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Abstract
In this paper we introduce a discrete shell model describing the behavior of thin flexible structures, such as
hats, leaves, and aluminum cans, which are characterized by a curved undeformed configuration. Previously such
models required complex continuum mechanics formulations and correspondingly complex algorithms. We show
that a simple shell model can be derived geometrically for triangle meshes and implemented quickly by modifying a
standard cloth simulator. Our technique convincingly simulates a variety of curved objects with materials ranging
from paper to metal, as we demonstrate with several examples including a comparison of a real and simulated
falling hat.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism–Animation; I.6.8 [Simulation and Modeling]: Types of Simulation–Animation.

1. Introduction
Thin shells are thin flexible structures with a high ratio of
width to thickness (> 100). While their well-known coun-
terparts, thin plates, relax to a flat shape when unstressed,
thin shells are characterized by a curved undeformed config-
uration. Cloth, recently studied in the animation literature,
may be modeled as a thin plate, since garments are typically
constructed from flat textiles. In stark contrast, thin-walled
objects which are naturally curved (e.g., leaves, fingernails),
or put into that shape through plastic deformation (e.g., hats,
cans, carton boxes, pans, car bodies, detergent bottles) are
thin shells and cannot be modeled using plate formulations.

Thin shells are remarkably difficult to simulate. Because
of their degeneracy in one dimension (“thinness”), shells do
not admit to straightforward tessellation and treatment as
three-dimensional solids‡. Robust finite element methods for
thin shell equations continue to be an active and challenging
research area2, 10. In contrast, thin plate equations tailored
to cloth modeling have seen successful numerical treatment;
such approaches cannot account for the structural rigidity
that arises from a curved undeformed configuration. Thin
plates have been modeled by mass-spring networks: resis-
tance to bending is effected by “diagonal” springs connected
to opposite corners of adjacent mesh faces. These techniques
do not carry over to curved undeformed configurations: the
diagonal springs are insensitive to the sign of the dihedral
angles between faces.

† eitan@cs.caltech.edu
‡ The numerics of such approaches become catastrophically ill-
conditioned, destroying convergence and/or accuracy.

Recently, novel numerical treatments of shells, signifi-
cantly more robust than earlier approaches, have been in-
troduced in mechanics9 and graphics18, 19. These continuum-
based approaches use the Kirchoff-Love constitutive equa-
tions, whose energy captures curvature effects in curved co-
ordinate frames; consequently they model a rich variety of
materials. The novel approaches remain relatively complex
and computationally expensive: shells made of stiff materi-
als are considered challenging and costly to simulate.

Contribution Building upon the pioneering work of Ter-
zopoulos et al.25 and the beautiful geometric interpretation
of shells by Ciarlet8, we present a simple and realistic tech-
nique for simulating thin shells. Our discrete model of shells
captures the same characteristic behaviors as more complex
models, with a surprisingly simple implementation: a small
change to a cloth simulator yields shell simulations at a neg-
ligible performance penalty. We demonstrate the realism of
our approach through various examples including compar-
isons with real world footage (see Figure 1).

2. A Discrete Shell Model

Our model of thin shells is governed by nonlinear membrane
and flexural energies. These energies measure differences
between the undeformed configuration Ω̄ and deformed con-
figuration Ω. We take measurements which are invariant un-
der rigid body transformations of the undeformed and/or de-
formed configurations: this ensures that our internal forces
conserve linear and angular momentum. We use an arbitrary
2-manifold triangle mesh to describe the shell geometry, and
denote a mesh edge (resp. face) with the letter e (resp. f ). Let
ϕ : Ω̄ �→Ω be the piecewise-affine deformation map from the
undeformed to the deformed surface, mapping every face
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(resp. edge, vertex) of the undeformed mesh to the corre-
sponding face (resp. edge, vertex) of the deformed mesh.

Membrane Elastic surfaces resist stretching (local change
in area) and shearing (local change in length but not area).
Feynman14, then Terzopoulos25 introduced membrane ener-
gies to the graphics community and presented discretizations
of this energy. Other models followed4, 7, 20.

While some materials such as rubber sheets may un-
dergo significant deformations in the stretching or shearing
(membrane) modes, we focus on inextensible shells which
are characterized by mostly isometric deformations, i.e.,
possibly significant deformations in bending but unnotice-
able deformation in the membrane modes. Works on cloth
simulation similarly focus on inextensible plates4, 5. Most
membrane models for triangle meshes satisfy this small-
membrane-strain assumption with choice of suitably large
membrane stiffness coefficients. We are not partial to a par-
ticular treatment of membranes: the various models in the
literature all serve for our purposes†.

So far we have only discussed energies that measure
membrane (intrinsic) deformations. However, when a sur-
face bends—an extrinsic17 deformation—flexural energy
comes into play.

Flexure Models in mechanics are based on invariant mea-
sures, i.e., quantities which are not affected by rigid-body
transformations of the coordinate frame. Typically, this has
led to formulations based on tensors. For example, shell
models use the difference of the second fundamental forms17

in the deformed and undeformed configurations (pulling
back the deformed tensor onto the undeformed configura-
tion). The seminal work of Terzopoulos et al. introduced
such tensorial treatments to the graphics community25.
These treatments derive tensorial expressions over smooth
manifolds, and as a final step discretize to carry out the nu-
merics. In contrast, we define a discrete constitutive model
by applying geometric operators over piecewise-linear sur-
faces. In both earlier treatments and our discrete treatment
the underlying geometry is the same. However, the resulting
expressions are simpler in the discrete approach.

The shape operator17 is the derivative of the Gauss map‡:
geometrically, it measures the local curvature at a point on
a smooth surface. Our bending energy is an extrinsic mea-
sure of the difference between the shape operator evaluated
on the deformed and undeformed surfaces. We express this

† Similarly to Terzopoulos et al.25, our membrane and bending en-
ergies are kept separate—see (3). The stiffness coefficients of the
membrane (or plate) model directly carry over to the shell model.
Knowing the stiffness of an aluminum plate is knowing the stiffness
of an aluminum shell.
‡ This is the map from the surface to the unit sphere, mapping each
surface point to its unit surface normal.

Figure 1: Real footage vs. Simulation: left, a real hat is
dropped on a table; right, our shell simulation captures the
bending of the brim. Notice that volumetric-elasticity, plate,
or cloth simulations could not capture this behavior, while
earlier work on shell simulation required significant imple-
mentation and expertise (see also the color plate).

difference as the squared difference of mean curvature:
[Tr(ϕ∗S)−Tr(S̄)]2 = 4(H ◦ϕ− H̄)2 , (1)

where S̄ and S are the shape operators evaluated over the
undeformed and deformed configurations respectively; like-
wise H̄ and H are the mean curvatures; ϕ∗S is the pull-back
of S onto Ω̄, and we use Tr(ϕ∗S) = ϕ∗ Tr(S) = Tr(S) ◦ϕ =
H ◦ϕ for a diffeomorphism ϕ. This measure is extrinsic: it
sees only changes in the embedding of the surface in R

3.
This measure is invariant under rigid-body transformations:
this ensures conservation of linear and angular momentum.
Integrating (1) over the reference domain we find the con-
tinuous flexural energy

R
Ω̄ 4(H ◦ ϕ − H̄)2dĀ. Discretizing

the integral over the piecewise linear mesh that represents
the shell (see the appendix for a derivation), we express our
discrete flexural energy as a summation over mesh edges,

e

θe
WB(x) = ∑

e
(θe − θ̄e)2‖ē‖/h̄e , (2)

where θe and θ̄e are corresponding
complements of the dihedral angle of

edge e measured in the deformed and undeformed config-
uration respectively, and h̄e is a third of the average of the
heights of the two triangles incident to the edge e (see the ap-
pendix for another possible definition of h̄e). A contempora-
neous development (published in this volume) has arrived at
a similar formula: Bridson et al.6 treat the bending and wrin-
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kling of cloth and give a very compelling demonstration of
their model in production footage. Alias|Wavefront, in their
Maya software, have implemented a mechanism for specify-
ing non-zero angles for creases in cloth. This suggests a for-
mula also similar to (2), and yet the associated publication4

explicitly uses a flat reference configuration. Creases based
on this publication permit at most developable reference
configurations (via a series of folds, without stretching, these
become planar). However, many interesting shells are not
developable.

Following the reasoning for (1), we could have formed
a second energy term taking the determinant instead of the
trace of S. This would lead to a difference of Gaussian cur-
vatures, but this is always zero under isometric deformations
(pure bending). This is not surprising, as Gaussian curvature
is an intrinsic quantity, i.e., it is independent of the embed-
ding of the two-dimensional surface into its ambient three-
dimensional space. In contrast, flexural energy measures ex-
trinsic deformations.

Dynamics A simple, physically-motivated shell model can
thus be expressed by the sum of membrane and flexural en-
ergies,

W = WM + kBWB (3)

where kB is the bending or flexural stiffness, and WM is
the membrane energy, adopted from the various alternatives
in the literature. In our reference implementation, we use
WM = kLWL + kAWA, where WL = ∑e(1−‖e‖/‖ē‖)2‖ē‖, a
summation over (lengths of) edges, measures local change
in length, while WA = ∑A(1−‖A‖/‖Ā‖)2‖Ā‖, a summation
over (areas of) triangles, measures local change in area. Sep-
aration of stretching and bending is not new to graphics25.
While a complete treatment should consider coupling of
membrane and bending modes, for animation this separa-
tion is a reasonable simplification. We model different ma-
terials, from rubber to aluminum, by tuning the membrane-
and bending-stiffness.

Our dynamic system is governed by the ordinary differ-
ential equation of motion ẍ = −M−1 ∇W (x) where x is the
vector of unknown DOFs (i.e., the vertices of the deformed
geometry) and M is the mass matrix. We use the conven-
tional simplifying hypothesis that the mass distribution is
lumped at vertices: the matrix M is then diagonal, and the
mass assigned to a vertex is a third of the total area of the
incident triangles, scaled by the area mass density.

Dissipation Shells dissipate energy via flexural oscillations.
To that end we complete our model with an optional damp-
ing force proportional to (θ̇− ˙̄θ)∇θ where ˙̄θ = 0 for elastic
deformations but is in general non-zero for plastoelastic de-
formations. This is consistent with standard derivations of
Rayleigh-type damping forces using the strain rate tensor, as
discussed by Baraff and Witkin4.

Discussion Our proposed discrete flexural energy, (2), gen-
eralizes on published energies for (flat) plates both con-

tinuous and discrete: (a) Ge et al.15 presented a geomet-
ric argument that the stored energy of a continuous inex-
tensible plate has the form

R
Ω̄ cHH2 + cKKdA for material-

specific coefficients cH and cK ; (b) Haumann20 used a dis-
crete hinge energy, similarly Baraff and Witkin4 used a dis-
crete constraint-based energy, of the form WB(x) = ∑ē θ2

e .
Our approach generalizes both (a) and (b), and produces
convincing simulations beyond the regime of thin plate and
cloth models (see Section 4).

Our approach can also be viewed within the framework
laid out by Terzopoulos et al.25: we focus on the second fun-
damental form, choose a computationally convenient and ge-
ometrically intuitive norm, and propose a simple, effective
discretization.

Our novel formulation has three salient features: (a) the
energy is invariant under rigid body transformation of both
the undeformed and the deformed shape: our system con-
serves linear and angular momenta; (b) the piecewise nature
of our geometry description is fully captured by the purely
intrinsic membrane terms, and the purely extrinsic bending
term; most importantly, (c) it is simple to implement.

3. Implementation
We encourage readers to implement this novel approach to
simulating shells as follows: take working code for a thin
plate or cloth simulator (e.g., as presented by Baraff and
Witkin4), and replace the bending energy with (2). From an
implementation point of view, this involves minimal work.
For example, consider that Baraff and Witkin4 already im-
plemented all the computations relating to θe. The key hur-
dle is that the undeformed configuration, x̄, is represented
in (x,y) ∈ R

2 coordinates, thus kinematically imposing a
flat shape. One could augment this with explicitly-stored
undeformed-angles, θ̄e, but this would work only for de-
velopable surfaces. Any surface which cannot be unfolded
into a flat sheet—a surface with intrinsic curvature, such as
a hat or a car body—requires a more complete treatment
than this. Instead, we express x̄ in coordinates (x,y, z) ∈ R

3,
i.e., not restricting ourselves to planar undeformed config-
uration. Consequently, the undeformed configuration is in
general curved, and we must duplicate the code that com-
putes θe to also compute θ̄e. Rereading Baraff and Witkin’s
paper with these changes in mind, it is immediately clear that
these modification require just a few hours of work.

As part of ongoing and future research, our priorities in
implementing our simulator are extendibility and ease of im-
plementation. We have made several design choices to aid in
numerical robustness and to avoid bugs in implementing our
formulas:

Newmark Time Stepping We adopt the Newmark
scheme24 for ODE integration,

xi+1 = xi +∆ti +∆t2
i
(
(1/2−β)ẍi +βẍi+1

)
,

ẋi+1 = ẋi +∆ti
(
(1− γ)ẍi + γẍi+1

)
,
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where ∆ti is the duration of the ith timestep, ẋi and ẍi are con-
figuration velocity and acceleration at the beginning of the
ith timestep, respectively, and β and γ are adjustable param-
eters linked to the accuracy and stability of the time scheme.
Newmark is either an explicit (β = 0) or implicit (β > 0) in-
tegrator: we used β = 1/4 for final production, and β = 0
to aid in debugging. Newmark gives control over numeri-
cal damping via its second parameter γ. We obtained the
best results by minimizing numerical damping (γ = 1/2);
this matches Baraff and Witkin’s observation that numerical
damping causes undesirable effects to rigid body motions.
Our shell model works also with other time steppers, e.g.,
the implicit scheme used by Baraff and Witkin4. We draw
the reader’s attention to West et al.26, who demonstrate the
numerical advantages of the Newmark scheme.

Automatic Differentiation The use of an explicit integra-
tor necessitates the evaluation of energy gradients, or forces,
with respect to vertex DOFs. Formulae for the gradients of
edge-length and area are easily found in the literature13; the
gradient of the dihedral angle requires more work, but can
still be derived by hand. Since our goal is to ease imple-
mentation and debugging of new, experimental energies, we
chose to use an automatic differentiation (AD) technique.

The use of an implicit integrator necessitates evalua-
tion of force gradients with respect to vertex DOFs, i.e.,
we need formulae for second derivatives of energy. De-
riving such formulae is cumbersome and error-prone, con-
sequently we used AD, a technique for augmenting soft-
ware with derivative computations12. The technique is based
on the observation that every computational algorithm can
be written as the composition of simple, easily differen-
tiable, steps to which the chain rule can be applied. AD
is not new to graphics16, 21. Our AD code is available at
http://multires.caltech.edu/software.

The salient features of our AD implementation are: (a)
it differentiates directly with respect to vector (not scalar)
unknowns; (b) it uses C++ type-checking to ensure both ef-
ficiency and completeness of differentiation. Although there
are several good AD libraries publicly available1, 3, we opted
for implementing this simple set of classes specially for dif-
ferentiation with respect to vector variables.

We define two classes, Scalar and Vector, representing in-
dependent scalar and vector values respectively. The related
classes DScalar and DVector represent dependent quanti-
ties; these carry a tuple (scalar value, vector-valued deriva-
tive) and (vector value, matrix-valued derivative) respec-
tively. The standard algebraic operators are overloaded to
inter-operate between the classes, with a special restriction
on assignment: dependent quantities may not be assigned
to independent variables, and vice-versa. This condition en-
sures both correctness (no dependent quantity is overlooked)
and efficiency (independent quantities never compute/store
derivatives). More documentation is given in the publicly-
available release of our small AD library.

In a production code, we believe that hand-derived for-
mulas would display better performance. As demonstrated
in the works of Baraff and Witkin4 and Bridson et al.6, it is
reasonable to explicitly take the derivatives by hand. Early
in our investigation we converted our code to the automatic
technique, in order to facilitate future exploration, and to
learn more about the technique; although we did not com-
pare timings of the hand- and automatic-techniques, in our
research code they appeared to run at comparable speeds,
and we opted for the convenience of AD: the actual per-
formance degradation was well worth the guaranteed con-
sistency between energy, forces, and force gradients for our
research purposes.

4. Results
We exercised our implementation on three problems:
fixed beams, falling hats, and pinned paper (see accom-
panying animations on the electronic proceedings and
at http://multires.caltech.edu/pubs/DS-CDROM). Computa-
tion time, on a 2GHz Pentium 4 CPU, ranged from a
few minutes to a few hours. In light of the discussion in
Section 3, we expect an optimized implementation of our
method to be as efficient as state-of-the-art cloth simulators.

flat beam v beam

Figure 2: Three pairs of flat and v-beams with increasing
flexural stiffness (left to right) of 100, 1000, and 10000.
The flexural energy coefficient has a high dynamic range;
extreme values (from pure-membrane to near-rigid) remain
numerically and physically well-behaved. Observe that in-
creasing flexural stiffness augments structural rigidity. Com-
pare the behavior of beams: the non-flat cross section of the
v-beam contributes to structural rigidity, especially for low
flexural stiffness.

Beams We pinned to a wall one end of a v-beam, and re-
leased it under gravity. Figure 2, and the video, demonstrate
the effect of varying flexural stiffness on oscillation ampli-
tude and frequency. Higher flexural stiffness gives higher
structural rigidity. The curved undeformed shape of a v-
beam gives qualitatively and quantitatively different behav-
ior than a flat beam. Compare: hold a simple paper strip by
its end; repeat after folding a v-shaped cross-section.

Elastic hats We dropped both real and virtual hats and com-
pared (see Figure 1): the deformation is qualitatively the
same, during impact, compression, and rebound. Adjusting
the damping parameter, we capture or damp away the brim’s
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Figure 3: Modeling a curled, creased, and pinned sheet of
paper: by altering dihedral angles of the reference config-
uration, we effect plastic deformation. While the rendering
is texture-mapped we kept flat-shaded triangles to show the
underlying mesh structure (see also the color plate).

vibrations. Adjusting the flexural stiffness, we can make a
hat made of hard rubber or textile (see the videos of a nearly-
rigid hat and a floppy hat).

Plastoelasticity As discussed in the early work of Ker-
gosien et al.22, a compelling simulation of paper would
require a mechanical shell model. Using our simple shell
model, we can easily simulate a sheet of paper that is rolled,
then creased, then pinned (see Figure 3). Here the physics
require plastic as well as elastic deformations. We begin
with a flat surface, and gradually increase the undeformed
angles, θ̄e. Notice: modifying the undeformed configura-
tion effects a plastic deformation. The kinematics of chang-
ing θ̄e span only physically-realizable bending, i.e., inex-
tensible plastic deformations. In contrast, directly modify-
ing x̄ could introduce plastic deformations with unwanted
membrane modes. We introduced elastic effects by apply-
ing three pin constraints to the deformed configuration. Ob-
serve the half-crease on the left side. The energy of the un-
deformed state is no longer zero! The (plastically-deformed)
left and (untouched) right halves have incompatible unde-
formed shapes, consequently the undeformed configuration
is not stress-free.

5. Conclusions
We introduced a novel discrete model of thin shells for
computer animation, generalizing earlier discrete models of
thin plates, while complementing contemporaneous devel-
opments in cloth simulation. Earlier treatments of shells
require an understanding of advanced finite element tech-
niques and significant implementation effort. To our knowl-
edge, our work here is the first effort to geometrically de-
rive a discrete model for thin shells aimed at computer ani-

mation. We demonstrate this model with animations of stiff
bendable shells such as hats and paper. Notice that the inde-
pendent work by Bridson et al.6, in these proceedings, offers
compelling results of complex wrinkles and folds in clothing
using a similar formulation. Together these works reinforce
each other, spanning soft and stiff shells.

From an implementation point of view, the difference with
earlier work in cloth modeling seems trivial. The key is a
series of significant observations, each with minimal (but
important!) impact on implementation. The kinematic setup
must allow for intrinsic curvature: many interesting surfaces
are not developable. The flexural energy must measure only
extrinsic curvature: mean curvature and not Gaussian cur-
vature. Keeping membrane and bending energies separate is
reasonable, and desirable. The discrete operators can (and
should) be simple. Together, these give the simplest formu-
lation of shells we have seen that produces convincing ani-
mations. Finally, we also describe our choice of a Newmark
implicit integrator, with well-established symplectic proper-
ties, and our use of automatic force derivation to facilitate
development and further research.

Our simple model captures the characteristic behaviors
of shells, including flexural rigidity and crumpling; visually,
animations compare favorably to sophisticated shell models
requiring cumbersome high-order constitutive equations and
finite-element techniques. We claim that implementing a thin
shell simulator for graphics applications is now practical and
worthwhile.
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Appendix: Derivation of the Flexural Energy
We derive the discrete, integral mean-curvature squared operator
as follows. We first partition the undeformed surface into disjoint
union of diamond-shaped tiles, T̄ , associated to each mesh edge,

he
T

e

e, as indicated on the side figure (fol-
lowing Meyer et al.23, one can use the
barycenter of each triangle to define
these regions—or alternatively, the cir-
cumcenters). Over such a diamond, the
mean curvature integral is

R
T̄ H̄dĀ =

θ̄‖ē‖ (see Cohen-Steiner and Morvan11

for a proof). A similar argument leads to:R
T̄ (H ◦ ϕ− H̄)dĀ = (θ− θ̄)‖ē‖. Using

the notion of area-averaged value from
Meyer et al.23, we deduce that (H ◦ϕ−

H̄)|T̄ = (θ− θ̄)/h̄e, where h̄e is the span of the undeformed tile,
which is one sixth of the sum of the heights of the two triangles
sharing ē. For a sufficiently fine, non-degenerate tessellation approx-
imating a smooth surface, the average over a tile (converging point-
wise to its continuous counterpart) squared is equal to the squared
average, leading to:

R
T̄ (H ◦ϕ− H̄)2dĀ = (θ− θ̄)2‖ē‖/h̄e.

Simplification Interestingly, for a simplified version of the above
formula of the form (θ − θ̄)2‖ē‖, the energy functional becomes
dependent only on its piecewise planar geometry not on the under-
lying triangulation. This is appealing in that a material’s physical
energy should depend on its shape, not on the discretization of the
shape. However, there is no discretization of (1) that simultaneously
is (a) dependent only on the geometry not its triangulation, and (b)
converges to its continuous equivalent under refinement. The area
integral of (1) is, in general, unbounded for a piecewise planar ge-
ometry! A discrete energy satisfying both (a) and (b) may exist for
smoother surfaces, but our focus is piecewise planar (triangle mesh)
geometry. In our falling hat simulations, we found that the simplified
energy, which has property (a) but not (b), led to satisfactory results;
however, our meshes were quasi-uniformly sampled and not adap-
tively refined. In general we advocate the use of (2), which is only
slightly more complex to implement but is robust in the presence of
nonuniform sampling.

Accuracy Following the argument found in Meyer et al.23, there
may be numerical advantages in using circumcenters instead of
barycenters for the definition of the diamond tiles (except in trian-
gles with obtuse angles). This affects the definition of h̄e and of the
lumped mass. Since we only need to compute these values for the
undeformed shape, the implementation and performance of initial-
ization code would be affected.
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Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, Peter Schröder / Discrete Shells

Using our novel formulation for discrete shells, we model a curled, creased, and pinned sheet of paper. By altering
dihedral angles of the reference configuration, we effect plastic deformation. While the rendering is texture-
mapped we use flat-shading of the triangles to emphasize the discrete structure of the underlying mesh. The final
shape is fully simulated; the artist indicates the curl radius, the crease sharpness, and the pin positions.

Real footage vs. Simulation: top, a real hat is dropped on a table; bottom, our shell simulation captures the
bending of the brim. Notice that volumetric-elasticity, plate, or cloth simulations could not capture this behavior,
while earlier work on shell simulation required significant implementation and expertise. Movie clips are included
in the electronic proceedings and at http://multires.caltech.edu/pubs/DS-CDROM.
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