algorithm captures

significantly sharper shadows than standard CPCA. The closeups in the bottom row of

Figure 7.3 show how the quality improves as we increase the number of incremental terms

in step 2 (equation 7.6). Clearly, S/4 = 6 terms suffices to give almost reference quality

images in dynamic lighting. Hence, as with the earlier algorithms, we get a performance

improvement by a factor of about four for both steps of CPCA in dynamic lighting, with

rapid convergence in static lighting even if the view changes.

Chapter 8 37

Chapter 8

PBI for Spherical Harmonics

There is nothing in equations 1.1, 4.1, and 5.1 restricting us to use wavelets or all-frequency

methods. Indeed, we have conducted some preliminary experiments with spherical harmonic

relighting that we discuss here briefly.

Low-frequency PRT involves a linear approximation of the lighting with a fixed basis,

rather than a nonlinear approximation that picks the largest terms. As Ng et al. conclude

in [NRH03], NWA converges exponentially faster than linear harmonic approximation as

the number of terms increases making NWA a good choice for many applications. However,

non-linear methods have some inherent flicker as they may choose disparate coefficients in

consecutive frames. Although PBI can may sometimes reduce this flicker for NWA, any

attempt to improve on spherical harmonics should preserve this primary benefit.

To resolve this, we modified the PBI method to first fill low-frequency bands to some tol-

erance before considering higher-frequency bands (guaranteeing we were never really worse

in any band than standard low-frequency PRT). This creates a “stickiness” in each fre-

quency band discouraging updates from jumping up and down between bands. A simple

change to SetupBands() in Figure 6.1 is shown in Figure 8.1 that produces smoother

appearance during rotations while somewhat hindering convergence. The tolerance vari-

able (Tol in Figure 8.1) balances this trade-off between smoothness and more aggressive

convergence.

We also have to be aware of how we compress the transport matrix. For wavelets, most

transport coefficients are very close or equal to zero (usually more than 99%) permitting

CHAPTER 8. PBI FOR SPHERICAL HARMONICS 38

most of them to be simply dropped while still maintaining a near exact transport matrix.

Spherical harmonics, on the other hand, distribute energy more evenly making it impossible

to keep an exact representation of transport in memory. Instead, the maximum approxima-

tion order must be capped, usually at the 5th or 6th harmonic order making for transport

matrices that are only 25 or 36 coefficients per row. Unfortunately, this means there is no

hope of converging to an exact result. At best we can increment to a better approxima-

tion. Being restricted to a lower frequency approximation isn’t all bad, however. Recall

Figure 5.4, linking spatial frequency to temporal coherence. There is more exploitable

temporal coherence at these lower frequencies, offseting the smoothness vs. convergence

trade-off of the tolerance variable.

Figure 8.2 compares the modified PBI algorithm against linear 5th and 10th order spher-

ical harmonic approximations. In this example, PBI increments only 25 coefficients per

frame, and the transport matrix is large enough for a 20th order approximation. We are

able to achieve comparable, if not better, improvements as for wavelets, effectively a 25

term approximation (equivalent to 5th order spherical harmonics) is comparable to 100

(10th order) during rotation with minimal flickering. Unfortunately, the visual benefits are

somewhat less dramatic than for wavelets. As depicted in Figure 8.3, the images produced

by linear spherical harmonics change far less from 25 to 100 terms than for non-linear

wavelets.

CHAPTER 8. PBI FOR SPHERICAL HARMONICS 39

PBI for Spherical Harmonics

Procedure SetupBands() // Replaces SetupBands() in Figure 6.1.

1. for all Bands i // Initialize all bands to non-incremental.

2. IsIncri = false;

3. end

4. Tol = 0.0005; // Initialize Tolerance to a low value.

5. c = 1; // Start at the first Spherical Harmonic coefficient,

6. fb = 1; // and the first frequency band.

// Dish out coefficients until budget is used up or total approximation error is negligible.

7. while c < Budget and
∑NumBands

i=1 Erri > ε

8. if Errfb > Tol // Error in the band is above tolerance.

9. Append(W fb, c); // Append the next largest coefficient to fb’s update list.

10. c + +;

11. IsIncrfb = true; // Set this band to incremental.

12. else // This band is acceptable,

13. fb + +; // move on to next frequency band.

14. if fb > NumBands // If all bands are acceptable,

15. Tol × = 0.1; // reduce the tolerance,

16. fb = 1; // and start back at the first band.

17. end;

18. end;

19. end;

Figure 8.1: SetupBands() procedure for Per-Band Incremental Spherical Harmon-

ics.

CHAPTER 8. PBI FOR SPHERICAL HARMONICS 40

Linear

Spherical Harmonics

25 Coeffs. (5th Order)

Linear

Spherical Harmonics

100 Coeffs. (10th Order)

Modified PBI

Spherical Harmonics

25 Coeffs.

Frame = 30 75

Figure 8.2: PBI for Spherical Harmonics using rotations from Figure 5.1, comparing

linear 5th order (top), linear 10th order (middle), and the modified PBI algorithm (bottom). In

this example, we use a 20th order spherical harmonic approximation of the transport matrix.

CHAPTER 8. PBI FOR SPHERICAL HARMONICS 41

Linear

Spherical

Harmonics

Non-Linear

Wavelets

(NWA)

25 Terms 100 Terms

Figure 8.3: Comparing 25 to 100 term approximation using linear spherical har-

monics and NWA. NWA with only 25 terms gives a mostly low-frequency result with blurred

shadows. With 100 terms, there are both soft and hard shadows. Meanwhile, linear spherical

harmonics goes from very blurry shadows at 25 terms to slightly less blurry at 100 terms. Insets

compare the environment approximation.

Chapter 9 42

Chapter 9

Conclusions and Future Work

We have identified a critical new source of coherence and compression in all-frequency PRT

methods—temporal coherence in the lighting. We have analyzed the nature of temporal

coherence, and developed an efficient per-band incremental wavelet algorithm. The method

is very simple to implement and can be integrated with essentially all current real-time all-

frequency PRT methods, while imposing minimal computational or memory overhead. For

dynamically-varying lighting, we can obtain a performance improvement of 3×–4× without

sacrificing quality. Equivalently, we can substantially increase the quality of all-frequency

PRT methods, without sacrificing speed. Moreover, our algorithm converges to the exact

result within a few frames of the lighting being static.

In the future, much further work can be done on understanding and analyzing the

nature of temporal coherence. Algorithmically, one could imagine higher-order schemes for

approximating the lighting coefficients, rather than the piecewise-constant approximation

induced by selecting different wavelets at different times. However, this involves storing and

updating image derivatives and Hessians, that can be quite complex and computationally

expensive.

As discussed in Chapter 8, we have conducted only preliminary experiments with spher-

ical harmonics. These experiments revealed compromises between transport size and ap-

proximation quality as well as between smoothness and convergence rate that don’t exist

in the non-linear wavelet domain. We are also hindered by our inability to converge to an

exact result. More research is needed to determine how to integrate the incremental method

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 43

into low-frequency approaches while benefitting more and costing less.

The results shown in figure 5.4 have deeper implications than those conveyed in this

thesis. It seems intuitive that the link between temporal and angular frequencies and

coherence should hold for any basis, not just wavelets. We also predict a similar relation

between any forms of coherence, angular vs. spatial, spatial vs. temporal, etc.. This

breakdown in coherence at higher frequencies may be a limiting factor to future applications.

Understanding this limit may lead to enlightenment as to where and where not we can

expext to benefit from coherence.

Modern GPUs are capable of speeding up many real-time rendering tasks by multiple

orders of magnitude. As of yet we have only speculated on GPU implementations of the

incremental methods discussed in this thesis. This is largely justified by the fact that there

are no published all-frequency PRT implementations that we know of which claim faster

results on the GPU than the CPU. We also predict GPU implementations of our methods to

be complicated by the need for inter-frame and per-band knowledge, necessitating off-screen

buffers and multiple passes. However, all current low-frequency implementations have cor-

responding GPU algorithms, often with blazingly fast results, and future GPU generations

may open the door for all-frequency PRT. We would like to explore how temporal coherence

might leverage GPU rendering algorithms.

Finally, we have exploited temporal coherence only in the lighting for static scenes.

One could also exploit temporal coherence of the transport matrices for dynamic scenes,

in applications like lighting design for pre-determined animated sequences. More generally,

PRT is only one application, and temporal coherence should also be relevant to shadow

mapping and other high-quality shading approaches. We predict that future PRT and

other high-quality real-time rendering algorithms will be designed to take full advantage of

temporal coherence in lighting, viewpoint and scene geometry.

Chapter 9 44

Bibliography

[BFMZ94] G. Bishop, H. Fuchs, L. McMillan, and E. Zagier. Frameless rendering: Double

buffering considered harmful. In SIGGRAPH 94, pages 175–176, 1994.

[BOR06] A. Ben-Artzi, R. Overbeck, and R. Ramamoorthi. Real-time BRDF editing in

complex lighting. In Accepted to SIGGRAPH 06, 2006.

[CT82] R.L. Cook and K.E. Torrance. A reflectance model for computer graphics.

ACM Transaction on Graphics (TOG), 1(1):first article, 1982.

[DAG95] J. Dorsey, J. Arvo, and D. Greenberg. Interactive design of complex time

dependent lighting. IEEE Computer Graphics and Applications, 15(2):26–36,

March 1995.

[DWWL05] A. Dayal, C. Woolley, B. Watson, and D. Luebke. Adaptive frameless rendering.

In EuroGraphics Symposium on Rendering, pages 265–275, 2005.

[LRR04] J. Lawrence, S. Rusinkiewicz, and R. Ramamoorthi. Efficient brdf impor-

tance sampling using a factored representation. ACM Transaction On Graphics

(TOG), 23(3):496–505, 2004.

[LSSS04] X. Liu, P. Sloan, H. Shum, and J. Snyder. All-frequency precomputed radiance

transfer for glossy objects. In Eurographics Symposium on Rendering, pages

337–344, 2004.

[MAA01] M. McCool, J. Ang, and A. Ahmad. Homomorphic factorization of BRDFs for

high-performance rendering. In SIGGRAPH 01, pages 171–178, 2001.

BIBLIOGRAPHY 45

[NBB04] S. Nayar, P. Belhumeur, and T. Boult. Lighting-sensitive displays. ACM

Transactions on Graphics, 23(4):963–979, 2004.

[NRH03] R. Ng, R. Ramamoorthi, and P. Hanrahan. All-frequency shadows using non-

linear wavelet lighting approximation. ACM Transactions on Graphics (SIG-

GRAPH 2003), 22(3):376–381, 2003.

[NRH04] R. Ng, R. Ramamoorthi, and P. Hanrahan. Triple product wavelet integrals for

all-frequency relighting. ACM Transactions on Graphics (SIGGRAPH 2004),

23(3):475–485, 2004.

[RH01] R. Ramamoorthi and P. Hanrahan. An efficient representation for irradiance

environment maps. In SIGGRAPH 01, pages 497–500, 2001.

[SHHS03] P. Sloan, J. Hall, J. Hart, and J. Snyder. Clustered principal components for

precomputed radiance transfer. ACM Transactions on Graphics (SIGGRAPH

03 proceedings), 22(3):382–391, 2003.

[SKS02] P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance transfer for real-

time rendering in dynamic, low-frequency lighting environments. ACM TOG

(SIGGRAPH 02 proceedings), 21(3):527–536, 2002.

[SLS05] P. Sloan, B. Luna, and J. Snyder. Local, deformable precomputed radi-

ance transfer. ACM Transactions on Graphics (SIGGRAPH 05 proceedings),

24(3):1216–1224, 2005.

[SS00] Y. Shi and H. Sun. Image and Video Compression for Multimedia Engineering:

Fundamentals, Algorithms, and Standards. CRC Press, 2000.

[WDP99] B. Walter, G. Drettakis, and S. Parker. Interactive rendering using the render

cache. In EGSR, pages 19–30, 1999.

[WTL04] R. Wang, J. Tran, and D. Luebke. All-frequency relighting of non-diffuse ob-

jects using separable BRDF approximation. In Eurographics Symposium on

Rendering, pages 345–354, 2004.

BIBLIOGRAPHY 46

[WTL05] R. Wang, J. Tran, and D. Luebke. All-frequency interactive relighting of

translucent objects with single and multiple scattering. ACM TOG (SIG-

GRAPH 05 proceedings), 24(3):1202–1207, 2005.

[WWL05] L. Wan, T. Wong, and C. Leung. Spherical Q2-tree for sampling dynamic

environment sequences. In EuroGraphics Symposium on Rendering, pages 21–

30, 2005.

[ZHL+05] K. Zhou, Y. Hu, S. Lin, B. Guo, and H. Shum. Precomputed shadow fields for

dynamic scenes. ACM TOG (SIGGRAPH 2005), 25(3), 2005.

