Nested Cages

Leonardo Sacht, Etienne Vouga, Alec Jacobson

Problem: Given fine resolution mesh, construct progressive decimations such that each coarser layer contains all finer layers.

Input: overlapping decimations
Output: nested cages

Idea: Work pairwise. Flow fine layer inside coarse layer, once inside re-inflate and push coarse layer outward. Then coarse layer becomes fine layer for next pair.

Overlapping pair F and \bar{C}
Flow F to \bar{F} until inside \bar{C}
Re-inflate \bar{F} to F pushing \bar{C} to C

Question: Why flow the fine into the coarse? Why not expand the coarse outside the fine?

Answer: The distance field of the coarse mesh is simpler, fewer gradient discontinuities.

Flow: Not all flows shrink the fine inside the coarse in a way accommodating re-inflation.

Homeomorphic: Cages should match topology of input, ensuring that solutions to PDEs have same low frequency behavior.

Our nested layers

Applications: Multiresolution PDE solving, collision detection, cage deformation

Homeomorphic

<table>
<thead>
<tr>
<th></th>
<th>Ours</th>
<th>Nesting</th>
<th>Tight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimation</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Voxelization</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level-set</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stress tests: Extremely tight layers, robust to noisy input

Overlapping cage
Flow
Enclosing cage
Deformation

Limitation: Coarse layer collides with self; "pinch" prevents further cages.

Leonardo Sacht, Etienne Vouga, Alec Jacobson