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Abstract—Cast shadows can be significant in many computer vision applications,

such as lighting-insensitive recognition and surface reconstruction. Nevertheless,

most algorithms neglect them, primarily because they involve nonlocal interactions

in nonconvex regions, making formal analysis difficult. However, many real

instances map closely to canonical configurations like a wall, a V-groove type

structure, or a pitted surface. In particular, we experiment with 3D textures like

moss, gravel, and a kitchen sponge, whose surfaces include canonical

configurations like V-grooves. This paper takes a first step toward a formal

analysis of cast shadows, showing theoretically that many configurations can be

mathematically analyzed using convolutions and Fourier basis functions. Our

analysis exposes the mathematical convolution structure of cast shadows and

shows strong connections to recent signal-processing frameworks for reflection

and illumination.

Index Terms—Cast shadows, convolution, Fourier analysis, eigenmodes,

V-grooves.
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1 INTRODUCTION

CAST shadows are an important feature of appearance. For
instance, buildings may cause the sun to cast shadows on the
ground, the nose can cast a shadow onto the face, and local
concavities in rough surfaces or textures can lead to interesting
shadowing effects. However, most current vision algorithms do
not explicitly consider cast shadows. The primary reason is the
difficulty in formally analyzing them since cast shadows involve
nonlocal interactions in concave regions. In general, shadowing
can be very complicated, such as sunlight passing through the
leaves of a tree, and mathematical analysis seems hopeless.
However, we believe many common shadowing situations have
simpler structures, some of which are illustrated in Fig. 1.

Our theory is motivated by some surprising practical results. In

particular, we focus on the appearance of natural 3D textures like

moss, gravel, and kitchen sponge, shown in Fig. 2 and Fig. 6. These

objects have fine-scale structures similar to the canonical config-

urations shown in Fig. 1. Hence, they exhibit interesting illumina-

tion and view-dependence, which is often described using a

bidirectional texture function (BTF) [3]. In this paper, we analyze

lighting variability, assuming a fixed view. Since these surfaces are

nearly flat and diffuse, one might expect illumination variation to

correspond to simple Lambertian cosine-dependence. However,

cast shadows play a major role, leading to effects that are

quantitatively described and mathematically explained here.
We show that, in many canonical cases, cast shadows have a

simple convolution structure amenable to Fourier analysis. This
indicates a strong link between the mathematical properties of
visibility and those of reflection and illumination (but ignoring cast
shadows) for which Basri and Jacobs [1] and Ramamoorthi and
Hanrahan [15], [16] have recently derived signal-processing
frameworks. In particular, they [1], [15] show that the irradiance

is a convolution of the lighting and the clamped cosine Lambertian
reflection function. We derive an analogous result for cast shadows
as convolution of the lighting with a Heaviside step function. Our
results also generalize Soler and Sillion’s [20] convolution result for
shadows when source, blocker, and receiver are all in parallel
planes—for instance, V-grooves (Fig. 1b, as well as Fig. 1a and
Fig. 1d) do not contain any parallel planes.

Our paper builds on a rich history of previous work on
reflection models, such as Oren and Nayar [12], Torrance and
Sparrow [23], and Koenderink et al. [7], as well as several recent
articles on the properties of 3D textures [2], [21]. Our analytic
formulae are derived considering the standard V-grooves used in
many of these previous reflection models [12], [23]. Note that
many of these models include a complete analysis of visibility in
V-grooves or similar structures for any single light source
direction. We differ in considering cast shadows because of
complex illumination, deriving a convolution framework, and
analyzing the eigenstructure of visibility. Our work also differs from
that of Thornber and Jacobs [22] in that we derive a particular
convolution formula for shadows directly, rather than considering
a general integral involving the illumination, reflective properties
of the surface, and visibility.

2 THE STRUCTURE OF CAST SHADOWS

First, we briefly make some theoretical observations. Consider

Fig. 1a and Fig. 1b. There is a single extreme point B. As we move

from O to A0 to A (with the extremal rays being OB, A0B, and AB),

the visible region of the illumination monotonically increases. This

local shadowing situation, with a single extreme point B, and

monotonic variation of the visible region of the illumination as one

moves along the surface is one of the main ideas in our derivation.

Furthermore, multiple extreme points or blockers can often be

handled independently. For instance, in Fig. 1c and Fig. 1d, we have

two extreme points,B andC. The net shadowing effect is essentially

the superposition of the effects of extreme rays through B and C.
Second, we describe some new experimental results on the

variability of appearance in 3D textures with illumination, a major
component of which are cast shadowing interactions similar to the
canonical examples in Fig. 1. In Fig. 2, we show an initial
experiment. We illuminated a sample of gravel along an arc (with
the angle ranging from �90 degrees to þ64 degrees, limited by the
specifics of the acquisition). The varying appearance with illumina-
tion clearly suggests that cast shadows are an important visual
feature. The figure also shows a conceptual diagrammatic repre-
sentation of the profile of a cross-section of the surface with many
points shadowed in a manner similar to Fig. 1a, Fig. 1b, and Fig. 1d.

3 2D ANALYSIS OF CAST SHADOWS

For mathematical analysis, we begin in flatland, i.e., a 2D slice
through the viewpoint. We will consider a V-groove model, shown
in Fig. 3, that corresponds to Fig. 1b. However, the derivation will
be similar for any other shadowing situation, such as those in Fig. 1,
where the visibility is locally monotonically changing. The V-groove
model in Fig. 3 can model Fig. 1a and Fig. 1b (�1 ¼ 0, �2 ¼ �=2, and
�1 ¼ �2), and each of the extreme points of Fig. 1c and Fig. 1d.

3.1 Convolution Formula for Shadows in a V-groove

Our goal is to find the irradiance1 Eðx; �Þ as a function of groove
angle � ¼ ½��1;þ�2� and the distance along the groove x. Without
loss of generality, we consider the right side of the groove only. For
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1. Since we focus on cast shadows, we will assume Lambertian surfaces
and will neglect the incident cosine term. This cosine term may be folded
into the illumination function if desired, as the surface normal over a
particular face (side) of the V-groove is constant.
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a particular groove (fixed �), pixels in a single image correspond

directly to different values of x and the irradiance EðxÞ is directly
proportional to pixel brightness.

Eðx; �Þ ¼
Z �=2

��=2

Lð!ÞV ðx; !; �Þ d!; ð1Þ

where Lð!Þ is the incident illumination intensity, which is a

function of the incident direction !. We make no restrictions on the

lighting, except that it is assumed distant, so the angle ! does not

depend on location x. This is a standard assumption in environ-

ment map rendering in graphics and has been used in previous

derivations of analytic convolution formulae [1], [16]. V is the

binary visibility in direction ! at location AðxÞ.
Monotonic Variation of Visibility: As per the geometry in

Fig. 3, the visibility is 1 in the range from ��1 to �2 þ �ðxÞ and 0 or

(cast) shadowed otherwise. It is important to note that �ðxÞ is a

monotonically increasing function of x, i.e., the portion of the

illumination visible increases as one moves along the right side of

the groove from O to A0 to A (with corresponding extremal rays

OB, A0B, and AB).

Reparameterization by �: We now simply use � to parameter-

ize the V-groove. This is just a change of variables and is valid as

long as � monotonically varies with x. Locally, � is always

proportional to x since we may do a local Taylor series expansion,

keeping only the first or linear term.

Representation of Visibility: We may now write down the

function V ðx; !; �Þ, newly reparameterized as V ð�; !; �Þ. Noting

that V is 1 only in the range from ½��1; �2 þ ��,

V ð�; !; �Þ ¼ H ��1 � !ð Þ �H ð�2 þ �Þ � !ð Þ;
HðuÞ ¼ 1 if u < 0; 0 if u > 0;

ð2Þ

where HðuÞ is the Heaviside step function. The first term on the

right hand side zeros the visibility when ! < ��1 and the second

term when ! > �2 þ �. Fig. 4 illustrates this diagrammatically. In

the limit of a perfectly flat Lambertian surface, �1 ¼ �2 ¼ �=2 and

� ¼ 0. In that case, the first term on the right of (2) is always 1, the

second term is 0, and V ¼ 1 (no cast shadowing).

Convolution Formula: Plugging (2) back into (1), we obtain

Eð�; �Þ ¼Z �=2

��=2

Lð!ÞHð��1 � !Þ d!�
Z �=2

��=2

Lð!ÞHðð�2 þ �Þ � !Þ d!:
ð3Þ

E is the sum of two terms, the first of which depends only on

groove angle �1 and the second of which also depends on groove

location or image position �. In the limit of a flat diffuse surface,

the second term vanishes, while the first corresponds to convolu-

tion with unity and is simply the (unshadowed) irradiance or
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Fig. 1. Four common shadowing situations. We show that these all have similar structures, amenable to treatment using convolution and Fourier analysis. The red lines

indicate extremal rays, corresponding to shadow boundaries for distant light sources.

Fig. 2. (a) Gravel texture, which exhibits strong shadowing. (b) Images with different light directions clearly show cast shadow appearance effects, especially at large

angles. The light directions correspond to the red marks in (d). (c) Conceptual representation of a profile of a cross section through surface (drawn in black in (a)).

(d) Schematic of experimental setup.

Fig. 3. Diagram of a V-groove with the groove angle ranging from ��1 to þ�2.



integral of the illumination. We now separate the two terms to

simplify this result as (� is the convolution operator)

Eð�; �Þ ¼ ~EEð��1Þ � ~EEð�2 þ �Þ

~EEðuÞ ¼
Z �=2

��=2

Lð!ÞHðu� !Þ d! ¼ L�H:
ð4Þ

Fourier Analysis: Equation (4) makes clear that the net visibility
or irradiance is a simple convolution of the incident illumination
with the Heaviside step function that accounts for cast shadow
effects. This is our main analytic result, deriving a new convolution
formula that sheds theoretical insight on the structure of cast
shadows. It is therefore natural to also derive a product formula in
the Fourier or frequency domain,

~EEk ¼
ffiffiffi
�

p
LkHk; ð5Þ

where Lk are the Fourier illumination coefficients and Hk are
Fourier coefficients of the Heaviside step function, plotted in Fig. 5.
The analytic formula can be derived as follows:

Hk ¼
Z 0

��=2

1ffiffiffi
�

p e�2ikv dv; ð6Þ

where the integral limits are set because we are considering the
heaviside function and the integrand is the orthonormal Fourier
basis on ½��;þ��.

The even coefficients H2k vanish, while the odd coefficients
decay as 1=k:

k ¼ 0 : H0 ¼
ffiffiffi
�

p

2

odd k : Hk ¼
iffiffiffi
�

p
k
:

ð7Þ

3.2 Eigenvalue Spectrum and Illumination Eigenmodes
for Cast Shadows

Our convolution formula is conceptually quite similar to the
convolution formula and signal-processing analysis done for convex
curvedLambertian surfaces or irradiance byBasri and Jacobs [1] and
Ramamoorthi andHanrahan [14], [15]. In this subsection,weanalyze

our results further in terms of the illumination eigenmodes that
indicate the lighting distributions that have the most effect and the
corresponding eigenvalues, or singular values, that determine the
relative importance of the modes.

Illumination eigenmodes are usually found empirically by

considering the SVD of a large number of images under different

(directional source) illuminations, as in lighting-insensitive face and

object recognition [4], [6].We construct the PCA analytically, similar

to previous work for Lambertian objects [13]. Specifically, we must

relate the convolution formula above that applies to a single image

with complex illumination to the eigenfunctions derived from a

number of images taken assuming directional source lighting. We

analyze V ð�; !; �Þ for a particular groove (fixed �). Then, V ð�; !Þ is a
matrixwith rows corresponding to groove locations (imagepixels)�

and columns corresponding to illumination directions !. A

singular-value decomposition (SVD) will give the eigenvalues

(singular values) and illumination eigenmodes.

Equation (2) provides a formula for V . We are interested in the

region ! > �2, where V depends on�. It is simplest to let !0 ¼ !� �2

so both � and !0 lie in the range of ½0; �=2� �2� and we are

considering the simple matrix V ð�; !0Þ ¼ Hð!0 � �Þ.
Let us postulate (left and right) singular vectors or functions of

the form fð�Þ ¼ sinðk�Þ and gð!0Þ ¼ cosðk!0Þ, i.e., we can write the

(nonsymmetric) matrix V as FXGt, whereX is a diagonal matrix of

singular values and F and G are orthonormal matrices with fð�Þ
and gð!0Þ corresponding to their columns. Standard linear algebra

requires that V g ¼ �f and V tf ¼ �g, where f and g are correspond-

ing left and right singular vectors and � is the corresponding

singular value. In the continuous case, the matrix multiplication is

replaced by an integration,

Z �=2��2

0

Hð!0 � �Þ cosðk!0Þ d!0 ¼ � sinðk�Þ;
Z �=2��2

0

Hð!0 � �Þ sinðk�Þ d� ¼ � cosðk!0Þ:
ð8Þ
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Fig. 4. Illustration of the visibility function as per (2). The black portions of the graphs where ! < þ�2 are independent of � or groove location, while the red portions with

� > þ�2 vary linearly with �, leading to the convolution structure.

Fig. 5. (a) Comparison of Fourier coefficients for the Heaviside step function for cast shadows and (b) the clamped cosine Lambertian function for irradiance. (c) is a

loglog plot of the absolute values of the nonzero eigenvalues. The graphs are straight lines with slope -1 for cast shadows, compared to the quadratic decay (slope -2) for

irradiance.



Now, the first equation above becomes (realizing that H ¼ 1 when

!0 < �),

Z �

0

cosðk!0Þd!0 ¼ � sinðk�Þ; ð9Þ

which is trivially satisfied for � ¼ 1=k. The second part of (8)

becomes

Z �=2��2

!0
sinðk�Þ d� ¼ 1

k
cosðk!0Þ

¼) cosðk!0Þ � cosðkð�=2� �2ÞÞ
k

¼ cosðk!0Þ
k

¼) k ¼
ðnþ 1

2Þ�
�=2� �2

;

ð10Þ

where n is a positive integer. We have also verified these results by

numerical simulation. This derivation gives us the desired results

for the eigenvalues � and illumination eigenmodes g.
Eigenvalue Spectrum: The eigenvalues decay as 1=k, corre-

sponding to the Heaviside coefficients, as shown in Fig. 5.

Because of the relatively slow 1=k decay, our frequencies need to

be quite high (many terms) for a good approximation of cast

shadows. On the other hand,2 for irradiance on a convex curved

surface, we convolve with the clamped cosine function

maxðcos �; 0Þ, whose Fourier coefficients falloff quadratically as

1=k2 with very few terms needed [1], [15].
In actual experiments on 3D textures, the eigenvalues decay

somewhat faster. First, as explained in Section 4.1, the eigenvalues

for cast shadows decay as 1=k3=2 (loglog slope -1.5) in 3D. Second,

in the Lambertian case, since we are dealing with flat (as opposed

to spherical) surfaces, the eigenvalues for irradiance drop off much

faster than 1=k2. In fact, for an ideal flat diffuse surface, all of the

energy is in the first eigenmode that corresponds simply to

Lambertian cosine-dependence.
Illumination Eigenmodes: The illumination eigenmodes are

simply Fourier basis functions—sines and cosines. This is the

case for irradiance on a curved surface in 2D as well [14],

reinforcing the mathematically similar convolution structure.

3.3 Experimental Validation

In this section, we present an initial quantitative experimental

result. The next sections generalize these results to 3D and present

more thorough experimental validations. Note that the real images

we observe can include global illumination and specular reflection

effects not captured by the theory. Furthermore, some pixels in the

images may not correspond to a V-groove-like structure at all.

Nevertheless, we will see that the real data behaves much like the

predictions of the model, motivating and validating our derivation.
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Fig. 6. (a) Moss 3D texture with significant shadowing. Experimental setup is as in Fig. 2. (b) Six images of the moss with different lighting directions, as well as a control

experiment of paper (a flat near-Lambertian surface). Note the variation of appearance of moss with illumination direction due to cast shadows, especially for large

angles. (c) Decay of singular values for illumination eigenmodes for 3D textures is a straight line with slope approximately -1.5 on a logarithmic scale. In contrast, for a flat

near-Lambertian surface, all of the energy is in the first eigenmode with a very rapid falloff. (d) The first four illumination eigenfunctions for moss, which are simply sines

and cosines.

Fig. 7. (a) Singular values for illumination basis functions due to cast shadows in a

simulated 3D texture (randomly oriented V-grooves) plotted on a linear scale. A

number of singular values cluster together. (b) Decay of singular values (value

versus frequency or square root of singular value number) on a logarithmic scale

(with natural logarithms included as axis labels). We get a straight line with slope

approximately -1.5.

2. The Heaviside function has a position, or C0, discontinuity at the step,
while the clamped cosine has a derivative, or C1, discontinuity at cos � ¼ 0.
It is known in Fourier analysis [10] that a Cn discontinuity will generally
result in a spectrum that falls off as 1=knþ1.



We used the experimental setup of Fig. 2, determining the

eigenvalue spectrum and illumination eigenmodes for both a

sample of moss and a flat piece of paper. The paper serves as a

control experiment on a nearly Lambertian surface. Our results are

shown in Fig. 6.
Eigenvalue Spectrum: As seen in Fig. 6c, the eigenvalues

(singular values) for moss, when plotted on a log-log scale, lie on a

straight line with slope approximately -1.5, as expected. This

contrasts with the expected result for a flat Lambertian surface,

where we should, in theory, see a single eigenmode (simply the

cosine term). Indeed, in our control experiment with a piece of

paper, also shown in Fig. 6c, 99.9 percent of the energy for the

paper is in the first eigenmode.
Illumination Eigenmodes: As predicted, the illumination

eigenmodes are simply Fourier basis functions—sines and cosines.

This indicates that a common set of illumination eigenfunctions may

describe lighting-dependence in many 3D textures.

4 3D NUMERICAL ANALYSIS OF CAST SHADOWS

In 3D, V-grooves can be rotated to any orientation about the

vertical; hence, the direction of the Fourier basis functions can also

be rotated. For a given V-groove direction, the 2D derivation

essentially still holds since it depends on the monotonic increase

in visibility as one moves along the groove, which still holds in 3D.

The interesting question is what is the set of illumination basis

functions that encompasses all V-groove (and correspondingly

Fourier) orientations in 3D? In this section, we report on the results

of numerical simulations, shown in Fig. 7, Fig. 8, and Fig. 9. We

then verify these results with experiments on real 3D textures

including moss, gravel, and a kitchen sponge.

4.1 Numerical Eigenvalue Spectrum and Illumination
Eigenmodes

For numerical simulation, we consider V-grooves oriented at
(rotated by) arbitrary angles about the vertical, ranging from 0 to
2�. An interesting future direction would be to consider alternative
geometries, like general gaussian surfaces or height fields. For each
orientation, we consider a number of V-groove angles with �

ranging from 0 to �=2. In essence, we have an ensemble of a large
number of V-grooves (1,000 in our simulations). Each point on each
V-groove has a binary visibility value for each point on the
illumination hemisphere. We assemble this information into a
large visibility matrix, where rows correspond to V-groove points
(image pixels) and columns to illumination directions. Then, as in
experiments with real textures, we do an SVD3 to find the
illumination eigenmodes.

Numerical Eigenvalue Spectrum: We first consider the eigen-
values or singular values, plotted in the left of Fig. 7, on a linear scale.
At first glance, this plot is rather surprising. Even though the
singular values decrease with increasing frequency, a number of
them cluster together. Actually, these results are very similar to
those for irradiance and spherical harmonics [1], [13], [15], where
2kþ 1 basis functions of order k are similar.We show k ranging from
1 to 15 in the right of Fig. 7. As expected, the curve is almost exactly a
straight line on a log-log plot, with a slope of approximately -1.5. The
higher slope (-1.5 compared to -1 in 2D) is a natural consequence of
the properties of Fourier series of a function with a curve
discontinuity [10]. The total energy (sum of squared singular values)
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Fig. 8. Three-dimensional hemispherical basis functions obtained from numerical simulations of V-grooves. Green denotes positive values and red denotes negative

values. � and � are a standard spherical parameterization.

Fig. 9. The functions in Fig. 8 are simple products of 1D basis functions along elevation � and azimuthal � directions, as per (13). Note that the V�n are sines and cosines,

while the Um are approximately Legendre polynomials (P3 for m ¼ 1, P5 for m ¼ 2). Fig. 12 shows corresponding experimental results on an actual 3D texture.

3. Owing to the large size of the matrices both here and in our
experiments with real data, SVD is performed in a two step procedure in
practice. First, we find the basis functions and eigenvalues for each V-
groove. A second SVD is then performed on these weighted basis functions.



at each order k goes as 1=k2 in both 2D and 3D cases.However, in 3D,

each frequency band contains 2kþ 1 functions, so the energy in each

individual basis function decays as 1=k3, with the singular values

therefore falling off as 1=k3=2.
Numerical Illumination Eigenmodes: The first nine eigen-

modes are plotted in Fig. 8, where we label the eigenmodes using

ðm;nÞ with the net frequency given by k ¼ m þ j n j , with k � 0,

�k � n � k, and m ¼ k � j n j . This labeling anticipates the

ensuing discussion and is also quite similar to that used for

spherical harmonics.
To gain further insights, we attempt to factor these basis

functions into a separable form. Most 2D basis functions are

factorizable. For instance, consider the 2D Fourier transform,

Wmnðx; yÞ ¼ UmðxÞVnðyÞ; ð11Þ

where W is the (complex) 2D basis function expðimxÞ expðinyÞ and
Um and Vn are 1D Fourier functions (expðimxÞ and expðinyÞ,
respectively). Spherical harmonics and Zernike polynomials are

also factorizable, but doing so is somewhat more complicated:

Wmnð�; �Þ ¼ Um
n ð�ÞVnð�Þ; ð12Þ

where Vn is still a Fourier basis function expðin�Þ (this is because of
azimuthal symmetry in the problem and will be true in our case

too) and Um
n are associated Legendre polynomials for spherical

harmonics, or Zernike polynomials. Note that Um
n now has two

indices, unlike the simpler Fourier case, and also depends on

azimuthal index n.
We now factor our eigenmodes. The first few eigenfunctions are

almost completely factorizable and representable in a form similar

to (11), i.e., like a 2D Fourier transform, and simpler4 than spherical

harmonics or Zernike polynomials,

Wmnð�; �Þ ¼ Umð�ÞVnð�Þ: ð13Þ

Fig. 9 shows factorization into 1D functions Umð�Þ and Vnð�Þ. It
is observed that the Um correspond closely to odd Legendre

polynomials P2mþ1. This is not surprising since Legendre poly-

nomials are spherical frequency-space basis functions. We observe

only odd terms, 2mþ 1, since they correctly vanish at � ¼ �=2

when a point is always shadowed. Vn are simply Fourier azimuthal

functions, or sines and cosines. The net frequency k ¼ m þ j n j
with there being 2kþ 1 basis functions at order k.

4.2 Results of Experiments with Real 3D Textures

In this subsection, we report on empirical results in 3D, showing
that the experimental observations are consistent with, and
therefore validate, the theoretical and numerical analysis. We
considered three different 3D textures—the moss and gravel,
shown in Fig. 6, and a kitchen sponge. We report in this section
primarily on results for the sponge; results for the other samples
are similar.

For each texture, we took a number of images with a fixed
overhead camera view and varying illumination direction. The set
up in Fig. 2 shows a 2D slice of illumination directions. For the
experiments in this section, the lighting ranged over the full
3D hemisphere. That is, � ranged from ½14�; 88�� in 2 degree
increments (38 different elevation angles) and � from ½�180�; 178��
also in 2 degree increments (180 different azimuthal angles).
Hence, we captured 6,840 images (38� 180). This is a two order of
magnitude denser sampling than the 205 images acquired by Dana
et al. [3] to represent both light and view variation.

Experimental eigenvalue spectrum: Fig. 10 plots the experi-

mentally observed falloff of eigenvalues. We see on the left that

eigenmodes 2-4 (the first three after the mean term) cluster

together as predicted by our numerical simulations. One can see a

rather subtle effect of clustering in second order eigenmodes as

well, but beyond that, the degeneracy is broken. This is not

surprising for real data and is consistent with similar results for

PCA analysis in Lambertian shading [13]. For low orders

(corresponding to eigenmodes 2-16, or orders 1-3), the slope on a

loglog plot is approximately -1.6, as shown in the right of Fig. 10, in

agreement with the expected result of -1.5.

Experimental illumination eigenmodes: We next analyze the

forms of the eigenmodes; the order 1 modes for moss, gravel, and

sponge are shown in Fig. 11. The first order eigenmodes observed

are linear combinations of the actual separable functions—this is

expected and just corresponds to a rotation. We next found the

separable functions Um and Vn along � and � by using an SVD of

the 2D eigenmodes. As expected, the U and V basis functions

found separately from the three order 1 eigenmodes were largely

similar and matched those obtained from numerical simulation.

Our plots in Fig. 12 show both the average basis functions (in black)

and the individual functions from the three eigenmodes (in red,

blue, and green) for the sponge data set. We see that these have the

expected forms and the eigenmodes are well described as a linear

combination of separable basis functions.

4.3 Analytic Hemispherical Bases and Cast Shadows

Our results have indicated that a common set of hemispherical
illumination basis functions may be appropriate for many natural
3D textures. Basis functions over the hemisphere are also
important in a number of other computer graphics and vision
applications with much recent work [5], [8], [9].

The illumination eigenmodes we observe suggest that the
following set of orthonormal basis functions (per (13)) may be
useful for analyzing cast shadows in 3D textures:

Wmnð�; �Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mþ 3

�

r
P2mþ1ðcos �Þaznð�Þ; ð14Þ

where aznð�Þ stands for cosn� or sinn�, depending on whether n
is plus or minus (and is

ffiffiffiffiffiffiffiffi
1=2

p
for n ¼ 0), while P2mþ1 are odd

Legendre Polynomials.

These basis functions have some advantages as well as a few

limitations. Since they involve Legendre polynomials over � and

Fourier basis functions over �, they are closely related to spherical

harmonics but specialized to the hemisphere. Their form, as per

(13) and (14), is a simple product of 1D functions in � and � and is
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Fig. 10. (a) Plot of singular values for the sponge on a linear scale. (b) Singular

values versus frequencies on a logarithmic scale with natural log axis labels.

These experimental results should be compared to the predicted results from the

numerical simulation in Fig. 7.

4. Mathematically, functions in the form of (13) can have a discontinuity
at the pole � ¼ 0. However, in our numerical simulations and experimental
tests, we have found that this form closely approximates observed results
and does not appear to create practical difficulties.



simpler than (12) for Zernike polynomials, spherical harmonics,

or hemispherical harmonics [5], [9]. Furthermore, for diffuse

textures, due to visibility and shading effects, the intensity goes to

0 for lighting at grazing angles. These boundary conditions are

automatically satisfied since odd Legendre polynomials vanish at

� ¼ �=2 or cos � ¼ 0. In some ways, our use of only odd terms is

similar to some spherical harmonic constructions over the

hemisphere [24]. Some simple experiments illustrating the ability

of the basis functions above to represent real 3D texture data are

reported in [17].
Note that the basis above does have limitations in terms of

representing general hemispherical functions. The use of only odd
Legendre polynomials prevents us from easily representing
functions that are nonzero at � ¼ �=2 (this can be partially
corrected by adding a constant or zeroth order basis function).
Also, slow convergence and inaccuracies may occur when
representing some functions (even functions that go to 0 at � ¼
�=2 can include even Legendre polynomial terms). Simply adding
extra basis functions for the even Legendre polynomials is not easy
analytically since the basis is no longer orthonormal (however, a
numerical Gram-Schmidt orthogonalization procedure can enable
this in practice).

Finally, we would like to note that there are now three possible
ways of constructing hemispherical basis functions. The functions
above are adapted from a domain of cylindrical topology. The
Zernike polynomials [8] are adapted from the disk, while
hemispherical harmonics [5], [9] are adapted directly from
spherical harmonics on the sphere. All three techniques involve
some undesirable stretching of the base domain to adapt to the
hemisphere and have both advantages and disadvantages. An
interesting future direction is to analyze the benefits of the various
constructions and understand the best hemispherical basis func-
tions to use for different practical problems.

5 IMPLICATIONS

While this paper is primarily theoretical, there are many potential

future practical insights and implications from our work in
computer vision and graphics.

Inverse Lighting: It has been shown [15] that illumination
estimation from a Lambertian surface is ill-posed since only the
first two orders of illumination can be reliably estimated. On the
other hand, recent work by Sato et al. [18] has shown that
illumination can often be estimated from cast shadows. Our results
explain why it is feasible to estimate much higher frequencies of
the illumination (up to approximately order 10-20) from the effects
of cast shadows—the filter or kernel because of cast shadows
decays only as 1=k instead of 1=k2.

Lighting-Insensitive Recognition: There has been much

theoretical and practical work [1], [4], [6], [13] on low-dimensional

subspaces for lighting-insensitive recognition of nearly Lambertian

objects. However, these results do not consider cast shadows. Our

results suggest that it is possible to develop, in a similar fashion,

subspaces that include the effects of cast shadows simply by

considering more terms.
BTF modeling and rendering: BTFs [3] are 6D functions that

are very difficult to acquire a dense sampling of because of the
sheer size of the data. Furthermore, BTFs must encode the
effects of cast shadows, making simple quadratic bases such as
order 2 spherical harmonics [1], [15] or polynomial texture maps
[11] inadequate. Our results suggest that a common Fourier
basis can be used for compactly modeling illumination variation
in many BTFs.

Real-Time Rendering: Our results apply to real time rendering
applications based on precomputed images or radiance functions
on geometry, such as recent work by Sloan et al. [19]. While
spherical harmonics are appropriate for irradiance and other
general reflection functions [16], there has previously been no
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Fig. 11. Order 1 eigenmodes experimentally observed for moss, gravel, and sponge. Note the similarity between the three textures and to the basis functions in Fig. 8.

The numbers below represent each eigenmode as a linear combination of separable basis functions.

Fig. 12. Factored basis functions Umð�Þ and Vnð�Þ for sponge. The top row shows the mean eigenmode and the functions U0ð�Þ and U1ð�Þ. Below that are the nearly

constant V0ð�Þ and the sinusoidal V1ð�Þ; V�1ð�Þ. The colors red, blue, and green, respectively, are used to refer to the three order 1 eigenmodes that are factored to

obtain Um and Vn. We use black to denote the mean value across the three eigenmodes. It is seen that all the eigenmodes have very similar curves, which also match the



theoretical foundation for using these basis functions to consider
the effects of cast shadows nor for determining the number of
terms to use. In this paper, we have formalized the idea of
convolution for cast shadows, suggesting the use of a frequency
space basis and seen that we need many more basis functions than
the order 2 harmonics needed for irradiance.

6 CONCLUSIONS

This paper formally analyzes cast shadows, showing that a simple
Fourier signal-processing framework can be derived in many
common cases. Our results indicate a theoretical link between cast
shadows and convolution formulae for irradiance and more
general non-Lambertian materials [1], [15], [16]. This paper is also
a first step in quantitatively understanding the effects of lighting in
3D textures, where cast shadows play a major role.
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